|  | /* | 
|  | ** SMP Support | 
|  | ** | 
|  | ** Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
|  | ** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | ** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org> | 
|  | ** | 
|  | ** Lots of stuff stolen from arch/alpha/kernel/smp.c | 
|  | ** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^) | 
|  | ** | 
|  | ** Thanks to John Curry and Ullas Ponnadi. I learned a lot from their work. | 
|  | ** -grant (1/12/2001) | 
|  | ** | 
|  | **	This program is free software; you can redistribute it and/or modify | 
|  | **	it under the terms of the GNU General Public License as published by | 
|  | **      the Free Software Foundation; either version 2 of the License, or | 
|  | **      (at your option) any later version. | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/ftrace.h> | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/current.h> | 
|  | #include <asm/delay.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/irq.h>		/* for CPU_IRQ_REGION and friends */ | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/cacheflush.h> | 
|  |  | 
|  | #undef DEBUG_SMP | 
|  | #ifdef DEBUG_SMP | 
|  | static int smp_debug_lvl = 0; | 
|  | #define smp_debug(lvl, printargs...)		\ | 
|  | if (lvl >= smp_debug_lvl)	\ | 
|  | printk(printargs); | 
|  | #else | 
|  | #define smp_debug(lvl, ...)	do { } while(0) | 
|  | #endif /* DEBUG_SMP */ | 
|  |  | 
|  | DEFINE_SPINLOCK(smp_lock); | 
|  |  | 
|  | volatile struct task_struct *smp_init_current_idle_task; | 
|  |  | 
|  | /* track which CPU is booting */ | 
|  | static volatile int cpu_now_booting __cpuinitdata; | 
|  |  | 
|  | static int parisc_max_cpus __cpuinitdata = 1; | 
|  |  | 
|  | DEFINE_PER_CPU(spinlock_t, ipi_lock) = SPIN_LOCK_UNLOCKED; | 
|  |  | 
|  | enum ipi_message_type { | 
|  | IPI_NOP=0, | 
|  | IPI_RESCHEDULE=1, | 
|  | IPI_CALL_FUNC, | 
|  | IPI_CALL_FUNC_SINGLE, | 
|  | IPI_CPU_START, | 
|  | IPI_CPU_STOP, | 
|  | IPI_CPU_TEST | 
|  | }; | 
|  |  | 
|  |  | 
|  | /********** SMP inter processor interrupt and communication routines */ | 
|  |  | 
|  | #undef PER_CPU_IRQ_REGION | 
|  | #ifdef PER_CPU_IRQ_REGION | 
|  | /* XXX REVISIT Ignore for now. | 
|  | **    *May* need this "hook" to register IPI handler | 
|  | **    once we have perCPU ExtIntr switch tables. | 
|  | */ | 
|  | static void | 
|  | ipi_init(int cpuid) | 
|  | { | 
|  | #error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region | 
|  |  | 
|  | if(cpu_online(cpuid) ) | 
|  | { | 
|  | switch_to_idle_task(current); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Yoink this CPU from the runnable list... | 
|  | ** | 
|  | */ | 
|  | static void | 
|  | halt_processor(void) | 
|  | { | 
|  | /* REVISIT : redirect I/O Interrupts to another CPU? */ | 
|  | /* REVISIT : does PM *know* this CPU isn't available? */ | 
|  | set_cpu_online(smp_processor_id(), false); | 
|  | local_irq_disable(); | 
|  | for (;;) | 
|  | ; | 
|  | } | 
|  |  | 
|  |  | 
|  | irqreturn_t __irq_entry | 
|  | ipi_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | int this_cpu = smp_processor_id(); | 
|  | struct cpuinfo_parisc *p = &per_cpu(cpu_data, this_cpu); | 
|  | unsigned long ops; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Count this now; we may make a call that never returns. */ | 
|  | p->ipi_count++; | 
|  |  | 
|  | mb();	/* Order interrupt and bit testing. */ | 
|  |  | 
|  | for (;;) { | 
|  | spinlock_t *lock = &per_cpu(ipi_lock, this_cpu); | 
|  | spin_lock_irqsave(lock, flags); | 
|  | ops = p->pending_ipi; | 
|  | p->pending_ipi = 0; | 
|  | spin_unlock_irqrestore(lock, flags); | 
|  |  | 
|  | mb(); /* Order bit clearing and data access. */ | 
|  |  | 
|  | if (!ops) | 
|  | break; | 
|  |  | 
|  | while (ops) { | 
|  | unsigned long which = ffz(~ops); | 
|  |  | 
|  | ops &= ~(1 << which); | 
|  |  | 
|  | switch (which) { | 
|  | case IPI_NOP: | 
|  | smp_debug(100, KERN_DEBUG "CPU%d IPI_NOP\n", this_cpu); | 
|  | break; | 
|  |  | 
|  | case IPI_RESCHEDULE: | 
|  | smp_debug(100, KERN_DEBUG "CPU%d IPI_RESCHEDULE\n", this_cpu); | 
|  | /* | 
|  | * Reschedule callback.  Everything to be | 
|  | * done is done by the interrupt return path. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | case IPI_CALL_FUNC: | 
|  | smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC\n", this_cpu); | 
|  | generic_smp_call_function_interrupt(); | 
|  | break; | 
|  |  | 
|  | case IPI_CALL_FUNC_SINGLE: | 
|  | smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC_SINGLE\n", this_cpu); | 
|  | generic_smp_call_function_single_interrupt(); | 
|  | break; | 
|  |  | 
|  | case IPI_CPU_START: | 
|  | smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_START\n", this_cpu); | 
|  | break; | 
|  |  | 
|  | case IPI_CPU_STOP: | 
|  | smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_STOP\n", this_cpu); | 
|  | halt_processor(); | 
|  | break; | 
|  |  | 
|  | case IPI_CPU_TEST: | 
|  | smp_debug(100, KERN_DEBUG "CPU%d is alive!\n", this_cpu); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n", | 
|  | this_cpu, which); | 
|  | return IRQ_NONE; | 
|  | } /* Switch */ | 
|  | /* let in any pending interrupts */ | 
|  | local_irq_enable(); | 
|  | local_irq_disable(); | 
|  | } /* while (ops) */ | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline void | 
|  | ipi_send(int cpu, enum ipi_message_type op) | 
|  | { | 
|  | struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpu); | 
|  | spinlock_t *lock = &per_cpu(ipi_lock, cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(lock, flags); | 
|  | p->pending_ipi |= 1 << op; | 
|  | gsc_writel(IPI_IRQ - CPU_IRQ_BASE, p->hpa); | 
|  | spin_unlock_irqrestore(lock, flags); | 
|  | } | 
|  |  | 
|  | static void | 
|  | send_IPI_mask(const struct cpumask *mask, enum ipi_message_type op) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_cpu(cpu, mask) | 
|  | ipi_send(cpu, op); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | send_IPI_single(int dest_cpu, enum ipi_message_type op) | 
|  | { | 
|  | BUG_ON(dest_cpu == NO_PROC_ID); | 
|  |  | 
|  | ipi_send(dest_cpu, op); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | send_IPI_allbutself(enum ipi_message_type op) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | if (i != smp_processor_id()) | 
|  | send_IPI_single(i, op); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | inline void | 
|  | smp_send_stop(void)	{ send_IPI_allbutself(IPI_CPU_STOP); } | 
|  |  | 
|  | static inline void | 
|  | smp_send_start(void)	{ send_IPI_allbutself(IPI_CPU_START); } | 
|  |  | 
|  | void | 
|  | smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); } | 
|  |  | 
|  | void | 
|  | smp_send_all_nop(void) | 
|  | { | 
|  | send_IPI_allbutself(IPI_NOP); | 
|  | } | 
|  |  | 
|  | void arch_send_call_function_ipi_mask(const struct cpumask *mask) | 
|  | { | 
|  | send_IPI_mask(mask, IPI_CALL_FUNC); | 
|  | } | 
|  |  | 
|  | void arch_send_call_function_single_ipi(int cpu) | 
|  | { | 
|  | send_IPI_single(cpu, IPI_CALL_FUNC_SINGLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all other CPU's tlb and then mine.  Do this with on_each_cpu() | 
|  | * as we want to ensure all TLB's flushed before proceeding. | 
|  | */ | 
|  |  | 
|  | void | 
|  | smp_flush_tlb_all(void) | 
|  | { | 
|  | on_each_cpu(flush_tlb_all_local, NULL, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by secondaries to update state and initialize CPU registers. | 
|  | */ | 
|  | static void __init | 
|  | smp_cpu_init(int cpunum) | 
|  | { | 
|  | extern int init_per_cpu(int);  /* arch/parisc/kernel/processor.c */ | 
|  | extern void init_IRQ(void);    /* arch/parisc/kernel/irq.c */ | 
|  | extern void start_cpu_itimer(void); /* arch/parisc/kernel/time.c */ | 
|  |  | 
|  | /* Set modes and Enable floating point coprocessor */ | 
|  | (void) init_per_cpu(cpunum); | 
|  |  | 
|  | disable_sr_hashing(); | 
|  |  | 
|  | mb(); | 
|  |  | 
|  | /* Well, support 2.4 linux scheme as well. */ | 
|  | if (cpu_isset(cpunum, cpu_online_map)) | 
|  | { | 
|  | extern void machine_halt(void); /* arch/parisc.../process.c */ | 
|  |  | 
|  | printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum); | 
|  | machine_halt(); | 
|  | } | 
|  | set_cpu_online(cpunum, true); | 
|  |  | 
|  | /* Initialise the idle task for this CPU */ | 
|  | atomic_inc(&init_mm.mm_count); | 
|  | current->active_mm = &init_mm; | 
|  | BUG_ON(current->mm); | 
|  | enter_lazy_tlb(&init_mm, current); | 
|  |  | 
|  | init_IRQ();   /* make sure no IRQs are enabled or pending */ | 
|  | start_cpu_itimer(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Slaves start using C here. Indirectly called from smp_slave_stext. | 
|  | * Do what start_kernel() and main() do for boot strap processor (aka monarch) | 
|  | */ | 
|  | void __init smp_callin(void) | 
|  | { | 
|  | int slave_id = cpu_now_booting; | 
|  |  | 
|  | smp_cpu_init(slave_id); | 
|  | preempt_disable(); | 
|  |  | 
|  | flush_cache_all_local(); /* start with known state */ | 
|  | flush_tlb_all_local(NULL); | 
|  |  | 
|  | local_irq_enable();  /* Interrupts have been off until now */ | 
|  |  | 
|  | cpu_idle();      /* Wait for timer to schedule some work */ | 
|  |  | 
|  | /* NOTREACHED */ | 
|  | panic("smp_callin() AAAAaaaaahhhh....\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bring one cpu online. | 
|  | */ | 
|  | int __cpuinit smp_boot_one_cpu(int cpuid) | 
|  | { | 
|  | const struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpuid); | 
|  | struct task_struct *idle; | 
|  | long timeout; | 
|  |  | 
|  | /* | 
|  | * Create an idle task for this CPU.  Note the address wed* give | 
|  | * to kernel_thread is irrelevant -- it's going to start | 
|  | * where OS_BOOT_RENDEVZ vector in SAL says to start.  But | 
|  | * this gets all the other task-y sort of data structures set | 
|  | * up like we wish.   We need to pull the just created idle task | 
|  | * off the run queue and stuff it into the init_tasks[] array. | 
|  | * Sheesh . . . | 
|  | */ | 
|  |  | 
|  | idle = fork_idle(cpuid); | 
|  | if (IS_ERR(idle)) | 
|  | panic("SMP: fork failed for CPU:%d", cpuid); | 
|  |  | 
|  | task_thread_info(idle)->cpu = cpuid; | 
|  |  | 
|  | /* Let _start know what logical CPU we're booting | 
|  | ** (offset into init_tasks[],cpu_data[]) | 
|  | */ | 
|  | cpu_now_booting = cpuid; | 
|  |  | 
|  | /* | 
|  | ** boot strap code needs to know the task address since | 
|  | ** it also contains the process stack. | 
|  | */ | 
|  | smp_init_current_idle_task = idle ; | 
|  | mb(); | 
|  |  | 
|  | printk(KERN_INFO "Releasing cpu %d now, hpa=%lx\n", cpuid, p->hpa); | 
|  |  | 
|  | /* | 
|  | ** This gets PDC to release the CPU from a very tight loop. | 
|  | ** | 
|  | ** From the PA-RISC 2.0 Firmware Architecture Reference Specification: | 
|  | ** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which | 
|  | ** is executed after receiving the rendezvous signal (an interrupt to | 
|  | ** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the | 
|  | ** contents of memory are valid." | 
|  | */ | 
|  | gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, p->hpa); | 
|  | mb(); | 
|  |  | 
|  | /* | 
|  | * OK, wait a bit for that CPU to finish staggering about. | 
|  | * Slave will set a bit when it reaches smp_cpu_init(). | 
|  | * Once the "monarch CPU" sees the bit change, it can move on. | 
|  | */ | 
|  | for (timeout = 0; timeout < 10000; timeout++) { | 
|  | if(cpu_online(cpuid)) { | 
|  | /* Which implies Slave has started up */ | 
|  | cpu_now_booting = 0; | 
|  | smp_init_current_idle_task = NULL; | 
|  | goto alive ; | 
|  | } | 
|  | udelay(100); | 
|  | barrier(); | 
|  | } | 
|  |  | 
|  | put_task_struct(idle); | 
|  | idle = NULL; | 
|  |  | 
|  | printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid); | 
|  | return -1; | 
|  |  | 
|  | alive: | 
|  | /* Remember the Slave data */ | 
|  | smp_debug(100, KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n", | 
|  | cpuid, timeout * 100); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init smp_prepare_boot_cpu(void) | 
|  | { | 
|  | int bootstrap_processor = per_cpu(cpu_data, 0).cpuid; | 
|  |  | 
|  | /* Setup BSP mappings */ | 
|  | printk(KERN_INFO "SMP: bootstrap CPU ID is %d\n", bootstrap_processor); | 
|  |  | 
|  | set_cpu_online(bootstrap_processor, true); | 
|  | set_cpu_present(bootstrap_processor, true); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** inventory.c:do_inventory() hasn't yet been run and thus we | 
|  | ** don't 'discover' the additional CPUs until later. | 
|  | */ | 
|  | void __init smp_prepare_cpus(unsigned int max_cpus) | 
|  | { | 
|  | init_cpu_present(cpumask_of(0)); | 
|  |  | 
|  | parisc_max_cpus = max_cpus; | 
|  | if (!max_cpus) | 
|  | printk(KERN_INFO "SMP mode deactivated.\n"); | 
|  | } | 
|  |  | 
|  |  | 
|  | void smp_cpus_done(unsigned int cpu_max) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | int __cpuinit __cpu_up(unsigned int cpu) | 
|  | { | 
|  | if (cpu != 0 && cpu < parisc_max_cpus) | 
|  | smp_boot_one_cpu(cpu); | 
|  |  | 
|  | return cpu_online(cpu) ? 0 : -ENOSYS; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | int __init | 
|  | setup_profiling_timer(unsigned int multiplier) | 
|  | { | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif |