|  | /* | 
|  | *  linux/arch/parisc/traps.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 'Traps.c' handles hardware traps and faults after we have saved some | 
|  | * state in 'asm.s'. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/bug.h> | 
|  |  | 
|  | #include <asm/assembly.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/unaligned.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/pdc.h> | 
|  | #include <asm/pdc_chassis.h> | 
|  | #include <asm/unwind.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/cacheflush.h> | 
|  |  | 
|  | #include "../math-emu/math-emu.h"	/* for handle_fpe() */ | 
|  |  | 
|  | #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */ | 
|  | /*  dumped to the console via printk)          */ | 
|  |  | 
|  | #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) | 
|  | DEFINE_SPINLOCK(pa_dbit_lock); | 
|  | #endif | 
|  |  | 
|  | static void parisc_show_stack(struct task_struct *task, unsigned long *sp, | 
|  | struct pt_regs *regs); | 
|  |  | 
|  | static int printbinary(char *buf, unsigned long x, int nbits) | 
|  | { | 
|  | unsigned long mask = 1UL << (nbits - 1); | 
|  | while (mask != 0) { | 
|  | *buf++ = (mask & x ? '1' : '0'); | 
|  | mask >>= 1; | 
|  | } | 
|  | *buf = '\0'; | 
|  |  | 
|  | return nbits; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_64BIT | 
|  | #define RFMT "%016lx" | 
|  | #else | 
|  | #define RFMT "%08lx" | 
|  | #endif | 
|  | #define FFMT "%016llx"	/* fpregs are 64-bit always */ | 
|  |  | 
|  | #define PRINTREGS(lvl,r,f,fmt,x)	\ | 
|  | printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",	\ | 
|  | lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],		\ | 
|  | (r)[(x)+2], (r)[(x)+3]) | 
|  |  | 
|  | static void print_gr(char *level, struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | char buf[64]; | 
|  |  | 
|  | printk("%s\n", level); | 
|  | printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level); | 
|  | printbinary(buf, regs->gr[0], 32); | 
|  | printk("%sPSW: %s %s\n", level, buf, print_tainted()); | 
|  |  | 
|  | for (i = 0; i < 32; i += 4) | 
|  | PRINTREGS(level, regs->gr, "r", RFMT, i); | 
|  | } | 
|  |  | 
|  | static void print_fr(char *level, struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  | char buf[64]; | 
|  | struct { u32 sw[2]; } s; | 
|  |  | 
|  | /* FR are 64bit everywhere. Need to use asm to get the content | 
|  | * of fpsr/fper1, and we assume that we won't have a FP Identify | 
|  | * in our way, otherwise we're screwed. | 
|  | * The fldd is used to restore the T-bit if there was one, as the | 
|  | * store clears it anyway. | 
|  | * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */ | 
|  | asm volatile ("fstd %%fr0,0(%1)	\n\t" | 
|  | "fldd 0(%1),%%fr0	\n\t" | 
|  | : "=m" (s) : "r" (&s) : "r0"); | 
|  |  | 
|  | printk("%s\n", level); | 
|  | printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level); | 
|  | printbinary(buf, s.sw[0], 32); | 
|  | printk("%sFPSR: %s\n", level, buf); | 
|  | printk("%sFPER1: %08x\n", level, s.sw[1]); | 
|  |  | 
|  | /* here we'll print fr0 again, tho it'll be meaningless */ | 
|  | for (i = 0; i < 32; i += 4) | 
|  | PRINTREGS(level, regs->fr, "fr", FFMT, i); | 
|  | } | 
|  |  | 
|  | void show_regs(struct pt_regs *regs) | 
|  | { | 
|  | int i, user; | 
|  | char *level; | 
|  | unsigned long cr30, cr31; | 
|  |  | 
|  | user = user_mode(regs); | 
|  | level = user ? KERN_DEBUG : KERN_CRIT; | 
|  |  | 
|  | print_gr(level, regs); | 
|  |  | 
|  | for (i = 0; i < 8; i += 4) | 
|  | PRINTREGS(level, regs->sr, "sr", RFMT, i); | 
|  |  | 
|  | if (user) | 
|  | print_fr(level, regs); | 
|  |  | 
|  | cr30 = mfctl(30); | 
|  | cr31 = mfctl(31); | 
|  | printk("%s\n", level); | 
|  | printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n", | 
|  | level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]); | 
|  | printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n", | 
|  | level, regs->iir, regs->isr, regs->ior); | 
|  | printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n", | 
|  | level, current_thread_info()->cpu, cr30, cr31); | 
|  | printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28); | 
|  |  | 
|  | if (user) { | 
|  | printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]); | 
|  | printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]); | 
|  | printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]); | 
|  | } else { | 
|  | printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]); | 
|  | printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]); | 
|  | printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]); | 
|  |  | 
|  | parisc_show_stack(current, NULL, regs); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void dump_stack(void) | 
|  | { | 
|  | show_stack(NULL, NULL); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dump_stack); | 
|  |  | 
|  | static void do_show_stack(struct unwind_frame_info *info) | 
|  | { | 
|  | int i = 1; | 
|  |  | 
|  | printk(KERN_CRIT "Backtrace:\n"); | 
|  | while (i <= 16) { | 
|  | if (unwind_once(info) < 0 || info->ip == 0) | 
|  | break; | 
|  |  | 
|  | if (__kernel_text_address(info->ip)) { | 
|  | printk(KERN_CRIT " [<" RFMT ">] %pS\n", | 
|  | info->ip, (void *) info->ip); | 
|  | i++; | 
|  | } | 
|  | } | 
|  | printk(KERN_CRIT "\n"); | 
|  | } | 
|  |  | 
|  | static void parisc_show_stack(struct task_struct *task, unsigned long *sp, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct unwind_frame_info info; | 
|  | struct task_struct *t; | 
|  |  | 
|  | t = task ? task : current; | 
|  | if (regs) { | 
|  | unwind_frame_init(&info, t, regs); | 
|  | goto show_stack; | 
|  | } | 
|  |  | 
|  | if (t == current) { | 
|  | unsigned long sp; | 
|  |  | 
|  | HERE: | 
|  | asm volatile ("copy %%r30, %0" : "=r"(sp)); | 
|  | { | 
|  | struct pt_regs r; | 
|  |  | 
|  | memset(&r, 0, sizeof(struct pt_regs)); | 
|  | r.iaoq[0] = (unsigned long)&&HERE; | 
|  | r.gr[2] = (unsigned long)__builtin_return_address(0); | 
|  | r.gr[30] = sp; | 
|  |  | 
|  | unwind_frame_init(&info, current, &r); | 
|  | } | 
|  | } else { | 
|  | unwind_frame_init_from_blocked_task(&info, t); | 
|  | } | 
|  |  | 
|  | show_stack: | 
|  | do_show_stack(&info); | 
|  | } | 
|  |  | 
|  | void show_stack(struct task_struct *t, unsigned long *sp) | 
|  | { | 
|  | return parisc_show_stack(t, sp, NULL); | 
|  | } | 
|  |  | 
|  | int is_valid_bugaddr(unsigned long iaoq) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void die_if_kernel(char *str, struct pt_regs *regs, long err) | 
|  | { | 
|  | if (user_mode(regs)) { | 
|  | if (err == 0) | 
|  | return; /* STFU */ | 
|  |  | 
|  | printk(KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n", | 
|  | current->comm, task_pid_nr(current), str, err, regs->iaoq[0]); | 
|  | #ifdef PRINT_USER_FAULTS | 
|  | /* XXX for debugging only */ | 
|  | show_regs(regs); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | oops_in_progress = 1; | 
|  |  | 
|  | oops_enter(); | 
|  |  | 
|  | /* Amuse the user in a SPARC fashion */ | 
|  | if (err) printk( | 
|  | KERN_CRIT "      _______________________________ \n" | 
|  | KERN_CRIT "     < Your System ate a SPARC! Gah! >\n" | 
|  | KERN_CRIT "      ------------------------------- \n" | 
|  | KERN_CRIT "             \\   ^__^\n" | 
|  | KERN_CRIT "              \\  (xx)\\_______\n" | 
|  | KERN_CRIT "                 (__)\\       )\\/\\\n" | 
|  | KERN_CRIT "                  U  ||----w |\n" | 
|  | KERN_CRIT "                     ||     ||\n"); | 
|  |  | 
|  | /* unlock the pdc lock if necessary */ | 
|  | pdc_emergency_unlock(); | 
|  |  | 
|  | /* maybe the kernel hasn't booted very far yet and hasn't been able | 
|  | * to initialize the serial or STI console. In that case we should | 
|  | * re-enable the pdc console, so that the user will be able to | 
|  | * identify the problem. */ | 
|  | if (!console_drivers) | 
|  | pdc_console_restart(); | 
|  |  | 
|  | if (err) | 
|  | printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n", | 
|  | current->comm, task_pid_nr(current), str, err); | 
|  |  | 
|  | /* Wot's wrong wif bein' racy? */ | 
|  | if (current->thread.flags & PARISC_KERNEL_DEATH) { | 
|  | printk(KERN_CRIT "%s() recursion detected.\n", __func__); | 
|  | local_irq_enable(); | 
|  | while (1); | 
|  | } | 
|  | current->thread.flags |= PARISC_KERNEL_DEATH; | 
|  |  | 
|  | show_regs(regs); | 
|  | dump_stack(); | 
|  | add_taint(TAINT_DIE); | 
|  |  | 
|  | if (in_interrupt()) | 
|  | panic("Fatal exception in interrupt"); | 
|  |  | 
|  | if (panic_on_oops) { | 
|  | printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n"); | 
|  | ssleep(5); | 
|  | panic("Fatal exception"); | 
|  | } | 
|  |  | 
|  | oops_exit(); | 
|  | do_exit(SIGSEGV); | 
|  | } | 
|  |  | 
|  | int syscall_ipi(int (*syscall) (struct pt_regs *), struct pt_regs *regs) | 
|  | { | 
|  | return syscall(regs); | 
|  | } | 
|  |  | 
|  | /* gdb uses break 4,8 */ | 
|  | #define GDB_BREAK_INSN 0x10004 | 
|  | static void handle_gdb_break(struct pt_regs *regs, int wot) | 
|  | { | 
|  | struct siginfo si; | 
|  |  | 
|  | si.si_signo = SIGTRAP; | 
|  | si.si_errno = 0; | 
|  | si.si_code = wot; | 
|  | si.si_addr = (void __user *) (regs->iaoq[0] & ~3); | 
|  | force_sig_info(SIGTRAP, &si, current); | 
|  | } | 
|  |  | 
|  | static void handle_break(struct pt_regs *regs) | 
|  | { | 
|  | unsigned iir = regs->iir; | 
|  |  | 
|  | if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) { | 
|  | /* check if a BUG() or WARN() trapped here.  */ | 
|  | enum bug_trap_type tt; | 
|  | tt = report_bug(regs->iaoq[0] & ~3, regs); | 
|  | if (tt == BUG_TRAP_TYPE_WARN) { | 
|  | regs->iaoq[0] += 4; | 
|  | regs->iaoq[1] += 4; | 
|  | return; /* return to next instruction when WARN_ON().  */ | 
|  | } | 
|  | die_if_kernel("Unknown kernel breakpoint", regs, | 
|  | (tt == BUG_TRAP_TYPE_NONE) ? 9 : 0); | 
|  | } | 
|  |  | 
|  | #ifdef PRINT_USER_FAULTS | 
|  | if (unlikely(iir != GDB_BREAK_INSN)) { | 
|  | printk(KERN_DEBUG "break %d,%d: pid=%d command='%s'\n", | 
|  | iir & 31, (iir>>13) & ((1<<13)-1), | 
|  | task_pid_nr(current), current->comm); | 
|  | show_regs(regs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* send standard GDB signal */ | 
|  | handle_gdb_break(regs, TRAP_BRKPT); | 
|  | } | 
|  |  | 
|  | static void default_trap(int code, struct pt_regs *regs) | 
|  | { | 
|  | printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id()); | 
|  | show_regs(regs); | 
|  | } | 
|  |  | 
|  | void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap; | 
|  |  | 
|  |  | 
|  | void transfer_pim_to_trap_frame(struct pt_regs *regs) | 
|  | { | 
|  | register int i; | 
|  | extern unsigned int hpmc_pim_data[]; | 
|  | struct pdc_hpmc_pim_11 *pim_narrow; | 
|  | struct pdc_hpmc_pim_20 *pim_wide; | 
|  |  | 
|  | if (boot_cpu_data.cpu_type >= pcxu) { | 
|  |  | 
|  | pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data; | 
|  |  | 
|  | /* | 
|  | * Note: The following code will probably generate a | 
|  | * bunch of truncation error warnings from the compiler. | 
|  | * Could be handled with an ifdef, but perhaps there | 
|  | * is a better way. | 
|  | */ | 
|  |  | 
|  | regs->gr[0] = pim_wide->cr[22]; | 
|  |  | 
|  | for (i = 1; i < 32; i++) | 
|  | regs->gr[i] = pim_wide->gr[i]; | 
|  |  | 
|  | for (i = 0; i < 32; i++) | 
|  | regs->fr[i] = pim_wide->fr[i]; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | regs->sr[i] = pim_wide->sr[i]; | 
|  |  | 
|  | regs->iasq[0] = pim_wide->cr[17]; | 
|  | regs->iasq[1] = pim_wide->iasq_back; | 
|  | regs->iaoq[0] = pim_wide->cr[18]; | 
|  | regs->iaoq[1] = pim_wide->iaoq_back; | 
|  |  | 
|  | regs->sar  = pim_wide->cr[11]; | 
|  | regs->iir  = pim_wide->cr[19]; | 
|  | regs->isr  = pim_wide->cr[20]; | 
|  | regs->ior  = pim_wide->cr[21]; | 
|  | } | 
|  | else { | 
|  | pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data; | 
|  |  | 
|  | regs->gr[0] = pim_narrow->cr[22]; | 
|  |  | 
|  | for (i = 1; i < 32; i++) | 
|  | regs->gr[i] = pim_narrow->gr[i]; | 
|  |  | 
|  | for (i = 0; i < 32; i++) | 
|  | regs->fr[i] = pim_narrow->fr[i]; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | regs->sr[i] = pim_narrow->sr[i]; | 
|  |  | 
|  | regs->iasq[0] = pim_narrow->cr[17]; | 
|  | regs->iasq[1] = pim_narrow->iasq_back; | 
|  | regs->iaoq[0] = pim_narrow->cr[18]; | 
|  | regs->iaoq[1] = pim_narrow->iaoq_back; | 
|  |  | 
|  | regs->sar  = pim_narrow->cr[11]; | 
|  | regs->iir  = pim_narrow->cr[19]; | 
|  | regs->isr  = pim_narrow->cr[20]; | 
|  | regs->ior  = pim_narrow->cr[21]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following fields only have meaning if we came through | 
|  | * another path. So just zero them here. | 
|  | */ | 
|  |  | 
|  | regs->ksp = 0; | 
|  | regs->kpc = 0; | 
|  | regs->orig_r28 = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This routine is called as a last resort when everything else | 
|  | * has gone clearly wrong. We get called for faults in kernel space, | 
|  | * and HPMC's. | 
|  | */ | 
|  | void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset) | 
|  | { | 
|  | static DEFINE_SPINLOCK(terminate_lock); | 
|  |  | 
|  | oops_in_progress = 1; | 
|  |  | 
|  | set_eiem(0); | 
|  | local_irq_disable(); | 
|  | spin_lock(&terminate_lock); | 
|  |  | 
|  | /* unlock the pdc lock if necessary */ | 
|  | pdc_emergency_unlock(); | 
|  |  | 
|  | /* restart pdc console if necessary */ | 
|  | if (!console_drivers) | 
|  | pdc_console_restart(); | 
|  |  | 
|  | /* Not all paths will gutter the processor... */ | 
|  | switch(code){ | 
|  |  | 
|  | case 1: | 
|  | transfer_pim_to_trap_frame(regs); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Fall through */ | 
|  | break; | 
|  |  | 
|  | } | 
|  |  | 
|  | { | 
|  | /* show_stack(NULL, (unsigned long *)regs->gr[30]); */ | 
|  | struct unwind_frame_info info; | 
|  | unwind_frame_init(&info, current, regs); | 
|  | do_show_stack(&info); | 
|  | } | 
|  |  | 
|  | printk("\n"); | 
|  | printk(KERN_CRIT "%s: Code=%d regs=%p (Addr=" RFMT ")\n", | 
|  | msg, code, regs, offset); | 
|  | show_regs(regs); | 
|  |  | 
|  | spin_unlock(&terminate_lock); | 
|  |  | 
|  | /* put soft power button back under hardware control; | 
|  | * if the user had pressed it once at any time, the | 
|  | * system will shut down immediately right here. */ | 
|  | pdc_soft_power_button(0); | 
|  |  | 
|  | /* Call kernel panic() so reboot timeouts work properly | 
|  | * FIXME: This function should be on the list of | 
|  | * panic notifiers, and we should call panic | 
|  | * directly from the location that we wish. | 
|  | * e.g. We should not call panic from | 
|  | * parisc_terminate, but rather the oter way around. | 
|  | * This hack works, prints the panic message twice, | 
|  | * and it enables reboot timers! | 
|  | */ | 
|  | panic(msg); | 
|  | } | 
|  |  | 
|  | void notrace handle_interruption(int code, struct pt_regs *regs) | 
|  | { | 
|  | unsigned long fault_address = 0; | 
|  | unsigned long fault_space = 0; | 
|  | struct siginfo si; | 
|  |  | 
|  | if (code == 1) | 
|  | pdc_console_restart();  /* switch back to pdc if HPMC */ | 
|  | else | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* Security check: | 
|  | * If the priority level is still user, and the | 
|  | * faulting space is not equal to the active space | 
|  | * then the user is attempting something in a space | 
|  | * that does not belong to them. Kill the process. | 
|  | * | 
|  | * This is normally the situation when the user | 
|  | * attempts to jump into the kernel space at the | 
|  | * wrong offset, be it at the gateway page or a | 
|  | * random location. | 
|  | * | 
|  | * We cannot normally signal the process because it | 
|  | * could *be* on the gateway page, and processes | 
|  | * executing on the gateway page can't have signals | 
|  | * delivered. | 
|  | * | 
|  | * We merely readjust the address into the users | 
|  | * space, at a destination address of zero, and | 
|  | * allow processing to continue. | 
|  | */ | 
|  | if (((unsigned long)regs->iaoq[0] & 3) && | 
|  | ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { | 
|  | /* Kill the user process later */ | 
|  | regs->iaoq[0] = 0 | 3; | 
|  | regs->iaoq[1] = regs->iaoq[0] + 4; | 
|  | regs->iasq[0] = regs->iasq[0] = regs->sr[7]; | 
|  | regs->gr[0] &= ~PSW_B; | 
|  | return; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | printk(KERN_CRIT "Interruption # %d\n", code); | 
|  | #endif | 
|  |  | 
|  | switch(code) { | 
|  |  | 
|  | case  1: | 
|  | /* High-priority machine check (HPMC) */ | 
|  |  | 
|  | /* set up a new led state on systems shipped with a LED State panel */ | 
|  | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC); | 
|  |  | 
|  | parisc_terminate("High Priority Machine Check (HPMC)", | 
|  | regs, code, 0); | 
|  | /* NOT REACHED */ | 
|  |  | 
|  | case  2: | 
|  | /* Power failure interrupt */ | 
|  | printk(KERN_CRIT "Power failure interrupt !\n"); | 
|  | return; | 
|  |  | 
|  | case  3: | 
|  | /* Recovery counter trap */ | 
|  | regs->gr[0] &= ~PSW_R; | 
|  | if (user_space(regs)) | 
|  | handle_gdb_break(regs, TRAP_TRACE); | 
|  | /* else this must be the start of a syscall - just let it run */ | 
|  | return; | 
|  |  | 
|  | case  5: | 
|  | /* Low-priority machine check */ | 
|  | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC); | 
|  |  | 
|  | flush_cache_all(); | 
|  | flush_tlb_all(); | 
|  | cpu_lpmc(5, regs); | 
|  | return; | 
|  |  | 
|  | case  6: | 
|  | /* Instruction TLB miss fault/Instruction page fault */ | 
|  | fault_address = regs->iaoq[0]; | 
|  | fault_space   = regs->iasq[0]; | 
|  | break; | 
|  |  | 
|  | case  8: | 
|  | /* Illegal instruction trap */ | 
|  | die_if_kernel("Illegal instruction", regs, code); | 
|  | si.si_code = ILL_ILLOPC; | 
|  | goto give_sigill; | 
|  |  | 
|  | case  9: | 
|  | /* Break instruction trap */ | 
|  | handle_break(regs); | 
|  | return; | 
|  |  | 
|  | case 10: | 
|  | /* Privileged operation trap */ | 
|  | die_if_kernel("Privileged operation", regs, code); | 
|  | si.si_code = ILL_PRVOPC; | 
|  | goto give_sigill; | 
|  |  | 
|  | case 11: | 
|  | /* Privileged register trap */ | 
|  | if ((regs->iir & 0xffdfffe0) == 0x034008a0) { | 
|  |  | 
|  | /* This is a MFCTL cr26/cr27 to gr instruction. | 
|  | * PCXS traps on this, so we need to emulate it. | 
|  | */ | 
|  |  | 
|  | if (regs->iir & 0x00200000) | 
|  | regs->gr[regs->iir & 0x1f] = mfctl(27); | 
|  | else | 
|  | regs->gr[regs->iir & 0x1f] = mfctl(26); | 
|  |  | 
|  | regs->iaoq[0] = regs->iaoq[1]; | 
|  | regs->iaoq[1] += 4; | 
|  | regs->iasq[0] = regs->iasq[1]; | 
|  | return; | 
|  | } | 
|  |  | 
|  | die_if_kernel("Privileged register usage", regs, code); | 
|  | si.si_code = ILL_PRVREG; | 
|  | give_sigill: | 
|  | si.si_signo = SIGILL; | 
|  | si.si_errno = 0; | 
|  | si.si_addr = (void __user *) regs->iaoq[0]; | 
|  | force_sig_info(SIGILL, &si, current); | 
|  | return; | 
|  |  | 
|  | case 12: | 
|  | /* Overflow Trap, let the userland signal handler do the cleanup */ | 
|  | si.si_signo = SIGFPE; | 
|  | si.si_code = FPE_INTOVF; | 
|  | si.si_addr = (void __user *) regs->iaoq[0]; | 
|  | force_sig_info(SIGFPE, &si, current); | 
|  | return; | 
|  |  | 
|  | case 13: | 
|  | /* Conditional Trap | 
|  | The condition succeeds in an instruction which traps | 
|  | on condition  */ | 
|  | if(user_mode(regs)){ | 
|  | si.si_signo = SIGFPE; | 
|  | /* Set to zero, and let the userspace app figure it out from | 
|  | the insn pointed to by si_addr */ | 
|  | si.si_code = 0; | 
|  | si.si_addr = (void __user *) regs->iaoq[0]; | 
|  | force_sig_info(SIGFPE, &si, current); | 
|  | return; | 
|  | } | 
|  | /* The kernel doesn't want to handle condition codes */ | 
|  | break; | 
|  |  | 
|  | case 14: | 
|  | /* Assist Exception Trap, i.e. floating point exception. */ | 
|  | die_if_kernel("Floating point exception", regs, 0); /* quiet */ | 
|  | handle_fpe(regs); | 
|  | return; | 
|  |  | 
|  | case 15: | 
|  | /* Data TLB miss fault/Data page fault */ | 
|  | /* Fall through */ | 
|  | case 16: | 
|  | /* Non-access instruction TLB miss fault */ | 
|  | /* The instruction TLB entry needed for the target address of the FIC | 
|  | is absent, and hardware can't find it, so we get to cleanup */ | 
|  | /* Fall through */ | 
|  | case 17: | 
|  | /* Non-access data TLB miss fault/Non-access data page fault */ | 
|  | /* FIXME: | 
|  | Still need to add slow path emulation code here! | 
|  | If the insn used a non-shadow register, then the tlb | 
|  | handlers could not have their side-effect (e.g. probe | 
|  | writing to a target register) emulated since rfir would | 
|  | erase the changes to said register. Instead we have to | 
|  | setup everything, call this function we are in, and emulate | 
|  | by hand. Technically we need to emulate: | 
|  | fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw | 
|  | */ | 
|  | fault_address = regs->ior; | 
|  | fault_space = regs->isr; | 
|  | break; | 
|  |  | 
|  | case 18: | 
|  | /* PCXS only -- later cpu's split this into types 26,27 & 28 */ | 
|  | /* Check for unaligned access */ | 
|  | if (check_unaligned(regs)) { | 
|  | handle_unaligned(regs); | 
|  | return; | 
|  | } | 
|  | /* Fall Through */ | 
|  | case 26: | 
|  | /* PCXL: Data memory access rights trap */ | 
|  | fault_address = regs->ior; | 
|  | fault_space   = regs->isr; | 
|  | break; | 
|  |  | 
|  | case 19: | 
|  | /* Data memory break trap */ | 
|  | regs->gr[0] |= PSW_X; /* So we can single-step over the trap */ | 
|  | /* fall thru */ | 
|  | case 21: | 
|  | /* Page reference trap */ | 
|  | handle_gdb_break(regs, TRAP_HWBKPT); | 
|  | return; | 
|  |  | 
|  | case 25: | 
|  | /* Taken branch trap */ | 
|  | regs->gr[0] &= ~PSW_T; | 
|  | if (user_space(regs)) | 
|  | handle_gdb_break(regs, TRAP_BRANCH); | 
|  | /* else this must be the start of a syscall - just let it | 
|  | * run. | 
|  | */ | 
|  | return; | 
|  |  | 
|  | case  7: | 
|  | /* Instruction access rights */ | 
|  | /* PCXL: Instruction memory protection trap */ | 
|  |  | 
|  | /* | 
|  | * This could be caused by either: 1) a process attempting | 
|  | * to execute within a vma that does not have execute | 
|  | * permission, or 2) an access rights violation caused by a | 
|  | * flush only translation set up by ptep_get_and_clear(). | 
|  | * So we check the vma permissions to differentiate the two. | 
|  | * If the vma indicates we have execute permission, then | 
|  | * the cause is the latter one. In this case, we need to | 
|  | * call do_page_fault() to fix the problem. | 
|  | */ | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | vma = find_vma(current->mm,regs->iaoq[0]); | 
|  | if (vma && (regs->iaoq[0] >= vma->vm_start) | 
|  | && (vma->vm_flags & VM_EXEC)) { | 
|  |  | 
|  | fault_address = regs->iaoq[0]; | 
|  | fault_space = regs->iasq[0]; | 
|  |  | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | break; /* call do_page_fault() */ | 
|  | } | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | } | 
|  | /* Fall Through */ | 
|  | case 27: | 
|  | /* Data memory protection ID trap */ | 
|  | if (code == 27 && !user_mode(regs) && | 
|  | fixup_exception(regs)) | 
|  | return; | 
|  |  | 
|  | die_if_kernel("Protection id trap", regs, code); | 
|  | si.si_code = SEGV_MAPERR; | 
|  | si.si_signo = SIGSEGV; | 
|  | si.si_errno = 0; | 
|  | if (code == 7) | 
|  | si.si_addr = (void __user *) regs->iaoq[0]; | 
|  | else | 
|  | si.si_addr = (void __user *) regs->ior; | 
|  | force_sig_info(SIGSEGV, &si, current); | 
|  | return; | 
|  |  | 
|  | case 28: | 
|  | /* Unaligned data reference trap */ | 
|  | handle_unaligned(regs); | 
|  | return; | 
|  |  | 
|  | default: | 
|  | if (user_mode(regs)) { | 
|  | #ifdef PRINT_USER_FAULTS | 
|  | printk(KERN_DEBUG "\nhandle_interruption() pid=%d command='%s'\n", | 
|  | task_pid_nr(current), current->comm); | 
|  | show_regs(regs); | 
|  | #endif | 
|  | /* SIGBUS, for lack of a better one. */ | 
|  | si.si_signo = SIGBUS; | 
|  | si.si_code = BUS_OBJERR; | 
|  | si.si_errno = 0; | 
|  | si.si_addr = (void __user *) regs->ior; | 
|  | force_sig_info(SIGBUS, &si, current); | 
|  | return; | 
|  | } | 
|  | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); | 
|  |  | 
|  | parisc_terminate("Unexpected interruption", regs, code, 0); | 
|  | /* NOT REACHED */ | 
|  | } | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) { | 
|  | #ifdef PRINT_USER_FAULTS | 
|  | if (fault_space == 0) | 
|  | printk(KERN_DEBUG "User Fault on Kernel Space "); | 
|  | else | 
|  | printk(KERN_DEBUG "User Fault (long pointer) (fault %d) ", | 
|  | code); | 
|  | printk("pid=%d command='%s'\n", task_pid_nr(current), current->comm); | 
|  | show_regs(regs); | 
|  | #endif | 
|  | si.si_signo = SIGSEGV; | 
|  | si.si_errno = 0; | 
|  | si.si_code = SEGV_MAPERR; | 
|  | si.si_addr = (void __user *) regs->ior; | 
|  | force_sig_info(SIGSEGV, &si, current); | 
|  | return; | 
|  | } | 
|  | } | 
|  | else { | 
|  |  | 
|  | /* | 
|  | * The kernel should never fault on its own address space. | 
|  | */ | 
|  |  | 
|  | if (fault_space == 0) | 
|  | { | 
|  | pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC); | 
|  | parisc_terminate("Kernel Fault", regs, code, fault_address); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | do_page_fault(regs, code, fault_address); | 
|  | } | 
|  |  | 
|  |  | 
|  | int __init check_ivt(void *iva) | 
|  | { | 
|  | extern u32 os_hpmc_size; | 
|  | extern const u32 os_hpmc[]; | 
|  |  | 
|  | int i; | 
|  | u32 check = 0; | 
|  | u32 *ivap; | 
|  | u32 *hpmcp; | 
|  | u32 length; | 
|  |  | 
|  | if (strcmp((char *)iva, "cows can fly")) | 
|  | return -1; | 
|  |  | 
|  | ivap = (u32 *)iva; | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | *ivap++ = 0; | 
|  |  | 
|  | /* Compute Checksum for HPMC handler */ | 
|  | length = os_hpmc_size; | 
|  | ivap[7] = length; | 
|  |  | 
|  | hpmcp = (u32 *)os_hpmc; | 
|  |  | 
|  | for (i=0; i<length/4; i++) | 
|  | check += *hpmcp++; | 
|  |  | 
|  | for (i=0; i<8; i++) | 
|  | check += ivap[i]; | 
|  |  | 
|  | ivap[5] = -check; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_64BIT | 
|  | extern const void fault_vector_11; | 
|  | #endif | 
|  | extern const void fault_vector_20; | 
|  |  | 
|  | void __init trap_init(void) | 
|  | { | 
|  | void *iva; | 
|  |  | 
|  | if (boot_cpu_data.cpu_type >= pcxu) | 
|  | iva = (void *) &fault_vector_20; | 
|  | else | 
|  | #ifdef CONFIG_64BIT | 
|  | panic("Can't boot 64-bit OS on PA1.1 processor!"); | 
|  | #else | 
|  | iva = (void *) &fault_vector_11; | 
|  | #endif | 
|  |  | 
|  | if (check_ivt(iva)) | 
|  | panic("IVT invalid"); | 
|  | } |