| /* | 
 |  * PPC Huge TLB Page Support for Kernel. | 
 |  * | 
 |  * Copyright (C) 2003 David Gibson, IBM Corporation. | 
 |  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor | 
 |  * | 
 |  * Based on the IA-32 version: | 
 |  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com> | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/io.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/export.h> | 
 | #include <linux/of_fdt.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/setup.h> | 
 |  | 
 | #define PAGE_SHIFT_64K	16 | 
 | #define PAGE_SHIFT_16M	24 | 
 | #define PAGE_SHIFT_16G	34 | 
 |  | 
 | unsigned int HPAGE_SHIFT; | 
 |  | 
 | /* | 
 |  * Tracks gpages after the device tree is scanned and before the | 
 |  * huge_boot_pages list is ready.  On non-Freescale implementations, this is | 
 |  * just used to track 16G pages and so is a single array.  FSL-based | 
 |  * implementations may have more than one gpage size, so we need multiple | 
 |  * arrays | 
 |  */ | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | #define MAX_NUMBER_GPAGES	128 | 
 | struct psize_gpages { | 
 | 	u64 gpage_list[MAX_NUMBER_GPAGES]; | 
 | 	unsigned int nr_gpages; | 
 | }; | 
 | static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT]; | 
 | #else | 
 | #define MAX_NUMBER_GPAGES	1024 | 
 | static u64 gpage_freearray[MAX_NUMBER_GPAGES]; | 
 | static unsigned nr_gpages; | 
 | #endif | 
 |  | 
 | static inline int shift_to_mmu_psize(unsigned int shift) | 
 | { | 
 | 	int psize; | 
 |  | 
 | 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) | 
 | 		if (mmu_psize_defs[psize].shift == shift) | 
 | 			return psize; | 
 | 	return -1; | 
 | } | 
 |  | 
 | static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) | 
 | { | 
 | 	if (mmu_psize_defs[mmu_psize].shift) | 
 | 		return mmu_psize_defs[mmu_psize].shift; | 
 | 	BUG(); | 
 | } | 
 |  | 
 | #define hugepd_none(hpd)	((hpd).pd == 0) | 
 |  | 
 | pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift) | 
 | { | 
 | 	pgd_t *pg; | 
 | 	pud_t *pu; | 
 | 	pmd_t *pm; | 
 | 	hugepd_t *hpdp = NULL; | 
 | 	unsigned pdshift = PGDIR_SHIFT; | 
 |  | 
 | 	if (shift) | 
 | 		*shift = 0; | 
 |  | 
 | 	pg = pgdir + pgd_index(ea); | 
 | 	if (is_hugepd(pg)) { | 
 | 		hpdp = (hugepd_t *)pg; | 
 | 	} else if (!pgd_none(*pg)) { | 
 | 		pdshift = PUD_SHIFT; | 
 | 		pu = pud_offset(pg, ea); | 
 | 		if (is_hugepd(pu)) | 
 | 			hpdp = (hugepd_t *)pu; | 
 | 		else if (!pud_none(*pu)) { | 
 | 			pdshift = PMD_SHIFT; | 
 | 			pm = pmd_offset(pu, ea); | 
 | 			if (is_hugepd(pm)) | 
 | 				hpdp = (hugepd_t *)pm; | 
 | 			else if (!pmd_none(*pm)) { | 
 | 				return pte_offset_kernel(pm, ea); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!hpdp) | 
 | 		return NULL; | 
 |  | 
 | 	if (shift) | 
 | 		*shift = hugepd_shift(*hpdp); | 
 | 	return hugepte_offset(hpdp, ea, pdshift); | 
 | } | 
 | EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte); | 
 |  | 
 | pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	return find_linux_pte_or_hugepte(mm->pgd, addr, NULL); | 
 | } | 
 |  | 
 | static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp, | 
 | 			   unsigned long address, unsigned pdshift, unsigned pshift) | 
 | { | 
 | 	struct kmem_cache *cachep; | 
 | 	pte_t *new; | 
 |  | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | 	int i; | 
 | 	int num_hugepd = 1 << (pshift - pdshift); | 
 | 	cachep = hugepte_cache; | 
 | #else | 
 | 	cachep = PGT_CACHE(pdshift - pshift); | 
 | #endif | 
 |  | 
 | 	new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT); | 
 |  | 
 | 	BUG_ON(pshift > HUGEPD_SHIFT_MASK); | 
 | 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK); | 
 |  | 
 | 	if (! new) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock(&mm->page_table_lock); | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | 	/* | 
 | 	 * We have multiple higher-level entries that point to the same | 
 | 	 * actual pte location.  Fill in each as we go and backtrack on error. | 
 | 	 * We need all of these so the DTLB pgtable walk code can find the | 
 | 	 * right higher-level entry without knowing if it's a hugepage or not. | 
 | 	 */ | 
 | 	for (i = 0; i < num_hugepd; i++, hpdp++) { | 
 | 		if (unlikely(!hugepd_none(*hpdp))) | 
 | 			break; | 
 | 		else | 
 | 			hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; | 
 | 	} | 
 | 	/* If we bailed from the for loop early, an error occurred, clean up */ | 
 | 	if (i < num_hugepd) { | 
 | 		for (i = i - 1 ; i >= 0; i--, hpdp--) | 
 | 			hpdp->pd = 0; | 
 | 		kmem_cache_free(cachep, new); | 
 | 	} | 
 | #else | 
 | 	if (!hugepd_none(*hpdp)) | 
 | 		kmem_cache_free(cachep, new); | 
 | 	else | 
 | 		hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift; | 
 | #endif | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * These macros define how to determine which level of the page table holds | 
 |  * the hpdp. | 
 |  */ | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | #define HUGEPD_PGD_SHIFT PGDIR_SHIFT | 
 | #define HUGEPD_PUD_SHIFT PUD_SHIFT | 
 | #else | 
 | #define HUGEPD_PGD_SHIFT PUD_SHIFT | 
 | #define HUGEPD_PUD_SHIFT PMD_SHIFT | 
 | #endif | 
 |  | 
 | pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz) | 
 | { | 
 | 	pgd_t *pg; | 
 | 	pud_t *pu; | 
 | 	pmd_t *pm; | 
 | 	hugepd_t *hpdp = NULL; | 
 | 	unsigned pshift = __ffs(sz); | 
 | 	unsigned pdshift = PGDIR_SHIFT; | 
 |  | 
 | 	addr &= ~(sz-1); | 
 |  | 
 | 	pg = pgd_offset(mm, addr); | 
 |  | 
 | 	if (pshift >= HUGEPD_PGD_SHIFT) { | 
 | 		hpdp = (hugepd_t *)pg; | 
 | 	} else { | 
 | 		pdshift = PUD_SHIFT; | 
 | 		pu = pud_alloc(mm, pg, addr); | 
 | 		if (pshift >= HUGEPD_PUD_SHIFT) { | 
 | 			hpdp = (hugepd_t *)pu; | 
 | 		} else { | 
 | 			pdshift = PMD_SHIFT; | 
 | 			pm = pmd_alloc(mm, pu, addr); | 
 | 			hpdp = (hugepd_t *)pm; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!hpdp) | 
 | 		return NULL; | 
 |  | 
 | 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp)); | 
 |  | 
 | 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift)) | 
 | 		return NULL; | 
 |  | 
 | 	return hugepte_offset(hpdp, addr, pdshift); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | /* Build list of addresses of gigantic pages.  This function is used in early | 
 |  * boot before the buddy or bootmem allocator is setup. | 
 |  */ | 
 | void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) | 
 | { | 
 | 	unsigned int idx = shift_to_mmu_psize(__ffs(page_size)); | 
 | 	int i; | 
 |  | 
 | 	if (addr == 0) | 
 | 		return; | 
 |  | 
 | 	gpage_freearray[idx].nr_gpages = number_of_pages; | 
 |  | 
 | 	for (i = 0; i < number_of_pages; i++) { | 
 | 		gpage_freearray[idx].gpage_list[i] = addr; | 
 | 		addr += page_size; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Moves the gigantic page addresses from the temporary list to the | 
 |  * huge_boot_pages list. | 
 |  */ | 
 | int alloc_bootmem_huge_page(struct hstate *hstate) | 
 | { | 
 | 	struct huge_bootmem_page *m; | 
 | 	int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT); | 
 | 	int nr_gpages = gpage_freearray[idx].nr_gpages; | 
 |  | 
 | 	if (nr_gpages == 0) | 
 | 		return 0; | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	/* | 
 | 	 * If gpages can be in highmem we can't use the trick of storing the | 
 | 	 * data structure in the page; allocate space for this | 
 | 	 */ | 
 | 	m = alloc_bootmem(sizeof(struct huge_bootmem_page)); | 
 | 	m->phys = gpage_freearray[idx].gpage_list[--nr_gpages]; | 
 | #else | 
 | 	m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]); | 
 | #endif | 
 |  | 
 | 	list_add(&m->list, &huge_boot_pages); | 
 | 	gpage_freearray[idx].nr_gpages = nr_gpages; | 
 | 	gpage_freearray[idx].gpage_list[nr_gpages] = 0; | 
 | 	m->hstate = hstate; | 
 |  | 
 | 	return 1; | 
 | } | 
 | /* | 
 |  * Scan the command line hugepagesz= options for gigantic pages; store those in | 
 |  * a list that we use to allocate the memory once all options are parsed. | 
 |  */ | 
 |  | 
 | unsigned long gpage_npages[MMU_PAGE_COUNT]; | 
 |  | 
 | static int __init do_gpage_early_setup(char *param, char *val) | 
 | { | 
 | 	static phys_addr_t size; | 
 | 	unsigned long npages; | 
 |  | 
 | 	/* | 
 | 	 * The hugepagesz and hugepages cmdline options are interleaved.  We | 
 | 	 * use the size variable to keep track of whether or not this was done | 
 | 	 * properly and skip over instances where it is incorrect.  Other | 
 | 	 * command-line parsing code will issue warnings, so we don't need to. | 
 | 	 * | 
 | 	 */ | 
 | 	if ((strcmp(param, "default_hugepagesz") == 0) || | 
 | 	    (strcmp(param, "hugepagesz") == 0)) { | 
 | 		size = memparse(val, NULL); | 
 | 	} else if (strcmp(param, "hugepages") == 0) { | 
 | 		if (size != 0) { | 
 | 			if (sscanf(val, "%lu", &npages) <= 0) | 
 | 				npages = 0; | 
 | 			gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages; | 
 | 			size = 0; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * This function allocates physical space for pages that are larger than the | 
 |  * buddy allocator can handle.  We want to allocate these in highmem because | 
 |  * the amount of lowmem is limited.  This means that this function MUST be | 
 |  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb | 
 |  * allocate to grab highmem. | 
 |  */ | 
 | void __init reserve_hugetlb_gpages(void) | 
 | { | 
 | 	static __initdata char cmdline[COMMAND_LINE_SIZE]; | 
 | 	phys_addr_t size, base; | 
 | 	int i; | 
 |  | 
 | 	strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE); | 
 | 	parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0, | 
 | 			&do_gpage_early_setup); | 
 |  | 
 | 	/* | 
 | 	 * Walk gpage list in reverse, allocating larger page sizes first. | 
 | 	 * Skip over unsupported sizes, or sizes that have 0 gpages allocated. | 
 | 	 * When we reach the point in the list where pages are no longer | 
 | 	 * considered gpages, we're done. | 
 | 	 */ | 
 | 	for (i = MMU_PAGE_COUNT-1; i >= 0; i--) { | 
 | 		if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0) | 
 | 			continue; | 
 | 		else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT)) | 
 | 			break; | 
 |  | 
 | 		size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i)); | 
 | 		base = memblock_alloc_base(size * gpage_npages[i], size, | 
 | 					   MEMBLOCK_ALLOC_ANYWHERE); | 
 | 		add_gpage(base, size, gpage_npages[i]); | 
 | 	} | 
 | } | 
 |  | 
 | #else /* !PPC_FSL_BOOK3E */ | 
 |  | 
 | /* Build list of addresses of gigantic pages.  This function is used in early | 
 |  * boot before the buddy or bootmem allocator is setup. | 
 |  */ | 
 | void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages) | 
 | { | 
 | 	if (!addr) | 
 | 		return; | 
 | 	while (number_of_pages > 0) { | 
 | 		gpage_freearray[nr_gpages] = addr; | 
 | 		nr_gpages++; | 
 | 		number_of_pages--; | 
 | 		addr += page_size; | 
 | 	} | 
 | } | 
 |  | 
 | /* Moves the gigantic page addresses from the temporary list to the | 
 |  * huge_boot_pages list. | 
 |  */ | 
 | int alloc_bootmem_huge_page(struct hstate *hstate) | 
 | { | 
 | 	struct huge_bootmem_page *m; | 
 | 	if (nr_gpages == 0) | 
 | 		return 0; | 
 | 	m = phys_to_virt(gpage_freearray[--nr_gpages]); | 
 | 	gpage_freearray[nr_gpages] = 0; | 
 | 	list_add(&m->list, &huge_boot_pages); | 
 | 	m->hstate = hstate; | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | #define HUGEPD_FREELIST_SIZE \ | 
 | 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t)) | 
 |  | 
 | struct hugepd_freelist { | 
 | 	struct rcu_head	rcu; | 
 | 	unsigned int index; | 
 | 	void *ptes[0]; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur); | 
 |  | 
 | static void hugepd_free_rcu_callback(struct rcu_head *head) | 
 | { | 
 | 	struct hugepd_freelist *batch = | 
 | 		container_of(head, struct hugepd_freelist, rcu); | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < batch->index; i++) | 
 | 		kmem_cache_free(hugepte_cache, batch->ptes[i]); | 
 |  | 
 | 	free_page((unsigned long)batch); | 
 | } | 
 |  | 
 | static void hugepd_free(struct mmu_gather *tlb, void *hugepte) | 
 | { | 
 | 	struct hugepd_freelist **batchp; | 
 |  | 
 | 	batchp = &__get_cpu_var(hugepd_freelist_cur); | 
 |  | 
 | 	if (atomic_read(&tlb->mm->mm_users) < 2 || | 
 | 	    cpumask_equal(mm_cpumask(tlb->mm), | 
 | 			  cpumask_of(smp_processor_id()))) { | 
 | 		kmem_cache_free(hugepte_cache, hugepte); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (*batchp == NULL) { | 
 | 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC); | 
 | 		(*batchp)->index = 0; | 
 | 	} | 
 |  | 
 | 	(*batchp)->ptes[(*batchp)->index++] = hugepte; | 
 | 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) { | 
 | 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback); | 
 | 		*batchp = NULL; | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift, | 
 | 			      unsigned long start, unsigned long end, | 
 | 			      unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pte_t *hugepte = hugepd_page(*hpdp); | 
 | 	int i; | 
 |  | 
 | 	unsigned long pdmask = ~((1UL << pdshift) - 1); | 
 | 	unsigned int num_hugepd = 1; | 
 |  | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | 	/* Note: On fsl the hpdp may be the first of several */ | 
 | 	num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift)); | 
 | #else | 
 | 	unsigned int shift = hugepd_shift(*hpdp); | 
 | #endif | 
 |  | 
 | 	start &= pdmask; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= pdmask; | 
 | 		if (! ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < num_hugepd; i++, hpdp++) | 
 | 		hpdp->pd = 0; | 
 |  | 
 | 	tlb->need_flush = 1; | 
 |  | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | 	hugepd_free(tlb, hugepte); | 
 | #else | 
 | 	pgtable_free_tlb(tlb, hugepte, pdshift - shift); | 
 | #endif | 
 | } | 
 |  | 
 | static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
 | 				   unsigned long addr, unsigned long end, | 
 | 				   unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pmd_t *pmd; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	do { | 
 | 		pmd = pmd_offset(pud, addr); | 
 | 		next = pmd_addr_end(addr, end); | 
 | 		if (pmd_none(*pmd)) | 
 | 			continue; | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | 		/* | 
 | 		 * Increment next by the size of the huge mapping since | 
 | 		 * there may be more than one entry at this level for a | 
 | 		 * single hugepage, but all of them point to | 
 | 		 * the same kmem cache that holds the hugepte. | 
 | 		 */ | 
 | 		next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd)); | 
 | #endif | 
 | 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT, | 
 | 				  addr, next, floor, ceiling); | 
 | 	} while (addr = next, addr != end); | 
 |  | 
 | 	start &= PUD_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PUD_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pmd = pmd_offset(pud, start); | 
 | 	pud_clear(pud); | 
 | 	pmd_free_tlb(tlb, pmd, start); | 
 | } | 
 |  | 
 | static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
 | 				   unsigned long addr, unsigned long end, | 
 | 				   unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pud_t *pud; | 
 | 	unsigned long next; | 
 | 	unsigned long start; | 
 |  | 
 | 	start = addr; | 
 | 	do { | 
 | 		pud = pud_offset(pgd, addr); | 
 | 		next = pud_addr_end(addr, end); | 
 | 		if (!is_hugepd(pud)) { | 
 | 			if (pud_none_or_clear_bad(pud)) | 
 | 				continue; | 
 | 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor, | 
 | 					       ceiling); | 
 | 		} else { | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | 			/* | 
 | 			 * Increment next by the size of the huge mapping since | 
 | 			 * there may be more than one entry at this level for a | 
 | 			 * single hugepage, but all of them point to | 
 | 			 * the same kmem cache that holds the hugepte. | 
 | 			 */ | 
 | 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pud)); | 
 | #endif | 
 | 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT, | 
 | 					  addr, next, floor, ceiling); | 
 | 		} | 
 | 	} while (addr = next, addr != end); | 
 |  | 
 | 	start &= PGDIR_MASK; | 
 | 	if (start < floor) | 
 | 		return; | 
 | 	if (ceiling) { | 
 | 		ceiling &= PGDIR_MASK; | 
 | 		if (!ceiling) | 
 | 			return; | 
 | 	} | 
 | 	if (end - 1 > ceiling - 1) | 
 | 		return; | 
 |  | 
 | 	pud = pud_offset(pgd, start); | 
 | 	pgd_clear(pgd); | 
 | 	pud_free_tlb(tlb, pud, start); | 
 | } | 
 |  | 
 | /* | 
 |  * This function frees user-level page tables of a process. | 
 |  * | 
 |  * Must be called with pagetable lock held. | 
 |  */ | 
 | void hugetlb_free_pgd_range(struct mmu_gather *tlb, | 
 | 			    unsigned long addr, unsigned long end, | 
 | 			    unsigned long floor, unsigned long ceiling) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	unsigned long next; | 
 |  | 
 | 	/* | 
 | 	 * Because there are a number of different possible pagetable | 
 | 	 * layouts for hugepage ranges, we limit knowledge of how | 
 | 	 * things should be laid out to the allocation path | 
 | 	 * (huge_pte_alloc(), above).  Everything else works out the | 
 | 	 * structure as it goes from information in the hugepd | 
 | 	 * pointers.  That means that we can't here use the | 
 | 	 * optimization used in the normal page free_pgd_range(), of | 
 | 	 * checking whether we're actually covering a large enough | 
 | 	 * range to have to do anything at the top level of the walk | 
 | 	 * instead of at the bottom. | 
 | 	 * | 
 | 	 * To make sense of this, you should probably go read the big | 
 | 	 * block comment at the top of the normal free_pgd_range(), | 
 | 	 * too. | 
 | 	 */ | 
 |  | 
 | 	do { | 
 | 		next = pgd_addr_end(addr, end); | 
 | 		pgd = pgd_offset(tlb->mm, addr); | 
 | 		if (!is_hugepd(pgd)) { | 
 | 			if (pgd_none_or_clear_bad(pgd)) | 
 | 				continue; | 
 | 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling); | 
 | 		} else { | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | 			/* | 
 | 			 * Increment next by the size of the huge mapping since | 
 | 			 * there may be more than one entry at the pgd level | 
 | 			 * for a single hugepage, but all of them point to the | 
 | 			 * same kmem cache that holds the hugepte. | 
 | 			 */ | 
 | 			next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd)); | 
 | #endif | 
 | 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT, | 
 | 					  addr, next, floor, ceiling); | 
 | 		} | 
 | 	} while (addr = next, addr != end); | 
 | } | 
 |  | 
 | struct page * | 
 | follow_huge_addr(struct mm_struct *mm, unsigned long address, int write) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	struct page *page; | 
 | 	unsigned shift; | 
 | 	unsigned long mask; | 
 |  | 
 | 	ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift); | 
 |  | 
 | 	/* Verify it is a huge page else bail. */ | 
 | 	if (!ptep || !shift) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	mask = (1UL << shift) - 1; | 
 | 	page = pte_page(*ptep); | 
 | 	if (page) | 
 | 		page += (address & mask) / PAGE_SIZE; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | int pmd_huge(pmd_t pmd) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int pud_huge(pud_t pud) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct page * | 
 | follow_huge_pmd(struct mm_struct *mm, unsigned long address, | 
 | 		pmd_t *pmd, int write) | 
 | { | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr, | 
 | 		       unsigned long end, int write, struct page **pages, int *nr) | 
 | { | 
 | 	unsigned long mask; | 
 | 	unsigned long pte_end; | 
 | 	struct page *head, *page, *tail; | 
 | 	pte_t pte; | 
 | 	int refs; | 
 |  | 
 | 	pte_end = (addr + sz) & ~(sz-1); | 
 | 	if (pte_end < end) | 
 | 		end = pte_end; | 
 |  | 
 | 	pte = *ptep; | 
 | 	mask = _PAGE_PRESENT | _PAGE_USER; | 
 | 	if (write) | 
 | 		mask |= _PAGE_RW; | 
 |  | 
 | 	if ((pte_val(pte) & mask) != mask) | 
 | 		return 0; | 
 |  | 
 | 	/* hugepages are never "special" */ | 
 | 	VM_BUG_ON(!pfn_valid(pte_pfn(pte))); | 
 |  | 
 | 	refs = 0; | 
 | 	head = pte_page(pte); | 
 |  | 
 | 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT); | 
 | 	tail = page; | 
 | 	do { | 
 | 		VM_BUG_ON(compound_head(page) != head); | 
 | 		pages[*nr] = page; | 
 | 		(*nr)++; | 
 | 		page++; | 
 | 		refs++; | 
 | 	} while (addr += PAGE_SIZE, addr != end); | 
 |  | 
 | 	if (!page_cache_add_speculative(head, refs)) { | 
 | 		*nr -= refs; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(pte_val(pte) != pte_val(*ptep))) { | 
 | 		/* Could be optimized better */ | 
 | 		*nr -= refs; | 
 | 		while (refs--) | 
 | 			put_page(head); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Any tail page need their mapcount reference taken before we | 
 | 	 * return. | 
 | 	 */ | 
 | 	while (refs--) { | 
 | 		if (PageTail(tail)) | 
 | 			get_huge_page_tail(tail); | 
 | 		tail++; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end, | 
 | 				      unsigned long sz) | 
 | { | 
 | 	unsigned long __boundary = (addr + sz) & ~(sz-1); | 
 | 	return (__boundary - 1 < end - 1) ? __boundary : end; | 
 | } | 
 |  | 
 | int gup_hugepd(hugepd_t *hugepd, unsigned pdshift, | 
 | 	       unsigned long addr, unsigned long end, | 
 | 	       int write, struct page **pages, int *nr) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	unsigned long sz = 1UL << hugepd_shift(*hugepd); | 
 | 	unsigned long next; | 
 |  | 
 | 	ptep = hugepte_offset(hugepd, addr, pdshift); | 
 | 	do { | 
 | 		next = hugepte_addr_end(addr, end, sz); | 
 | 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr)) | 
 | 			return 0; | 
 | 	} while (ptep++, addr = next, addr != end); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PPC_MM_SLICES | 
 | unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr, | 
 | 					unsigned long len, unsigned long pgoff, | 
 | 					unsigned long flags) | 
 | { | 
 | 	struct hstate *hstate = hstate_file(file); | 
 | 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate)); | 
 |  | 
 | 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0); | 
 | } | 
 | #endif | 
 |  | 
 | unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) | 
 | { | 
 | #ifdef CONFIG_PPC_MM_SLICES | 
 | 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start); | 
 |  | 
 | 	return 1UL << mmu_psize_to_shift(psize); | 
 | #else | 
 | 	if (!is_vm_hugetlb_page(vma)) | 
 | 		return PAGE_SIZE; | 
 |  | 
 | 	return huge_page_size(hstate_vma(vma)); | 
 | #endif | 
 | } | 
 |  | 
 | static inline bool is_power_of_4(unsigned long x) | 
 | { | 
 | 	if (is_power_of_2(x)) | 
 | 		return (__ilog2(x) % 2) ? false : true; | 
 | 	return false; | 
 | } | 
 |  | 
 | static int __init add_huge_page_size(unsigned long long size) | 
 | { | 
 | 	int shift = __ffs(size); | 
 | 	int mmu_psize; | 
 |  | 
 | 	/* Check that it is a page size supported by the hardware and | 
 | 	 * that it fits within pagetable and slice limits. */ | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | 	if ((size < PAGE_SIZE) || !is_power_of_4(size)) | 
 | 		return -EINVAL; | 
 | #else | 
 | 	if (!is_power_of_2(size) | 
 | 	    || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT)) | 
 | 		return -EINVAL; | 
 | #endif | 
 |  | 
 | 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0) | 
 | 		return -EINVAL; | 
 |  | 
 | #ifdef CONFIG_SPU_FS_64K_LS | 
 | 	/* Disable support for 64K huge pages when 64K SPU local store | 
 | 	 * support is enabled as the current implementation conflicts. | 
 | 	 */ | 
 | 	if (shift == PAGE_SHIFT_64K) | 
 | 		return -EINVAL; | 
 | #endif /* CONFIG_SPU_FS_64K_LS */ | 
 |  | 
 | 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift); | 
 |  | 
 | 	/* Return if huge page size has already been setup */ | 
 | 	if (size_to_hstate(size)) | 
 | 		return 0; | 
 |  | 
 | 	hugetlb_add_hstate(shift - PAGE_SHIFT); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init hugepage_setup_sz(char *str) | 
 | { | 
 | 	unsigned long long size; | 
 |  | 
 | 	size = memparse(str, &str); | 
 |  | 
 | 	if (add_huge_page_size(size) != 0) | 
 | 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size); | 
 |  | 
 | 	return 1; | 
 | } | 
 | __setup("hugepagesz=", hugepage_setup_sz); | 
 |  | 
 | #ifdef CONFIG_PPC_FSL_BOOK3E | 
 | struct kmem_cache *hugepte_cache; | 
 | static int __init hugetlbpage_init(void) | 
 | { | 
 | 	int psize; | 
 |  | 
 | 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { | 
 | 		unsigned shift; | 
 |  | 
 | 		if (!mmu_psize_defs[psize].shift) | 
 | 			continue; | 
 |  | 
 | 		shift = mmu_psize_to_shift(psize); | 
 |  | 
 | 		/* Don't treat normal page sizes as huge... */ | 
 | 		if (shift != PAGE_SHIFT) | 
 | 			if (add_huge_page_size(1ULL << shift) < 0) | 
 | 				continue; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Create a kmem cache for hugeptes.  The bottom bits in the pte have | 
 | 	 * size information encoded in them, so align them to allow this | 
 | 	 */ | 
 | 	hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t), | 
 | 					   HUGEPD_SHIFT_MASK + 1, 0, NULL); | 
 | 	if (hugepte_cache == NULL) | 
 | 		panic("%s: Unable to create kmem cache for hugeptes\n", | 
 | 		      __func__); | 
 |  | 
 | 	/* Default hpage size = 4M */ | 
 | 	if (mmu_psize_defs[MMU_PAGE_4M].shift) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift; | 
 | 	else | 
 | 		panic("%s: Unable to set default huge page size\n", __func__); | 
 |  | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int __init hugetlbpage_init(void) | 
 | { | 
 | 	int psize; | 
 |  | 
 | 	if (!mmu_has_feature(MMU_FTR_16M_PAGE)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) { | 
 | 		unsigned shift; | 
 | 		unsigned pdshift; | 
 |  | 
 | 		if (!mmu_psize_defs[psize].shift) | 
 | 			continue; | 
 |  | 
 | 		shift = mmu_psize_to_shift(psize); | 
 |  | 
 | 		if (add_huge_page_size(1ULL << shift) < 0) | 
 | 			continue; | 
 |  | 
 | 		if (shift < PMD_SHIFT) | 
 | 			pdshift = PMD_SHIFT; | 
 | 		else if (shift < PUD_SHIFT) | 
 | 			pdshift = PUD_SHIFT; | 
 | 		else | 
 | 			pdshift = PGDIR_SHIFT; | 
 |  | 
 | 		pgtable_cache_add(pdshift - shift, NULL); | 
 | 		if (!PGT_CACHE(pdshift - shift)) | 
 | 			panic("hugetlbpage_init(): could not create " | 
 | 			      "pgtable cache for %d bit pagesize\n", shift); | 
 | 	} | 
 |  | 
 | 	/* Set default large page size. Currently, we pick 16M or 1M | 
 | 	 * depending on what is available | 
 | 	 */ | 
 | 	if (mmu_psize_defs[MMU_PAGE_16M].shift) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift; | 
 | 	else if (mmu_psize_defs[MMU_PAGE_1M].shift) | 
 | 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif | 
 | module_init(hugetlbpage_init); | 
 |  | 
 | void flush_dcache_icache_hugepage(struct page *page) | 
 | { | 
 | 	int i; | 
 | 	void *start; | 
 |  | 
 | 	BUG_ON(!PageCompound(page)); | 
 |  | 
 | 	for (i = 0; i < (1UL << compound_order(page)); i++) { | 
 | 		if (!PageHighMem(page)) { | 
 | 			__flush_dcache_icache(page_address(page+i)); | 
 | 		} else { | 
 | 			start = kmap_atomic(page+i); | 
 | 			__flush_dcache_icache(start); | 
 | 			kunmap_atomic(start); | 
 | 		} | 
 | 	} | 
 | } |