|  | /* | 
|  | *  linux/fs/namespace.c | 
|  | * | 
|  | * (C) Copyright Al Viro 2000, 2001 | 
|  | *	Released under GPL v2. | 
|  | * | 
|  | * Based on code from fs/super.c, copyright Linus Torvalds and others. | 
|  | * Heavily rewritten. | 
|  | */ | 
|  |  | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/mnt_namespace.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/acct.h>		/* acct_auto_close_mnt */ | 
|  | #include <linux/ramfs.h>	/* init_rootfs */ | 
|  | #include <linux/fs_struct.h>	/* get_fs_root et.al. */ | 
|  | #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */ | 
|  | #include <linux/uaccess.h> | 
|  | #include "pnode.h" | 
|  | #include "internal.h" | 
|  |  | 
|  | #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head)) | 
|  | #define HASH_SIZE (1UL << HASH_SHIFT) | 
|  |  | 
|  | static int event; | 
|  | static DEFINE_IDA(mnt_id_ida); | 
|  | static DEFINE_IDA(mnt_group_ida); | 
|  | static DEFINE_SPINLOCK(mnt_id_lock); | 
|  | static int mnt_id_start = 0; | 
|  | static int mnt_group_start = 1; | 
|  |  | 
|  | static struct list_head *mount_hashtable __read_mostly; | 
|  | static struct kmem_cache *mnt_cache __read_mostly; | 
|  | static struct rw_semaphore namespace_sem; | 
|  |  | 
|  | /* /sys/fs */ | 
|  | struct kobject *fs_kobj; | 
|  | EXPORT_SYMBOL_GPL(fs_kobj); | 
|  |  | 
|  | /* | 
|  | * vfsmount lock may be taken for read to prevent changes to the | 
|  | * vfsmount hash, ie. during mountpoint lookups or walking back | 
|  | * up the tree. | 
|  | * | 
|  | * It should be taken for write in all cases where the vfsmount | 
|  | * tree or hash is modified or when a vfsmount structure is modified. | 
|  | */ | 
|  | DEFINE_BRLOCK(vfsmount_lock); | 
|  |  | 
|  | static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry) | 
|  | { | 
|  | unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); | 
|  | tmp += ((unsigned long)dentry / L1_CACHE_BYTES); | 
|  | tmp = tmp + (tmp >> HASH_SHIFT); | 
|  | return tmp & (HASH_SIZE - 1); | 
|  | } | 
|  |  | 
|  | #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16) | 
|  |  | 
|  | /* | 
|  | * allocation is serialized by namespace_sem, but we need the spinlock to | 
|  | * serialize with freeing. | 
|  | */ | 
|  | static int mnt_alloc_id(struct mount *mnt) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | retry: | 
|  | ida_pre_get(&mnt_id_ida, GFP_KERNEL); | 
|  | spin_lock(&mnt_id_lock); | 
|  | res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); | 
|  | if (!res) | 
|  | mnt_id_start = mnt->mnt_id + 1; | 
|  | spin_unlock(&mnt_id_lock); | 
|  | if (res == -EAGAIN) | 
|  | goto retry; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static void mnt_free_id(struct mount *mnt) | 
|  | { | 
|  | int id = mnt->mnt_id; | 
|  | spin_lock(&mnt_id_lock); | 
|  | ida_remove(&mnt_id_ida, id); | 
|  | if (mnt_id_start > id) | 
|  | mnt_id_start = id; | 
|  | spin_unlock(&mnt_id_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new peer group ID | 
|  | * | 
|  | * mnt_group_ida is protected by namespace_sem | 
|  | */ | 
|  | static int mnt_alloc_group_id(struct mount *mnt) | 
|  | { | 
|  | int res; | 
|  |  | 
|  | if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | res = ida_get_new_above(&mnt_group_ida, | 
|  | mnt_group_start, | 
|  | &mnt->mnt_group_id); | 
|  | if (!res) | 
|  | mnt_group_start = mnt->mnt_group_id + 1; | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release a peer group ID | 
|  | */ | 
|  | void mnt_release_group_id(struct mount *mnt) | 
|  | { | 
|  | int id = mnt->mnt_group_id; | 
|  | ida_remove(&mnt_group_ida, id); | 
|  | if (mnt_group_start > id) | 
|  | mnt_group_start = id; | 
|  | mnt->mnt_group_id = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for read | 
|  | */ | 
|  | static inline void mnt_add_count(struct mount *mnt, int n) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | this_cpu_add(mnt->mnt_pcp->mnt_count, n); | 
|  | #else | 
|  | preempt_disable(); | 
|  | mnt->mnt_count += n; | 
|  | preempt_enable(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | unsigned int mnt_get_count(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned int count = 0; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | #else | 
|  | return mnt->mnt_count; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct mount *alloc_vfsmnt(const char *name) | 
|  | { | 
|  | struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); | 
|  | if (mnt) { | 
|  | int err; | 
|  |  | 
|  | err = mnt_alloc_id(mnt); | 
|  | if (err) | 
|  | goto out_free_cache; | 
|  |  | 
|  | if (name) { | 
|  | mnt->mnt_devname = kstrdup(name, GFP_KERNEL); | 
|  | if (!mnt->mnt_devname) | 
|  | goto out_free_id; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); | 
|  | if (!mnt->mnt_pcp) | 
|  | goto out_free_devname; | 
|  |  | 
|  | this_cpu_add(mnt->mnt_pcp->mnt_count, 1); | 
|  | #else | 
|  | mnt->mnt_count = 1; | 
|  | mnt->mnt_writers = 0; | 
|  | #endif | 
|  |  | 
|  | INIT_LIST_HEAD(&mnt->mnt_hash); | 
|  | INIT_LIST_HEAD(&mnt->mnt_child); | 
|  | INIT_LIST_HEAD(&mnt->mnt_mounts); | 
|  | INIT_LIST_HEAD(&mnt->mnt_list); | 
|  | INIT_LIST_HEAD(&mnt->mnt_expire); | 
|  | INIT_LIST_HEAD(&mnt->mnt_share); | 
|  | INIT_LIST_HEAD(&mnt->mnt_slave_list); | 
|  | INIT_LIST_HEAD(&mnt->mnt_slave); | 
|  | #ifdef CONFIG_FSNOTIFY | 
|  | INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); | 
|  | #endif | 
|  | } | 
|  | return mnt; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | out_free_devname: | 
|  | kfree(mnt->mnt_devname); | 
|  | #endif | 
|  | out_free_id: | 
|  | mnt_free_id(mnt); | 
|  | out_free_cache: | 
|  | kmem_cache_free(mnt_cache, mnt); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Most r/o checks on a fs are for operations that take | 
|  | * discrete amounts of time, like a write() or unlink(). | 
|  | * We must keep track of when those operations start | 
|  | * (for permission checks) and when they end, so that | 
|  | * we can determine when writes are able to occur to | 
|  | * a filesystem. | 
|  | */ | 
|  | /* | 
|  | * __mnt_is_readonly: check whether a mount is read-only | 
|  | * @mnt: the mount to check for its write status | 
|  | * | 
|  | * This shouldn't be used directly ouside of the VFS. | 
|  | * It does not guarantee that the filesystem will stay | 
|  | * r/w, just that it is right *now*.  This can not and | 
|  | * should not be used in place of IS_RDONLY(inode). | 
|  | * mnt_want/drop_write() will _keep_ the filesystem | 
|  | * r/w. | 
|  | */ | 
|  | int __mnt_is_readonly(struct vfsmount *mnt) | 
|  | { | 
|  | if (mnt->mnt_flags & MNT_READONLY) | 
|  | return 1; | 
|  | if (mnt->mnt_sb->s_flags & MS_RDONLY) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__mnt_is_readonly); | 
|  |  | 
|  | static inline void mnt_inc_writers(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | this_cpu_inc(mnt->mnt_pcp->mnt_writers); | 
|  | #else | 
|  | mnt->mnt_writers++; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void mnt_dec_writers(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | this_cpu_dec(mnt->mnt_pcp->mnt_writers); | 
|  | #else | 
|  | mnt->mnt_writers--; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static unsigned int mnt_get_writers(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned int count = 0; | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; | 
|  | } | 
|  |  | 
|  | return count; | 
|  | #else | 
|  | return mnt->mnt_writers; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int mnt_is_readonly(struct vfsmount *mnt) | 
|  | { | 
|  | if (mnt->mnt_sb->s_readonly_remount) | 
|  | return 1; | 
|  | /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ | 
|  | smp_rmb(); | 
|  | return __mnt_is_readonly(mnt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Most r/o checks on a fs are for operations that take | 
|  | * discrete amounts of time, like a write() or unlink(). | 
|  | * We must keep track of when those operations start | 
|  | * (for permission checks) and when they end, so that | 
|  | * we can determine when writes are able to occur to | 
|  | * a filesystem. | 
|  | */ | 
|  | /** | 
|  | * mnt_want_write - get write access to a mount | 
|  | * @m: the mount on which to take a write | 
|  | * | 
|  | * This tells the low-level filesystem that a write is | 
|  | * about to be performed to it, and makes sure that | 
|  | * writes are allowed before returning success.  When | 
|  | * the write operation is finished, mnt_drop_write() | 
|  | * must be called.  This is effectively a refcount. | 
|  | */ | 
|  | int mnt_want_write(struct vfsmount *m) | 
|  | { | 
|  | struct mount *mnt = real_mount(m); | 
|  | int ret = 0; | 
|  |  | 
|  | preempt_disable(); | 
|  | mnt_inc_writers(mnt); | 
|  | /* | 
|  | * The store to mnt_inc_writers must be visible before we pass | 
|  | * MNT_WRITE_HOLD loop below, so that the slowpath can see our | 
|  | * incremented count after it has set MNT_WRITE_HOLD. | 
|  | */ | 
|  | smp_mb(); | 
|  | while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) | 
|  | cpu_relax(); | 
|  | /* | 
|  | * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will | 
|  | * be set to match its requirements. So we must not load that until | 
|  | * MNT_WRITE_HOLD is cleared. | 
|  | */ | 
|  | smp_rmb(); | 
|  | if (mnt_is_readonly(m)) { | 
|  | mnt_dec_writers(mnt); | 
|  | ret = -EROFS; | 
|  | } | 
|  | preempt_enable(); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mnt_want_write); | 
|  |  | 
|  | /** | 
|  | * mnt_clone_write - get write access to a mount | 
|  | * @mnt: the mount on which to take a write | 
|  | * | 
|  | * This is effectively like mnt_want_write, except | 
|  | * it must only be used to take an extra write reference | 
|  | * on a mountpoint that we already know has a write reference | 
|  | * on it. This allows some optimisation. | 
|  | * | 
|  | * After finished, mnt_drop_write must be called as usual to | 
|  | * drop the reference. | 
|  | */ | 
|  | int mnt_clone_write(struct vfsmount *mnt) | 
|  | { | 
|  | /* superblock may be r/o */ | 
|  | if (__mnt_is_readonly(mnt)) | 
|  | return -EROFS; | 
|  | preempt_disable(); | 
|  | mnt_inc_writers(real_mount(mnt)); | 
|  | preempt_enable(); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mnt_clone_write); | 
|  |  | 
|  | /** | 
|  | * mnt_want_write_file - get write access to a file's mount | 
|  | * @file: the file who's mount on which to take a write | 
|  | * | 
|  | * This is like mnt_want_write, but it takes a file and can | 
|  | * do some optimisations if the file is open for write already | 
|  | */ | 
|  | int mnt_want_write_file(struct file *file) | 
|  | { | 
|  | struct inode *inode = file->f_dentry->d_inode; | 
|  | if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode)) | 
|  | return mnt_want_write(file->f_path.mnt); | 
|  | else | 
|  | return mnt_clone_write(file->f_path.mnt); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mnt_want_write_file); | 
|  |  | 
|  | /** | 
|  | * mnt_drop_write - give up write access to a mount | 
|  | * @mnt: the mount on which to give up write access | 
|  | * | 
|  | * Tells the low-level filesystem that we are done | 
|  | * performing writes to it.  Must be matched with | 
|  | * mnt_want_write() call above. | 
|  | */ | 
|  | void mnt_drop_write(struct vfsmount *mnt) | 
|  | { | 
|  | preempt_disable(); | 
|  | mnt_dec_writers(real_mount(mnt)); | 
|  | preempt_enable(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(mnt_drop_write); | 
|  |  | 
|  | void mnt_drop_write_file(struct file *file) | 
|  | { | 
|  | mnt_drop_write(file->f_path.mnt); | 
|  | } | 
|  | EXPORT_SYMBOL(mnt_drop_write_file); | 
|  |  | 
|  | static int mnt_make_readonly(struct mount *mnt) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | br_write_lock(vfsmount_lock); | 
|  | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; | 
|  | /* | 
|  | * After storing MNT_WRITE_HOLD, we'll read the counters. This store | 
|  | * should be visible before we do. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * With writers on hold, if this value is zero, then there are | 
|  | * definitely no active writers (although held writers may subsequently | 
|  | * increment the count, they'll have to wait, and decrement it after | 
|  | * seeing MNT_READONLY). | 
|  | * | 
|  | * It is OK to have counter incremented on one CPU and decremented on | 
|  | * another: the sum will add up correctly. The danger would be when we | 
|  | * sum up each counter, if we read a counter before it is incremented, | 
|  | * but then read another CPU's count which it has been subsequently | 
|  | * decremented from -- we would see more decrements than we should. | 
|  | * MNT_WRITE_HOLD protects against this scenario, because | 
|  | * mnt_want_write first increments count, then smp_mb, then spins on | 
|  | * MNT_WRITE_HOLD, so it can't be decremented by another CPU while | 
|  | * we're counting up here. | 
|  | */ | 
|  | if (mnt_get_writers(mnt) > 0) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | mnt->mnt.mnt_flags |= MNT_READONLY; | 
|  | /* | 
|  | * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers | 
|  | * that become unheld will see MNT_READONLY. | 
|  | */ | 
|  | smp_wmb(); | 
|  | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; | 
|  | br_write_unlock(vfsmount_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __mnt_unmake_readonly(struct mount *mnt) | 
|  | { | 
|  | br_write_lock(vfsmount_lock); | 
|  | mnt->mnt.mnt_flags &= ~MNT_READONLY; | 
|  | br_write_unlock(vfsmount_lock); | 
|  | } | 
|  |  | 
|  | int sb_prepare_remount_readonly(struct super_block *sb) | 
|  | { | 
|  | struct mount *mnt; | 
|  | int err = 0; | 
|  |  | 
|  | /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */ | 
|  | if (atomic_long_read(&sb->s_remove_count)) | 
|  | return -EBUSY; | 
|  |  | 
|  | br_write_lock(vfsmount_lock); | 
|  | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { | 
|  | if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { | 
|  | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; | 
|  | smp_mb(); | 
|  | if (mnt_get_writers(mnt) > 0) { | 
|  | err = -EBUSY; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!err && atomic_long_read(&sb->s_remove_count)) | 
|  | err = -EBUSY; | 
|  |  | 
|  | if (!err) { | 
|  | sb->s_readonly_remount = 1; | 
|  | smp_wmb(); | 
|  | } | 
|  | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { | 
|  | if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) | 
|  | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; | 
|  | } | 
|  | br_write_unlock(vfsmount_lock); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void free_vfsmnt(struct mount *mnt) | 
|  | { | 
|  | kfree(mnt->mnt_devname); | 
|  | mnt_free_id(mnt); | 
|  | #ifdef CONFIG_SMP | 
|  | free_percpu(mnt->mnt_pcp); | 
|  | #endif | 
|  | kmem_cache_free(mnt_cache, mnt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find the first or last mount at @dentry on vfsmount @mnt depending on | 
|  | * @dir. If @dir is set return the first mount else return the last mount. | 
|  | * vfsmount_lock must be held for read or write. | 
|  | */ | 
|  | struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry, | 
|  | int dir) | 
|  | { | 
|  | struct list_head *head = mount_hashtable + hash(mnt, dentry); | 
|  | struct list_head *tmp = head; | 
|  | struct mount *p, *found = NULL; | 
|  |  | 
|  | for (;;) { | 
|  | tmp = dir ? tmp->next : tmp->prev; | 
|  | p = NULL; | 
|  | if (tmp == head) | 
|  | break; | 
|  | p = list_entry(tmp, struct mount, mnt_hash); | 
|  | if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) { | 
|  | found = p; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * lookup_mnt increments the ref count before returning | 
|  | * the vfsmount struct. | 
|  | */ | 
|  | struct vfsmount *lookup_mnt(struct path *path) | 
|  | { | 
|  | struct mount *child_mnt; | 
|  |  | 
|  | br_read_lock(vfsmount_lock); | 
|  | child_mnt = __lookup_mnt(path->mnt, path->dentry, 1); | 
|  | if (child_mnt) { | 
|  | mnt_add_count(child_mnt, 1); | 
|  | br_read_unlock(vfsmount_lock); | 
|  | return &child_mnt->mnt; | 
|  | } else { | 
|  | br_read_unlock(vfsmount_lock); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int check_mnt(struct mount *mnt) | 
|  | { | 
|  | return mnt->mnt_ns == current->nsproxy->mnt_ns; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void touch_mnt_namespace(struct mnt_namespace *ns) | 
|  | { | 
|  | if (ns) { | 
|  | ns->event = ++event; | 
|  | wake_up_interruptible(&ns->poll); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void __touch_mnt_namespace(struct mnt_namespace *ns) | 
|  | { | 
|  | if (ns && ns->event != event) { | 
|  | ns->event = event; | 
|  | wake_up_interruptible(&ns->poll); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear dentry's mounted state if it has no remaining mounts. | 
|  | * vfsmount_lock must be held for write. | 
|  | */ | 
|  | static void dentry_reset_mounted(struct dentry *dentry) | 
|  | { | 
|  | unsigned u; | 
|  |  | 
|  | for (u = 0; u < HASH_SIZE; u++) { | 
|  | struct mount *p; | 
|  |  | 
|  | list_for_each_entry(p, &mount_hashtable[u], mnt_hash) { | 
|  | if (p->mnt_mountpoint == dentry) | 
|  | return; | 
|  | } | 
|  | } | 
|  | spin_lock(&dentry->d_lock); | 
|  | dentry->d_flags &= ~DCACHE_MOUNTED; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void detach_mnt(struct mount *mnt, struct path *old_path) | 
|  | { | 
|  | old_path->dentry = mnt->mnt_mountpoint; | 
|  | old_path->mnt = &mnt->mnt_parent->mnt; | 
|  | mnt->mnt_parent = mnt; | 
|  | mnt->mnt_mountpoint = mnt->mnt.mnt_root; | 
|  | list_del_init(&mnt->mnt_child); | 
|  | list_del_init(&mnt->mnt_hash); | 
|  | dentry_reset_mounted(old_path->dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry, | 
|  | struct mount *child_mnt) | 
|  | { | 
|  | mnt_add_count(mnt, 1);	/* essentially, that's mntget */ | 
|  | child_mnt->mnt_mountpoint = dget(dentry); | 
|  | child_mnt->mnt_parent = mnt; | 
|  | spin_lock(&dentry->d_lock); | 
|  | dentry->d_flags |= DCACHE_MOUNTED; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void attach_mnt(struct mount *mnt, struct path *path) | 
|  | { | 
|  | mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt); | 
|  | list_add_tail(&mnt->mnt_hash, mount_hashtable + | 
|  | hash(path->mnt, path->dentry)); | 
|  | list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts); | 
|  | } | 
|  |  | 
|  | static inline void __mnt_make_longterm(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | atomic_inc(&mnt->mnt_longterm); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* needs vfsmount lock for write */ | 
|  | static inline void __mnt_make_shortterm(struct mount *mnt) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | atomic_dec(&mnt->mnt_longterm); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | */ | 
|  | static void commit_tree(struct mount *mnt) | 
|  | { | 
|  | struct mount *parent = mnt->mnt_parent; | 
|  | struct mount *m; | 
|  | LIST_HEAD(head); | 
|  | struct mnt_namespace *n = parent->mnt_ns; | 
|  |  | 
|  | BUG_ON(parent == mnt); | 
|  |  | 
|  | list_add_tail(&head, &mnt->mnt_list); | 
|  | list_for_each_entry(m, &head, mnt_list) { | 
|  | m->mnt_ns = n; | 
|  | __mnt_make_longterm(m); | 
|  | } | 
|  |  | 
|  | list_splice(&head, n->list.prev); | 
|  |  | 
|  | list_add_tail(&mnt->mnt_hash, mount_hashtable + | 
|  | hash(&parent->mnt, mnt->mnt_mountpoint)); | 
|  | list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); | 
|  | touch_mnt_namespace(n); | 
|  | } | 
|  |  | 
|  | static struct mount *next_mnt(struct mount *p, struct mount *root) | 
|  | { | 
|  | struct list_head *next = p->mnt_mounts.next; | 
|  | if (next == &p->mnt_mounts) { | 
|  | while (1) { | 
|  | if (p == root) | 
|  | return NULL; | 
|  | next = p->mnt_child.next; | 
|  | if (next != &p->mnt_parent->mnt_mounts) | 
|  | break; | 
|  | p = p->mnt_parent; | 
|  | } | 
|  | } | 
|  | return list_entry(next, struct mount, mnt_child); | 
|  | } | 
|  |  | 
|  | static struct mount *skip_mnt_tree(struct mount *p) | 
|  | { | 
|  | struct list_head *prev = p->mnt_mounts.prev; | 
|  | while (prev != &p->mnt_mounts) { | 
|  | p = list_entry(prev, struct mount, mnt_child); | 
|  | prev = p->mnt_mounts.prev; | 
|  | } | 
|  | return p; | 
|  | } | 
|  |  | 
|  | struct vfsmount * | 
|  | vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) | 
|  | { | 
|  | struct mount *mnt; | 
|  | struct dentry *root; | 
|  |  | 
|  | if (!type) | 
|  | return ERR_PTR(-ENODEV); | 
|  |  | 
|  | mnt = alloc_vfsmnt(name); | 
|  | if (!mnt) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (flags & MS_KERNMOUNT) | 
|  | mnt->mnt.mnt_flags = MNT_INTERNAL; | 
|  |  | 
|  | root = mount_fs(type, flags, name, data); | 
|  | if (IS_ERR(root)) { | 
|  | free_vfsmnt(mnt); | 
|  | return ERR_CAST(root); | 
|  | } | 
|  |  | 
|  | mnt->mnt.mnt_root = root; | 
|  | mnt->mnt.mnt_sb = root->d_sb; | 
|  | mnt->mnt_mountpoint = mnt->mnt.mnt_root; | 
|  | mnt->mnt_parent = mnt; | 
|  | br_write_lock(vfsmount_lock); | 
|  | list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | return &mnt->mnt; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(vfs_kern_mount); | 
|  |  | 
|  | static struct mount *clone_mnt(struct mount *old, struct dentry *root, | 
|  | int flag) | 
|  | { | 
|  | struct super_block *sb = old->mnt.mnt_sb; | 
|  | struct mount *mnt = alloc_vfsmnt(old->mnt_devname); | 
|  |  | 
|  | if (mnt) { | 
|  | if (flag & (CL_SLAVE | CL_PRIVATE)) | 
|  | mnt->mnt_group_id = 0; /* not a peer of original */ | 
|  | else | 
|  | mnt->mnt_group_id = old->mnt_group_id; | 
|  |  | 
|  | if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { | 
|  | int err = mnt_alloc_group_id(mnt); | 
|  | if (err) | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD; | 
|  | atomic_inc(&sb->s_active); | 
|  | mnt->mnt.mnt_sb = sb; | 
|  | mnt->mnt.mnt_root = dget(root); | 
|  | mnt->mnt_mountpoint = mnt->mnt.mnt_root; | 
|  | mnt->mnt_parent = mnt; | 
|  | br_write_lock(vfsmount_lock); | 
|  | list_add_tail(&mnt->mnt_instance, &sb->s_mounts); | 
|  | br_write_unlock(vfsmount_lock); | 
|  |  | 
|  | if (flag & CL_SLAVE) { | 
|  | list_add(&mnt->mnt_slave, &old->mnt_slave_list); | 
|  | mnt->mnt_master = old; | 
|  | CLEAR_MNT_SHARED(mnt); | 
|  | } else if (!(flag & CL_PRIVATE)) { | 
|  | if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) | 
|  | list_add(&mnt->mnt_share, &old->mnt_share); | 
|  | if (IS_MNT_SLAVE(old)) | 
|  | list_add(&mnt->mnt_slave, &old->mnt_slave); | 
|  | mnt->mnt_master = old->mnt_master; | 
|  | } | 
|  | if (flag & CL_MAKE_SHARED) | 
|  | set_mnt_shared(mnt); | 
|  |  | 
|  | /* stick the duplicate mount on the same expiry list | 
|  | * as the original if that was on one */ | 
|  | if (flag & CL_EXPIRE) { | 
|  | if (!list_empty(&old->mnt_expire)) | 
|  | list_add(&mnt->mnt_expire, &old->mnt_expire); | 
|  | } | 
|  | } | 
|  | return mnt; | 
|  |  | 
|  | out_free: | 
|  | free_vfsmnt(mnt); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline void mntfree(struct mount *mnt) | 
|  | { | 
|  | struct vfsmount *m = &mnt->mnt; | 
|  | struct super_block *sb = m->mnt_sb; | 
|  |  | 
|  | /* | 
|  | * This probably indicates that somebody messed | 
|  | * up a mnt_want/drop_write() pair.  If this | 
|  | * happens, the filesystem was probably unable | 
|  | * to make r/w->r/o transitions. | 
|  | */ | 
|  | /* | 
|  | * The locking used to deal with mnt_count decrement provides barriers, | 
|  | * so mnt_get_writers() below is safe. | 
|  | */ | 
|  | WARN_ON(mnt_get_writers(mnt)); | 
|  | fsnotify_vfsmount_delete(m); | 
|  | dput(m->mnt_root); | 
|  | free_vfsmnt(mnt); | 
|  | deactivate_super(sb); | 
|  | } | 
|  |  | 
|  | static void mntput_no_expire(struct mount *mnt) | 
|  | { | 
|  | put_again: | 
|  | #ifdef CONFIG_SMP | 
|  | br_read_lock(vfsmount_lock); | 
|  | if (likely(atomic_read(&mnt->mnt_longterm))) { | 
|  | mnt_add_count(mnt, -1); | 
|  | br_read_unlock(vfsmount_lock); | 
|  | return; | 
|  | } | 
|  | br_read_unlock(vfsmount_lock); | 
|  |  | 
|  | br_write_lock(vfsmount_lock); | 
|  | mnt_add_count(mnt, -1); | 
|  | if (mnt_get_count(mnt)) { | 
|  | br_write_unlock(vfsmount_lock); | 
|  | return; | 
|  | } | 
|  | #else | 
|  | mnt_add_count(mnt, -1); | 
|  | if (likely(mnt_get_count(mnt))) | 
|  | return; | 
|  | br_write_lock(vfsmount_lock); | 
|  | #endif | 
|  | if (unlikely(mnt->mnt_pinned)) { | 
|  | mnt_add_count(mnt, mnt->mnt_pinned + 1); | 
|  | mnt->mnt_pinned = 0; | 
|  | br_write_unlock(vfsmount_lock); | 
|  | acct_auto_close_mnt(&mnt->mnt); | 
|  | goto put_again; | 
|  | } | 
|  | list_del(&mnt->mnt_instance); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | mntfree(mnt); | 
|  | } | 
|  |  | 
|  | void mntput(struct vfsmount *mnt) | 
|  | { | 
|  | if (mnt) { | 
|  | struct mount *m = real_mount(mnt); | 
|  | /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ | 
|  | if (unlikely(m->mnt_expiry_mark)) | 
|  | m->mnt_expiry_mark = 0; | 
|  | mntput_no_expire(m); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(mntput); | 
|  |  | 
|  | struct vfsmount *mntget(struct vfsmount *mnt) | 
|  | { | 
|  | if (mnt) | 
|  | mnt_add_count(real_mount(mnt), 1); | 
|  | return mnt; | 
|  | } | 
|  | EXPORT_SYMBOL(mntget); | 
|  |  | 
|  | void mnt_pin(struct vfsmount *mnt) | 
|  | { | 
|  | br_write_lock(vfsmount_lock); | 
|  | real_mount(mnt)->mnt_pinned++; | 
|  | br_write_unlock(vfsmount_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(mnt_pin); | 
|  |  | 
|  | void mnt_unpin(struct vfsmount *m) | 
|  | { | 
|  | struct mount *mnt = real_mount(m); | 
|  | br_write_lock(vfsmount_lock); | 
|  | if (mnt->mnt_pinned) { | 
|  | mnt_add_count(mnt, 1); | 
|  | mnt->mnt_pinned--; | 
|  | } | 
|  | br_write_unlock(vfsmount_lock); | 
|  | } | 
|  | EXPORT_SYMBOL(mnt_unpin); | 
|  |  | 
|  | static inline void mangle(struct seq_file *m, const char *s) | 
|  | { | 
|  | seq_escape(m, s, " \t\n\\"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Simple .show_options callback for filesystems which don't want to | 
|  | * implement more complex mount option showing. | 
|  | * | 
|  | * See also save_mount_options(). | 
|  | */ | 
|  | int generic_show_options(struct seq_file *m, struct dentry *root) | 
|  | { | 
|  | const char *options; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | options = rcu_dereference(root->d_sb->s_options); | 
|  |  | 
|  | if (options != NULL && options[0]) { | 
|  | seq_putc(m, ','); | 
|  | mangle(m, options); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(generic_show_options); | 
|  |  | 
|  | /* | 
|  | * If filesystem uses generic_show_options(), this function should be | 
|  | * called from the fill_super() callback. | 
|  | * | 
|  | * The .remount_fs callback usually needs to be handled in a special | 
|  | * way, to make sure, that previous options are not overwritten if the | 
|  | * remount fails. | 
|  | * | 
|  | * Also note, that if the filesystem's .remount_fs function doesn't | 
|  | * reset all options to their default value, but changes only newly | 
|  | * given options, then the displayed options will not reflect reality | 
|  | * any more. | 
|  | */ | 
|  | void save_mount_options(struct super_block *sb, char *options) | 
|  | { | 
|  | BUG_ON(sb->s_options); | 
|  | rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); | 
|  | } | 
|  | EXPORT_SYMBOL(save_mount_options); | 
|  |  | 
|  | void replace_mount_options(struct super_block *sb, char *options) | 
|  | { | 
|  | char *old = sb->s_options; | 
|  | rcu_assign_pointer(sb->s_options, options); | 
|  | if (old) { | 
|  | synchronize_rcu(); | 
|  | kfree(old); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(replace_mount_options); | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | /* iterator; we want it to have access to namespace_sem, thus here... */ | 
|  | static void *m_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | struct proc_mounts *p = container_of(m, struct proc_mounts, m); | 
|  |  | 
|  | down_read(&namespace_sem); | 
|  | return seq_list_start(&p->ns->list, *pos); | 
|  | } | 
|  |  | 
|  | static void *m_next(struct seq_file *m, void *v, loff_t *pos) | 
|  | { | 
|  | struct proc_mounts *p = container_of(m, struct proc_mounts, m); | 
|  |  | 
|  | return seq_list_next(v, &p->ns->list, pos); | 
|  | } | 
|  |  | 
|  | static void m_stop(struct seq_file *m, void *v) | 
|  | { | 
|  | up_read(&namespace_sem); | 
|  | } | 
|  |  | 
|  | static int m_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct proc_mounts *p = container_of(m, struct proc_mounts, m); | 
|  | struct mount *r = list_entry(v, struct mount, mnt_list); | 
|  | return p->show(m, &r->mnt); | 
|  | } | 
|  |  | 
|  | const struct seq_operations mounts_op = { | 
|  | .start	= m_start, | 
|  | .next	= m_next, | 
|  | .stop	= m_stop, | 
|  | .show	= m_show, | 
|  | }; | 
|  | #endif  /* CONFIG_PROC_FS */ | 
|  |  | 
|  | /** | 
|  | * may_umount_tree - check if a mount tree is busy | 
|  | * @mnt: root of mount tree | 
|  | * | 
|  | * This is called to check if a tree of mounts has any | 
|  | * open files, pwds, chroots or sub mounts that are | 
|  | * busy. | 
|  | */ | 
|  | int may_umount_tree(struct vfsmount *m) | 
|  | { | 
|  | struct mount *mnt = real_mount(m); | 
|  | int actual_refs = 0; | 
|  | int minimum_refs = 0; | 
|  | struct mount *p; | 
|  | BUG_ON(!m); | 
|  |  | 
|  | /* write lock needed for mnt_get_count */ | 
|  | br_write_lock(vfsmount_lock); | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) { | 
|  | actual_refs += mnt_get_count(p); | 
|  | minimum_refs += 2; | 
|  | } | 
|  | br_write_unlock(vfsmount_lock); | 
|  |  | 
|  | if (actual_refs > minimum_refs) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(may_umount_tree); | 
|  |  | 
|  | /** | 
|  | * may_umount - check if a mount point is busy | 
|  | * @mnt: root of mount | 
|  | * | 
|  | * This is called to check if a mount point has any | 
|  | * open files, pwds, chroots or sub mounts. If the | 
|  | * mount has sub mounts this will return busy | 
|  | * regardless of whether the sub mounts are busy. | 
|  | * | 
|  | * Doesn't take quota and stuff into account. IOW, in some cases it will | 
|  | * give false negatives. The main reason why it's here is that we need | 
|  | * a non-destructive way to look for easily umountable filesystems. | 
|  | */ | 
|  | int may_umount(struct vfsmount *mnt) | 
|  | { | 
|  | int ret = 1; | 
|  | down_read(&namespace_sem); | 
|  | br_write_lock(vfsmount_lock); | 
|  | if (propagate_mount_busy(real_mount(mnt), 2)) | 
|  | ret = 0; | 
|  | br_write_unlock(vfsmount_lock); | 
|  | up_read(&namespace_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(may_umount); | 
|  |  | 
|  | void release_mounts(struct list_head *head) | 
|  | { | 
|  | struct mount *mnt; | 
|  | while (!list_empty(head)) { | 
|  | mnt = list_first_entry(head, struct mount, mnt_hash); | 
|  | list_del_init(&mnt->mnt_hash); | 
|  | if (mnt_has_parent(mnt)) { | 
|  | struct dentry *dentry; | 
|  | struct mount *m; | 
|  |  | 
|  | br_write_lock(vfsmount_lock); | 
|  | dentry = mnt->mnt_mountpoint; | 
|  | m = mnt->mnt_parent; | 
|  | mnt->mnt_mountpoint = mnt->mnt.mnt_root; | 
|  | mnt->mnt_parent = mnt; | 
|  | m->mnt_ghosts--; | 
|  | br_write_unlock(vfsmount_lock); | 
|  | dput(dentry); | 
|  | mntput(&m->mnt); | 
|  | } | 
|  | mntput(&mnt->mnt); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * vfsmount lock must be held for write | 
|  | * namespace_sem must be held for write | 
|  | */ | 
|  | void umount_tree(struct mount *mnt, int propagate, struct list_head *kill) | 
|  | { | 
|  | LIST_HEAD(tmp_list); | 
|  | struct mount *p; | 
|  |  | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) | 
|  | list_move(&p->mnt_hash, &tmp_list); | 
|  |  | 
|  | if (propagate) | 
|  | propagate_umount(&tmp_list); | 
|  |  | 
|  | list_for_each_entry(p, &tmp_list, mnt_hash) { | 
|  | list_del_init(&p->mnt_expire); | 
|  | list_del_init(&p->mnt_list); | 
|  | __touch_mnt_namespace(p->mnt_ns); | 
|  | p->mnt_ns = NULL; | 
|  | __mnt_make_shortterm(p); | 
|  | list_del_init(&p->mnt_child); | 
|  | if (mnt_has_parent(p)) { | 
|  | p->mnt_parent->mnt_ghosts++; | 
|  | dentry_reset_mounted(p->mnt_mountpoint); | 
|  | } | 
|  | change_mnt_propagation(p, MS_PRIVATE); | 
|  | } | 
|  | list_splice(&tmp_list, kill); | 
|  | } | 
|  |  | 
|  | static void shrink_submounts(struct mount *mnt, struct list_head *umounts); | 
|  |  | 
|  | static int do_umount(struct mount *mnt, int flags) | 
|  | { | 
|  | struct super_block *sb = mnt->mnt.mnt_sb; | 
|  | int retval; | 
|  | LIST_HEAD(umount_list); | 
|  |  | 
|  | retval = security_sb_umount(&mnt->mnt, flags); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Allow userspace to request a mountpoint be expired rather than | 
|  | * unmounting unconditionally. Unmount only happens if: | 
|  | *  (1) the mark is already set (the mark is cleared by mntput()) | 
|  | *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] | 
|  | */ | 
|  | if (flags & MNT_EXPIRE) { | 
|  | if (&mnt->mnt == current->fs->root.mnt || | 
|  | flags & (MNT_FORCE | MNT_DETACH)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * probably don't strictly need the lock here if we examined | 
|  | * all race cases, but it's a slowpath. | 
|  | */ | 
|  | br_write_lock(vfsmount_lock); | 
|  | if (mnt_get_count(mnt) != 2) { | 
|  | br_write_unlock(vfsmount_lock); | 
|  | return -EBUSY; | 
|  | } | 
|  | br_write_unlock(vfsmount_lock); | 
|  |  | 
|  | if (!xchg(&mnt->mnt_expiry_mark, 1)) | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we may have to abort operations to get out of this | 
|  | * mount, and they will themselves hold resources we must | 
|  | * allow the fs to do things. In the Unix tradition of | 
|  | * 'Gee thats tricky lets do it in userspace' the umount_begin | 
|  | * might fail to complete on the first run through as other tasks | 
|  | * must return, and the like. Thats for the mount program to worry | 
|  | * about for the moment. | 
|  | */ | 
|  |  | 
|  | if (flags & MNT_FORCE && sb->s_op->umount_begin) { | 
|  | sb->s_op->umount_begin(sb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No sense to grab the lock for this test, but test itself looks | 
|  | * somewhat bogus. Suggestions for better replacement? | 
|  | * Ho-hum... In principle, we might treat that as umount + switch | 
|  | * to rootfs. GC would eventually take care of the old vfsmount. | 
|  | * Actually it makes sense, especially if rootfs would contain a | 
|  | * /reboot - static binary that would close all descriptors and | 
|  | * call reboot(9). Then init(8) could umount root and exec /reboot. | 
|  | */ | 
|  | if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { | 
|  | /* | 
|  | * Special case for "unmounting" root ... | 
|  | * we just try to remount it readonly. | 
|  | */ | 
|  | down_write(&sb->s_umount); | 
|  | if (!(sb->s_flags & MS_RDONLY)) | 
|  | retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); | 
|  | up_write(&sb->s_umount); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | down_write(&namespace_sem); | 
|  | br_write_lock(vfsmount_lock); | 
|  | event++; | 
|  |  | 
|  | if (!(flags & MNT_DETACH)) | 
|  | shrink_submounts(mnt, &umount_list); | 
|  |  | 
|  | retval = -EBUSY; | 
|  | if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) { | 
|  | if (!list_empty(&mnt->mnt_list)) | 
|  | umount_tree(mnt, 1, &umount_list); | 
|  | retval = 0; | 
|  | } | 
|  | br_write_unlock(vfsmount_lock); | 
|  | up_write(&namespace_sem); | 
|  | release_mounts(&umount_list); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now umount can handle mount points as well as block devices. | 
|  | * This is important for filesystems which use unnamed block devices. | 
|  | * | 
|  | * We now support a flag for forced unmount like the other 'big iron' | 
|  | * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD | 
|  | */ | 
|  |  | 
|  | SYSCALL_DEFINE2(umount, char __user *, name, int, flags) | 
|  | { | 
|  | struct path path; | 
|  | struct mount *mnt; | 
|  | int retval; | 
|  | int lookup_flags = 0; | 
|  |  | 
|  | if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!(flags & UMOUNT_NOFOLLOW)) | 
|  | lookup_flags |= LOOKUP_FOLLOW; | 
|  |  | 
|  | retval = user_path_at(AT_FDCWD, name, lookup_flags, &path); | 
|  | if (retval) | 
|  | goto out; | 
|  | mnt = real_mount(path.mnt); | 
|  | retval = -EINVAL; | 
|  | if (path.dentry != path.mnt->mnt_root) | 
|  | goto dput_and_out; | 
|  | if (!check_mnt(mnt)) | 
|  | goto dput_and_out; | 
|  |  | 
|  | retval = -EPERM; | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | goto dput_and_out; | 
|  |  | 
|  | retval = do_umount(mnt, flags); | 
|  | dput_and_out: | 
|  | /* we mustn't call path_put() as that would clear mnt_expiry_mark */ | 
|  | dput(path.dentry); | 
|  | mntput_no_expire(mnt); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_OLDUMOUNT | 
|  |  | 
|  | /* | 
|  | *	The 2.0 compatible umount. No flags. | 
|  | */ | 
|  | SYSCALL_DEFINE1(oldumount, char __user *, name) | 
|  | { | 
|  | return sys_umount(name, 0); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static int mount_is_safe(struct path *path) | 
|  | { | 
|  | if (capable(CAP_SYS_ADMIN)) | 
|  | return 0; | 
|  | return -EPERM; | 
|  | #ifdef notyet | 
|  | if (S_ISLNK(path->dentry->d_inode->i_mode)) | 
|  | return -EPERM; | 
|  | if (path->dentry->d_inode->i_mode & S_ISVTX) { | 
|  | if (current_uid() != path->dentry->d_inode->i_uid) | 
|  | return -EPERM; | 
|  | } | 
|  | if (inode_permission(path->dentry->d_inode, MAY_WRITE)) | 
|  | return -EPERM; | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, | 
|  | int flag) | 
|  | { | 
|  | struct mount *res, *p, *q, *r; | 
|  | struct path path; | 
|  |  | 
|  | if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt)) | 
|  | return NULL; | 
|  |  | 
|  | res = q = clone_mnt(mnt, dentry, flag); | 
|  | if (!q) | 
|  | goto Enomem; | 
|  | q->mnt_mountpoint = mnt->mnt_mountpoint; | 
|  |  | 
|  | p = mnt; | 
|  | list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { | 
|  | struct mount *s; | 
|  | if (!is_subdir(r->mnt_mountpoint, dentry)) | 
|  | continue; | 
|  |  | 
|  | for (s = r; s; s = next_mnt(s, r)) { | 
|  | if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) { | 
|  | s = skip_mnt_tree(s); | 
|  | continue; | 
|  | } | 
|  | while (p != s->mnt_parent) { | 
|  | p = p->mnt_parent; | 
|  | q = q->mnt_parent; | 
|  | } | 
|  | p = s; | 
|  | path.mnt = &q->mnt; | 
|  | path.dentry = p->mnt_mountpoint; | 
|  | q = clone_mnt(p, p->mnt.mnt_root, flag); | 
|  | if (!q) | 
|  | goto Enomem; | 
|  | br_write_lock(vfsmount_lock); | 
|  | list_add_tail(&q->mnt_list, &res->mnt_list); | 
|  | attach_mnt(q, &path); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | } | 
|  | } | 
|  | return res; | 
|  | Enomem: | 
|  | if (res) { | 
|  | LIST_HEAD(umount_list); | 
|  | br_write_lock(vfsmount_lock); | 
|  | umount_tree(res, 0, &umount_list); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | release_mounts(&umount_list); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct vfsmount *collect_mounts(struct path *path) | 
|  | { | 
|  | struct mount *tree; | 
|  | down_write(&namespace_sem); | 
|  | tree = copy_tree(real_mount(path->mnt), path->dentry, | 
|  | CL_COPY_ALL | CL_PRIVATE); | 
|  | up_write(&namespace_sem); | 
|  | return tree ? &tree->mnt : NULL; | 
|  | } | 
|  |  | 
|  | void drop_collected_mounts(struct vfsmount *mnt) | 
|  | { | 
|  | LIST_HEAD(umount_list); | 
|  | down_write(&namespace_sem); | 
|  | br_write_lock(vfsmount_lock); | 
|  | umount_tree(real_mount(mnt), 0, &umount_list); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | up_write(&namespace_sem); | 
|  | release_mounts(&umount_list); | 
|  | } | 
|  |  | 
|  | int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, | 
|  | struct vfsmount *root) | 
|  | { | 
|  | struct mount *mnt; | 
|  | int res = f(root, arg); | 
|  | if (res) | 
|  | return res; | 
|  | list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { | 
|  | res = f(&mnt->mnt, arg); | 
|  | if (res) | 
|  | return res; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cleanup_group_ids(struct mount *mnt, struct mount *end) | 
|  | { | 
|  | struct mount *p; | 
|  |  | 
|  | for (p = mnt; p != end; p = next_mnt(p, mnt)) { | 
|  | if (p->mnt_group_id && !IS_MNT_SHARED(p)) | 
|  | mnt_release_group_id(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int invent_group_ids(struct mount *mnt, bool recurse) | 
|  | { | 
|  | struct mount *p; | 
|  |  | 
|  | for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { | 
|  | if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { | 
|  | int err = mnt_alloc_group_id(p); | 
|  | if (err) { | 
|  | cleanup_group_ids(mnt, p); | 
|  | return err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  @source_mnt : mount tree to be attached | 
|  | *  @nd         : place the mount tree @source_mnt is attached | 
|  | *  @parent_nd  : if non-null, detach the source_mnt from its parent and | 
|  | *  		   store the parent mount and mountpoint dentry. | 
|  | *  		   (done when source_mnt is moved) | 
|  | * | 
|  | *  NOTE: in the table below explains the semantics when a source mount | 
|  | *  of a given type is attached to a destination mount of a given type. | 
|  | * --------------------------------------------------------------------------- | 
|  | * |         BIND MOUNT OPERATION                                            | | 
|  | * |************************************************************************** | 
|  | * | source-->| shared        |       private  |       slave    | unbindable | | 
|  | * | dest     |               |                |                |            | | 
|  | * |   |      |               |                |                |            | | 
|  | * |   v      |               |                |                |            | | 
|  | * |************************************************************************** | 
|  | * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   | | 
|  | * |          |               |                |                |            | | 
|  | * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   | | 
|  | * *************************************************************************** | 
|  | * A bind operation clones the source mount and mounts the clone on the | 
|  | * destination mount. | 
|  | * | 
|  | * (++)  the cloned mount is propagated to all the mounts in the propagation | 
|  | * 	 tree of the destination mount and the cloned mount is added to | 
|  | * 	 the peer group of the source mount. | 
|  | * (+)   the cloned mount is created under the destination mount and is marked | 
|  | *       as shared. The cloned mount is added to the peer group of the source | 
|  | *       mount. | 
|  | * (+++) the mount is propagated to all the mounts in the propagation tree | 
|  | *       of the destination mount and the cloned mount is made slave | 
|  | *       of the same master as that of the source mount. The cloned mount | 
|  | *       is marked as 'shared and slave'. | 
|  | * (*)   the cloned mount is made a slave of the same master as that of the | 
|  | * 	 source mount. | 
|  | * | 
|  | * --------------------------------------------------------------------------- | 
|  | * |         		MOVE MOUNT OPERATION                                 | | 
|  | * |************************************************************************** | 
|  | * | source-->| shared        |       private  |       slave    | unbindable | | 
|  | * | dest     |               |                |                |            | | 
|  | * |   |      |               |                |                |            | | 
|  | * |   v      |               |                |                |            | | 
|  | * |************************************************************************** | 
|  | * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   | | 
|  | * |          |               |                |                |            | | 
|  | * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable | | 
|  | * *************************************************************************** | 
|  | * | 
|  | * (+)  the mount is moved to the destination. And is then propagated to | 
|  | * 	all the mounts in the propagation tree of the destination mount. | 
|  | * (+*)  the mount is moved to the destination. | 
|  | * (+++)  the mount is moved to the destination and is then propagated to | 
|  | * 	all the mounts belonging to the destination mount's propagation tree. | 
|  | * 	the mount is marked as 'shared and slave'. | 
|  | * (*)	the mount continues to be a slave at the new location. | 
|  | * | 
|  | * if the source mount is a tree, the operations explained above is | 
|  | * applied to each mount in the tree. | 
|  | * Must be called without spinlocks held, since this function can sleep | 
|  | * in allocations. | 
|  | */ | 
|  | static int attach_recursive_mnt(struct mount *source_mnt, | 
|  | struct path *path, struct path *parent_path) | 
|  | { | 
|  | LIST_HEAD(tree_list); | 
|  | struct mount *dest_mnt = real_mount(path->mnt); | 
|  | struct dentry *dest_dentry = path->dentry; | 
|  | struct mount *child, *p; | 
|  | int err; | 
|  |  | 
|  | if (IS_MNT_SHARED(dest_mnt)) { | 
|  | err = invent_group_ids(source_mnt, true); | 
|  | if (err) | 
|  | goto out; | 
|  | } | 
|  | err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list); | 
|  | if (err) | 
|  | goto out_cleanup_ids; | 
|  |  | 
|  | br_write_lock(vfsmount_lock); | 
|  |  | 
|  | if (IS_MNT_SHARED(dest_mnt)) { | 
|  | for (p = source_mnt; p; p = next_mnt(p, source_mnt)) | 
|  | set_mnt_shared(p); | 
|  | } | 
|  | if (parent_path) { | 
|  | detach_mnt(source_mnt, parent_path); | 
|  | attach_mnt(source_mnt, path); | 
|  | touch_mnt_namespace(source_mnt->mnt_ns); | 
|  | } else { | 
|  | mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt); | 
|  | commit_tree(source_mnt); | 
|  | } | 
|  |  | 
|  | list_for_each_entry_safe(child, p, &tree_list, mnt_hash) { | 
|  | list_del_init(&child->mnt_hash); | 
|  | commit_tree(child); | 
|  | } | 
|  | br_write_unlock(vfsmount_lock); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_cleanup_ids: | 
|  | if (IS_MNT_SHARED(dest_mnt)) | 
|  | cleanup_group_ids(source_mnt, NULL); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int lock_mount(struct path *path) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | retry: | 
|  | mutex_lock(&path->dentry->d_inode->i_mutex); | 
|  | if (unlikely(cant_mount(path->dentry))) { | 
|  | mutex_unlock(&path->dentry->d_inode->i_mutex); | 
|  | return -ENOENT; | 
|  | } | 
|  | down_write(&namespace_sem); | 
|  | mnt = lookup_mnt(path); | 
|  | if (likely(!mnt)) | 
|  | return 0; | 
|  | up_write(&namespace_sem); | 
|  | mutex_unlock(&path->dentry->d_inode->i_mutex); | 
|  | path_put(path); | 
|  | path->mnt = mnt; | 
|  | path->dentry = dget(mnt->mnt_root); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | static void unlock_mount(struct path *path) | 
|  | { | 
|  | up_write(&namespace_sem); | 
|  | mutex_unlock(&path->dentry->d_inode->i_mutex); | 
|  | } | 
|  |  | 
|  | static int graft_tree(struct mount *mnt, struct path *path) | 
|  | { | 
|  | if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (S_ISDIR(path->dentry->d_inode->i_mode) != | 
|  | S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode)) | 
|  | return -ENOTDIR; | 
|  |  | 
|  | if (d_unlinked(path->dentry)) | 
|  | return -ENOENT; | 
|  |  | 
|  | return attach_recursive_mnt(mnt, path, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sanity check the flags to change_mnt_propagation. | 
|  | */ | 
|  |  | 
|  | static int flags_to_propagation_type(int flags) | 
|  | { | 
|  | int type = flags & ~(MS_REC | MS_SILENT); | 
|  |  | 
|  | /* Fail if any non-propagation flags are set */ | 
|  | if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) | 
|  | return 0; | 
|  | /* Only one propagation flag should be set */ | 
|  | if (!is_power_of_2(type)) | 
|  | return 0; | 
|  | return type; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * recursively change the type of the mountpoint. | 
|  | */ | 
|  | static int do_change_type(struct path *path, int flag) | 
|  | { | 
|  | struct mount *m; | 
|  | struct mount *mnt = real_mount(path->mnt); | 
|  | int recurse = flag & MS_REC; | 
|  | int type; | 
|  | int err = 0; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (path->dentry != path->mnt->mnt_root) | 
|  | return -EINVAL; | 
|  |  | 
|  | type = flags_to_propagation_type(flag); | 
|  | if (!type) | 
|  | return -EINVAL; | 
|  |  | 
|  | down_write(&namespace_sem); | 
|  | if (type == MS_SHARED) { | 
|  | err = invent_group_ids(mnt, recurse); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | br_write_lock(vfsmount_lock); | 
|  | for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) | 
|  | change_mnt_propagation(m, type); | 
|  | br_write_unlock(vfsmount_lock); | 
|  |  | 
|  | out_unlock: | 
|  | up_write(&namespace_sem); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * do loopback mount. | 
|  | */ | 
|  | static int do_loopback(struct path *path, char *old_name, | 
|  | int recurse) | 
|  | { | 
|  | LIST_HEAD(umount_list); | 
|  | struct path old_path; | 
|  | struct mount *mnt = NULL, *old; | 
|  | int err = mount_is_safe(path); | 
|  | if (err) | 
|  | return err; | 
|  | if (!old_name || !*old_name) | 
|  | return -EINVAL; | 
|  | err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = lock_mount(path); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | old = real_mount(old_path.mnt); | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (IS_MNT_UNBINDABLE(old)) | 
|  | goto out2; | 
|  |  | 
|  | if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old)) | 
|  | goto out2; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | if (recurse) | 
|  | mnt = copy_tree(old, old_path.dentry, 0); | 
|  | else | 
|  | mnt = clone_mnt(old, old_path.dentry, 0); | 
|  |  | 
|  | if (!mnt) | 
|  | goto out2; | 
|  |  | 
|  | err = graft_tree(mnt, path); | 
|  | if (err) { | 
|  | br_write_lock(vfsmount_lock); | 
|  | umount_tree(mnt, 0, &umount_list); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | } | 
|  | out2: | 
|  | unlock_mount(path); | 
|  | release_mounts(&umount_list); | 
|  | out: | 
|  | path_put(&old_path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int change_mount_flags(struct vfsmount *mnt, int ms_flags) | 
|  | { | 
|  | int error = 0; | 
|  | int readonly_request = 0; | 
|  |  | 
|  | if (ms_flags & MS_RDONLY) | 
|  | readonly_request = 1; | 
|  | if (readonly_request == __mnt_is_readonly(mnt)) | 
|  | return 0; | 
|  |  | 
|  | if (readonly_request) | 
|  | error = mnt_make_readonly(real_mount(mnt)); | 
|  | else | 
|  | __mnt_unmake_readonly(real_mount(mnt)); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * change filesystem flags. dir should be a physical root of filesystem. | 
|  | * If you've mounted a non-root directory somewhere and want to do remount | 
|  | * on it - tough luck. | 
|  | */ | 
|  | static int do_remount(struct path *path, int flags, int mnt_flags, | 
|  | void *data) | 
|  | { | 
|  | int err; | 
|  | struct super_block *sb = path->mnt->mnt_sb; | 
|  | struct mount *mnt = real_mount(path->mnt); | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (!check_mnt(mnt)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (path->dentry != path->mnt->mnt_root) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = security_sb_remount(sb, data); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | down_write(&sb->s_umount); | 
|  | if (flags & MS_BIND) | 
|  | err = change_mount_flags(path->mnt, flags); | 
|  | else | 
|  | err = do_remount_sb(sb, flags, data, 0); | 
|  | if (!err) { | 
|  | br_write_lock(vfsmount_lock); | 
|  | mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK; | 
|  | mnt->mnt.mnt_flags = mnt_flags; | 
|  | br_write_unlock(vfsmount_lock); | 
|  | } | 
|  | up_write(&sb->s_umount); | 
|  | if (!err) { | 
|  | br_write_lock(vfsmount_lock); | 
|  | touch_mnt_namespace(mnt->mnt_ns); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int tree_contains_unbindable(struct mount *mnt) | 
|  | { | 
|  | struct mount *p; | 
|  | for (p = mnt; p; p = next_mnt(p, mnt)) { | 
|  | if (IS_MNT_UNBINDABLE(p)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_move_mount(struct path *path, char *old_name) | 
|  | { | 
|  | struct path old_path, parent_path; | 
|  | struct mount *p; | 
|  | struct mount *old; | 
|  | int err = 0; | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  | if (!old_name || !*old_name) | 
|  | return -EINVAL; | 
|  | err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = lock_mount(path); | 
|  | if (err < 0) | 
|  | goto out; | 
|  |  | 
|  | old = real_mount(old_path.mnt); | 
|  | p = real_mount(path->mnt); | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (!check_mnt(p) || !check_mnt(old)) | 
|  | goto out1; | 
|  |  | 
|  | if (d_unlinked(path->dentry)) | 
|  | goto out1; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (old_path.dentry != old_path.mnt->mnt_root) | 
|  | goto out1; | 
|  |  | 
|  | if (!mnt_has_parent(old)) | 
|  | goto out1; | 
|  |  | 
|  | if (S_ISDIR(path->dentry->d_inode->i_mode) != | 
|  | S_ISDIR(old_path.dentry->d_inode->i_mode)) | 
|  | goto out1; | 
|  | /* | 
|  | * Don't move a mount residing in a shared parent. | 
|  | */ | 
|  | if (IS_MNT_SHARED(old->mnt_parent)) | 
|  | goto out1; | 
|  | /* | 
|  | * Don't move a mount tree containing unbindable mounts to a destination | 
|  | * mount which is shared. | 
|  | */ | 
|  | if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) | 
|  | goto out1; | 
|  | err = -ELOOP; | 
|  | for (; mnt_has_parent(p); p = p->mnt_parent) | 
|  | if (p == old) | 
|  | goto out1; | 
|  |  | 
|  | err = attach_recursive_mnt(old, path, &parent_path); | 
|  | if (err) | 
|  | goto out1; | 
|  |  | 
|  | /* if the mount is moved, it should no longer be expire | 
|  | * automatically */ | 
|  | list_del_init(&old->mnt_expire); | 
|  | out1: | 
|  | unlock_mount(path); | 
|  | out: | 
|  | if (!err) | 
|  | path_put(&parent_path); | 
|  | path_put(&old_path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) | 
|  | { | 
|  | int err; | 
|  | const char *subtype = strchr(fstype, '.'); | 
|  | if (subtype) { | 
|  | subtype++; | 
|  | err = -EINVAL; | 
|  | if (!subtype[0]) | 
|  | goto err; | 
|  | } else | 
|  | subtype = ""; | 
|  |  | 
|  | mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); | 
|  | err = -ENOMEM; | 
|  | if (!mnt->mnt_sb->s_subtype) | 
|  | goto err; | 
|  | return mnt; | 
|  |  | 
|  | err: | 
|  | mntput(mnt); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static struct vfsmount * | 
|  | do_kern_mount(const char *fstype, int flags, const char *name, void *data) | 
|  | { | 
|  | struct file_system_type *type = get_fs_type(fstype); | 
|  | struct vfsmount *mnt; | 
|  | if (!type) | 
|  | return ERR_PTR(-ENODEV); | 
|  | mnt = vfs_kern_mount(type, flags, name, data); | 
|  | if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && | 
|  | !mnt->mnt_sb->s_subtype) | 
|  | mnt = fs_set_subtype(mnt, fstype); | 
|  | put_filesystem(type); | 
|  | return mnt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add a mount into a namespace's mount tree | 
|  | */ | 
|  | static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL); | 
|  |  | 
|  | err = lock_mount(path); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt))) | 
|  | goto unlock; | 
|  |  | 
|  | /* Refuse the same filesystem on the same mount point */ | 
|  | err = -EBUSY; | 
|  | if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && | 
|  | path->mnt->mnt_root == path->dentry) | 
|  | goto unlock; | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode)) | 
|  | goto unlock; | 
|  |  | 
|  | newmnt->mnt.mnt_flags = mnt_flags; | 
|  | err = graft_tree(newmnt, path); | 
|  |  | 
|  | unlock: | 
|  | unlock_mount(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * create a new mount for userspace and request it to be added into the | 
|  | * namespace's tree | 
|  | */ | 
|  | static int do_new_mount(struct path *path, char *type, int flags, | 
|  | int mnt_flags, char *name, void *data) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | int err; | 
|  |  | 
|  | if (!type) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* we need capabilities... */ | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | mnt = do_kern_mount(type, flags, name, data); | 
|  | if (IS_ERR(mnt)) | 
|  | return PTR_ERR(mnt); | 
|  |  | 
|  | err = do_add_mount(real_mount(mnt), path, mnt_flags); | 
|  | if (err) | 
|  | mntput(mnt); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int finish_automount(struct vfsmount *m, struct path *path) | 
|  | { | 
|  | struct mount *mnt = real_mount(m); | 
|  | int err; | 
|  | /* The new mount record should have at least 2 refs to prevent it being | 
|  | * expired before we get a chance to add it | 
|  | */ | 
|  | BUG_ON(mnt_get_count(mnt) < 2); | 
|  |  | 
|  | if (m->mnt_sb == path->mnt->mnt_sb && | 
|  | m->mnt_root == path->dentry) { | 
|  | err = -ELOOP; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); | 
|  | if (!err) | 
|  | return 0; | 
|  | fail: | 
|  | /* remove m from any expiration list it may be on */ | 
|  | if (!list_empty(&mnt->mnt_expire)) { | 
|  | down_write(&namespace_sem); | 
|  | br_write_lock(vfsmount_lock); | 
|  | list_del_init(&mnt->mnt_expire); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | up_write(&namespace_sem); | 
|  | } | 
|  | mntput(m); | 
|  | mntput(m); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * mnt_set_expiry - Put a mount on an expiration list | 
|  | * @mnt: The mount to list. | 
|  | * @expiry_list: The list to add the mount to. | 
|  | */ | 
|  | void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) | 
|  | { | 
|  | down_write(&namespace_sem); | 
|  | br_write_lock(vfsmount_lock); | 
|  |  | 
|  | list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); | 
|  |  | 
|  | br_write_unlock(vfsmount_lock); | 
|  | up_write(&namespace_sem); | 
|  | } | 
|  | EXPORT_SYMBOL(mnt_set_expiry); | 
|  |  | 
|  | /* | 
|  | * process a list of expirable mountpoints with the intent of discarding any | 
|  | * mountpoints that aren't in use and haven't been touched since last we came | 
|  | * here | 
|  | */ | 
|  | void mark_mounts_for_expiry(struct list_head *mounts) | 
|  | { | 
|  | struct mount *mnt, *next; | 
|  | LIST_HEAD(graveyard); | 
|  | LIST_HEAD(umounts); | 
|  |  | 
|  | if (list_empty(mounts)) | 
|  | return; | 
|  |  | 
|  | down_write(&namespace_sem); | 
|  | br_write_lock(vfsmount_lock); | 
|  |  | 
|  | /* extract from the expiration list every vfsmount that matches the | 
|  | * following criteria: | 
|  | * - only referenced by its parent vfsmount | 
|  | * - still marked for expiry (marked on the last call here; marks are | 
|  | *   cleared by mntput()) | 
|  | */ | 
|  | list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { | 
|  | if (!xchg(&mnt->mnt_expiry_mark, 1) || | 
|  | propagate_mount_busy(mnt, 1)) | 
|  | continue; | 
|  | list_move(&mnt->mnt_expire, &graveyard); | 
|  | } | 
|  | while (!list_empty(&graveyard)) { | 
|  | mnt = list_first_entry(&graveyard, struct mount, mnt_expire); | 
|  | touch_mnt_namespace(mnt->mnt_ns); | 
|  | umount_tree(mnt, 1, &umounts); | 
|  | } | 
|  | br_write_unlock(vfsmount_lock); | 
|  | up_write(&namespace_sem); | 
|  |  | 
|  | release_mounts(&umounts); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); | 
|  |  | 
|  | /* | 
|  | * Ripoff of 'select_parent()' | 
|  | * | 
|  | * search the list of submounts for a given mountpoint, and move any | 
|  | * shrinkable submounts to the 'graveyard' list. | 
|  | */ | 
|  | static int select_submounts(struct mount *parent, struct list_head *graveyard) | 
|  | { | 
|  | struct mount *this_parent = parent; | 
|  | struct list_head *next; | 
|  | int found = 0; | 
|  |  | 
|  | repeat: | 
|  | next = this_parent->mnt_mounts.next; | 
|  | resume: | 
|  | while (next != &this_parent->mnt_mounts) { | 
|  | struct list_head *tmp = next; | 
|  | struct mount *mnt = list_entry(tmp, struct mount, mnt_child); | 
|  |  | 
|  | next = tmp->next; | 
|  | if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) | 
|  | continue; | 
|  | /* | 
|  | * Descend a level if the d_mounts list is non-empty. | 
|  | */ | 
|  | if (!list_empty(&mnt->mnt_mounts)) { | 
|  | this_parent = mnt; | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | if (!propagate_mount_busy(mnt, 1)) { | 
|  | list_move_tail(&mnt->mnt_expire, graveyard); | 
|  | found++; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * All done at this level ... ascend and resume the search | 
|  | */ | 
|  | if (this_parent != parent) { | 
|  | next = this_parent->mnt_child.next; | 
|  | this_parent = this_parent->mnt_parent; | 
|  | goto resume; | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * process a list of expirable mountpoints with the intent of discarding any | 
|  | * submounts of a specific parent mountpoint | 
|  | * | 
|  | * vfsmount_lock must be held for write | 
|  | */ | 
|  | static void shrink_submounts(struct mount *mnt, struct list_head *umounts) | 
|  | { | 
|  | LIST_HEAD(graveyard); | 
|  | struct mount *m; | 
|  |  | 
|  | /* extract submounts of 'mountpoint' from the expiration list */ | 
|  | while (select_submounts(mnt, &graveyard)) { | 
|  | while (!list_empty(&graveyard)) { | 
|  | m = list_first_entry(&graveyard, struct mount, | 
|  | mnt_expire); | 
|  | touch_mnt_namespace(m->mnt_ns); | 
|  | umount_tree(m, 1, umounts); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some copy_from_user() implementations do not return the exact number of | 
|  | * bytes remaining to copy on a fault.  But copy_mount_options() requires that. | 
|  | * Note that this function differs from copy_from_user() in that it will oops | 
|  | * on bad values of `to', rather than returning a short copy. | 
|  | */ | 
|  | static long exact_copy_from_user(void *to, const void __user * from, | 
|  | unsigned long n) | 
|  | { | 
|  | char *t = to; | 
|  | const char __user *f = from; | 
|  | char c; | 
|  |  | 
|  | if (!access_ok(VERIFY_READ, from, n)) | 
|  | return n; | 
|  |  | 
|  | while (n) { | 
|  | if (__get_user(c, f)) { | 
|  | memset(t, 0, n); | 
|  | break; | 
|  | } | 
|  | *t++ = c; | 
|  | f++; | 
|  | n--; | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | int copy_mount_options(const void __user * data, unsigned long *where) | 
|  | { | 
|  | int i; | 
|  | unsigned long page; | 
|  | unsigned long size; | 
|  |  | 
|  | *where = 0; | 
|  | if (!data) | 
|  | return 0; | 
|  |  | 
|  | if (!(page = __get_free_page(GFP_KERNEL))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* We only care that *some* data at the address the user | 
|  | * gave us is valid.  Just in case, we'll zero | 
|  | * the remainder of the page. | 
|  | */ | 
|  | /* copy_from_user cannot cross TASK_SIZE ! */ | 
|  | size = TASK_SIZE - (unsigned long)data; | 
|  | if (size > PAGE_SIZE) | 
|  | size = PAGE_SIZE; | 
|  |  | 
|  | i = size - exact_copy_from_user((void *)page, data, size); | 
|  | if (!i) { | 
|  | free_page(page); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (i != PAGE_SIZE) | 
|  | memset((char *)page + i, 0, PAGE_SIZE - i); | 
|  | *where = page; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int copy_mount_string(const void __user *data, char **where) | 
|  | { | 
|  | char *tmp; | 
|  |  | 
|  | if (!data) { | 
|  | *where = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | tmp = strndup_user(data, PAGE_SIZE); | 
|  | if (IS_ERR(tmp)) | 
|  | return PTR_ERR(tmp); | 
|  |  | 
|  | *where = tmp; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to | 
|  | * be given to the mount() call (ie: read-only, no-dev, no-suid etc). | 
|  | * | 
|  | * data is a (void *) that can point to any structure up to | 
|  | * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent | 
|  | * information (or be NULL). | 
|  | * | 
|  | * Pre-0.97 versions of mount() didn't have a flags word. | 
|  | * When the flags word was introduced its top half was required | 
|  | * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. | 
|  | * Therefore, if this magic number is present, it carries no information | 
|  | * and must be discarded. | 
|  | */ | 
|  | long do_mount(char *dev_name, char *dir_name, char *type_page, | 
|  | unsigned long flags, void *data_page) | 
|  | { | 
|  | struct path path; | 
|  | int retval = 0; | 
|  | int mnt_flags = 0; | 
|  |  | 
|  | /* Discard magic */ | 
|  | if ((flags & MS_MGC_MSK) == MS_MGC_VAL) | 
|  | flags &= ~MS_MGC_MSK; | 
|  |  | 
|  | /* Basic sanity checks */ | 
|  |  | 
|  | if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (data_page) | 
|  | ((char *)data_page)[PAGE_SIZE - 1] = 0; | 
|  |  | 
|  | /* ... and get the mountpoint */ | 
|  | retval = kern_path(dir_name, LOOKUP_FOLLOW, &path); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = security_sb_mount(dev_name, &path, | 
|  | type_page, flags, data_page); | 
|  | if (retval) | 
|  | goto dput_out; | 
|  |  | 
|  | /* Default to relatime unless overriden */ | 
|  | if (!(flags & MS_NOATIME)) | 
|  | mnt_flags |= MNT_RELATIME; | 
|  |  | 
|  | /* Separate the per-mountpoint flags */ | 
|  | if (flags & MS_NOSUID) | 
|  | mnt_flags |= MNT_NOSUID; | 
|  | if (flags & MS_NODEV) | 
|  | mnt_flags |= MNT_NODEV; | 
|  | if (flags & MS_NOEXEC) | 
|  | mnt_flags |= MNT_NOEXEC; | 
|  | if (flags & MS_NOATIME) | 
|  | mnt_flags |= MNT_NOATIME; | 
|  | if (flags & MS_NODIRATIME) | 
|  | mnt_flags |= MNT_NODIRATIME; | 
|  | if (flags & MS_STRICTATIME) | 
|  | mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); | 
|  | if (flags & MS_RDONLY) | 
|  | mnt_flags |= MNT_READONLY; | 
|  |  | 
|  | flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | | 
|  | MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | | 
|  | MS_STRICTATIME); | 
|  |  | 
|  | if (flags & MS_REMOUNT) | 
|  | retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, | 
|  | data_page); | 
|  | else if (flags & MS_BIND) | 
|  | retval = do_loopback(&path, dev_name, flags & MS_REC); | 
|  | else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) | 
|  | retval = do_change_type(&path, flags); | 
|  | else if (flags & MS_MOVE) | 
|  | retval = do_move_mount(&path, dev_name); | 
|  | else | 
|  | retval = do_new_mount(&path, type_page, flags, mnt_flags, | 
|  | dev_name, data_page); | 
|  | dput_out: | 
|  | path_put(&path); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static struct mnt_namespace *alloc_mnt_ns(void) | 
|  | { | 
|  | struct mnt_namespace *new_ns; | 
|  |  | 
|  | new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); | 
|  | if (!new_ns) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | atomic_set(&new_ns->count, 1); | 
|  | new_ns->root = NULL; | 
|  | INIT_LIST_HEAD(&new_ns->list); | 
|  | init_waitqueue_head(&new_ns->poll); | 
|  | new_ns->event = 0; | 
|  | return new_ns; | 
|  | } | 
|  |  | 
|  | void mnt_make_longterm(struct vfsmount *mnt) | 
|  | { | 
|  | __mnt_make_longterm(real_mount(mnt)); | 
|  | } | 
|  |  | 
|  | void mnt_make_shortterm(struct vfsmount *m) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | struct mount *mnt = real_mount(m); | 
|  | if (atomic_add_unless(&mnt->mnt_longterm, -1, 1)) | 
|  | return; | 
|  | br_write_lock(vfsmount_lock); | 
|  | atomic_dec(&mnt->mnt_longterm); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate a new namespace structure and populate it with contents | 
|  | * copied from the namespace of the passed in task structure. | 
|  | */ | 
|  | static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns, | 
|  | struct fs_struct *fs) | 
|  | { | 
|  | struct mnt_namespace *new_ns; | 
|  | struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; | 
|  | struct mount *p, *q; | 
|  | struct mount *old = mnt_ns->root; | 
|  | struct mount *new; | 
|  |  | 
|  | new_ns = alloc_mnt_ns(); | 
|  | if (IS_ERR(new_ns)) | 
|  | return new_ns; | 
|  |  | 
|  | down_write(&namespace_sem); | 
|  | /* First pass: copy the tree topology */ | 
|  | new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE); | 
|  | if (!new) { | 
|  | up_write(&namespace_sem); | 
|  | kfree(new_ns); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | new_ns->root = new; | 
|  | br_write_lock(vfsmount_lock); | 
|  | list_add_tail(&new_ns->list, &new->mnt_list); | 
|  | br_write_unlock(vfsmount_lock); | 
|  |  | 
|  | /* | 
|  | * Second pass: switch the tsk->fs->* elements and mark new vfsmounts | 
|  | * as belonging to new namespace.  We have already acquired a private | 
|  | * fs_struct, so tsk->fs->lock is not needed. | 
|  | */ | 
|  | p = old; | 
|  | q = new; | 
|  | while (p) { | 
|  | q->mnt_ns = new_ns; | 
|  | __mnt_make_longterm(q); | 
|  | if (fs) { | 
|  | if (&p->mnt == fs->root.mnt) { | 
|  | fs->root.mnt = mntget(&q->mnt); | 
|  | __mnt_make_longterm(q); | 
|  | mnt_make_shortterm(&p->mnt); | 
|  | rootmnt = &p->mnt; | 
|  | } | 
|  | if (&p->mnt == fs->pwd.mnt) { | 
|  | fs->pwd.mnt = mntget(&q->mnt); | 
|  | __mnt_make_longterm(q); | 
|  | mnt_make_shortterm(&p->mnt); | 
|  | pwdmnt = &p->mnt; | 
|  | } | 
|  | } | 
|  | p = next_mnt(p, old); | 
|  | q = next_mnt(q, new); | 
|  | } | 
|  | up_write(&namespace_sem); | 
|  |  | 
|  | if (rootmnt) | 
|  | mntput(rootmnt); | 
|  | if (pwdmnt) | 
|  | mntput(pwdmnt); | 
|  |  | 
|  | return new_ns; | 
|  | } | 
|  |  | 
|  | struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, | 
|  | struct fs_struct *new_fs) | 
|  | { | 
|  | struct mnt_namespace *new_ns; | 
|  |  | 
|  | BUG_ON(!ns); | 
|  | get_mnt_ns(ns); | 
|  |  | 
|  | if (!(flags & CLONE_NEWNS)) | 
|  | return ns; | 
|  |  | 
|  | new_ns = dup_mnt_ns(ns, new_fs); | 
|  |  | 
|  | put_mnt_ns(ns); | 
|  | return new_ns; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * create_mnt_ns - creates a private namespace and adds a root filesystem | 
|  | * @mnt: pointer to the new root filesystem mountpoint | 
|  | */ | 
|  | static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) | 
|  | { | 
|  | struct mnt_namespace *new_ns = alloc_mnt_ns(); | 
|  | if (!IS_ERR(new_ns)) { | 
|  | struct mount *mnt = real_mount(m); | 
|  | mnt->mnt_ns = new_ns; | 
|  | __mnt_make_longterm(mnt); | 
|  | new_ns->root = mnt; | 
|  | list_add(&new_ns->list, &mnt->mnt_list); | 
|  | } else { | 
|  | mntput(m); | 
|  | } | 
|  | return new_ns; | 
|  | } | 
|  |  | 
|  | struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) | 
|  | { | 
|  | struct mnt_namespace *ns; | 
|  | struct super_block *s; | 
|  | struct path path; | 
|  | int err; | 
|  |  | 
|  | ns = create_mnt_ns(mnt); | 
|  | if (IS_ERR(ns)) | 
|  | return ERR_CAST(ns); | 
|  |  | 
|  | err = vfs_path_lookup(mnt->mnt_root, mnt, | 
|  | name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); | 
|  |  | 
|  | put_mnt_ns(ns); | 
|  |  | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | /* trade a vfsmount reference for active sb one */ | 
|  | s = path.mnt->mnt_sb; | 
|  | atomic_inc(&s->s_active); | 
|  | mntput(path.mnt); | 
|  | /* lock the sucker */ | 
|  | down_write(&s->s_umount); | 
|  | /* ... and return the root of (sub)tree on it */ | 
|  | return path.dentry; | 
|  | } | 
|  | EXPORT_SYMBOL(mount_subtree); | 
|  |  | 
|  | SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, | 
|  | char __user *, type, unsigned long, flags, void __user *, data) | 
|  | { | 
|  | int ret; | 
|  | char *kernel_type; | 
|  | char *kernel_dir; | 
|  | char *kernel_dev; | 
|  | unsigned long data_page; | 
|  |  | 
|  | ret = copy_mount_string(type, &kernel_type); | 
|  | if (ret < 0) | 
|  | goto out_type; | 
|  |  | 
|  | kernel_dir = getname(dir_name); | 
|  | if (IS_ERR(kernel_dir)) { | 
|  | ret = PTR_ERR(kernel_dir); | 
|  | goto out_dir; | 
|  | } | 
|  |  | 
|  | ret = copy_mount_string(dev_name, &kernel_dev); | 
|  | if (ret < 0) | 
|  | goto out_dev; | 
|  |  | 
|  | ret = copy_mount_options(data, &data_page); | 
|  | if (ret < 0) | 
|  | goto out_data; | 
|  |  | 
|  | ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags, | 
|  | (void *) data_page); | 
|  |  | 
|  | free_page(data_page); | 
|  | out_data: | 
|  | kfree(kernel_dev); | 
|  | out_dev: | 
|  | putname(kernel_dir); | 
|  | out_dir: | 
|  | kfree(kernel_type); | 
|  | out_type: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if path is reachable from root | 
|  | * | 
|  | * namespace_sem or vfsmount_lock is held | 
|  | */ | 
|  | bool is_path_reachable(struct mount *mnt, struct dentry *dentry, | 
|  | const struct path *root) | 
|  | { | 
|  | while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { | 
|  | dentry = mnt->mnt_mountpoint; | 
|  | mnt = mnt->mnt_parent; | 
|  | } | 
|  | return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); | 
|  | } | 
|  |  | 
|  | int path_is_under(struct path *path1, struct path *path2) | 
|  | { | 
|  | int res; | 
|  | br_read_lock(vfsmount_lock); | 
|  | res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); | 
|  | br_read_unlock(vfsmount_lock); | 
|  | return res; | 
|  | } | 
|  | EXPORT_SYMBOL(path_is_under); | 
|  |  | 
|  | /* | 
|  | * pivot_root Semantics: | 
|  | * Moves the root file system of the current process to the directory put_old, | 
|  | * makes new_root as the new root file system of the current process, and sets | 
|  | * root/cwd of all processes which had them on the current root to new_root. | 
|  | * | 
|  | * Restrictions: | 
|  | * The new_root and put_old must be directories, and  must not be on the | 
|  | * same file  system as the current process root. The put_old  must  be | 
|  | * underneath new_root,  i.e. adding a non-zero number of /.. to the string | 
|  | * pointed to by put_old must yield the same directory as new_root. No other | 
|  | * file system may be mounted on put_old. After all, new_root is a mountpoint. | 
|  | * | 
|  | * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. | 
|  | * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives | 
|  | * in this situation. | 
|  | * | 
|  | * Notes: | 
|  | *  - we don't move root/cwd if they are not at the root (reason: if something | 
|  | *    cared enough to change them, it's probably wrong to force them elsewhere) | 
|  | *  - it's okay to pick a root that isn't the root of a file system, e.g. | 
|  | *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint, | 
|  | *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root | 
|  | *    first. | 
|  | */ | 
|  | SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, | 
|  | const char __user *, put_old) | 
|  | { | 
|  | struct path new, old, parent_path, root_parent, root; | 
|  | struct mount *new_mnt, *root_mnt; | 
|  | int error; | 
|  |  | 
|  | if (!capable(CAP_SYS_ADMIN)) | 
|  | return -EPERM; | 
|  |  | 
|  | error = user_path_dir(new_root, &new); | 
|  | if (error) | 
|  | goto out0; | 
|  |  | 
|  | error = user_path_dir(put_old, &old); | 
|  | if (error) | 
|  | goto out1; | 
|  |  | 
|  | error = security_sb_pivotroot(&old, &new); | 
|  | if (error) | 
|  | goto out2; | 
|  |  | 
|  | get_fs_root(current->fs, &root); | 
|  | error = lock_mount(&old); | 
|  | if (error) | 
|  | goto out3; | 
|  |  | 
|  | error = -EINVAL; | 
|  | new_mnt = real_mount(new.mnt); | 
|  | root_mnt = real_mount(root.mnt); | 
|  | if (IS_MNT_SHARED(real_mount(old.mnt)) || | 
|  | IS_MNT_SHARED(new_mnt->mnt_parent) || | 
|  | IS_MNT_SHARED(root_mnt->mnt_parent)) | 
|  | goto out4; | 
|  | if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) | 
|  | goto out4; | 
|  | error = -ENOENT; | 
|  | if (d_unlinked(new.dentry)) | 
|  | goto out4; | 
|  | if (d_unlinked(old.dentry)) | 
|  | goto out4; | 
|  | error = -EBUSY; | 
|  | if (new.mnt == root.mnt || | 
|  | old.mnt == root.mnt) | 
|  | goto out4; /* loop, on the same file system  */ | 
|  | error = -EINVAL; | 
|  | if (root.mnt->mnt_root != root.dentry) | 
|  | goto out4; /* not a mountpoint */ | 
|  | if (!mnt_has_parent(root_mnt)) | 
|  | goto out4; /* not attached */ | 
|  | if (new.mnt->mnt_root != new.dentry) | 
|  | goto out4; /* not a mountpoint */ | 
|  | if (!mnt_has_parent(new_mnt)) | 
|  | goto out4; /* not attached */ | 
|  | /* make sure we can reach put_old from new_root */ | 
|  | if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new)) | 
|  | goto out4; | 
|  | br_write_lock(vfsmount_lock); | 
|  | detach_mnt(new_mnt, &parent_path); | 
|  | detach_mnt(root_mnt, &root_parent); | 
|  | /* mount old root on put_old */ | 
|  | attach_mnt(root_mnt, &old); | 
|  | /* mount new_root on / */ | 
|  | attach_mnt(new_mnt, &root_parent); | 
|  | touch_mnt_namespace(current->nsproxy->mnt_ns); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | chroot_fs_refs(&root, &new); | 
|  | error = 0; | 
|  | out4: | 
|  | unlock_mount(&old); | 
|  | if (!error) { | 
|  | path_put(&root_parent); | 
|  | path_put(&parent_path); | 
|  | } | 
|  | out3: | 
|  | path_put(&root); | 
|  | out2: | 
|  | path_put(&old); | 
|  | out1: | 
|  | path_put(&new); | 
|  | out0: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static void __init init_mount_tree(void) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | struct mnt_namespace *ns; | 
|  | struct path root; | 
|  |  | 
|  | mnt = do_kern_mount("rootfs", 0, "rootfs", NULL); | 
|  | if (IS_ERR(mnt)) | 
|  | panic("Can't create rootfs"); | 
|  |  | 
|  | ns = create_mnt_ns(mnt); | 
|  | if (IS_ERR(ns)) | 
|  | panic("Can't allocate initial namespace"); | 
|  |  | 
|  | init_task.nsproxy->mnt_ns = ns; | 
|  | get_mnt_ns(ns); | 
|  |  | 
|  | root.mnt = mnt; | 
|  | root.dentry = mnt->mnt_root; | 
|  |  | 
|  | set_fs_pwd(current->fs, &root); | 
|  | set_fs_root(current->fs, &root); | 
|  | } | 
|  |  | 
|  | void __init mnt_init(void) | 
|  | { | 
|  | unsigned u; | 
|  | int err; | 
|  |  | 
|  | init_rwsem(&namespace_sem); | 
|  |  | 
|  | mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), | 
|  | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); | 
|  |  | 
|  | mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC); | 
|  |  | 
|  | if (!mount_hashtable) | 
|  | panic("Failed to allocate mount hash table\n"); | 
|  |  | 
|  | printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE); | 
|  |  | 
|  | for (u = 0; u < HASH_SIZE; u++) | 
|  | INIT_LIST_HEAD(&mount_hashtable[u]); | 
|  |  | 
|  | br_lock_init(vfsmount_lock); | 
|  |  | 
|  | err = sysfs_init(); | 
|  | if (err) | 
|  | printk(KERN_WARNING "%s: sysfs_init error: %d\n", | 
|  | __func__, err); | 
|  | fs_kobj = kobject_create_and_add("fs", NULL); | 
|  | if (!fs_kobj) | 
|  | printk(KERN_WARNING "%s: kobj create error\n", __func__); | 
|  | init_rootfs(); | 
|  | init_mount_tree(); | 
|  | } | 
|  |  | 
|  | void put_mnt_ns(struct mnt_namespace *ns) | 
|  | { | 
|  | LIST_HEAD(umount_list); | 
|  |  | 
|  | if (!atomic_dec_and_test(&ns->count)) | 
|  | return; | 
|  | down_write(&namespace_sem); | 
|  | br_write_lock(vfsmount_lock); | 
|  | umount_tree(ns->root, 0, &umount_list); | 
|  | br_write_unlock(vfsmount_lock); | 
|  | up_write(&namespace_sem); | 
|  | release_mounts(&umount_list); | 
|  | kfree(ns); | 
|  | } | 
|  |  | 
|  | struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) | 
|  | { | 
|  | struct vfsmount *mnt; | 
|  | mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); | 
|  | if (!IS_ERR(mnt)) { | 
|  | /* | 
|  | * it is a longterm mount, don't release mnt until | 
|  | * we unmount before file sys is unregistered | 
|  | */ | 
|  | mnt_make_longterm(mnt); | 
|  | } | 
|  | return mnt; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(kern_mount_data); | 
|  |  | 
|  | void kern_unmount(struct vfsmount *mnt) | 
|  | { | 
|  | /* release long term mount so mount point can be released */ | 
|  | if (!IS_ERR_OR_NULL(mnt)) { | 
|  | mnt_make_shortterm(mnt); | 
|  | mntput(mnt); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(kern_unmount); | 
|  |  | 
|  | bool our_mnt(struct vfsmount *mnt) | 
|  | { | 
|  | return check_mnt(real_mount(mnt)); | 
|  | } |