|  | /* | 
|  | * linux/ipc/sem.c | 
|  | * Copyright (C) 1992 Krishna Balasubramanian | 
|  | * Copyright (C) 1995 Eric Schenk, Bruno Haible | 
|  | * | 
|  | * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com> | 
|  | * | 
|  | * SMP-threaded, sysctl's added | 
|  | * (c) 1999 Manfred Spraul <manfred@colorfullife.com> | 
|  | * Enforced range limit on SEM_UNDO | 
|  | * (c) 2001 Red Hat Inc | 
|  | * Lockless wakeup | 
|  | * (c) 2003 Manfred Spraul <manfred@colorfullife.com> | 
|  | * Further wakeup optimizations, documentation | 
|  | * (c) 2010 Manfred Spraul <manfred@colorfullife.com> | 
|  | * | 
|  | * support for audit of ipc object properties and permission changes | 
|  | * Dustin Kirkland <dustin.kirkland@us.ibm.com> | 
|  | * | 
|  | * namespaces support | 
|  | * OpenVZ, SWsoft Inc. | 
|  | * Pavel Emelianov <xemul@openvz.org> | 
|  | * | 
|  | * Implementation notes: (May 2010) | 
|  | * This file implements System V semaphores. | 
|  | * | 
|  | * User space visible behavior: | 
|  | * - FIFO ordering for semop() operations (just FIFO, not starvation | 
|  | *   protection) | 
|  | * - multiple semaphore operations that alter the same semaphore in | 
|  | *   one semop() are handled. | 
|  | * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and | 
|  | *   SETALL calls. | 
|  | * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO. | 
|  | * - undo adjustments at process exit are limited to 0..SEMVMX. | 
|  | * - namespace are supported. | 
|  | * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing | 
|  | *   to /proc/sys/kernel/sem. | 
|  | * - statistics about the usage are reported in /proc/sysvipc/sem. | 
|  | * | 
|  | * Internals: | 
|  | * - scalability: | 
|  | *   - all global variables are read-mostly. | 
|  | *   - semop() calls and semctl(RMID) are synchronized by RCU. | 
|  | *   - most operations do write operations (actually: spin_lock calls) to | 
|  | *     the per-semaphore array structure. | 
|  | *   Thus: Perfect SMP scaling between independent semaphore arrays. | 
|  | *         If multiple semaphores in one array are used, then cache line | 
|  | *         trashing on the semaphore array spinlock will limit the scaling. | 
|  | * - semncnt and semzcnt are calculated on demand in count_semncnt() and | 
|  | *   count_semzcnt() | 
|  | * - the task that performs a successful semop() scans the list of all | 
|  | *   sleeping tasks and completes any pending operations that can be fulfilled. | 
|  | *   Semaphores are actively given to waiting tasks (necessary for FIFO). | 
|  | *   (see update_queue()) | 
|  | * - To improve the scalability, the actual wake-up calls are performed after | 
|  | *   dropping all locks. (see wake_up_sem_queue_prepare(), | 
|  | *   wake_up_sem_queue_do()) | 
|  | * - All work is done by the waker, the woken up task does not have to do | 
|  | *   anything - not even acquiring a lock or dropping a refcount. | 
|  | * - A woken up task may not even touch the semaphore array anymore, it may | 
|  | *   have been destroyed already by a semctl(RMID). | 
|  | * - The synchronizations between wake-ups due to a timeout/signal and a | 
|  | *   wake-up due to a completed semaphore operation is achieved by using an | 
|  | *   intermediate state (IN_WAKEUP). | 
|  | * - UNDO values are stored in an array (one per process and per | 
|  | *   semaphore array, lazily allocated). For backwards compatibility, multiple | 
|  | *   modes for the UNDO variables are supported (per process, per thread) | 
|  | *   (see copy_semundo, CLONE_SYSVSEM) | 
|  | * - There are two lists of the pending operations: a per-array list | 
|  | *   and per-semaphore list (stored in the array). This allows to achieve FIFO | 
|  | *   ordering without always scanning all pending operations. | 
|  | *   The worst-case behavior is nevertheless O(N^2) for N wakeups. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/rwsem.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/ipc_namespace.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include "util.h" | 
|  |  | 
|  | /* One semaphore structure for each semaphore in the system. */ | 
|  | struct sem { | 
|  | int	semval;		/* current value */ | 
|  | int	sempid;		/* pid of last operation */ | 
|  | struct list_head sem_pending; /* pending single-sop operations */ | 
|  | }; | 
|  |  | 
|  | /* One queue for each sleeping process in the system. */ | 
|  | struct sem_queue { | 
|  | struct list_head	simple_list; /* queue of pending operations */ | 
|  | struct list_head	list;	 /* queue of pending operations */ | 
|  | struct task_struct	*sleeper; /* this process */ | 
|  | struct sem_undo		*undo;	 /* undo structure */ | 
|  | int			pid;	 /* process id of requesting process */ | 
|  | int			status;	 /* completion status of operation */ | 
|  | struct sembuf		*sops;	 /* array of pending operations */ | 
|  | int			nsops;	 /* number of operations */ | 
|  | int			alter;	 /* does *sops alter the array? */ | 
|  | }; | 
|  |  | 
|  | /* Each task has a list of undo requests. They are executed automatically | 
|  | * when the process exits. | 
|  | */ | 
|  | struct sem_undo { | 
|  | struct list_head	list_proc;	/* per-process list: * | 
|  | * all undos from one process | 
|  | * rcu protected */ | 
|  | struct rcu_head		rcu;		/* rcu struct for sem_undo */ | 
|  | struct sem_undo_list	*ulp;		/* back ptr to sem_undo_list */ | 
|  | struct list_head	list_id;	/* per semaphore array list: | 
|  | * all undos for one array */ | 
|  | int			semid;		/* semaphore set identifier */ | 
|  | short			*semadj;	/* array of adjustments */ | 
|  | /* one per semaphore */ | 
|  | }; | 
|  |  | 
|  | /* sem_undo_list controls shared access to the list of sem_undo structures | 
|  | * that may be shared among all a CLONE_SYSVSEM task group. | 
|  | */ | 
|  | struct sem_undo_list { | 
|  | atomic_t		refcnt; | 
|  | spinlock_t		lock; | 
|  | struct list_head	list_proc; | 
|  | }; | 
|  |  | 
|  |  | 
|  | #define sem_ids(ns)	((ns)->ids[IPC_SEM_IDS]) | 
|  |  | 
|  | #define sem_unlock(sma)		ipc_unlock(&(sma)->sem_perm) | 
|  | #define sem_checkid(sma, semid)	ipc_checkid(&sma->sem_perm, semid) | 
|  |  | 
|  | static int newary(struct ipc_namespace *, struct ipc_params *); | 
|  | static void freeary(struct ipc_namespace *, struct kern_ipc_perm *); | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static int sysvipc_sem_proc_show(struct seq_file *s, void *it); | 
|  | #endif | 
|  |  | 
|  | #define SEMMSL_FAST	256 /* 512 bytes on stack */ | 
|  | #define SEMOPM_FAST	64  /* ~ 372 bytes on stack */ | 
|  |  | 
|  | /* | 
|  | * linked list protection: | 
|  | *	sem_undo.id_next, | 
|  | *	sem_array.sem_pending{,last}, | 
|  | *	sem_array.sem_undo: sem_lock() for read/write | 
|  | *	sem_undo.proc_next: only "current" is allowed to read/write that field. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define sc_semmsl	sem_ctls[0] | 
|  | #define sc_semmns	sem_ctls[1] | 
|  | #define sc_semopm	sem_ctls[2] | 
|  | #define sc_semmni	sem_ctls[3] | 
|  |  | 
|  | void sem_init_ns(struct ipc_namespace *ns) | 
|  | { | 
|  | ns->sc_semmsl = SEMMSL; | 
|  | ns->sc_semmns = SEMMNS; | 
|  | ns->sc_semopm = SEMOPM; | 
|  | ns->sc_semmni = SEMMNI; | 
|  | ns->used_sems = 0; | 
|  | ipc_init_ids(&ns->ids[IPC_SEM_IDS]); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IPC_NS | 
|  | void sem_exit_ns(struct ipc_namespace *ns) | 
|  | { | 
|  | free_ipcs(ns, &sem_ids(ns), freeary); | 
|  | idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init sem_init (void) | 
|  | { | 
|  | sem_init_ns(&init_ipc_ns); | 
|  | ipc_init_proc_interface("sysvipc/sem", | 
|  | "       key      semid perms      nsems   uid   gid  cuid  cgid      otime      ctime\n", | 
|  | IPC_SEM_IDS, sysvipc_sem_proc_show); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sem_lock_(check_) routines are called in the paths where the rw_mutex | 
|  | * is not held. | 
|  | */ | 
|  | static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id) | 
|  | { | 
|  | struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id); | 
|  |  | 
|  | if (IS_ERR(ipcp)) | 
|  | return (struct sem_array *)ipcp; | 
|  |  | 
|  | return container_of(ipcp, struct sem_array, sem_perm); | 
|  | } | 
|  |  | 
|  | static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns, | 
|  | int id) | 
|  | { | 
|  | struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id); | 
|  |  | 
|  | if (IS_ERR(ipcp)) | 
|  | return (struct sem_array *)ipcp; | 
|  |  | 
|  | return container_of(ipcp, struct sem_array, sem_perm); | 
|  | } | 
|  |  | 
|  | static inline void sem_lock_and_putref(struct sem_array *sma) | 
|  | { | 
|  | ipc_lock_by_ptr(&sma->sem_perm); | 
|  | ipc_rcu_putref(sma); | 
|  | } | 
|  |  | 
|  | static inline void sem_getref_and_unlock(struct sem_array *sma) | 
|  | { | 
|  | ipc_rcu_getref(sma); | 
|  | ipc_unlock(&(sma)->sem_perm); | 
|  | } | 
|  |  | 
|  | static inline void sem_putref(struct sem_array *sma) | 
|  | { | 
|  | ipc_lock_by_ptr(&sma->sem_perm); | 
|  | ipc_rcu_putref(sma); | 
|  | ipc_unlock(&(sma)->sem_perm); | 
|  | } | 
|  |  | 
|  | static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s) | 
|  | { | 
|  | ipc_rmid(&sem_ids(ns), &s->sem_perm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Lockless wakeup algorithm: | 
|  | * Without the check/retry algorithm a lockless wakeup is possible: | 
|  | * - queue.status is initialized to -EINTR before blocking. | 
|  | * - wakeup is performed by | 
|  | *	* unlinking the queue entry from sma->sem_pending | 
|  | *	* setting queue.status to IN_WAKEUP | 
|  | *	  This is the notification for the blocked thread that a | 
|  | *	  result value is imminent. | 
|  | *	* call wake_up_process | 
|  | *	* set queue.status to the final value. | 
|  | * - the previously blocked thread checks queue.status: | 
|  | *   	* if it's IN_WAKEUP, then it must wait until the value changes | 
|  | *   	* if it's not -EINTR, then the operation was completed by | 
|  | *   	  update_queue. semtimedop can return queue.status without | 
|  | *   	  performing any operation on the sem array. | 
|  | *   	* otherwise it must acquire the spinlock and check what's up. | 
|  | * | 
|  | * The two-stage algorithm is necessary to protect against the following | 
|  | * races: | 
|  | * - if queue.status is set after wake_up_process, then the woken up idle | 
|  | *   thread could race forward and try (and fail) to acquire sma->lock | 
|  | *   before update_queue had a chance to set queue.status | 
|  | * - if queue.status is written before wake_up_process and if the | 
|  | *   blocked process is woken up by a signal between writing | 
|  | *   queue.status and the wake_up_process, then the woken up | 
|  | *   process could return from semtimedop and die by calling | 
|  | *   sys_exit before wake_up_process is called. Then wake_up_process | 
|  | *   will oops, because the task structure is already invalid. | 
|  | *   (yes, this happened on s390 with sysv msg). | 
|  | * | 
|  | */ | 
|  | #define IN_WAKEUP	1 | 
|  |  | 
|  | /** | 
|  | * newary - Create a new semaphore set | 
|  | * @ns: namespace | 
|  | * @params: ptr to the structure that contains key, semflg and nsems | 
|  | * | 
|  | * Called with sem_ids.rw_mutex held (as a writer) | 
|  | */ | 
|  |  | 
|  | static int newary(struct ipc_namespace *ns, struct ipc_params *params) | 
|  | { | 
|  | int id; | 
|  | int retval; | 
|  | struct sem_array *sma; | 
|  | int size; | 
|  | key_t key = params->key; | 
|  | int nsems = params->u.nsems; | 
|  | int semflg = params->flg; | 
|  | int i; | 
|  |  | 
|  | if (!nsems) | 
|  | return -EINVAL; | 
|  | if (ns->used_sems + nsems > ns->sc_semmns) | 
|  | return -ENOSPC; | 
|  |  | 
|  | size = sizeof (*sma) + nsems * sizeof (struct sem); | 
|  | sma = ipc_rcu_alloc(size); | 
|  | if (!sma) { | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset (sma, 0, size); | 
|  |  | 
|  | sma->sem_perm.mode = (semflg & S_IRWXUGO); | 
|  | sma->sem_perm.key = key; | 
|  |  | 
|  | sma->sem_perm.security = NULL; | 
|  | retval = security_sem_alloc(sma); | 
|  | if (retval) { | 
|  | ipc_rcu_putref(sma); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni); | 
|  | if (id < 0) { | 
|  | security_sem_free(sma); | 
|  | ipc_rcu_putref(sma); | 
|  | return id; | 
|  | } | 
|  | ns->used_sems += nsems; | 
|  |  | 
|  | sma->sem_base = (struct sem *) &sma[1]; | 
|  |  | 
|  | for (i = 0; i < nsems; i++) | 
|  | INIT_LIST_HEAD(&sma->sem_base[i].sem_pending); | 
|  |  | 
|  | sma->complex_count = 0; | 
|  | INIT_LIST_HEAD(&sma->sem_pending); | 
|  | INIT_LIST_HEAD(&sma->list_id); | 
|  | sma->sem_nsems = nsems; | 
|  | sma->sem_ctime = get_seconds(); | 
|  | sem_unlock(sma); | 
|  |  | 
|  | return sma->sem_perm.id; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Called with sem_ids.rw_mutex and ipcp locked. | 
|  | */ | 
|  | static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg) | 
|  | { | 
|  | struct sem_array *sma; | 
|  |  | 
|  | sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | return security_sem_associate(sma, semflg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called with sem_ids.rw_mutex and ipcp locked. | 
|  | */ | 
|  | static inline int sem_more_checks(struct kern_ipc_perm *ipcp, | 
|  | struct ipc_params *params) | 
|  | { | 
|  | struct sem_array *sma; | 
|  |  | 
|  | sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | if (params->u.nsems > sma->sem_nsems) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg) | 
|  | { | 
|  | struct ipc_namespace *ns; | 
|  | struct ipc_ops sem_ops; | 
|  | struct ipc_params sem_params; | 
|  |  | 
|  | ns = current->nsproxy->ipc_ns; | 
|  |  | 
|  | if (nsems < 0 || nsems > ns->sc_semmsl) | 
|  | return -EINVAL; | 
|  |  | 
|  | sem_ops.getnew = newary; | 
|  | sem_ops.associate = sem_security; | 
|  | sem_ops.more_checks = sem_more_checks; | 
|  |  | 
|  | sem_params.key = key; | 
|  | sem_params.flg = semflg; | 
|  | sem_params.u.nsems = nsems; | 
|  |  | 
|  | return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine whether a sequence of semaphore operations would succeed | 
|  | * all at once. Return 0 if yes, 1 if need to sleep, else return error code. | 
|  | */ | 
|  |  | 
|  | static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops, | 
|  | int nsops, struct sem_undo *un, int pid) | 
|  | { | 
|  | int result, sem_op; | 
|  | struct sembuf *sop; | 
|  | struct sem * curr; | 
|  |  | 
|  | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | curr = sma->sem_base + sop->sem_num; | 
|  | sem_op = sop->sem_op; | 
|  | result = curr->semval; | 
|  |  | 
|  | if (!sem_op && result) | 
|  | goto would_block; | 
|  |  | 
|  | result += sem_op; | 
|  | if (result < 0) | 
|  | goto would_block; | 
|  | if (result > SEMVMX) | 
|  | goto out_of_range; | 
|  | if (sop->sem_flg & SEM_UNDO) { | 
|  | int undo = un->semadj[sop->sem_num] - sem_op; | 
|  | /* | 
|  | *	Exceeding the undo range is an error. | 
|  | */ | 
|  | if (undo < (-SEMAEM - 1) || undo > SEMAEM) | 
|  | goto out_of_range; | 
|  | } | 
|  | curr->semval = result; | 
|  | } | 
|  |  | 
|  | sop--; | 
|  | while (sop >= sops) { | 
|  | sma->sem_base[sop->sem_num].sempid = pid; | 
|  | if (sop->sem_flg & SEM_UNDO) | 
|  | un->semadj[sop->sem_num] -= sop->sem_op; | 
|  | sop--; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_of_range: | 
|  | result = -ERANGE; | 
|  | goto undo; | 
|  |  | 
|  | would_block: | 
|  | if (sop->sem_flg & IPC_NOWAIT) | 
|  | result = -EAGAIN; | 
|  | else | 
|  | result = 1; | 
|  |  | 
|  | undo: | 
|  | sop--; | 
|  | while (sop >= sops) { | 
|  | sma->sem_base[sop->sem_num].semval -= sop->sem_op; | 
|  | sop--; | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** wake_up_sem_queue_prepare(q, error): Prepare wake-up | 
|  | * @q: queue entry that must be signaled | 
|  | * @error: Error value for the signal | 
|  | * | 
|  | * Prepare the wake-up of the queue entry q. | 
|  | */ | 
|  | static void wake_up_sem_queue_prepare(struct list_head *pt, | 
|  | struct sem_queue *q, int error) | 
|  | { | 
|  | if (list_empty(pt)) { | 
|  | /* | 
|  | * Hold preempt off so that we don't get preempted and have the | 
|  | * wakee busy-wait until we're scheduled back on. | 
|  | */ | 
|  | preempt_disable(); | 
|  | } | 
|  | q->status = IN_WAKEUP; | 
|  | q->pid = error; | 
|  |  | 
|  | list_add_tail(&q->simple_list, pt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wake_up_sem_queue_do(pt) - do the actual wake-up | 
|  | * @pt: list of tasks to be woken up | 
|  | * | 
|  | * Do the actual wake-up. | 
|  | * The function is called without any locks held, thus the semaphore array | 
|  | * could be destroyed already and the tasks can disappear as soon as the | 
|  | * status is set to the actual return code. | 
|  | */ | 
|  | static void wake_up_sem_queue_do(struct list_head *pt) | 
|  | { | 
|  | struct sem_queue *q, *t; | 
|  | int did_something; | 
|  |  | 
|  | did_something = !list_empty(pt); | 
|  | list_for_each_entry_safe(q, t, pt, simple_list) { | 
|  | wake_up_process(q->sleeper); | 
|  | /* q can disappear immediately after writing q->status. */ | 
|  | smp_wmb(); | 
|  | q->status = q->pid; | 
|  | } | 
|  | if (did_something) | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void unlink_queue(struct sem_array *sma, struct sem_queue *q) | 
|  | { | 
|  | list_del(&q->list); | 
|  | if (q->nsops == 1) | 
|  | list_del(&q->simple_list); | 
|  | else | 
|  | sma->complex_count--; | 
|  | } | 
|  |  | 
|  | /** check_restart(sma, q) | 
|  | * @sma: semaphore array | 
|  | * @q: the operation that just completed | 
|  | * | 
|  | * update_queue is O(N^2) when it restarts scanning the whole queue of | 
|  | * waiting operations. Therefore this function checks if the restart is | 
|  | * really necessary. It is called after a previously waiting operation | 
|  | * was completed. | 
|  | */ | 
|  | static int check_restart(struct sem_array *sma, struct sem_queue *q) | 
|  | { | 
|  | struct sem *curr; | 
|  | struct sem_queue *h; | 
|  |  | 
|  | /* if the operation didn't modify the array, then no restart */ | 
|  | if (q->alter == 0) | 
|  | return 0; | 
|  |  | 
|  | /* pending complex operations are too difficult to analyse */ | 
|  | if (sma->complex_count) | 
|  | return 1; | 
|  |  | 
|  | /* we were a sleeping complex operation. Too difficult */ | 
|  | if (q->nsops > 1) | 
|  | return 1; | 
|  |  | 
|  | curr = sma->sem_base + q->sops[0].sem_num; | 
|  |  | 
|  | /* No-one waits on this queue */ | 
|  | if (list_empty(&curr->sem_pending)) | 
|  | return 0; | 
|  |  | 
|  | /* the new semaphore value */ | 
|  | if (curr->semval) { | 
|  | /* It is impossible that someone waits for the new value: | 
|  | * - q is a previously sleeping simple operation that | 
|  | *   altered the array. It must be a decrement, because | 
|  | *   simple increments never sleep. | 
|  | * - The value is not 0, thus wait-for-zero won't proceed. | 
|  | * - If there are older (higher priority) decrements | 
|  | *   in the queue, then they have observed the original | 
|  | *   semval value and couldn't proceed. The operation | 
|  | *   decremented to value - thus they won't proceed either. | 
|  | */ | 
|  | BUG_ON(q->sops[0].sem_op >= 0); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * semval is 0. Check if there are wait-for-zero semops. | 
|  | * They must be the first entries in the per-semaphore simple queue | 
|  | */ | 
|  | h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list); | 
|  | BUG_ON(h->nsops != 1); | 
|  | BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num); | 
|  |  | 
|  | /* Yes, there is a wait-for-zero semop. Restart */ | 
|  | if (h->sops[0].sem_op == 0) | 
|  | return 1; | 
|  |  | 
|  | /* Again - no-one is waiting for the new value. */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * update_queue(sma, semnum): Look for tasks that can be completed. | 
|  | * @sma: semaphore array. | 
|  | * @semnum: semaphore that was modified. | 
|  | * @pt: list head for the tasks that must be woken up. | 
|  | * | 
|  | * update_queue must be called after a semaphore in a semaphore array | 
|  | * was modified. If multiple semaphore were modified, then @semnum | 
|  | * must be set to -1. | 
|  | * The tasks that must be woken up are added to @pt. The return code | 
|  | * is stored in q->pid. | 
|  | * The function return 1 if at least one semop was completed successfully. | 
|  | */ | 
|  | static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt) | 
|  | { | 
|  | struct sem_queue *q; | 
|  | struct list_head *walk; | 
|  | struct list_head *pending_list; | 
|  | int offset; | 
|  | int semop_completed = 0; | 
|  |  | 
|  | /* if there are complex operations around, then knowing the semaphore | 
|  | * that was modified doesn't help us. Assume that multiple semaphores | 
|  | * were modified. | 
|  | */ | 
|  | if (sma->complex_count) | 
|  | semnum = -1; | 
|  |  | 
|  | if (semnum == -1) { | 
|  | pending_list = &sma->sem_pending; | 
|  | offset = offsetof(struct sem_queue, list); | 
|  | } else { | 
|  | pending_list = &sma->sem_base[semnum].sem_pending; | 
|  | offset = offsetof(struct sem_queue, simple_list); | 
|  | } | 
|  |  | 
|  | again: | 
|  | walk = pending_list->next; | 
|  | while (walk != pending_list) { | 
|  | int error, restart; | 
|  |  | 
|  | q = (struct sem_queue *)((char *)walk - offset); | 
|  | walk = walk->next; | 
|  |  | 
|  | /* If we are scanning the single sop, per-semaphore list of | 
|  | * one semaphore and that semaphore is 0, then it is not | 
|  | * necessary to scan the "alter" entries: simple increments | 
|  | * that affect only one entry succeed immediately and cannot | 
|  | * be in the  per semaphore pending queue, and decrements | 
|  | * cannot be successful if the value is already 0. | 
|  | */ | 
|  | if (semnum != -1 && sma->sem_base[semnum].semval == 0 && | 
|  | q->alter) | 
|  | break; | 
|  |  | 
|  | error = try_atomic_semop(sma, q->sops, q->nsops, | 
|  | q->undo, q->pid); | 
|  |  | 
|  | /* Does q->sleeper still need to sleep? */ | 
|  | if (error > 0) | 
|  | continue; | 
|  |  | 
|  | unlink_queue(sma, q); | 
|  |  | 
|  | if (error) { | 
|  | restart = 0; | 
|  | } else { | 
|  | semop_completed = 1; | 
|  | restart = check_restart(sma, q); | 
|  | } | 
|  |  | 
|  | wake_up_sem_queue_prepare(pt, q, error); | 
|  | if (restart) | 
|  | goto again; | 
|  | } | 
|  | return semop_completed; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue | 
|  | * @sma: semaphore array | 
|  | * @sops: operations that were performed | 
|  | * @nsops: number of operations | 
|  | * @otime: force setting otime | 
|  | * @pt: list head of the tasks that must be woken up. | 
|  | * | 
|  | * do_smart_update() does the required called to update_queue, based on the | 
|  | * actual changes that were performed on the semaphore array. | 
|  | * Note that the function does not do the actual wake-up: the caller is | 
|  | * responsible for calling wake_up_sem_queue_do(@pt). | 
|  | * It is safe to perform this call after dropping all locks. | 
|  | */ | 
|  | static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops, | 
|  | int otime, struct list_head *pt) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (sma->complex_count || sops == NULL) { | 
|  | if (update_queue(sma, -1, pt)) | 
|  | otime = 1; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsops; i++) { | 
|  | if (sops[i].sem_op > 0 || | 
|  | (sops[i].sem_op < 0 && | 
|  | sma->sem_base[sops[i].sem_num].semval == 0)) | 
|  | if (update_queue(sma, sops[i].sem_num, pt)) | 
|  | otime = 1; | 
|  | } | 
|  | done: | 
|  | if (otime) | 
|  | sma->sem_otime = get_seconds(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The following counts are associated to each semaphore: | 
|  | *   semncnt        number of tasks waiting on semval being nonzero | 
|  | *   semzcnt        number of tasks waiting on semval being zero | 
|  | * This model assumes that a task waits on exactly one semaphore. | 
|  | * Since semaphore operations are to be performed atomically, tasks actually | 
|  | * wait on a whole sequence of semaphores simultaneously. | 
|  | * The counts we return here are a rough approximation, but still | 
|  | * warrant that semncnt+semzcnt>0 if the task is on the pending queue. | 
|  | */ | 
|  | static int count_semncnt (struct sem_array * sma, ushort semnum) | 
|  | { | 
|  | int semncnt; | 
|  | struct sem_queue * q; | 
|  |  | 
|  | semncnt = 0; | 
|  | list_for_each_entry(q, &sma->sem_pending, list) { | 
|  | struct sembuf * sops = q->sops; | 
|  | int nsops = q->nsops; | 
|  | int i; | 
|  | for (i = 0; i < nsops; i++) | 
|  | if (sops[i].sem_num == semnum | 
|  | && (sops[i].sem_op < 0) | 
|  | && !(sops[i].sem_flg & IPC_NOWAIT)) | 
|  | semncnt++; | 
|  | } | 
|  | return semncnt; | 
|  | } | 
|  |  | 
|  | static int count_semzcnt (struct sem_array * sma, ushort semnum) | 
|  | { | 
|  | int semzcnt; | 
|  | struct sem_queue * q; | 
|  |  | 
|  | semzcnt = 0; | 
|  | list_for_each_entry(q, &sma->sem_pending, list) { | 
|  | struct sembuf * sops = q->sops; | 
|  | int nsops = q->nsops; | 
|  | int i; | 
|  | for (i = 0; i < nsops; i++) | 
|  | if (sops[i].sem_num == semnum | 
|  | && (sops[i].sem_op == 0) | 
|  | && !(sops[i].sem_flg & IPC_NOWAIT)) | 
|  | semzcnt++; | 
|  | } | 
|  | return semzcnt; | 
|  | } | 
|  |  | 
|  | /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked | 
|  | * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex | 
|  | * remains locked on exit. | 
|  | */ | 
|  | static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp) | 
|  | { | 
|  | struct sem_undo *un, *tu; | 
|  | struct sem_queue *q, *tq; | 
|  | struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  | struct list_head tasks; | 
|  |  | 
|  | /* Free the existing undo structures for this semaphore set.  */ | 
|  | assert_spin_locked(&sma->sem_perm.lock); | 
|  | list_for_each_entry_safe(un, tu, &sma->list_id, list_id) { | 
|  | list_del(&un->list_id); | 
|  | spin_lock(&un->ulp->lock); | 
|  | un->semid = -1; | 
|  | list_del_rcu(&un->list_proc); | 
|  | spin_unlock(&un->ulp->lock); | 
|  | kfree_rcu(un, rcu); | 
|  | } | 
|  |  | 
|  | /* Wake up all pending processes and let them fail with EIDRM. */ | 
|  | INIT_LIST_HEAD(&tasks); | 
|  | list_for_each_entry_safe(q, tq, &sma->sem_pending, list) { | 
|  | unlink_queue(sma, q); | 
|  | wake_up_sem_queue_prepare(&tasks, q, -EIDRM); | 
|  | } | 
|  |  | 
|  | /* Remove the semaphore set from the IDR */ | 
|  | sem_rmid(ns, sma); | 
|  | sem_unlock(sma); | 
|  |  | 
|  | wake_up_sem_queue_do(&tasks); | 
|  | ns->used_sems -= sma->sem_nsems; | 
|  | security_sem_free(sma); | 
|  | ipc_rcu_putref(sma); | 
|  | } | 
|  |  | 
|  | static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version) | 
|  | { | 
|  | switch(version) { | 
|  | case IPC_64: | 
|  | return copy_to_user(buf, in, sizeof(*in)); | 
|  | case IPC_OLD: | 
|  | { | 
|  | struct semid_ds out; | 
|  |  | 
|  | memset(&out, 0, sizeof(out)); | 
|  |  | 
|  | ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm); | 
|  |  | 
|  | out.sem_otime	= in->sem_otime; | 
|  | out.sem_ctime	= in->sem_ctime; | 
|  | out.sem_nsems	= in->sem_nsems; | 
|  |  | 
|  | return copy_to_user(buf, &out, sizeof(out)); | 
|  | } | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int semctl_nolock(struct ipc_namespace *ns, int semid, | 
|  | int cmd, int version, union semun arg) | 
|  | { | 
|  | int err; | 
|  | struct sem_array *sma; | 
|  |  | 
|  | switch(cmd) { | 
|  | case IPC_INFO: | 
|  | case SEM_INFO: | 
|  | { | 
|  | struct seminfo seminfo; | 
|  | int max_id; | 
|  |  | 
|  | err = security_sem_semctl(NULL, cmd); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | memset(&seminfo,0,sizeof(seminfo)); | 
|  | seminfo.semmni = ns->sc_semmni; | 
|  | seminfo.semmns = ns->sc_semmns; | 
|  | seminfo.semmsl = ns->sc_semmsl; | 
|  | seminfo.semopm = ns->sc_semopm; | 
|  | seminfo.semvmx = SEMVMX; | 
|  | seminfo.semmnu = SEMMNU; | 
|  | seminfo.semmap = SEMMAP; | 
|  | seminfo.semume = SEMUME; | 
|  | down_read(&sem_ids(ns).rw_mutex); | 
|  | if (cmd == SEM_INFO) { | 
|  | seminfo.semusz = sem_ids(ns).in_use; | 
|  | seminfo.semaem = ns->used_sems; | 
|  | } else { | 
|  | seminfo.semusz = SEMUSZ; | 
|  | seminfo.semaem = SEMAEM; | 
|  | } | 
|  | max_id = ipc_get_maxid(&sem_ids(ns)); | 
|  | up_read(&sem_ids(ns).rw_mutex); | 
|  | if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo))) | 
|  | return -EFAULT; | 
|  | return (max_id < 0) ? 0: max_id; | 
|  | } | 
|  | case IPC_STAT: | 
|  | case SEM_STAT: | 
|  | { | 
|  | struct semid64_ds tbuf; | 
|  | int id; | 
|  |  | 
|  | if (cmd == SEM_STAT) { | 
|  | sma = sem_lock(ns, semid); | 
|  | if (IS_ERR(sma)) | 
|  | return PTR_ERR(sma); | 
|  | id = sma->sem_perm.id; | 
|  | } else { | 
|  | sma = sem_lock_check(ns, semid); | 
|  | if (IS_ERR(sma)) | 
|  | return PTR_ERR(sma); | 
|  | id = 0; | 
|  | } | 
|  |  | 
|  | err = -EACCES; | 
|  | if (ipcperms(ns, &sma->sem_perm, S_IRUGO)) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = security_sem_semctl(sma, cmd); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | memset(&tbuf, 0, sizeof(tbuf)); | 
|  |  | 
|  | kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm); | 
|  | tbuf.sem_otime  = sma->sem_otime; | 
|  | tbuf.sem_ctime  = sma->sem_ctime; | 
|  | tbuf.sem_nsems  = sma->sem_nsems; | 
|  | sem_unlock(sma); | 
|  | if (copy_semid_to_user (arg.buf, &tbuf, version)) | 
|  | return -EFAULT; | 
|  | return id; | 
|  | } | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | out_unlock: | 
|  | sem_unlock(sma); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int semctl_main(struct ipc_namespace *ns, int semid, int semnum, | 
|  | int cmd, int version, union semun arg) | 
|  | { | 
|  | struct sem_array *sma; | 
|  | struct sem* curr; | 
|  | int err; | 
|  | ushort fast_sem_io[SEMMSL_FAST]; | 
|  | ushort* sem_io = fast_sem_io; | 
|  | int nsems; | 
|  | struct list_head tasks; | 
|  |  | 
|  | sma = sem_lock_check(ns, semid); | 
|  | if (IS_ERR(sma)) | 
|  | return PTR_ERR(sma); | 
|  |  | 
|  | INIT_LIST_HEAD(&tasks); | 
|  | nsems = sma->sem_nsems; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (ipcperms(ns, &sma->sem_perm, | 
|  | (cmd == SETVAL || cmd == SETALL) ? S_IWUGO : S_IRUGO)) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = security_sem_semctl(sma, cmd); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = -EACCES; | 
|  | switch (cmd) { | 
|  | case GETALL: | 
|  | { | 
|  | ushort __user *array = arg.array; | 
|  | int i; | 
|  |  | 
|  | if(nsems > SEMMSL_FAST) { | 
|  | sem_getref_and_unlock(sma); | 
|  |  | 
|  | sem_io = ipc_alloc(sizeof(ushort)*nsems); | 
|  | if(sem_io == NULL) { | 
|  | sem_putref(sma); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | sem_lock_and_putref(sma); | 
|  | if (sma->sem_perm.deleted) { | 
|  | sem_unlock(sma); | 
|  | err = -EIDRM; | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < sma->sem_nsems; i++) | 
|  | sem_io[i] = sma->sem_base[i].semval; | 
|  | sem_unlock(sma); | 
|  | err = 0; | 
|  | if(copy_to_user(array, sem_io, nsems*sizeof(ushort))) | 
|  | err = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  | case SETALL: | 
|  | { | 
|  | int i; | 
|  | struct sem_undo *un; | 
|  |  | 
|  | sem_getref_and_unlock(sma); | 
|  |  | 
|  | if(nsems > SEMMSL_FAST) { | 
|  | sem_io = ipc_alloc(sizeof(ushort)*nsems); | 
|  | if(sem_io == NULL) { | 
|  | sem_putref(sma); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) { | 
|  | sem_putref(sma); | 
|  | err = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsems; i++) { | 
|  | if (sem_io[i] > SEMVMX) { | 
|  | sem_putref(sma); | 
|  | err = -ERANGE; | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  | sem_lock_and_putref(sma); | 
|  | if (sma->sem_perm.deleted) { | 
|  | sem_unlock(sma); | 
|  | err = -EIDRM; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsems; i++) | 
|  | sma->sem_base[i].semval = sem_io[i]; | 
|  |  | 
|  | assert_spin_locked(&sma->sem_perm.lock); | 
|  | list_for_each_entry(un, &sma->list_id, list_id) { | 
|  | for (i = 0; i < nsems; i++) | 
|  | un->semadj[i] = 0; | 
|  | } | 
|  | sma->sem_ctime = get_seconds(); | 
|  | /* maybe some queued-up processes were waiting for this */ | 
|  | do_smart_update(sma, NULL, 0, 0, &tasks); | 
|  | err = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */ | 
|  | } | 
|  | err = -EINVAL; | 
|  | if(semnum < 0 || semnum >= nsems) | 
|  | goto out_unlock; | 
|  |  | 
|  | curr = &sma->sem_base[semnum]; | 
|  |  | 
|  | switch (cmd) { | 
|  | case GETVAL: | 
|  | err = curr->semval; | 
|  | goto out_unlock; | 
|  | case GETPID: | 
|  | err = curr->sempid; | 
|  | goto out_unlock; | 
|  | case GETNCNT: | 
|  | err = count_semncnt(sma,semnum); | 
|  | goto out_unlock; | 
|  | case GETZCNT: | 
|  | err = count_semzcnt(sma,semnum); | 
|  | goto out_unlock; | 
|  | case SETVAL: | 
|  | { | 
|  | int val = arg.val; | 
|  | struct sem_undo *un; | 
|  |  | 
|  | err = -ERANGE; | 
|  | if (val > SEMVMX || val < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | assert_spin_locked(&sma->sem_perm.lock); | 
|  | list_for_each_entry(un, &sma->list_id, list_id) | 
|  | un->semadj[semnum] = 0; | 
|  |  | 
|  | curr->semval = val; | 
|  | curr->sempid = task_tgid_vnr(current); | 
|  | sma->sem_ctime = get_seconds(); | 
|  | /* maybe some queued-up processes were waiting for this */ | 
|  | do_smart_update(sma, NULL, 0, 0, &tasks); | 
|  | err = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  | out_unlock: | 
|  | sem_unlock(sma); | 
|  | wake_up_sem_queue_do(&tasks); | 
|  |  | 
|  | out_free: | 
|  | if(sem_io != fast_sem_io) | 
|  | ipc_free(sem_io, sizeof(ushort)*nsems); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version) | 
|  | { | 
|  | switch(version) { | 
|  | case IPC_64: | 
|  | if (copy_from_user(out, buf, sizeof(*out))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | case IPC_OLD: | 
|  | { | 
|  | struct semid_ds tbuf_old; | 
|  |  | 
|  | if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old))) | 
|  | return -EFAULT; | 
|  |  | 
|  | out->sem_perm.uid	= tbuf_old.sem_perm.uid; | 
|  | out->sem_perm.gid	= tbuf_old.sem_perm.gid; | 
|  | out->sem_perm.mode	= tbuf_old.sem_perm.mode; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function handles some semctl commands which require the rw_mutex | 
|  | * to be held in write mode. | 
|  | * NOTE: no locks must be held, the rw_mutex is taken inside this function. | 
|  | */ | 
|  | static int semctl_down(struct ipc_namespace *ns, int semid, | 
|  | int cmd, int version, union semun arg) | 
|  | { | 
|  | struct sem_array *sma; | 
|  | int err; | 
|  | struct semid64_ds semid64; | 
|  | struct kern_ipc_perm *ipcp; | 
|  |  | 
|  | if(cmd == IPC_SET) { | 
|  | if (copy_semid_from_user(&semid64, arg.buf, version)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | ipcp = ipcctl_pre_down(ns, &sem_ids(ns), semid, cmd, | 
|  | &semid64.sem_perm, 0); | 
|  | if (IS_ERR(ipcp)) | 
|  | return PTR_ERR(ipcp); | 
|  |  | 
|  | sma = container_of(ipcp, struct sem_array, sem_perm); | 
|  |  | 
|  | err = security_sem_semctl(sma, cmd); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | switch(cmd){ | 
|  | case IPC_RMID: | 
|  | freeary(ns, ipcp); | 
|  | goto out_up; | 
|  | case IPC_SET: | 
|  | ipc_update_perm(&semid64.sem_perm, ipcp); | 
|  | sma->sem_ctime = get_seconds(); | 
|  | break; | 
|  | default: | 
|  | err = -EINVAL; | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | sem_unlock(sma); | 
|  | out_up: | 
|  | up_write(&sem_ids(ns).rw_mutex); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg) | 
|  | { | 
|  | int err = -EINVAL; | 
|  | int version; | 
|  | struct ipc_namespace *ns; | 
|  |  | 
|  | if (semid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | version = ipc_parse_version(&cmd); | 
|  | ns = current->nsproxy->ipc_ns; | 
|  |  | 
|  | switch(cmd) { | 
|  | case IPC_INFO: | 
|  | case SEM_INFO: | 
|  | case IPC_STAT: | 
|  | case SEM_STAT: | 
|  | err = semctl_nolock(ns, semid, cmd, version, arg); | 
|  | return err; | 
|  | case GETALL: | 
|  | case GETVAL: | 
|  | case GETPID: | 
|  | case GETNCNT: | 
|  | case GETZCNT: | 
|  | case SETVAL: | 
|  | case SETALL: | 
|  | err = semctl_main(ns,semid,semnum,cmd,version,arg); | 
|  | return err; | 
|  | case IPC_RMID: | 
|  | case IPC_SET: | 
|  | err = semctl_down(ns, semid, cmd, version, arg); | 
|  | return err; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS | 
|  | asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg) | 
|  | { | 
|  | return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg); | 
|  | } | 
|  | SYSCALL_ALIAS(sys_semctl, SyS_semctl); | 
|  | #endif | 
|  |  | 
|  | /* If the task doesn't already have a undo_list, then allocate one | 
|  | * here.  We guarantee there is only one thread using this undo list, | 
|  | * and current is THE ONE | 
|  | * | 
|  | * If this allocation and assignment succeeds, but later | 
|  | * portions of this code fail, there is no need to free the sem_undo_list. | 
|  | * Just let it stay associated with the task, and it'll be freed later | 
|  | * at exit time. | 
|  | * | 
|  | * This can block, so callers must hold no locks. | 
|  | */ | 
|  | static inline int get_undo_list(struct sem_undo_list **undo_listp) | 
|  | { | 
|  | struct sem_undo_list *undo_list; | 
|  |  | 
|  | undo_list = current->sysvsem.undo_list; | 
|  | if (!undo_list) { | 
|  | undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL); | 
|  | if (undo_list == NULL) | 
|  | return -ENOMEM; | 
|  | spin_lock_init(&undo_list->lock); | 
|  | atomic_set(&undo_list->refcnt, 1); | 
|  | INIT_LIST_HEAD(&undo_list->list_proc); | 
|  |  | 
|  | current->sysvsem.undo_list = undo_list; | 
|  | } | 
|  | *undo_listp = undo_list; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid) | 
|  | { | 
|  | struct sem_undo *un; | 
|  |  | 
|  | list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) { | 
|  | if (un->semid == semid) | 
|  | return un; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid) | 
|  | { | 
|  | struct sem_undo *un; | 
|  |  | 
|  | assert_spin_locked(&ulp->lock); | 
|  |  | 
|  | un = __lookup_undo(ulp, semid); | 
|  | if (un) { | 
|  | list_del_rcu(&un->list_proc); | 
|  | list_add_rcu(&un->list_proc, &ulp->list_proc); | 
|  | } | 
|  | return un; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_alloc_undo - Lookup (and if not present create) undo array | 
|  | * @ns: namespace | 
|  | * @semid: semaphore array id | 
|  | * | 
|  | * The function looks up (and if not present creates) the undo structure. | 
|  | * The size of the undo structure depends on the size of the semaphore | 
|  | * array, thus the alloc path is not that straightforward. | 
|  | * Lifetime-rules: sem_undo is rcu-protected, on success, the function | 
|  | * performs a rcu_read_lock(). | 
|  | */ | 
|  | static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid) | 
|  | { | 
|  | struct sem_array *sma; | 
|  | struct sem_undo_list *ulp; | 
|  | struct sem_undo *un, *new; | 
|  | int nsems; | 
|  | int error; | 
|  |  | 
|  | error = get_undo_list(&ulp); | 
|  | if (error) | 
|  | return ERR_PTR(error); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | spin_lock(&ulp->lock); | 
|  | un = lookup_undo(ulp, semid); | 
|  | spin_unlock(&ulp->lock); | 
|  | if (likely(un!=NULL)) | 
|  | goto out; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* no undo structure around - allocate one. */ | 
|  | /* step 1: figure out the size of the semaphore array */ | 
|  | sma = sem_lock_check(ns, semid); | 
|  | if (IS_ERR(sma)) | 
|  | return ERR_CAST(sma); | 
|  |  | 
|  | nsems = sma->sem_nsems; | 
|  | sem_getref_and_unlock(sma); | 
|  |  | 
|  | /* step 2: allocate new undo structure */ | 
|  | new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL); | 
|  | if (!new) { | 
|  | sem_putref(sma); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /* step 3: Acquire the lock on semaphore array */ | 
|  | sem_lock_and_putref(sma); | 
|  | if (sma->sem_perm.deleted) { | 
|  | sem_unlock(sma); | 
|  | kfree(new); | 
|  | un = ERR_PTR(-EIDRM); | 
|  | goto out; | 
|  | } | 
|  | spin_lock(&ulp->lock); | 
|  |  | 
|  | /* | 
|  | * step 4: check for races: did someone else allocate the undo struct? | 
|  | */ | 
|  | un = lookup_undo(ulp, semid); | 
|  | if (un) { | 
|  | kfree(new); | 
|  | goto success; | 
|  | } | 
|  | /* step 5: initialize & link new undo structure */ | 
|  | new->semadj = (short *) &new[1]; | 
|  | new->ulp = ulp; | 
|  | new->semid = semid; | 
|  | assert_spin_locked(&ulp->lock); | 
|  | list_add_rcu(&new->list_proc, &ulp->list_proc); | 
|  | assert_spin_locked(&sma->sem_perm.lock); | 
|  | list_add(&new->list_id, &sma->list_id); | 
|  | un = new; | 
|  |  | 
|  | success: | 
|  | spin_unlock(&ulp->lock); | 
|  | rcu_read_lock(); | 
|  | sem_unlock(sma); | 
|  | out: | 
|  | return un; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * get_queue_result - Retrieve the result code from sem_queue | 
|  | * @q: Pointer to queue structure | 
|  | * | 
|  | * Retrieve the return code from the pending queue. If IN_WAKEUP is found in | 
|  | * q->status, then we must loop until the value is replaced with the final | 
|  | * value: This may happen if a task is woken up by an unrelated event (e.g. | 
|  | * signal) and in parallel the task is woken up by another task because it got | 
|  | * the requested semaphores. | 
|  | * | 
|  | * The function can be called with or without holding the semaphore spinlock. | 
|  | */ | 
|  | static int get_queue_result(struct sem_queue *q) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | error = q->status; | 
|  | while (unlikely(error == IN_WAKEUP)) { | 
|  | cpu_relax(); | 
|  | error = q->status; | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops, | 
|  | unsigned, nsops, const struct timespec __user *, timeout) | 
|  | { | 
|  | int error = -EINVAL; | 
|  | struct sem_array *sma; | 
|  | struct sembuf fast_sops[SEMOPM_FAST]; | 
|  | struct sembuf* sops = fast_sops, *sop; | 
|  | struct sem_undo *un; | 
|  | int undos = 0, alter = 0, max; | 
|  | struct sem_queue queue; | 
|  | unsigned long jiffies_left = 0; | 
|  | struct ipc_namespace *ns; | 
|  | struct list_head tasks; | 
|  |  | 
|  | ns = current->nsproxy->ipc_ns; | 
|  |  | 
|  | if (nsops < 1 || semid < 0) | 
|  | return -EINVAL; | 
|  | if (nsops > ns->sc_semopm) | 
|  | return -E2BIG; | 
|  | if(nsops > SEMOPM_FAST) { | 
|  | sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL); | 
|  | if(sops==NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) { | 
|  | error=-EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  | if (timeout) { | 
|  | struct timespec _timeout; | 
|  | if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) { | 
|  | error = -EFAULT; | 
|  | goto out_free; | 
|  | } | 
|  | if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 || | 
|  | _timeout.tv_nsec >= 1000000000L) { | 
|  | error = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  | jiffies_left = timespec_to_jiffies(&_timeout); | 
|  | } | 
|  | max = 0; | 
|  | for (sop = sops; sop < sops + nsops; sop++) { | 
|  | if (sop->sem_num >= max) | 
|  | max = sop->sem_num; | 
|  | if (sop->sem_flg & SEM_UNDO) | 
|  | undos = 1; | 
|  | if (sop->sem_op != 0) | 
|  | alter = 1; | 
|  | } | 
|  |  | 
|  | if (undos) { | 
|  | un = find_alloc_undo(ns, semid); | 
|  | if (IS_ERR(un)) { | 
|  | error = PTR_ERR(un); | 
|  | goto out_free; | 
|  | } | 
|  | } else | 
|  | un = NULL; | 
|  |  | 
|  | INIT_LIST_HEAD(&tasks); | 
|  |  | 
|  | sma = sem_lock_check(ns, semid); | 
|  | if (IS_ERR(sma)) { | 
|  | if (un) | 
|  | rcu_read_unlock(); | 
|  | error = PTR_ERR(sma); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * semid identifiers are not unique - find_alloc_undo may have | 
|  | * allocated an undo structure, it was invalidated by an RMID | 
|  | * and now a new array with received the same id. Check and fail. | 
|  | * This case can be detected checking un->semid. The existence of | 
|  | * "un" itself is guaranteed by rcu. | 
|  | */ | 
|  | error = -EIDRM; | 
|  | if (un) { | 
|  | if (un->semid == -1) { | 
|  | rcu_read_unlock(); | 
|  | goto out_unlock_free; | 
|  | } else { | 
|  | /* | 
|  | * rcu lock can be released, "un" cannot disappear: | 
|  | * - sem_lock is acquired, thus IPC_RMID is | 
|  | *   impossible. | 
|  | * - exit_sem is impossible, it always operates on | 
|  | *   current (or a dead task). | 
|  | */ | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | } | 
|  | } | 
|  |  | 
|  | error = -EFBIG; | 
|  | if (max >= sma->sem_nsems) | 
|  | goto out_unlock_free; | 
|  |  | 
|  | error = -EACCES; | 
|  | if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) | 
|  | goto out_unlock_free; | 
|  |  | 
|  | error = security_sem_semop(sma, sops, nsops, alter); | 
|  | if (error) | 
|  | goto out_unlock_free; | 
|  |  | 
|  | error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current)); | 
|  | if (error <= 0) { | 
|  | if (alter && error == 0) | 
|  | do_smart_update(sma, sops, nsops, 1, &tasks); | 
|  |  | 
|  | goto out_unlock_free; | 
|  | } | 
|  |  | 
|  | /* We need to sleep on this operation, so we put the current | 
|  | * task into the pending queue and go to sleep. | 
|  | */ | 
|  |  | 
|  | queue.sops = sops; | 
|  | queue.nsops = nsops; | 
|  | queue.undo = un; | 
|  | queue.pid = task_tgid_vnr(current); | 
|  | queue.alter = alter; | 
|  | if (alter) | 
|  | list_add_tail(&queue.list, &sma->sem_pending); | 
|  | else | 
|  | list_add(&queue.list, &sma->sem_pending); | 
|  |  | 
|  | if (nsops == 1) { | 
|  | struct sem *curr; | 
|  | curr = &sma->sem_base[sops->sem_num]; | 
|  |  | 
|  | if (alter) | 
|  | list_add_tail(&queue.simple_list, &curr->sem_pending); | 
|  | else | 
|  | list_add(&queue.simple_list, &curr->sem_pending); | 
|  | } else { | 
|  | INIT_LIST_HEAD(&queue.simple_list); | 
|  | sma->complex_count++; | 
|  | } | 
|  |  | 
|  | queue.status = -EINTR; | 
|  | queue.sleeper = current; | 
|  |  | 
|  | sleep_again: | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  | sem_unlock(sma); | 
|  |  | 
|  | if (timeout) | 
|  | jiffies_left = schedule_timeout(jiffies_left); | 
|  | else | 
|  | schedule(); | 
|  |  | 
|  | error = get_queue_result(&queue); | 
|  |  | 
|  | if (error != -EINTR) { | 
|  | /* fast path: update_queue already obtained all requested | 
|  | * resources. | 
|  | * Perform a smp_mb(): User space could assume that semop() | 
|  | * is a memory barrier: Without the mb(), the cpu could | 
|  | * speculatively read in user space stale data that was | 
|  | * overwritten by the previous owner of the semaphore. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | sma = sem_lock(ns, semid); | 
|  |  | 
|  | /* | 
|  | * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing. | 
|  | */ | 
|  | error = get_queue_result(&queue); | 
|  |  | 
|  | /* | 
|  | * Array removed? If yes, leave without sem_unlock(). | 
|  | */ | 
|  | if (IS_ERR(sma)) { | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * If queue.status != -EINTR we are woken up by another process. | 
|  | * Leave without unlink_queue(), but with sem_unlock(). | 
|  | */ | 
|  |  | 
|  | if (error != -EINTR) { | 
|  | goto out_unlock_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If an interrupt occurred we have to clean up the queue | 
|  | */ | 
|  | if (timeout && jiffies_left == 0) | 
|  | error = -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * If the wakeup was spurious, just retry | 
|  | */ | 
|  | if (error == -EINTR && !signal_pending(current)) | 
|  | goto sleep_again; | 
|  |  | 
|  | unlink_queue(sma, &queue); | 
|  |  | 
|  | out_unlock_free: | 
|  | sem_unlock(sma); | 
|  |  | 
|  | wake_up_sem_queue_do(&tasks); | 
|  | out_free: | 
|  | if(sops != fast_sops) | 
|  | kfree(sops); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops, | 
|  | unsigned, nsops) | 
|  | { | 
|  | return sys_semtimedop(semid, tsops, nsops, NULL); | 
|  | } | 
|  |  | 
|  | /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between | 
|  | * parent and child tasks. | 
|  | */ | 
|  |  | 
|  | int copy_semundo(unsigned long clone_flags, struct task_struct *tsk) | 
|  | { | 
|  | struct sem_undo_list *undo_list; | 
|  | int error; | 
|  |  | 
|  | if (clone_flags & CLONE_SYSVSEM) { | 
|  | error = get_undo_list(&undo_list); | 
|  | if (error) | 
|  | return error; | 
|  | atomic_inc(&undo_list->refcnt); | 
|  | tsk->sysvsem.undo_list = undo_list; | 
|  | } else | 
|  | tsk->sysvsem.undo_list = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add semadj values to semaphores, free undo structures. | 
|  | * undo structures are not freed when semaphore arrays are destroyed | 
|  | * so some of them may be out of date. | 
|  | * IMPLEMENTATION NOTE: There is some confusion over whether the | 
|  | * set of adjustments that needs to be done should be done in an atomic | 
|  | * manner or not. That is, if we are attempting to decrement the semval | 
|  | * should we queue up and wait until we can do so legally? | 
|  | * The original implementation attempted to do this (queue and wait). | 
|  | * The current implementation does not do so. The POSIX standard | 
|  | * and SVID should be consulted to determine what behavior is mandated. | 
|  | */ | 
|  | void exit_sem(struct task_struct *tsk) | 
|  | { | 
|  | struct sem_undo_list *ulp; | 
|  |  | 
|  | ulp = tsk->sysvsem.undo_list; | 
|  | if (!ulp) | 
|  | return; | 
|  | tsk->sysvsem.undo_list = NULL; | 
|  |  | 
|  | if (!atomic_dec_and_test(&ulp->refcnt)) | 
|  | return; | 
|  |  | 
|  | for (;;) { | 
|  | struct sem_array *sma; | 
|  | struct sem_undo *un; | 
|  | struct list_head tasks; | 
|  | int semid; | 
|  | int i; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | un = list_entry_rcu(ulp->list_proc.next, | 
|  | struct sem_undo, list_proc); | 
|  | if (&un->list_proc == &ulp->list_proc) | 
|  | semid = -1; | 
|  | else | 
|  | semid = un->semid; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (semid == -1) | 
|  | break; | 
|  |  | 
|  | sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid); | 
|  |  | 
|  | /* exit_sem raced with IPC_RMID, nothing to do */ | 
|  | if (IS_ERR(sma)) | 
|  | continue; | 
|  |  | 
|  | un = __lookup_undo(ulp, semid); | 
|  | if (un == NULL) { | 
|  | /* exit_sem raced with IPC_RMID+semget() that created | 
|  | * exactly the same semid. Nothing to do. | 
|  | */ | 
|  | sem_unlock(sma); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* remove un from the linked lists */ | 
|  | assert_spin_locked(&sma->sem_perm.lock); | 
|  | list_del(&un->list_id); | 
|  |  | 
|  | spin_lock(&ulp->lock); | 
|  | list_del_rcu(&un->list_proc); | 
|  | spin_unlock(&ulp->lock); | 
|  |  | 
|  | /* perform adjustments registered in un */ | 
|  | for (i = 0; i < sma->sem_nsems; i++) { | 
|  | struct sem * semaphore = &sma->sem_base[i]; | 
|  | if (un->semadj[i]) { | 
|  | semaphore->semval += un->semadj[i]; | 
|  | /* | 
|  | * Range checks of the new semaphore value, | 
|  | * not defined by sus: | 
|  | * - Some unices ignore the undo entirely | 
|  | *   (e.g. HP UX 11i 11.22, Tru64 V5.1) | 
|  | * - some cap the value (e.g. FreeBSD caps | 
|  | *   at 0, but doesn't enforce SEMVMX) | 
|  | * | 
|  | * Linux caps the semaphore value, both at 0 | 
|  | * and at SEMVMX. | 
|  | * | 
|  | * 	Manfred <manfred@colorfullife.com> | 
|  | */ | 
|  | if (semaphore->semval < 0) | 
|  | semaphore->semval = 0; | 
|  | if (semaphore->semval > SEMVMX) | 
|  | semaphore->semval = SEMVMX; | 
|  | semaphore->sempid = task_tgid_vnr(current); | 
|  | } | 
|  | } | 
|  | /* maybe some queued-up processes were waiting for this */ | 
|  | INIT_LIST_HEAD(&tasks); | 
|  | do_smart_update(sma, NULL, 0, 1, &tasks); | 
|  | sem_unlock(sma); | 
|  | wake_up_sem_queue_do(&tasks); | 
|  |  | 
|  | kfree_rcu(un, rcu); | 
|  | } | 
|  | kfree(ulp); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | static int sysvipc_sem_proc_show(struct seq_file *s, void *it) | 
|  | { | 
|  | struct sem_array *sma = it; | 
|  |  | 
|  | return seq_printf(s, | 
|  | "%10d %10d  %4o %10u %5u %5u %5u %5u %10lu %10lu\n", | 
|  | sma->sem_perm.key, | 
|  | sma->sem_perm.id, | 
|  | sma->sem_perm.mode, | 
|  | sma->sem_nsems, | 
|  | sma->sem_perm.uid, | 
|  | sma->sem_perm.gid, | 
|  | sma->sem_perm.cuid, | 
|  | sma->sem_perm.cgid, | 
|  | sma->sem_otime, | 
|  | sma->sem_ctime); | 
|  | } | 
|  | #endif |