|  | /* | 
|  | *  Generic process-grouping system. | 
|  | * | 
|  | *  Based originally on the cpuset system, extracted by Paul Menage | 
|  | *  Copyright (C) 2006 Google, Inc | 
|  | * | 
|  | *  Notifications support | 
|  | *  Copyright (C) 2009 Nokia Corporation | 
|  | *  Author: Kirill A. Shutemov | 
|  | * | 
|  | *  Copyright notices from the original cpuset code: | 
|  | *  -------------------------------------------------- | 
|  | *  Copyright (C) 2003 BULL SA. | 
|  | *  Copyright (C) 2004-2006 Silicon Graphics, Inc. | 
|  | * | 
|  | *  Portions derived from Patrick Mochel's sysfs code. | 
|  | *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
|  | * | 
|  | *  2003-10-10 Written by Simon Derr. | 
|  | *  2003-10-22 Updates by Stephen Hemminger. | 
|  | *  2004 May-July Rework by Paul Jackson. | 
|  | *  --------------------------------------------------- | 
|  | * | 
|  | *  This file is subject to the terms and conditions of the GNU General Public | 
|  | *  License.  See the file COPYING in the main directory of the Linux | 
|  | *  distribution for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/cgroup.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/init_task.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/magic.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/cgroupstats.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/idr.h> | 
|  | #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */ | 
|  | #include <linux/eventfd.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/flex_array.h> /* used in cgroup_attach_proc */ | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  |  | 
|  | /* | 
|  | * cgroup_mutex is the master lock.  Any modification to cgroup or its | 
|  | * hierarchy must be performed while holding it. | 
|  | * | 
|  | * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify | 
|  | * cgroupfs_root of any cgroup hierarchy - subsys list, flags, | 
|  | * release_agent_path and so on.  Modifying requires both cgroup_mutex and | 
|  | * cgroup_root_mutex.  Readers can acquire either of the two.  This is to | 
|  | * break the following locking order cycle. | 
|  | * | 
|  | *  A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem | 
|  | *  B. namespace_sem -> cgroup_mutex | 
|  | * | 
|  | * B happens only through cgroup_show_options() and using cgroup_root_mutex | 
|  | * breaks it. | 
|  | */ | 
|  | static DEFINE_MUTEX(cgroup_mutex); | 
|  | static DEFINE_MUTEX(cgroup_root_mutex); | 
|  |  | 
|  | /* | 
|  | * Generate an array of cgroup subsystem pointers. At boot time, this is | 
|  | * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are | 
|  | * registered after that. The mutable section of this array is protected by | 
|  | * cgroup_mutex. | 
|  | */ | 
|  | #define SUBSYS(_x) &_x ## _subsys, | 
|  | static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = { | 
|  | #include <linux/cgroup_subsys.h> | 
|  | }; | 
|  |  | 
|  | #define MAX_CGROUP_ROOT_NAMELEN 64 | 
|  |  | 
|  | /* | 
|  | * A cgroupfs_root represents the root of a cgroup hierarchy, | 
|  | * and may be associated with a superblock to form an active | 
|  | * hierarchy | 
|  | */ | 
|  | struct cgroupfs_root { | 
|  | struct super_block *sb; | 
|  |  | 
|  | /* | 
|  | * The bitmask of subsystems intended to be attached to this | 
|  | * hierarchy | 
|  | */ | 
|  | unsigned long subsys_bits; | 
|  |  | 
|  | /* Unique id for this hierarchy. */ | 
|  | int hierarchy_id; | 
|  |  | 
|  | /* The bitmask of subsystems currently attached to this hierarchy */ | 
|  | unsigned long actual_subsys_bits; | 
|  |  | 
|  | /* A list running through the attached subsystems */ | 
|  | struct list_head subsys_list; | 
|  |  | 
|  | /* The root cgroup for this hierarchy */ | 
|  | struct cgroup top_cgroup; | 
|  |  | 
|  | /* Tracks how many cgroups are currently defined in hierarchy.*/ | 
|  | int number_of_cgroups; | 
|  |  | 
|  | /* A list running through the active hierarchies */ | 
|  | struct list_head root_list; | 
|  |  | 
|  | /* Hierarchy-specific flags */ | 
|  | unsigned long flags; | 
|  |  | 
|  | /* The path to use for release notifications. */ | 
|  | char release_agent_path[PATH_MAX]; | 
|  |  | 
|  | /* The name for this hierarchy - may be empty */ | 
|  | char name[MAX_CGROUP_ROOT_NAMELEN]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the | 
|  | * subsystems that are otherwise unattached - it never has more than a | 
|  | * single cgroup, and all tasks are part of that cgroup. | 
|  | */ | 
|  | static struct cgroupfs_root rootnode; | 
|  |  | 
|  | /* | 
|  | * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when | 
|  | * cgroup_subsys->use_id != 0. | 
|  | */ | 
|  | #define CSS_ID_MAX	(65535) | 
|  | struct css_id { | 
|  | /* | 
|  | * The css to which this ID points. This pointer is set to valid value | 
|  | * after cgroup is populated. If cgroup is removed, this will be NULL. | 
|  | * This pointer is expected to be RCU-safe because destroy() | 
|  | * is called after synchronize_rcu(). But for safe use, css_is_removed() | 
|  | * css_tryget() should be used for avoiding race. | 
|  | */ | 
|  | struct cgroup_subsys_state __rcu *css; | 
|  | /* | 
|  | * ID of this css. | 
|  | */ | 
|  | unsigned short id; | 
|  | /* | 
|  | * Depth in hierarchy which this ID belongs to. | 
|  | */ | 
|  | unsigned short depth; | 
|  | /* | 
|  | * ID is freed by RCU. (and lookup routine is RCU safe.) | 
|  | */ | 
|  | struct rcu_head rcu_head; | 
|  | /* | 
|  | * Hierarchy of CSS ID belongs to. | 
|  | */ | 
|  | unsigned short stack[0]; /* Array of Length (depth+1) */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * cgroup_event represents events which userspace want to receive. | 
|  | */ | 
|  | struct cgroup_event { | 
|  | /* | 
|  | * Cgroup which the event belongs to. | 
|  | */ | 
|  | struct cgroup *cgrp; | 
|  | /* | 
|  | * Control file which the event associated. | 
|  | */ | 
|  | struct cftype *cft; | 
|  | /* | 
|  | * eventfd to signal userspace about the event. | 
|  | */ | 
|  | struct eventfd_ctx *eventfd; | 
|  | /* | 
|  | * Each of these stored in a list by the cgroup. | 
|  | */ | 
|  | struct list_head list; | 
|  | /* | 
|  | * All fields below needed to unregister event when | 
|  | * userspace closes eventfd. | 
|  | */ | 
|  | poll_table pt; | 
|  | wait_queue_head_t *wqh; | 
|  | wait_queue_t wait; | 
|  | struct work_struct remove; | 
|  | }; | 
|  |  | 
|  | /* The list of hierarchy roots */ | 
|  |  | 
|  | static LIST_HEAD(roots); | 
|  | static int root_count; | 
|  |  | 
|  | static DEFINE_IDA(hierarchy_ida); | 
|  | static int next_hierarchy_id; | 
|  | static DEFINE_SPINLOCK(hierarchy_id_lock); | 
|  |  | 
|  | /* dummytop is a shorthand for the dummy hierarchy's top cgroup */ | 
|  | #define dummytop (&rootnode.top_cgroup) | 
|  |  | 
|  | /* This flag indicates whether tasks in the fork and exit paths should | 
|  | * check for fork/exit handlers to call. This avoids us having to do | 
|  | * extra work in the fork/exit path if none of the subsystems need to | 
|  | * be called. | 
|  | */ | 
|  | static int need_forkexit_callback __read_mostly; | 
|  |  | 
|  | #ifdef CONFIG_PROVE_LOCKING | 
|  | int cgroup_lock_is_held(void) | 
|  | { | 
|  | return lockdep_is_held(&cgroup_mutex); | 
|  | } | 
|  | #else /* #ifdef CONFIG_PROVE_LOCKING */ | 
|  | int cgroup_lock_is_held(void) | 
|  | { | 
|  | return mutex_is_locked(&cgroup_mutex); | 
|  | } | 
|  | #endif /* #else #ifdef CONFIG_PROVE_LOCKING */ | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(cgroup_lock_is_held); | 
|  |  | 
|  | /* convenient tests for these bits */ | 
|  | inline int cgroup_is_removed(const struct cgroup *cgrp) | 
|  | { | 
|  | return test_bit(CGRP_REMOVED, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | /* bits in struct cgroupfs_root flags field */ | 
|  | enum { | 
|  | ROOT_NOPREFIX, /* mounted subsystems have no named prefix */ | 
|  | }; | 
|  |  | 
|  | static int cgroup_is_releasable(const struct cgroup *cgrp) | 
|  | { | 
|  | const int bits = | 
|  | (1 << CGRP_RELEASABLE) | | 
|  | (1 << CGRP_NOTIFY_ON_RELEASE); | 
|  | return (cgrp->flags & bits) == bits; | 
|  | } | 
|  |  | 
|  | static int notify_on_release(const struct cgroup *cgrp) | 
|  | { | 
|  | return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | static int clone_children(const struct cgroup *cgrp) | 
|  | { | 
|  | return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for_each_subsys() allows you to iterate on each subsystem attached to | 
|  | * an active hierarchy | 
|  | */ | 
|  | #define for_each_subsys(_root, _ss) \ | 
|  | list_for_each_entry(_ss, &_root->subsys_list, sibling) | 
|  |  | 
|  | /* for_each_active_root() allows you to iterate across the active hierarchies */ | 
|  | #define for_each_active_root(_root) \ | 
|  | list_for_each_entry(_root, &roots, root_list) | 
|  |  | 
|  | /* the list of cgroups eligible for automatic release. Protected by | 
|  | * release_list_lock */ | 
|  | static LIST_HEAD(release_list); | 
|  | static DEFINE_RAW_SPINLOCK(release_list_lock); | 
|  | static void cgroup_release_agent(struct work_struct *work); | 
|  | static DECLARE_WORK(release_agent_work, cgroup_release_agent); | 
|  | static void check_for_release(struct cgroup *cgrp); | 
|  |  | 
|  | /* | 
|  | * A queue for waiters to do rmdir() cgroup. A tasks will sleep when | 
|  | * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some | 
|  | * reference to css->refcnt. In general, this refcnt is expected to goes down | 
|  | * to zero, soon. | 
|  | * | 
|  | * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex; | 
|  | */ | 
|  | static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq); | 
|  |  | 
|  | static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp) | 
|  | { | 
|  | if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))) | 
|  | wake_up_all(&cgroup_rmdir_waitq); | 
|  | } | 
|  |  | 
|  | void cgroup_exclude_rmdir(struct cgroup_subsys_state *css) | 
|  | { | 
|  | css_get(css); | 
|  | } | 
|  |  | 
|  | void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css) | 
|  | { | 
|  | cgroup_wakeup_rmdir_waiter(css->cgroup); | 
|  | css_put(css); | 
|  | } | 
|  |  | 
|  | /* Link structure for associating css_set objects with cgroups */ | 
|  | struct cg_cgroup_link { | 
|  | /* | 
|  | * List running through cg_cgroup_links associated with a | 
|  | * cgroup, anchored on cgroup->css_sets | 
|  | */ | 
|  | struct list_head cgrp_link_list; | 
|  | struct cgroup *cgrp; | 
|  | /* | 
|  | * List running through cg_cgroup_links pointing at a | 
|  | * single css_set object, anchored on css_set->cg_links | 
|  | */ | 
|  | struct list_head cg_link_list; | 
|  | struct css_set *cg; | 
|  | }; | 
|  |  | 
|  | /* The default css_set - used by init and its children prior to any | 
|  | * hierarchies being mounted. It contains a pointer to the root state | 
|  | * for each subsystem. Also used to anchor the list of css_sets. Not | 
|  | * reference-counted, to improve performance when child cgroups | 
|  | * haven't been created. | 
|  | */ | 
|  |  | 
|  | static struct css_set init_css_set; | 
|  | static struct cg_cgroup_link init_css_set_link; | 
|  |  | 
|  | static int cgroup_init_idr(struct cgroup_subsys *ss, | 
|  | struct cgroup_subsys_state *css); | 
|  |  | 
|  | /* css_set_lock protects the list of css_set objects, and the | 
|  | * chain of tasks off each css_set.  Nests outside task->alloc_lock | 
|  | * due to cgroup_iter_start() */ | 
|  | static DEFINE_RWLOCK(css_set_lock); | 
|  | static int css_set_count; | 
|  |  | 
|  | /* | 
|  | * hash table for cgroup groups. This improves the performance to find | 
|  | * an existing css_set. This hash doesn't (currently) take into | 
|  | * account cgroups in empty hierarchies. | 
|  | */ | 
|  | #define CSS_SET_HASH_BITS	7 | 
|  | #define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS) | 
|  | static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE]; | 
|  |  | 
|  | static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[]) | 
|  | { | 
|  | int i; | 
|  | int index; | 
|  | unsigned long tmp = 0UL; | 
|  |  | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) | 
|  | tmp += (unsigned long)css[i]; | 
|  | tmp = (tmp >> 16) ^ tmp; | 
|  |  | 
|  | index = hash_long(tmp, CSS_SET_HASH_BITS); | 
|  |  | 
|  | return &css_set_table[index]; | 
|  | } | 
|  |  | 
|  | static void free_css_set_work(struct work_struct *work) | 
|  | { | 
|  | struct css_set *cg = container_of(work, struct css_set, work); | 
|  | struct cg_cgroup_link *link; | 
|  | struct cg_cgroup_link *saved_link; | 
|  |  | 
|  | write_lock(&css_set_lock); | 
|  | list_for_each_entry_safe(link, saved_link, &cg->cg_links, | 
|  | cg_link_list) { | 
|  | struct cgroup *cgrp = link->cgrp; | 
|  | list_del(&link->cg_link_list); | 
|  | list_del(&link->cgrp_link_list); | 
|  | if (atomic_dec_and_test(&cgrp->count)) { | 
|  | check_for_release(cgrp); | 
|  | cgroup_wakeup_rmdir_waiter(cgrp); | 
|  | } | 
|  | kfree(link); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | kfree(cg); | 
|  | } | 
|  |  | 
|  | static void free_css_set_rcu(struct rcu_head *obj) | 
|  | { | 
|  | struct css_set *cg = container_of(obj, struct css_set, rcu_head); | 
|  |  | 
|  | INIT_WORK(&cg->work, free_css_set_work); | 
|  | schedule_work(&cg->work); | 
|  | } | 
|  |  | 
|  | /* We don't maintain the lists running through each css_set to its | 
|  | * task until after the first call to cgroup_iter_start(). This | 
|  | * reduces the fork()/exit() overhead for people who have cgroups | 
|  | * compiled into their kernel but not actually in use */ | 
|  | static int use_task_css_set_links __read_mostly; | 
|  |  | 
|  | /* | 
|  | * refcounted get/put for css_set objects | 
|  | */ | 
|  | static inline void get_css_set(struct css_set *cg) | 
|  | { | 
|  | atomic_inc(&cg->refcount); | 
|  | } | 
|  |  | 
|  | static void put_css_set(struct css_set *cg) | 
|  | { | 
|  | /* | 
|  | * Ensure that the refcount doesn't hit zero while any readers | 
|  | * can see it. Similar to atomic_dec_and_lock(), but for an | 
|  | * rwlock | 
|  | */ | 
|  | if (atomic_add_unless(&cg->refcount, -1, 1)) | 
|  | return; | 
|  | write_lock(&css_set_lock); | 
|  | if (!atomic_dec_and_test(&cg->refcount)) { | 
|  | write_unlock(&css_set_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hlist_del(&cg->hlist); | 
|  | css_set_count--; | 
|  |  | 
|  | write_unlock(&css_set_lock); | 
|  | call_rcu(&cg->rcu_head, free_css_set_rcu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compare_css_sets - helper function for find_existing_css_set(). | 
|  | * @cg: candidate css_set being tested | 
|  | * @old_cg: existing css_set for a task | 
|  | * @new_cgrp: cgroup that's being entered by the task | 
|  | * @template: desired set of css pointers in css_set (pre-calculated) | 
|  | * | 
|  | * Returns true if "cg" matches "old_cg" except for the hierarchy | 
|  | * which "new_cgrp" belongs to, for which it should match "new_cgrp". | 
|  | */ | 
|  | static bool compare_css_sets(struct css_set *cg, | 
|  | struct css_set *old_cg, | 
|  | struct cgroup *new_cgrp, | 
|  | struct cgroup_subsys_state *template[]) | 
|  | { | 
|  | struct list_head *l1, *l2; | 
|  |  | 
|  | if (memcmp(template, cg->subsys, sizeof(cg->subsys))) { | 
|  | /* Not all subsystems matched */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare cgroup pointers in order to distinguish between | 
|  | * different cgroups in heirarchies with no subsystems. We | 
|  | * could get by with just this check alone (and skip the | 
|  | * memcmp above) but on most setups the memcmp check will | 
|  | * avoid the need for this more expensive check on almost all | 
|  | * candidates. | 
|  | */ | 
|  |  | 
|  | l1 = &cg->cg_links; | 
|  | l2 = &old_cg->cg_links; | 
|  | while (1) { | 
|  | struct cg_cgroup_link *cgl1, *cgl2; | 
|  | struct cgroup *cg1, *cg2; | 
|  |  | 
|  | l1 = l1->next; | 
|  | l2 = l2->next; | 
|  | /* See if we reached the end - both lists are equal length. */ | 
|  | if (l1 == &cg->cg_links) { | 
|  | BUG_ON(l2 != &old_cg->cg_links); | 
|  | break; | 
|  | } else { | 
|  | BUG_ON(l2 == &old_cg->cg_links); | 
|  | } | 
|  | /* Locate the cgroups associated with these links. */ | 
|  | cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list); | 
|  | cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list); | 
|  | cg1 = cgl1->cgrp; | 
|  | cg2 = cgl2->cgrp; | 
|  | /* Hierarchies should be linked in the same order. */ | 
|  | BUG_ON(cg1->root != cg2->root); | 
|  |  | 
|  | /* | 
|  | * If this hierarchy is the hierarchy of the cgroup | 
|  | * that's changing, then we need to check that this | 
|  | * css_set points to the new cgroup; if it's any other | 
|  | * hierarchy, then this css_set should point to the | 
|  | * same cgroup as the old css_set. | 
|  | */ | 
|  | if (cg1->root == new_cgrp->root) { | 
|  | if (cg1 != new_cgrp) | 
|  | return false; | 
|  | } else { | 
|  | if (cg1 != cg2) | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_existing_css_set() is a helper for | 
|  | * find_css_set(), and checks to see whether an existing | 
|  | * css_set is suitable. | 
|  | * | 
|  | * oldcg: the cgroup group that we're using before the cgroup | 
|  | * transition | 
|  | * | 
|  | * cgrp: the cgroup that we're moving into | 
|  | * | 
|  | * template: location in which to build the desired set of subsystem | 
|  | * state objects for the new cgroup group | 
|  | */ | 
|  | static struct css_set *find_existing_css_set( | 
|  | struct css_set *oldcg, | 
|  | struct cgroup *cgrp, | 
|  | struct cgroup_subsys_state *template[]) | 
|  | { | 
|  | int i; | 
|  | struct cgroupfs_root *root = cgrp->root; | 
|  | struct hlist_head *hhead; | 
|  | struct hlist_node *node; | 
|  | struct css_set *cg; | 
|  |  | 
|  | /* | 
|  | * Build the set of subsystem state objects that we want to see in the | 
|  | * new css_set. while subsystems can change globally, the entries here | 
|  | * won't change, so no need for locking. | 
|  | */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | if (root->subsys_bits & (1UL << i)) { | 
|  | /* Subsystem is in this hierarchy. So we want | 
|  | * the subsystem state from the new | 
|  | * cgroup */ | 
|  | template[i] = cgrp->subsys[i]; | 
|  | } else { | 
|  | /* Subsystem is not in this hierarchy, so we | 
|  | * don't want to change the subsystem state */ | 
|  | template[i] = oldcg->subsys[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | hhead = css_set_hash(template); | 
|  | hlist_for_each_entry(cg, node, hhead, hlist) { | 
|  | if (!compare_css_sets(cg, oldcg, cgrp, template)) | 
|  | continue; | 
|  |  | 
|  | /* This css_set matches what we need */ | 
|  | return cg; | 
|  | } | 
|  |  | 
|  | /* No existing cgroup group matched */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void free_cg_links(struct list_head *tmp) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  | struct cg_cgroup_link *saved_link; | 
|  |  | 
|  | list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) { | 
|  | list_del(&link->cgrp_link_list); | 
|  | kfree(link); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate_cg_links() allocates "count" cg_cgroup_link structures | 
|  | * and chains them on tmp through their cgrp_link_list fields. Returns 0 on | 
|  | * success or a negative error | 
|  | */ | 
|  | static int allocate_cg_links(int count, struct list_head *tmp) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  | int i; | 
|  | INIT_LIST_HEAD(tmp); | 
|  | for (i = 0; i < count; i++) { | 
|  | link = kmalloc(sizeof(*link), GFP_KERNEL); | 
|  | if (!link) { | 
|  | free_cg_links(tmp); | 
|  | return -ENOMEM; | 
|  | } | 
|  | list_add(&link->cgrp_link_list, tmp); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * link_css_set - a helper function to link a css_set to a cgroup | 
|  | * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links() | 
|  | * @cg: the css_set to be linked | 
|  | * @cgrp: the destination cgroup | 
|  | */ | 
|  | static void link_css_set(struct list_head *tmp_cg_links, | 
|  | struct css_set *cg, struct cgroup *cgrp) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | BUG_ON(list_empty(tmp_cg_links)); | 
|  | link = list_first_entry(tmp_cg_links, struct cg_cgroup_link, | 
|  | cgrp_link_list); | 
|  | link->cg = cg; | 
|  | link->cgrp = cgrp; | 
|  | atomic_inc(&cgrp->count); | 
|  | list_move(&link->cgrp_link_list, &cgrp->css_sets); | 
|  | /* | 
|  | * Always add links to the tail of the list so that the list | 
|  | * is sorted by order of hierarchy creation | 
|  | */ | 
|  | list_add_tail(&link->cg_link_list, &cg->cg_links); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_css_set() takes an existing cgroup group and a | 
|  | * cgroup object, and returns a css_set object that's | 
|  | * equivalent to the old group, but with the given cgroup | 
|  | * substituted into the appropriate hierarchy. Must be called with | 
|  | * cgroup_mutex held | 
|  | */ | 
|  | static struct css_set *find_css_set( | 
|  | struct css_set *oldcg, struct cgroup *cgrp) | 
|  | { | 
|  | struct css_set *res; | 
|  | struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT]; | 
|  |  | 
|  | struct list_head tmp_cg_links; | 
|  |  | 
|  | struct hlist_head *hhead; | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | /* First see if we already have a cgroup group that matches | 
|  | * the desired set */ | 
|  | read_lock(&css_set_lock); | 
|  | res = find_existing_css_set(oldcg, cgrp, template); | 
|  | if (res) | 
|  | get_css_set(res); | 
|  | read_unlock(&css_set_lock); | 
|  |  | 
|  | if (res) | 
|  | return res; | 
|  |  | 
|  | res = kmalloc(sizeof(*res), GFP_KERNEL); | 
|  | if (!res) | 
|  | return NULL; | 
|  |  | 
|  | /* Allocate all the cg_cgroup_link objects that we'll need */ | 
|  | if (allocate_cg_links(root_count, &tmp_cg_links) < 0) { | 
|  | kfree(res); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | atomic_set(&res->refcount, 1); | 
|  | INIT_LIST_HEAD(&res->cg_links); | 
|  | INIT_LIST_HEAD(&res->tasks); | 
|  | INIT_HLIST_NODE(&res->hlist); | 
|  |  | 
|  | /* Copy the set of subsystem state objects generated in | 
|  | * find_existing_css_set() */ | 
|  | memcpy(res->subsys, template, sizeof(res->subsys)); | 
|  |  | 
|  | write_lock(&css_set_lock); | 
|  | /* Add reference counts and links from the new css_set. */ | 
|  | list_for_each_entry(link, &oldcg->cg_links, cg_link_list) { | 
|  | struct cgroup *c = link->cgrp; | 
|  | if (c->root == cgrp->root) | 
|  | c = cgrp; | 
|  | link_css_set(&tmp_cg_links, res, c); | 
|  | } | 
|  |  | 
|  | BUG_ON(!list_empty(&tmp_cg_links)); | 
|  |  | 
|  | css_set_count++; | 
|  |  | 
|  | /* Add this cgroup group to the hash table */ | 
|  | hhead = css_set_hash(res->subsys); | 
|  | hlist_add_head(&res->hlist, hhead); | 
|  |  | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the cgroup for "task" from the given hierarchy. Must be | 
|  | * called with cgroup_mutex held. | 
|  | */ | 
|  | static struct cgroup *task_cgroup_from_root(struct task_struct *task, | 
|  | struct cgroupfs_root *root) | 
|  | { | 
|  | struct css_set *css; | 
|  | struct cgroup *res = NULL; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | 
|  | read_lock(&css_set_lock); | 
|  | /* | 
|  | * No need to lock the task - since we hold cgroup_mutex the | 
|  | * task can't change groups, so the only thing that can happen | 
|  | * is that it exits and its css is set back to init_css_set. | 
|  | */ | 
|  | css = task->cgroups; | 
|  | if (css == &init_css_set) { | 
|  | res = &root->top_cgroup; | 
|  | } else { | 
|  | struct cg_cgroup_link *link; | 
|  | list_for_each_entry(link, &css->cg_links, cg_link_list) { | 
|  | struct cgroup *c = link->cgrp; | 
|  | if (c->root == root) { | 
|  | res = c; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | read_unlock(&css_set_lock); | 
|  | BUG_ON(!res); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is one global cgroup mutex. We also require taking | 
|  | * task_lock() when dereferencing a task's cgroup subsys pointers. | 
|  | * See "The task_lock() exception", at the end of this comment. | 
|  | * | 
|  | * A task must hold cgroup_mutex to modify cgroups. | 
|  | * | 
|  | * Any task can increment and decrement the count field without lock. | 
|  | * So in general, code holding cgroup_mutex can't rely on the count | 
|  | * field not changing.  However, if the count goes to zero, then only | 
|  | * cgroup_attach_task() can increment it again.  Because a count of zero | 
|  | * means that no tasks are currently attached, therefore there is no | 
|  | * way a task attached to that cgroup can fork (the other way to | 
|  | * increment the count).  So code holding cgroup_mutex can safely | 
|  | * assume that if the count is zero, it will stay zero. Similarly, if | 
|  | * a task holds cgroup_mutex on a cgroup with zero count, it | 
|  | * knows that the cgroup won't be removed, as cgroup_rmdir() | 
|  | * needs that mutex. | 
|  | * | 
|  | * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't | 
|  | * (usually) take cgroup_mutex.  These are the two most performance | 
|  | * critical pieces of code here.  The exception occurs on cgroup_exit(), | 
|  | * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex | 
|  | * is taken, and if the cgroup count is zero, a usermode call made | 
|  | * to the release agent with the name of the cgroup (path relative to | 
|  | * the root of cgroup file system) as the argument. | 
|  | * | 
|  | * A cgroup can only be deleted if both its 'count' of using tasks | 
|  | * is zero, and its list of 'children' cgroups is empty.  Since all | 
|  | * tasks in the system use _some_ cgroup, and since there is always at | 
|  | * least one task in the system (init, pid == 1), therefore, top_cgroup | 
|  | * always has either children cgroups and/or using tasks.  So we don't | 
|  | * need a special hack to ensure that top_cgroup cannot be deleted. | 
|  | * | 
|  | *	The task_lock() exception | 
|  | * | 
|  | * The need for this exception arises from the action of | 
|  | * cgroup_attach_task(), which overwrites one tasks cgroup pointer with | 
|  | * another.  It does so using cgroup_mutex, however there are | 
|  | * several performance critical places that need to reference | 
|  | * task->cgroups without the expense of grabbing a system global | 
|  | * mutex.  Therefore except as noted below, when dereferencing or, as | 
|  | * in cgroup_attach_task(), modifying a task's cgroups pointer we use | 
|  | * task_lock(), which acts on a spinlock (task->alloc_lock) already in | 
|  | * the task_struct routinely used for such matters. | 
|  | * | 
|  | * P.S.  One more locking exception.  RCU is used to guard the | 
|  | * update of a tasks cgroup pointer by cgroup_attach_task() | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * cgroup_lock - lock out any changes to cgroup structures | 
|  | * | 
|  | */ | 
|  | void cgroup_lock(void) | 
|  | { | 
|  | mutex_lock(&cgroup_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_lock); | 
|  |  | 
|  | /** | 
|  | * cgroup_unlock - release lock on cgroup changes | 
|  | * | 
|  | * Undo the lock taken in a previous cgroup_lock() call. | 
|  | */ | 
|  | void cgroup_unlock(void) | 
|  | { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_unlock); | 
|  |  | 
|  | /* | 
|  | * A couple of forward declarations required, due to cyclic reference loop: | 
|  | * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir -> | 
|  | * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations | 
|  | * -> cgroup_mkdir. | 
|  | */ | 
|  |  | 
|  | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode); | 
|  | static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *); | 
|  | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry); | 
|  | static int cgroup_populate_dir(struct cgroup *cgrp); | 
|  | static const struct inode_operations cgroup_dir_inode_operations; | 
|  | static const struct file_operations proc_cgroupstats_operations; | 
|  |  | 
|  | static struct backing_dev_info cgroup_backing_dev_info = { | 
|  | .name		= "cgroup", | 
|  | .capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK, | 
|  | }; | 
|  |  | 
|  | static int alloc_css_id(struct cgroup_subsys *ss, | 
|  | struct cgroup *parent, struct cgroup *child); | 
|  |  | 
|  | static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb) | 
|  | { | 
|  | struct inode *inode = new_inode(sb); | 
|  |  | 
|  | if (inode) { | 
|  | inode->i_ino = get_next_ino(); | 
|  | inode->i_mode = mode; | 
|  | inode->i_uid = current_fsuid(); | 
|  | inode->i_gid = current_fsgid(); | 
|  | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
|  | inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info; | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call subsys's pre_destroy handler. | 
|  | * This is called before css refcnt check. | 
|  | */ | 
|  | static int cgroup_call_pre_destroy(struct cgroup *cgrp) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | int ret = 0; | 
|  |  | 
|  | for_each_subsys(cgrp->root, ss) | 
|  | if (ss->pre_destroy) { | 
|  | ret = ss->pre_destroy(cgrp); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void cgroup_diput(struct dentry *dentry, struct inode *inode) | 
|  | { | 
|  | /* is dentry a directory ? if so, kfree() associated cgroup */ | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | struct cgroup *cgrp = dentry->d_fsdata; | 
|  | struct cgroup_subsys *ss; | 
|  | BUG_ON(!(cgroup_is_removed(cgrp))); | 
|  | /* It's possible for external users to be holding css | 
|  | * reference counts on a cgroup; css_put() needs to | 
|  | * be able to access the cgroup after decrementing | 
|  | * the reference count in order to know if it needs to | 
|  | * queue the cgroup to be handled by the release | 
|  | * agent */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | /* | 
|  | * Release the subsystem state objects. | 
|  | */ | 
|  | for_each_subsys(cgrp->root, ss) | 
|  | ss->destroy(cgrp); | 
|  |  | 
|  | cgrp->root->number_of_cgroups--; | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* | 
|  | * Drop the active superblock reference that we took when we | 
|  | * created the cgroup | 
|  | */ | 
|  | deactivate_super(cgrp->root->sb); | 
|  |  | 
|  | /* | 
|  | * if we're getting rid of the cgroup, refcount should ensure | 
|  | * that there are no pidlists left. | 
|  | */ | 
|  | BUG_ON(!list_empty(&cgrp->pidlists)); | 
|  |  | 
|  | kfree_rcu(cgrp, rcu_head); | 
|  | } | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | static int cgroup_delete(const struct dentry *d) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void remove_dir(struct dentry *d) | 
|  | { | 
|  | struct dentry *parent = dget(d->d_parent); | 
|  |  | 
|  | d_delete(d); | 
|  | simple_rmdir(parent->d_inode, d); | 
|  | dput(parent); | 
|  | } | 
|  |  | 
|  | static void cgroup_clear_directory(struct dentry *dentry) | 
|  | { | 
|  | struct list_head *node; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex)); | 
|  | spin_lock(&dentry->d_lock); | 
|  | node = dentry->d_subdirs.next; | 
|  | while (node != &dentry->d_subdirs) { | 
|  | struct dentry *d = list_entry(node, struct dentry, d_u.d_child); | 
|  |  | 
|  | spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); | 
|  | list_del_init(node); | 
|  | if (d->d_inode) { | 
|  | /* This should never be called on a cgroup | 
|  | * directory with child cgroups */ | 
|  | BUG_ON(d->d_inode->i_mode & S_IFDIR); | 
|  | dget_dlock(d); | 
|  | spin_unlock(&d->d_lock); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | d_delete(d); | 
|  | simple_unlink(dentry->d_inode, d); | 
|  | dput(d); | 
|  | spin_lock(&dentry->d_lock); | 
|  | } else | 
|  | spin_unlock(&d->d_lock); | 
|  | node = dentry->d_subdirs.next; | 
|  | } | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE : the dentry must have been dget()'ed | 
|  | */ | 
|  | static void cgroup_d_remove_dir(struct dentry *dentry) | 
|  | { | 
|  | struct dentry *parent; | 
|  |  | 
|  | cgroup_clear_directory(dentry); | 
|  |  | 
|  | parent = dentry->d_parent; | 
|  | spin_lock(&parent->d_lock); | 
|  | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | 
|  | list_del_init(&dentry->d_u.d_child); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&parent->d_lock); | 
|  | remove_dir(dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call with cgroup_mutex held. Drops reference counts on modules, including | 
|  | * any duplicate ones that parse_cgroupfs_options took. If this function | 
|  | * returns an error, no reference counts are touched. | 
|  | */ | 
|  | static int rebind_subsystems(struct cgroupfs_root *root, | 
|  | unsigned long final_bits) | 
|  | { | 
|  | unsigned long added_bits, removed_bits; | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | 
|  | BUG_ON(!mutex_is_locked(&cgroup_root_mutex)); | 
|  |  | 
|  | removed_bits = root->actual_subsys_bits & ~final_bits; | 
|  | added_bits = final_bits & ~root->actual_subsys_bits; | 
|  | /* Check that any added subsystems are currently free */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | unsigned long bit = 1UL << i; | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (!(bit & added_bits)) | 
|  | continue; | 
|  | /* | 
|  | * Nobody should tell us to do a subsys that doesn't exist: | 
|  | * parse_cgroupfs_options should catch that case and refcounts | 
|  | * ensure that subsystems won't disappear once selected. | 
|  | */ | 
|  | BUG_ON(ss == NULL); | 
|  | if (ss->root != &rootnode) { | 
|  | /* Subsystem isn't free */ | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Currently we don't handle adding/removing subsystems when | 
|  | * any child cgroups exist. This is theoretically supportable | 
|  | * but involves complex error handling, so it's being left until | 
|  | * later */ | 
|  | if (root->number_of_cgroups > 1) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* Process each subsystem */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | unsigned long bit = 1UL << i; | 
|  | if (bit & added_bits) { | 
|  | /* We're binding this subsystem to this hierarchy */ | 
|  | BUG_ON(ss == NULL); | 
|  | BUG_ON(cgrp->subsys[i]); | 
|  | BUG_ON(!dummytop->subsys[i]); | 
|  | BUG_ON(dummytop->subsys[i]->cgroup != dummytop); | 
|  | mutex_lock(&ss->hierarchy_mutex); | 
|  | cgrp->subsys[i] = dummytop->subsys[i]; | 
|  | cgrp->subsys[i]->cgroup = cgrp; | 
|  | list_move(&ss->sibling, &root->subsys_list); | 
|  | ss->root = root; | 
|  | if (ss->bind) | 
|  | ss->bind(cgrp); | 
|  | mutex_unlock(&ss->hierarchy_mutex); | 
|  | /* refcount was already taken, and we're keeping it */ | 
|  | } else if (bit & removed_bits) { | 
|  | /* We're removing this subsystem */ | 
|  | BUG_ON(ss == NULL); | 
|  | BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]); | 
|  | BUG_ON(cgrp->subsys[i]->cgroup != cgrp); | 
|  | mutex_lock(&ss->hierarchy_mutex); | 
|  | if (ss->bind) | 
|  | ss->bind(dummytop); | 
|  | dummytop->subsys[i]->cgroup = dummytop; | 
|  | cgrp->subsys[i] = NULL; | 
|  | subsys[i]->root = &rootnode; | 
|  | list_move(&ss->sibling, &rootnode.subsys_list); | 
|  | mutex_unlock(&ss->hierarchy_mutex); | 
|  | /* subsystem is now free - drop reference on module */ | 
|  | module_put(ss->module); | 
|  | } else if (bit & final_bits) { | 
|  | /* Subsystem state should already exist */ | 
|  | BUG_ON(ss == NULL); | 
|  | BUG_ON(!cgrp->subsys[i]); | 
|  | /* | 
|  | * a refcount was taken, but we already had one, so | 
|  | * drop the extra reference. | 
|  | */ | 
|  | module_put(ss->module); | 
|  | #ifdef CONFIG_MODULE_UNLOAD | 
|  | BUG_ON(ss->module && !module_refcount(ss->module)); | 
|  | #endif | 
|  | } else { | 
|  | /* Subsystem state shouldn't exist */ | 
|  | BUG_ON(cgrp->subsys[i]); | 
|  | } | 
|  | } | 
|  | root->subsys_bits = root->actual_subsys_bits = final_bits; | 
|  | synchronize_rcu(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry) | 
|  | { | 
|  | struct cgroupfs_root *root = dentry->d_sb->s_fs_info; | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  | for_each_subsys(root, ss) | 
|  | seq_printf(seq, ",%s", ss->name); | 
|  | if (test_bit(ROOT_NOPREFIX, &root->flags)) | 
|  | seq_puts(seq, ",noprefix"); | 
|  | if (strlen(root->release_agent_path)) | 
|  | seq_printf(seq, ",release_agent=%s", root->release_agent_path); | 
|  | if (clone_children(&root->top_cgroup)) | 
|  | seq_puts(seq, ",clone_children"); | 
|  | if (strlen(root->name)) | 
|  | seq_printf(seq, ",name=%s", root->name); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct cgroup_sb_opts { | 
|  | unsigned long subsys_bits; | 
|  | unsigned long flags; | 
|  | char *release_agent; | 
|  | bool clone_children; | 
|  | char *name; | 
|  | /* User explicitly requested empty subsystem */ | 
|  | bool none; | 
|  |  | 
|  | struct cgroupfs_root *new_root; | 
|  |  | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call | 
|  | * with cgroup_mutex held to protect the subsys[] array. This function takes | 
|  | * refcounts on subsystems to be used, unless it returns error, in which case | 
|  | * no refcounts are taken. | 
|  | */ | 
|  | static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) | 
|  | { | 
|  | char *token, *o = data; | 
|  | bool all_ss = false, one_ss = false; | 
|  | unsigned long mask = (unsigned long)-1; | 
|  | int i; | 
|  | bool module_pin_failed = false; | 
|  |  | 
|  | BUG_ON(!mutex_is_locked(&cgroup_mutex)); | 
|  |  | 
|  | #ifdef CONFIG_CPUSETS | 
|  | mask = ~(1UL << cpuset_subsys_id); | 
|  | #endif | 
|  |  | 
|  | memset(opts, 0, sizeof(*opts)); | 
|  |  | 
|  | while ((token = strsep(&o, ",")) != NULL) { | 
|  | if (!*token) | 
|  | return -EINVAL; | 
|  | if (!strcmp(token, "none")) { | 
|  | /* Explicitly have no subsystems */ | 
|  | opts->none = true; | 
|  | continue; | 
|  | } | 
|  | if (!strcmp(token, "all")) { | 
|  | /* Mutually exclusive option 'all' + subsystem name */ | 
|  | if (one_ss) | 
|  | return -EINVAL; | 
|  | all_ss = true; | 
|  | continue; | 
|  | } | 
|  | if (!strcmp(token, "noprefix")) { | 
|  | set_bit(ROOT_NOPREFIX, &opts->flags); | 
|  | continue; | 
|  | } | 
|  | if (!strcmp(token, "clone_children")) { | 
|  | opts->clone_children = true; | 
|  | continue; | 
|  | } | 
|  | if (!strncmp(token, "release_agent=", 14)) { | 
|  | /* Specifying two release agents is forbidden */ | 
|  | if (opts->release_agent) | 
|  | return -EINVAL; | 
|  | opts->release_agent = | 
|  | kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); | 
|  | if (!opts->release_agent) | 
|  | return -ENOMEM; | 
|  | continue; | 
|  | } | 
|  | if (!strncmp(token, "name=", 5)) { | 
|  | const char *name = token + 5; | 
|  | /* Can't specify an empty name */ | 
|  | if (!strlen(name)) | 
|  | return -EINVAL; | 
|  | /* Must match [\w.-]+ */ | 
|  | for (i = 0; i < strlen(name); i++) { | 
|  | char c = name[i]; | 
|  | if (isalnum(c)) | 
|  | continue; | 
|  | if ((c == '.') || (c == '-') || (c == '_')) | 
|  | continue; | 
|  | return -EINVAL; | 
|  | } | 
|  | /* Specifying two names is forbidden */ | 
|  | if (opts->name) | 
|  | return -EINVAL; | 
|  | opts->name = kstrndup(name, | 
|  | MAX_CGROUP_ROOT_NAMELEN - 1, | 
|  | GFP_KERNEL); | 
|  | if (!opts->name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss == NULL) | 
|  | continue; | 
|  | if (strcmp(token, ss->name)) | 
|  | continue; | 
|  | if (ss->disabled) | 
|  | continue; | 
|  |  | 
|  | /* Mutually exclusive option 'all' + subsystem name */ | 
|  | if (all_ss) | 
|  | return -EINVAL; | 
|  | set_bit(i, &opts->subsys_bits); | 
|  | one_ss = true; | 
|  |  | 
|  | break; | 
|  | } | 
|  | if (i == CGROUP_SUBSYS_COUNT) | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the 'all' option was specified select all the subsystems, | 
|  | * otherwise if 'none', 'name=' and a subsystem name options | 
|  | * were not specified, let's default to 'all' | 
|  | */ | 
|  | if (all_ss || (!one_ss && !opts->none && !opts->name)) { | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss == NULL) | 
|  | continue; | 
|  | if (ss->disabled) | 
|  | continue; | 
|  | set_bit(i, &opts->subsys_bits); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Consistency checks */ | 
|  |  | 
|  | /* | 
|  | * Option noprefix was introduced just for backward compatibility | 
|  | * with the old cpuset, so we allow noprefix only if mounting just | 
|  | * the cpuset subsystem. | 
|  | */ | 
|  | if (test_bit(ROOT_NOPREFIX, &opts->flags) && | 
|  | (opts->subsys_bits & mask)) | 
|  | return -EINVAL; | 
|  |  | 
|  |  | 
|  | /* Can't specify "none" and some subsystems */ | 
|  | if (opts->subsys_bits && opts->none) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * We either have to specify by name or by subsystems. (So all | 
|  | * empty hierarchies must have a name). | 
|  | */ | 
|  | if (!opts->subsys_bits && !opts->name) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Grab references on all the modules we'll need, so the subsystems | 
|  | * don't dance around before rebind_subsystems attaches them. This may | 
|  | * take duplicate reference counts on a subsystem that's already used, | 
|  | * but rebind_subsystems handles this case. | 
|  | */ | 
|  | for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | unsigned long bit = 1UL << i; | 
|  |  | 
|  | if (!(bit & opts->subsys_bits)) | 
|  | continue; | 
|  | if (!try_module_get(subsys[i]->module)) { | 
|  | module_pin_failed = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (module_pin_failed) { | 
|  | /* | 
|  | * oops, one of the modules was going away. this means that we | 
|  | * raced with a module_delete call, and to the user this is | 
|  | * essentially a "subsystem doesn't exist" case. | 
|  | */ | 
|  | for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) { | 
|  | /* drop refcounts only on the ones we took */ | 
|  | unsigned long bit = 1UL << i; | 
|  |  | 
|  | if (!(bit & opts->subsys_bits)) | 
|  | continue; | 
|  | module_put(subsys[i]->module); | 
|  | } | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void drop_parsed_module_refcounts(unsigned long subsys_bits) | 
|  | { | 
|  | int i; | 
|  | for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | unsigned long bit = 1UL << i; | 
|  |  | 
|  | if (!(bit & subsys_bits)) | 
|  | continue; | 
|  | module_put(subsys[i]->module); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cgroup_remount(struct super_block *sb, int *flags, char *data) | 
|  | { | 
|  | int ret = 0; | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | struct cgroup_sb_opts opts; | 
|  |  | 
|  | mutex_lock(&cgrp->dentry->d_inode->i_mutex); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  |  | 
|  | /* See what subsystems are wanted */ | 
|  | ret = parse_cgroupfs_options(data, &opts); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Don't allow flags or name to change at remount */ | 
|  | if (opts.flags != root->flags || | 
|  | (opts.name && strcmp(opts.name, root->name))) { | 
|  | ret = -EINVAL; | 
|  | drop_parsed_module_refcounts(opts.subsys_bits); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ret = rebind_subsystems(root, opts.subsys_bits); | 
|  | if (ret) { | 
|  | drop_parsed_module_refcounts(opts.subsys_bits); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* (re)populate subsystem files */ | 
|  | cgroup_populate_dir(cgrp); | 
|  |  | 
|  | if (opts.release_agent) | 
|  | strcpy(root->release_agent_path, opts.release_agent); | 
|  | out_unlock: | 
|  | kfree(opts.release_agent); | 
|  | kfree(opts.name); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct super_operations cgroup_ops = { | 
|  | .statfs = simple_statfs, | 
|  | .drop_inode = generic_delete_inode, | 
|  | .show_options = cgroup_show_options, | 
|  | .remount_fs = cgroup_remount, | 
|  | }; | 
|  |  | 
|  | static void init_cgroup_housekeeping(struct cgroup *cgrp) | 
|  | { | 
|  | INIT_LIST_HEAD(&cgrp->sibling); | 
|  | INIT_LIST_HEAD(&cgrp->children); | 
|  | INIT_LIST_HEAD(&cgrp->css_sets); | 
|  | INIT_LIST_HEAD(&cgrp->release_list); | 
|  | INIT_LIST_HEAD(&cgrp->pidlists); | 
|  | mutex_init(&cgrp->pidlist_mutex); | 
|  | INIT_LIST_HEAD(&cgrp->event_list); | 
|  | spin_lock_init(&cgrp->event_list_lock); | 
|  | } | 
|  |  | 
|  | static void init_cgroup_root(struct cgroupfs_root *root) | 
|  | { | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | INIT_LIST_HEAD(&root->subsys_list); | 
|  | INIT_LIST_HEAD(&root->root_list); | 
|  | root->number_of_cgroups = 1; | 
|  | cgrp->root = root; | 
|  | cgrp->top_cgroup = cgrp; | 
|  | init_cgroup_housekeeping(cgrp); | 
|  | } | 
|  |  | 
|  | static bool init_root_id(struct cgroupfs_root *root) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | do { | 
|  | if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL)) | 
|  | return false; | 
|  | spin_lock(&hierarchy_id_lock); | 
|  | /* Try to allocate the next unused ID */ | 
|  | ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id, | 
|  | &root->hierarchy_id); | 
|  | if (ret == -ENOSPC) | 
|  | /* Try again starting from 0 */ | 
|  | ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id); | 
|  | if (!ret) { | 
|  | next_hierarchy_id = root->hierarchy_id + 1; | 
|  | } else if (ret != -EAGAIN) { | 
|  | /* Can only get here if the 31-bit IDR is full ... */ | 
|  | BUG_ON(ret); | 
|  | } | 
|  | spin_unlock(&hierarchy_id_lock); | 
|  | } while (ret); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int cgroup_test_super(struct super_block *sb, void *data) | 
|  | { | 
|  | struct cgroup_sb_opts *opts = data; | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  |  | 
|  | /* If we asked for a name then it must match */ | 
|  | if (opts->name && strcmp(opts->name, root->name)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we asked for subsystems (or explicitly for no | 
|  | * subsystems) then they must match | 
|  | */ | 
|  | if ((opts->subsys_bits || opts->none) | 
|  | && (opts->subsys_bits != root->subsys_bits)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts) | 
|  | { | 
|  | struct cgroupfs_root *root; | 
|  |  | 
|  | if (!opts->subsys_bits && !opts->none) | 
|  | return NULL; | 
|  |  | 
|  | root = kzalloc(sizeof(*root), GFP_KERNEL); | 
|  | if (!root) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (!init_root_id(root)) { | 
|  | kfree(root); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | init_cgroup_root(root); | 
|  |  | 
|  | root->subsys_bits = opts->subsys_bits; | 
|  | root->flags = opts->flags; | 
|  | if (opts->release_agent) | 
|  | strcpy(root->release_agent_path, opts->release_agent); | 
|  | if (opts->name) | 
|  | strcpy(root->name, opts->name); | 
|  | if (opts->clone_children) | 
|  | set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags); | 
|  | return root; | 
|  | } | 
|  |  | 
|  | static void cgroup_drop_root(struct cgroupfs_root *root) | 
|  | { | 
|  | if (!root) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!root->hierarchy_id); | 
|  | spin_lock(&hierarchy_id_lock); | 
|  | ida_remove(&hierarchy_ida, root->hierarchy_id); | 
|  | spin_unlock(&hierarchy_id_lock); | 
|  | kfree(root); | 
|  | } | 
|  |  | 
|  | static int cgroup_set_super(struct super_block *sb, void *data) | 
|  | { | 
|  | int ret; | 
|  | struct cgroup_sb_opts *opts = data; | 
|  |  | 
|  | /* If we don't have a new root, we can't set up a new sb */ | 
|  | if (!opts->new_root) | 
|  | return -EINVAL; | 
|  |  | 
|  | BUG_ON(!opts->subsys_bits && !opts->none); | 
|  |  | 
|  | ret = set_anon_super(sb, NULL); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sb->s_fs_info = opts->new_root; | 
|  | opts->new_root->sb = sb; | 
|  |  | 
|  | sb->s_blocksize = PAGE_CACHE_SIZE; | 
|  | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 
|  | sb->s_magic = CGROUP_SUPER_MAGIC; | 
|  | sb->s_op = &cgroup_ops; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_get_rootdir(struct super_block *sb) | 
|  | { | 
|  | static const struct dentry_operations cgroup_dops = { | 
|  | .d_iput = cgroup_diput, | 
|  | .d_delete = cgroup_delete, | 
|  | }; | 
|  |  | 
|  | struct inode *inode = | 
|  | cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb); | 
|  |  | 
|  | if (!inode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | inode->i_op = &cgroup_dir_inode_operations; | 
|  | /* directories start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  | sb->s_root = d_make_root(inode); | 
|  | if (!sb->s_root) | 
|  | return -ENOMEM; | 
|  | /* for everything else we want ->d_op set */ | 
|  | sb->s_d_op = &cgroup_dops; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct dentry *cgroup_mount(struct file_system_type *fs_type, | 
|  | int flags, const char *unused_dev_name, | 
|  | void *data) | 
|  | { | 
|  | struct cgroup_sb_opts opts; | 
|  | struct cgroupfs_root *root; | 
|  | int ret = 0; | 
|  | struct super_block *sb; | 
|  | struct cgroupfs_root *new_root; | 
|  | struct inode *inode; | 
|  |  | 
|  | /* First find the desired set of subsystems */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  | ret = parse_cgroupfs_options(data, &opts); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | if (ret) | 
|  | goto out_err; | 
|  |  | 
|  | /* | 
|  | * Allocate a new cgroup root. We may not need it if we're | 
|  | * reusing an existing hierarchy. | 
|  | */ | 
|  | new_root = cgroup_root_from_opts(&opts); | 
|  | if (IS_ERR(new_root)) { | 
|  | ret = PTR_ERR(new_root); | 
|  | goto drop_modules; | 
|  | } | 
|  | opts.new_root = new_root; | 
|  |  | 
|  | /* Locate an existing or new sb for this hierarchy */ | 
|  | sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts); | 
|  | if (IS_ERR(sb)) { | 
|  | ret = PTR_ERR(sb); | 
|  | cgroup_drop_root(opts.new_root); | 
|  | goto drop_modules; | 
|  | } | 
|  |  | 
|  | root = sb->s_fs_info; | 
|  | BUG_ON(!root); | 
|  | if (root == opts.new_root) { | 
|  | /* We used the new root structure, so this is a new hierarchy */ | 
|  | struct list_head tmp_cg_links; | 
|  | struct cgroup *root_cgrp = &root->top_cgroup; | 
|  | struct cgroupfs_root *existing_root; | 
|  | const struct cred *cred; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(sb->s_root != NULL); | 
|  |  | 
|  | ret = cgroup_get_rootdir(sb); | 
|  | if (ret) | 
|  | goto drop_new_super; | 
|  | inode = sb->s_root->d_inode; | 
|  |  | 
|  | mutex_lock(&inode->i_mutex); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  |  | 
|  | /* Check for name clashes with existing mounts */ | 
|  | ret = -EBUSY; | 
|  | if (strlen(root->name)) | 
|  | for_each_active_root(existing_root) | 
|  | if (!strcmp(existing_root->name, root->name)) | 
|  | goto unlock_drop; | 
|  |  | 
|  | /* | 
|  | * We're accessing css_set_count without locking | 
|  | * css_set_lock here, but that's OK - it can only be | 
|  | * increased by someone holding cgroup_lock, and | 
|  | * that's us. The worst that can happen is that we | 
|  | * have some link structures left over | 
|  | */ | 
|  | ret = allocate_cg_links(css_set_count, &tmp_cg_links); | 
|  | if (ret) | 
|  | goto unlock_drop; | 
|  |  | 
|  | ret = rebind_subsystems(root, root->subsys_bits); | 
|  | if (ret == -EBUSY) { | 
|  | free_cg_links(&tmp_cg_links); | 
|  | goto unlock_drop; | 
|  | } | 
|  | /* | 
|  | * There must be no failure case after here, since rebinding | 
|  | * takes care of subsystems' refcounts, which are explicitly | 
|  | * dropped in the failure exit path. | 
|  | */ | 
|  |  | 
|  | /* EBUSY should be the only error here */ | 
|  | BUG_ON(ret); | 
|  |  | 
|  | list_add(&root->root_list, &roots); | 
|  | root_count++; | 
|  |  | 
|  | sb->s_root->d_fsdata = root_cgrp; | 
|  | root->top_cgroup.dentry = sb->s_root; | 
|  |  | 
|  | /* Link the top cgroup in this hierarchy into all | 
|  | * the css_set objects */ | 
|  | write_lock(&css_set_lock); | 
|  | for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { | 
|  | struct hlist_head *hhead = &css_set_table[i]; | 
|  | struct hlist_node *node; | 
|  | struct css_set *cg; | 
|  |  | 
|  | hlist_for_each_entry(cg, node, hhead, hlist) | 
|  | link_css_set(&tmp_cg_links, cg, root_cgrp); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | free_cg_links(&tmp_cg_links); | 
|  |  | 
|  | BUG_ON(!list_empty(&root_cgrp->sibling)); | 
|  | BUG_ON(!list_empty(&root_cgrp->children)); | 
|  | BUG_ON(root->number_of_cgroups != 1); | 
|  |  | 
|  | cred = override_creds(&init_cred); | 
|  | cgroup_populate_dir(root_cgrp); | 
|  | revert_creds(cred); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | } else { | 
|  | /* | 
|  | * We re-used an existing hierarchy - the new root (if | 
|  | * any) is not needed | 
|  | */ | 
|  | cgroup_drop_root(opts.new_root); | 
|  | /* no subsys rebinding, so refcounts don't change */ | 
|  | drop_parsed_module_refcounts(opts.subsys_bits); | 
|  | } | 
|  |  | 
|  | kfree(opts.release_agent); | 
|  | kfree(opts.name); | 
|  | return dget(sb->s_root); | 
|  |  | 
|  | unlock_drop: | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&inode->i_mutex); | 
|  | drop_new_super: | 
|  | deactivate_locked_super(sb); | 
|  | drop_modules: | 
|  | drop_parsed_module_refcounts(opts.subsys_bits); | 
|  | out_err: | 
|  | kfree(opts.release_agent); | 
|  | kfree(opts.name); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void cgroup_kill_sb(struct super_block *sb) { | 
|  | struct cgroupfs_root *root = sb->s_fs_info; | 
|  | struct cgroup *cgrp = &root->top_cgroup; | 
|  | int ret; | 
|  | struct cg_cgroup_link *link; | 
|  | struct cg_cgroup_link *saved_link; | 
|  |  | 
|  | BUG_ON(!root); | 
|  |  | 
|  | BUG_ON(root->number_of_cgroups != 1); | 
|  | BUG_ON(!list_empty(&cgrp->children)); | 
|  | BUG_ON(!list_empty(&cgrp->sibling)); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  |  | 
|  | /* Rebind all subsystems back to the default hierarchy */ | 
|  | ret = rebind_subsystems(root, 0); | 
|  | /* Shouldn't be able to fail ... */ | 
|  | BUG_ON(ret); | 
|  |  | 
|  | /* | 
|  | * Release all the links from css_sets to this hierarchy's | 
|  | * root cgroup | 
|  | */ | 
|  | write_lock(&css_set_lock); | 
|  |  | 
|  | list_for_each_entry_safe(link, saved_link, &cgrp->css_sets, | 
|  | cgrp_link_list) { | 
|  | list_del(&link->cg_link_list); | 
|  | list_del(&link->cgrp_link_list); | 
|  | kfree(link); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | if (!list_empty(&root->root_list)) { | 
|  | list_del(&root->root_list); | 
|  | root_count--; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | kill_litter_super(sb); | 
|  | cgroup_drop_root(root); | 
|  | } | 
|  |  | 
|  | static struct file_system_type cgroup_fs_type = { | 
|  | .name = "cgroup", | 
|  | .mount = cgroup_mount, | 
|  | .kill_sb = cgroup_kill_sb, | 
|  | }; | 
|  |  | 
|  | static struct kobject *cgroup_kobj; | 
|  |  | 
|  | static inline struct cgroup *__d_cgrp(struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_fsdata; | 
|  | } | 
|  |  | 
|  | static inline struct cftype *__d_cft(struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_fsdata; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_path - generate the path of a cgroup | 
|  | * @cgrp: the cgroup in question | 
|  | * @buf: the buffer to write the path into | 
|  | * @buflen: the length of the buffer | 
|  | * | 
|  | * Called with cgroup_mutex held or else with an RCU-protected cgroup | 
|  | * reference.  Writes path of cgroup into buf.  Returns 0 on success, | 
|  | * -errno on error. | 
|  | */ | 
|  | int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen) | 
|  | { | 
|  | char *start; | 
|  | struct dentry *dentry = rcu_dereference_check(cgrp->dentry, | 
|  | cgroup_lock_is_held()); | 
|  |  | 
|  | if (!dentry || cgrp == dummytop) { | 
|  | /* | 
|  | * Inactive subsystems have no dentry for their root | 
|  | * cgroup | 
|  | */ | 
|  | strcpy(buf, "/"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | start = buf + buflen; | 
|  |  | 
|  | *--start = '\0'; | 
|  | for (;;) { | 
|  | int len = dentry->d_name.len; | 
|  |  | 
|  | if ((start -= len) < buf) | 
|  | return -ENAMETOOLONG; | 
|  | memcpy(start, dentry->d_name.name, len); | 
|  | cgrp = cgrp->parent; | 
|  | if (!cgrp) | 
|  | break; | 
|  |  | 
|  | dentry = rcu_dereference_check(cgrp->dentry, | 
|  | cgroup_lock_is_held()); | 
|  | if (!cgrp->parent) | 
|  | continue; | 
|  | if (--start < buf) | 
|  | return -ENAMETOOLONG; | 
|  | *start = '/'; | 
|  | } | 
|  | memmove(buf, start, buf + buflen - start); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_path); | 
|  |  | 
|  | /* | 
|  | * Control Group taskset | 
|  | */ | 
|  | struct task_and_cgroup { | 
|  | struct task_struct	*task; | 
|  | struct cgroup		*cgrp; | 
|  | struct css_set		*cg; | 
|  | }; | 
|  |  | 
|  | struct cgroup_taskset { | 
|  | struct task_and_cgroup	single; | 
|  | struct flex_array	*tc_array; | 
|  | int			tc_array_len; | 
|  | int			idx; | 
|  | struct cgroup		*cur_cgrp; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cgroup_taskset_first - reset taskset and return the first task | 
|  | * @tset: taskset of interest | 
|  | * | 
|  | * @tset iteration is initialized and the first task is returned. | 
|  | */ | 
|  | struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset) | 
|  | { | 
|  | if (tset->tc_array) { | 
|  | tset->idx = 0; | 
|  | return cgroup_taskset_next(tset); | 
|  | } else { | 
|  | tset->cur_cgrp = tset->single.cgrp; | 
|  | return tset->single.task; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_taskset_first); | 
|  |  | 
|  | /** | 
|  | * cgroup_taskset_next - iterate to the next task in taskset | 
|  | * @tset: taskset of interest | 
|  | * | 
|  | * Return the next task in @tset.  Iteration must have been initialized | 
|  | * with cgroup_taskset_first(). | 
|  | */ | 
|  | struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset) | 
|  | { | 
|  | struct task_and_cgroup *tc; | 
|  |  | 
|  | if (!tset->tc_array || tset->idx >= tset->tc_array_len) | 
|  | return NULL; | 
|  |  | 
|  | tc = flex_array_get(tset->tc_array, tset->idx++); | 
|  | tset->cur_cgrp = tc->cgrp; | 
|  | return tc->task; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_taskset_next); | 
|  |  | 
|  | /** | 
|  | * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task | 
|  | * @tset: taskset of interest | 
|  | * | 
|  | * Return the cgroup for the current (last returned) task of @tset.  This | 
|  | * function must be preceded by either cgroup_taskset_first() or | 
|  | * cgroup_taskset_next(). | 
|  | */ | 
|  | struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset) | 
|  | { | 
|  | return tset->cur_cgrp; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup); | 
|  |  | 
|  | /** | 
|  | * cgroup_taskset_size - return the number of tasks in taskset | 
|  | * @tset: taskset of interest | 
|  | */ | 
|  | int cgroup_taskset_size(struct cgroup_taskset *tset) | 
|  | { | 
|  | return tset->tc_array ? tset->tc_array_len : 1; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_taskset_size); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cgroup_task_migrate - move a task from one cgroup to another. | 
|  | * | 
|  | * 'guarantee' is set if the caller promises that a new css_set for the task | 
|  | * will already exist. If not set, this function might sleep, and can fail with | 
|  | * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked. | 
|  | */ | 
|  | static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp, | 
|  | struct task_struct *tsk, struct css_set *newcg) | 
|  | { | 
|  | struct css_set *oldcg; | 
|  |  | 
|  | /* | 
|  | * We are synchronized through threadgroup_lock() against PF_EXITING | 
|  | * setting such that we can't race against cgroup_exit() changing the | 
|  | * css_set to init_css_set and dropping the old one. | 
|  | */ | 
|  | WARN_ON_ONCE(tsk->flags & PF_EXITING); | 
|  | oldcg = tsk->cgroups; | 
|  |  | 
|  | task_lock(tsk); | 
|  | rcu_assign_pointer(tsk->cgroups, newcg); | 
|  | task_unlock(tsk); | 
|  |  | 
|  | /* Update the css_set linked lists if we're using them */ | 
|  | write_lock(&css_set_lock); | 
|  | if (!list_empty(&tsk->cg_list)) | 
|  | list_move(&tsk->cg_list, &newcg->tasks); | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | /* | 
|  | * We just gained a reference on oldcg by taking it from the task. As | 
|  | * trading it for newcg is protected by cgroup_mutex, we're safe to drop | 
|  | * it here; it will be freed under RCU. | 
|  | */ | 
|  | put_css_set(oldcg); | 
|  |  | 
|  | set_bit(CGRP_RELEASABLE, &oldcgrp->flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp' | 
|  | * @cgrp: the cgroup the task is attaching to | 
|  | * @tsk: the task to be attached | 
|  | * | 
|  | * Call with cgroup_mutex and threadgroup locked. May take task_lock of | 
|  | * @tsk during call. | 
|  | */ | 
|  | int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk) | 
|  | { | 
|  | int retval = 0; | 
|  | struct cgroup_subsys *ss, *failed_ss = NULL; | 
|  | struct cgroup *oldcgrp; | 
|  | struct cgroupfs_root *root = cgrp->root; | 
|  | struct cgroup_taskset tset = { }; | 
|  | struct css_set *newcg; | 
|  | struct css_set *cg; | 
|  |  | 
|  | /* @tsk either already exited or can't exit until the end */ | 
|  | if (tsk->flags & PF_EXITING) | 
|  | return -ESRCH; | 
|  |  | 
|  | /* Nothing to do if the task is already in that cgroup */ | 
|  | oldcgrp = task_cgroup_from_root(tsk, root); | 
|  | if (cgrp == oldcgrp) | 
|  | return 0; | 
|  |  | 
|  | tset.single.task = tsk; | 
|  | tset.single.cgrp = oldcgrp; | 
|  |  | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss->can_attach) { | 
|  | retval = ss->can_attach(cgrp, &tset); | 
|  | if (retval) { | 
|  | /* | 
|  | * Remember on which subsystem the can_attach() | 
|  | * failed, so that we only call cancel_attach() | 
|  | * against the subsystems whose can_attach() | 
|  | * succeeded. (See below) | 
|  | */ | 
|  | failed_ss = ss; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | newcg = find_css_set(tsk->cgroups, cgrp); | 
|  | if (!newcg) { | 
|  | retval = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | task_lock(tsk); | 
|  | cg = tsk->cgroups; | 
|  | get_css_set(cg); | 
|  | task_unlock(tsk); | 
|  |  | 
|  | cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg); | 
|  |  | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss->attach) | 
|  | ss->attach(cgrp, &tset); | 
|  | } | 
|  | set_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | /* put_css_set will not destroy cg until after an RCU grace period */ | 
|  | put_css_set(cg); | 
|  |  | 
|  | /* | 
|  | * wake up rmdir() waiter. the rmdir should fail since the cgroup | 
|  | * is no longer empty. | 
|  | */ | 
|  | cgroup_wakeup_rmdir_waiter(cgrp); | 
|  | out: | 
|  | if (retval) { | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss == failed_ss) | 
|  | /* | 
|  | * This subsystem was the one that failed the | 
|  | * can_attach() check earlier, so we don't need | 
|  | * to call cancel_attach() against it or any | 
|  | * remaining subsystems. | 
|  | */ | 
|  | break; | 
|  | if (ss->cancel_attach) | 
|  | ss->cancel_attach(cgrp, &tset); | 
|  | } | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' | 
|  | * @from: attach to all cgroups of a given task | 
|  | * @tsk: the task to be attached | 
|  | */ | 
|  | int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) | 
|  | { | 
|  | struct cgroupfs_root *root; | 
|  | int retval = 0; | 
|  |  | 
|  | cgroup_lock(); | 
|  | for_each_active_root(root) { | 
|  | struct cgroup *from_cg = task_cgroup_from_root(from, root); | 
|  |  | 
|  | retval = cgroup_attach_task(from_cg, tsk); | 
|  | if (retval) | 
|  | break; | 
|  | } | 
|  | cgroup_unlock(); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_attach_task_all); | 
|  |  | 
|  | /** | 
|  | * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup | 
|  | * @cgrp: the cgroup to attach to | 
|  | * @leader: the threadgroup leader task_struct of the group to be attached | 
|  | * | 
|  | * Call holding cgroup_mutex and the group_rwsem of the leader. Will take | 
|  | * task_lock of each thread in leader's threadgroup individually in turn. | 
|  | */ | 
|  | static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader) | 
|  | { | 
|  | int retval, i, group_size; | 
|  | struct cgroup_subsys *ss, *failed_ss = NULL; | 
|  | /* guaranteed to be initialized later, but the compiler needs this */ | 
|  | struct cgroupfs_root *root = cgrp->root; | 
|  | /* threadgroup list cursor and array */ | 
|  | struct task_struct *tsk; | 
|  | struct task_and_cgroup *tc; | 
|  | struct flex_array *group; | 
|  | struct cgroup_taskset tset = { }; | 
|  |  | 
|  | /* | 
|  | * step 0: in order to do expensive, possibly blocking operations for | 
|  | * every thread, we cannot iterate the thread group list, since it needs | 
|  | * rcu or tasklist locked. instead, build an array of all threads in the | 
|  | * group - group_rwsem prevents new threads from appearing, and if | 
|  | * threads exit, this will just be an over-estimate. | 
|  | */ | 
|  | group_size = get_nr_threads(leader); | 
|  | /* flex_array supports very large thread-groups better than kmalloc. */ | 
|  | group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL); | 
|  | if (!group) | 
|  | return -ENOMEM; | 
|  | /* pre-allocate to guarantee space while iterating in rcu read-side. */ | 
|  | retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL); | 
|  | if (retval) | 
|  | goto out_free_group_list; | 
|  |  | 
|  | tsk = leader; | 
|  | i = 0; | 
|  | /* | 
|  | * Prevent freeing of tasks while we take a snapshot. Tasks that are | 
|  | * already PF_EXITING could be freed from underneath us unless we | 
|  | * take an rcu_read_lock. | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | struct task_and_cgroup ent; | 
|  |  | 
|  | /* @tsk either already exited or can't exit until the end */ | 
|  | if (tsk->flags & PF_EXITING) | 
|  | continue; | 
|  |  | 
|  | /* as per above, nr_threads may decrease, but not increase. */ | 
|  | BUG_ON(i >= group_size); | 
|  | ent.task = tsk; | 
|  | ent.cgrp = task_cgroup_from_root(tsk, root); | 
|  | /* nothing to do if this task is already in the cgroup */ | 
|  | if (ent.cgrp == cgrp) | 
|  | continue; | 
|  | /* | 
|  | * saying GFP_ATOMIC has no effect here because we did prealloc | 
|  | * earlier, but it's good form to communicate our expectations. | 
|  | */ | 
|  | retval = flex_array_put(group, i, &ent, GFP_ATOMIC); | 
|  | BUG_ON(retval != 0); | 
|  | i++; | 
|  | } while_each_thread(leader, tsk); | 
|  | rcu_read_unlock(); | 
|  | /* remember the number of threads in the array for later. */ | 
|  | group_size = i; | 
|  | tset.tc_array = group; | 
|  | tset.tc_array_len = group_size; | 
|  |  | 
|  | /* methods shouldn't be called if no task is actually migrating */ | 
|  | retval = 0; | 
|  | if (!group_size) | 
|  | goto out_free_group_list; | 
|  |  | 
|  | /* | 
|  | * step 1: check that we can legitimately attach to the cgroup. | 
|  | */ | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss->can_attach) { | 
|  | retval = ss->can_attach(cgrp, &tset); | 
|  | if (retval) { | 
|  | failed_ss = ss; | 
|  | goto out_cancel_attach; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * step 2: make sure css_sets exist for all threads to be migrated. | 
|  | * we use find_css_set, which allocates a new one if necessary. | 
|  | */ | 
|  | for (i = 0; i < group_size; i++) { | 
|  | tc = flex_array_get(group, i); | 
|  | tc->cg = find_css_set(tc->task->cgroups, cgrp); | 
|  | if (!tc->cg) { | 
|  | retval = -ENOMEM; | 
|  | goto out_put_css_set_refs; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * step 3: now that we're guaranteed success wrt the css_sets, | 
|  | * proceed to move all tasks to the new cgroup.  There are no | 
|  | * failure cases after here, so this is the commit point. | 
|  | */ | 
|  | for (i = 0; i < group_size; i++) { | 
|  | tc = flex_array_get(group, i); | 
|  | cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg); | 
|  | } | 
|  | /* nothing is sensitive to fork() after this point. */ | 
|  |  | 
|  | /* | 
|  | * step 4: do subsystem attach callbacks. | 
|  | */ | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss->attach) | 
|  | ss->attach(cgrp, &tset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * step 5: success! and cleanup | 
|  | */ | 
|  | synchronize_rcu(); | 
|  | cgroup_wakeup_rmdir_waiter(cgrp); | 
|  | retval = 0; | 
|  | out_put_css_set_refs: | 
|  | if (retval) { | 
|  | for (i = 0; i < group_size; i++) { | 
|  | tc = flex_array_get(group, i); | 
|  | if (!tc->cg) | 
|  | break; | 
|  | put_css_set(tc->cg); | 
|  | } | 
|  | } | 
|  | out_cancel_attach: | 
|  | if (retval) { | 
|  | for_each_subsys(root, ss) { | 
|  | if (ss == failed_ss) | 
|  | break; | 
|  | if (ss->cancel_attach) | 
|  | ss->cancel_attach(cgrp, &tset); | 
|  | } | 
|  | } | 
|  | out_free_group_list: | 
|  | flex_array_free(group); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cgroup_allow_attach(struct cgroup *cgrp, struct cgroup_taskset *tset) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | int ret; | 
|  |  | 
|  | for_each_subsys(cgrp->root, ss) { | 
|  | if (ss->allow_attach) { | 
|  | ret = ss->allow_attach(cgrp, tset); | 
|  | if (ret) | 
|  | return ret; | 
|  | } else { | 
|  | return -EACCES; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the task_struct of the task to attach by vpid and pass it along to the | 
|  | * function to attach either it or all tasks in its threadgroup. Will lock | 
|  | * cgroup_mutex and threadgroup; may take task_lock of task. | 
|  | */ | 
|  | static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | const struct cred *cred = current_cred(), *tcred; | 
|  | int ret; | 
|  |  | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  |  | 
|  | retry_find_task: | 
|  | rcu_read_lock(); | 
|  | if (pid) { | 
|  | tsk = find_task_by_vpid(pid); | 
|  | if (!tsk) { | 
|  | rcu_read_unlock(); | 
|  | ret= -ESRCH; | 
|  | goto out_unlock_cgroup; | 
|  | } | 
|  | /* | 
|  | * even if we're attaching all tasks in the thread group, we | 
|  | * only need to check permissions on one of them. | 
|  | */ | 
|  | tcred = __task_cred(tsk); | 
|  | if (cred->euid && | 
|  | cred->euid != tcred->uid && | 
|  | cred->euid != tcred->suid) { | 
|  | /* | 
|  | * if the default permission check fails, give each | 
|  | * cgroup a chance to extend the permission check | 
|  | */ | 
|  | struct cgroup_taskset tset = { }; | 
|  | tset.single.task = tsk; | 
|  | tset.single.cgrp = cgrp; | 
|  | ret = cgroup_allow_attach(cgrp, &tset); | 
|  | if (ret) { | 
|  | rcu_read_unlock(); | 
|  | goto out_unlock_cgroup; | 
|  | } | 
|  | } | 
|  | } else | 
|  | tsk = current; | 
|  |  | 
|  | if (threadgroup) | 
|  | tsk = tsk->group_leader; | 
|  | get_task_struct(tsk); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | threadgroup_lock(tsk); | 
|  | if (threadgroup) { | 
|  | if (!thread_group_leader(tsk)) { | 
|  | /* | 
|  | * a race with de_thread from another thread's exec() | 
|  | * may strip us of our leadership, if this happens, | 
|  | * there is no choice but to throw this task away and | 
|  | * try again; this is | 
|  | * "double-double-toil-and-trouble-check locking". | 
|  | */ | 
|  | threadgroup_unlock(tsk); | 
|  | put_task_struct(tsk); | 
|  | goto retry_find_task; | 
|  | } | 
|  | ret = cgroup_attach_proc(cgrp, tsk); | 
|  | } else | 
|  | ret = cgroup_attach_task(cgrp, tsk); | 
|  | threadgroup_unlock(tsk); | 
|  |  | 
|  | put_task_struct(tsk); | 
|  | out_unlock_cgroup: | 
|  | cgroup_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid) | 
|  | { | 
|  | return attach_task_by_pid(cgrp, pid, false); | 
|  | } | 
|  |  | 
|  | static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid) | 
|  | { | 
|  | return attach_task_by_pid(cgrp, tgid, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive. | 
|  | * @cgrp: the cgroup to be checked for liveness | 
|  | * | 
|  | * On success, returns true; the lock should be later released with | 
|  | * cgroup_unlock(). On failure returns false with no lock held. | 
|  | */ | 
|  | bool cgroup_lock_live_group(struct cgroup *cgrp) | 
|  | { | 
|  | mutex_lock(&cgroup_mutex); | 
|  | if (cgroup_is_removed(cgrp)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_lock_live_group); | 
|  |  | 
|  | static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft, | 
|  | const char *buffer) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); | 
|  | if (strlen(buffer) >= PATH_MAX) | 
|  | return -EINVAL; | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  | mutex_lock(&cgroup_root_mutex); | 
|  | strcpy(cgrp->root->release_agent_path, buffer); | 
|  | mutex_unlock(&cgroup_root_mutex); | 
|  | cgroup_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct seq_file *seq) | 
|  | { | 
|  | if (!cgroup_lock_live_group(cgrp)) | 
|  | return -ENODEV; | 
|  | seq_puts(seq, cgrp->root->release_agent_path); | 
|  | seq_putc(seq, '\n'); | 
|  | cgroup_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* A buffer size big enough for numbers or short strings */ | 
|  | #define CGROUP_LOCAL_BUFFER_SIZE 64 | 
|  |  | 
|  | static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | const char __user *userbuf, | 
|  | size_t nbytes, loff_t *unused_ppos) | 
|  | { | 
|  | char buffer[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | int retval = 0; | 
|  | char *end; | 
|  |  | 
|  | if (!nbytes) | 
|  | return -EINVAL; | 
|  | if (nbytes >= sizeof(buffer)) | 
|  | return -E2BIG; | 
|  | if (copy_from_user(buffer, userbuf, nbytes)) | 
|  | return -EFAULT; | 
|  |  | 
|  | buffer[nbytes] = 0;     /* nul-terminate */ | 
|  | if (cft->write_u64) { | 
|  | u64 val = simple_strtoull(strstrip(buffer), &end, 0); | 
|  | if (*end) | 
|  | return -EINVAL; | 
|  | retval = cft->write_u64(cgrp, cft, val); | 
|  | } else { | 
|  | s64 val = simple_strtoll(strstrip(buffer), &end, 0); | 
|  | if (*end) | 
|  | return -EINVAL; | 
|  | retval = cft->write_s64(cgrp, cft, val); | 
|  | } | 
|  | if (!retval) | 
|  | retval = nbytes; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | const char __user *userbuf, | 
|  | size_t nbytes, loff_t *unused_ppos) | 
|  | { | 
|  | char local_buffer[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | int retval = 0; | 
|  | size_t max_bytes = cft->max_write_len; | 
|  | char *buffer = local_buffer; | 
|  |  | 
|  | if (!max_bytes) | 
|  | max_bytes = sizeof(local_buffer) - 1; | 
|  | if (nbytes >= max_bytes) | 
|  | return -E2BIG; | 
|  | /* Allocate a dynamic buffer if we need one */ | 
|  | if (nbytes >= sizeof(local_buffer)) { | 
|  | buffer = kmalloc(nbytes + 1, GFP_KERNEL); | 
|  | if (buffer == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  | if (nbytes && copy_from_user(buffer, userbuf, nbytes)) { | 
|  | retval = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | buffer[nbytes] = 0;     /* nul-terminate */ | 
|  | retval = cft->write_string(cgrp, cft, strstrip(buffer)); | 
|  | if (!retval) | 
|  | retval = nbytes; | 
|  | out: | 
|  | if (buffer != local_buffer) | 
|  | kfree(buffer); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_file_write(struct file *file, const char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  |  | 
|  | if (cgroup_is_removed(cgrp)) | 
|  | return -ENODEV; | 
|  | if (cft->write) | 
|  | return cft->write(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->write_u64 || cft->write_s64) | 
|  | return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->write_string) | 
|  | return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->trigger) { | 
|  | int ret = cft->trigger(cgrp, (unsigned int)cft->private); | 
|  | return ret ? ret : nbytes; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | char __user *buf, size_t nbytes, | 
|  | loff_t *ppos) | 
|  | { | 
|  | char tmp[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | u64 val = cft->read_u64(cgrp, cft); | 
|  | int len = sprintf(tmp, "%llu\n", (unsigned long long) val); | 
|  |  | 
|  | return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft, | 
|  | struct file *file, | 
|  | char __user *buf, size_t nbytes, | 
|  | loff_t *ppos) | 
|  | { | 
|  | char tmp[CGROUP_LOCAL_BUFFER_SIZE]; | 
|  | s64 val = cft->read_s64(cgrp, cft); | 
|  | int len = sprintf(tmp, "%lld\n", (long long) val); | 
|  |  | 
|  | return simple_read_from_buffer(buf, nbytes, ppos, tmp, len); | 
|  | } | 
|  |  | 
|  | static ssize_t cgroup_file_read(struct file *file, char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  |  | 
|  | if (cgroup_is_removed(cgrp)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (cft->read) | 
|  | return cft->read(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->read_u64) | 
|  | return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | if (cft->read_s64) | 
|  | return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * seqfile ops/methods for returning structured data. Currently just | 
|  | * supports string->u64 maps, but can be extended in future. | 
|  | */ | 
|  |  | 
|  | struct cgroup_seqfile_state { | 
|  | struct cftype *cft; | 
|  | struct cgroup *cgroup; | 
|  | }; | 
|  |  | 
|  | static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value) | 
|  | { | 
|  | struct seq_file *sf = cb->state; | 
|  | return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value); | 
|  | } | 
|  |  | 
|  | static int cgroup_seqfile_show(struct seq_file *m, void *arg) | 
|  | { | 
|  | struct cgroup_seqfile_state *state = m->private; | 
|  | struct cftype *cft = state->cft; | 
|  | if (cft->read_map) { | 
|  | struct cgroup_map_cb cb = { | 
|  | .fill = cgroup_map_add, | 
|  | .state = m, | 
|  | }; | 
|  | return cft->read_map(state->cgroup, cft, &cb); | 
|  | } | 
|  | return cft->read_seq_string(state->cgroup, cft, m); | 
|  | } | 
|  |  | 
|  | static int cgroup_seqfile_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct seq_file *seq = file->private_data; | 
|  | kfree(seq->private); | 
|  | return single_release(inode, file); | 
|  | } | 
|  |  | 
|  | static const struct file_operations cgroup_seqfile_operations = { | 
|  | .read = seq_read, | 
|  | .write = cgroup_file_write, | 
|  | .llseek = seq_lseek, | 
|  | .release = cgroup_seqfile_release, | 
|  | }; | 
|  |  | 
|  | static int cgroup_file_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | int err; | 
|  | struct cftype *cft; | 
|  |  | 
|  | err = generic_file_open(inode, file); | 
|  | if (err) | 
|  | return err; | 
|  | cft = __d_cft(file->f_dentry); | 
|  |  | 
|  | if (cft->read_map || cft->read_seq_string) { | 
|  | struct cgroup_seqfile_state *state = | 
|  | kzalloc(sizeof(*state), GFP_USER); | 
|  | if (!state) | 
|  | return -ENOMEM; | 
|  | state->cft = cft; | 
|  | state->cgroup = __d_cgrp(file->f_dentry->d_parent); | 
|  | file->f_op = &cgroup_seqfile_operations; | 
|  | err = single_open(file, cgroup_seqfile_show, state); | 
|  | if (err < 0) | 
|  | kfree(state); | 
|  | } else if (cft->open) | 
|  | err = cft->open(inode, file); | 
|  | else | 
|  | err = 0; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cgroup_file_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | if (cft->release) | 
|  | return cft->release(inode, file); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cgroup_rename - Only allow simple rename of directories in place. | 
|  | */ | 
|  | static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry, | 
|  | struct inode *new_dir, struct dentry *new_dentry) | 
|  | { | 
|  | if (!S_ISDIR(old_dentry->d_inode->i_mode)) | 
|  | return -ENOTDIR; | 
|  | if (new_dentry->d_inode) | 
|  | return -EEXIST; | 
|  | if (old_dir != new_dir) | 
|  | return -EIO; | 
|  | return simple_rename(old_dir, old_dentry, new_dir, new_dentry); | 
|  | } | 
|  |  | 
|  | static const struct file_operations cgroup_file_operations = { | 
|  | .read = cgroup_file_read, | 
|  | .write = cgroup_file_write, | 
|  | .llseek = generic_file_llseek, | 
|  | .open = cgroup_file_open, | 
|  | .release = cgroup_file_release, | 
|  | }; | 
|  |  | 
|  | static const struct inode_operations cgroup_dir_inode_operations = { | 
|  | .lookup = cgroup_lookup, | 
|  | .mkdir = cgroup_mkdir, | 
|  | .rmdir = cgroup_rmdir, | 
|  | .rename = cgroup_rename, | 
|  | }; | 
|  |  | 
|  | static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) | 
|  | { | 
|  | if (dentry->d_name.len > NAME_MAX) | 
|  | return ERR_PTR(-ENAMETOOLONG); | 
|  | d_add(dentry, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if a file is a control file | 
|  | */ | 
|  | static inline struct cftype *__file_cft(struct file *file) | 
|  | { | 
|  | if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations) | 
|  | return ERR_PTR(-EINVAL); | 
|  | return __d_cft(file->f_dentry); | 
|  | } | 
|  |  | 
|  | static int cgroup_create_file(struct dentry *dentry, umode_t mode, | 
|  | struct super_block *sb) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | if (!dentry) | 
|  | return -ENOENT; | 
|  | if (dentry->d_inode) | 
|  | return -EEXIST; | 
|  |  | 
|  | inode = cgroup_new_inode(mode, sb); | 
|  | if (!inode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (S_ISDIR(mode)) { | 
|  | inode->i_op = &cgroup_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  |  | 
|  | /* start off with i_nlink == 2 (for "." entry) */ | 
|  | inc_nlink(inode); | 
|  |  | 
|  | /* start with the directory inode held, so that we can | 
|  | * populate it without racing with another mkdir */ | 
|  | mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); | 
|  | } else if (S_ISREG(mode)) { | 
|  | inode->i_size = 0; | 
|  | inode->i_fop = &cgroup_file_operations; | 
|  | } | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry);	/* Extra count - pin the dentry in core */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cgroup_create_dir - create a directory for an object. | 
|  | * @cgrp: the cgroup we create the directory for. It must have a valid | 
|  | *        ->parent field. And we are going to fill its ->dentry field. | 
|  | * @dentry: dentry of the new cgroup | 
|  | * @mode: mode to set on new directory. | 
|  | */ | 
|  | static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry, | 
|  | umode_t mode) | 
|  | { | 
|  | struct dentry *parent; | 
|  | int error = 0; | 
|  |  | 
|  | parent = cgrp->parent->dentry; | 
|  | error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb); | 
|  | if (!error) { | 
|  | dentry->d_fsdata = cgrp; | 
|  | inc_nlink(parent->d_inode); | 
|  | rcu_assign_pointer(cgrp->dentry, dentry); | 
|  | dget(dentry); | 
|  | } | 
|  | dput(dentry); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_file_mode - deduce file mode of a control file | 
|  | * @cft: the control file in question | 
|  | * | 
|  | * returns cft->mode if ->mode is not 0 | 
|  | * returns S_IRUGO|S_IWUSR if it has both a read and a write handler | 
|  | * returns S_IRUGO if it has only a read handler | 
|  | * returns S_IWUSR if it has only a write hander | 
|  | */ | 
|  | static umode_t cgroup_file_mode(const struct cftype *cft) | 
|  | { | 
|  | umode_t mode = 0; | 
|  |  | 
|  | if (cft->mode) | 
|  | return cft->mode; | 
|  |  | 
|  | if (cft->read || cft->read_u64 || cft->read_s64 || | 
|  | cft->read_map || cft->read_seq_string) | 
|  | mode |= S_IRUGO; | 
|  |  | 
|  | if (cft->write || cft->write_u64 || cft->write_s64 || | 
|  | cft->write_string || cft->trigger) | 
|  | mode |= S_IWUSR; | 
|  |  | 
|  | return mode; | 
|  | } | 
|  |  | 
|  | int cgroup_add_file(struct cgroup *cgrp, | 
|  | struct cgroup_subsys *subsys, | 
|  | const struct cftype *cft) | 
|  | { | 
|  | struct dentry *dir = cgrp->dentry; | 
|  | struct dentry *dentry; | 
|  | int error; | 
|  | umode_t mode; | 
|  |  | 
|  | char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 }; | 
|  | if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) { | 
|  | strcpy(name, subsys->name); | 
|  | strcat(name, "."); | 
|  | } | 
|  | strcat(name, cft->name); | 
|  | BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex)); | 
|  | dentry = lookup_one_len(name, dir, strlen(name)); | 
|  | if (!IS_ERR(dentry)) { | 
|  | mode = cgroup_file_mode(cft); | 
|  | error = cgroup_create_file(dentry, mode | S_IFREG, | 
|  | cgrp->root->sb); | 
|  | if (!error) | 
|  | dentry->d_fsdata = (void *)cft; | 
|  | dput(dentry); | 
|  | } else | 
|  | error = PTR_ERR(dentry); | 
|  | return error; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_add_file); | 
|  |  | 
|  | int cgroup_add_files(struct cgroup *cgrp, | 
|  | struct cgroup_subsys *subsys, | 
|  | const struct cftype cft[], | 
|  | int count) | 
|  | { | 
|  | int i, err; | 
|  | for (i = 0; i < count; i++) { | 
|  | err = cgroup_add_file(cgrp, subsys, &cft[i]); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_add_files); | 
|  |  | 
|  | /** | 
|  | * cgroup_task_count - count the number of tasks in a cgroup. | 
|  | * @cgrp: the cgroup in question | 
|  | * | 
|  | * Return the number of tasks in the cgroup. | 
|  | */ | 
|  | int cgroup_task_count(const struct cgroup *cgrp) | 
|  | { | 
|  | int count = 0; | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { | 
|  | count += atomic_read(&link->cg->refcount); | 
|  | } | 
|  | read_unlock(&css_set_lock); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advance a list_head iterator.  The iterator should be positioned at | 
|  | * the start of a css_set | 
|  | */ | 
|  | static void cgroup_advance_iter(struct cgroup *cgrp, | 
|  | struct cgroup_iter *it) | 
|  | { | 
|  | struct list_head *l = it->cg_link; | 
|  | struct cg_cgroup_link *link; | 
|  | struct css_set *cg; | 
|  |  | 
|  | /* Advance to the next non-empty css_set */ | 
|  | do { | 
|  | l = l->next; | 
|  | if (l == &cgrp->css_sets) { | 
|  | it->cg_link = NULL; | 
|  | return; | 
|  | } | 
|  | link = list_entry(l, struct cg_cgroup_link, cgrp_link_list); | 
|  | cg = link->cg; | 
|  | } while (list_empty(&cg->tasks)); | 
|  | it->cg_link = l; | 
|  | it->task = cg->tasks.next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To reduce the fork() overhead for systems that are not actually | 
|  | * using their cgroups capability, we don't maintain the lists running | 
|  | * through each css_set to its tasks until we see the list actually | 
|  | * used - in other words after the first call to cgroup_iter_start(). | 
|  | */ | 
|  | static void cgroup_enable_task_cg_lists(void) | 
|  | { | 
|  | struct task_struct *p, *g; | 
|  | write_lock(&css_set_lock); | 
|  | use_task_css_set_links = 1; | 
|  | /* | 
|  | * We need tasklist_lock because RCU is not safe against | 
|  | * while_each_thread(). Besides, a forking task that has passed | 
|  | * cgroup_post_fork() without seeing use_task_css_set_links = 1 | 
|  | * is not guaranteed to have its child immediately visible in the | 
|  | * tasklist if we walk through it with RCU. | 
|  | */ | 
|  | read_lock(&tasklist_lock); | 
|  | do_each_thread(g, p) { | 
|  | task_lock(p); | 
|  | /* | 
|  | * We should check if the process is exiting, otherwise | 
|  | * it will race with cgroup_exit() in that the list | 
|  | * entry won't be deleted though the process has exited. | 
|  | */ | 
|  | if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list)) | 
|  | list_add(&p->cg_list, &p->cgroups->tasks); | 
|  | task_unlock(p); | 
|  | } while_each_thread(g, p); | 
|  | read_unlock(&tasklist_lock); | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it) | 
|  | __acquires(css_set_lock) | 
|  | { | 
|  | /* | 
|  | * The first time anyone tries to iterate across a cgroup, | 
|  | * we need to enable the list linking each css_set to its | 
|  | * tasks, and fix up all existing tasks. | 
|  | */ | 
|  | if (!use_task_css_set_links) | 
|  | cgroup_enable_task_cg_lists(); | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | it->cg_link = &cgrp->css_sets; | 
|  | cgroup_advance_iter(cgrp, it); | 
|  | } | 
|  |  | 
|  | struct task_struct *cgroup_iter_next(struct cgroup *cgrp, | 
|  | struct cgroup_iter *it) | 
|  | { | 
|  | struct task_struct *res; | 
|  | struct list_head *l = it->task; | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | /* If the iterator cg is NULL, we have no tasks */ | 
|  | if (!it->cg_link) | 
|  | return NULL; | 
|  | res = list_entry(l, struct task_struct, cg_list); | 
|  | /* Advance iterator to find next entry */ | 
|  | l = l->next; | 
|  | link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list); | 
|  | if (l == &link->cg->tasks) { | 
|  | /* We reached the end of this task list - move on to | 
|  | * the next cg_cgroup_link */ | 
|  | cgroup_advance_iter(cgrp, it); | 
|  | } else { | 
|  | it->task = l; | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it) | 
|  | __releases(css_set_lock) | 
|  | { | 
|  | read_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | static inline int started_after_time(struct task_struct *t1, | 
|  | struct timespec *time, | 
|  | struct task_struct *t2) | 
|  | { | 
|  | int start_diff = timespec_compare(&t1->start_time, time); | 
|  | if (start_diff > 0) { | 
|  | return 1; | 
|  | } else if (start_diff < 0) { | 
|  | return 0; | 
|  | } else { | 
|  | /* | 
|  | * Arbitrarily, if two processes started at the same | 
|  | * time, we'll say that the lower pointer value | 
|  | * started first. Note that t2 may have exited by now | 
|  | * so this may not be a valid pointer any longer, but | 
|  | * that's fine - it still serves to distinguish | 
|  | * between two tasks started (effectively) simultaneously. | 
|  | */ | 
|  | return t1 > t2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is a callback from heap_insert() and is used to order | 
|  | * the heap. | 
|  | * In this case we order the heap in descending task start time. | 
|  | */ | 
|  | static inline int started_after(void *p1, void *p2) | 
|  | { | 
|  | struct task_struct *t1 = p1; | 
|  | struct task_struct *t2 = p2; | 
|  | return started_after_time(t1, &t2->start_time, t2); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_scan_tasks - iterate though all the tasks in a cgroup | 
|  | * @scan: struct cgroup_scanner containing arguments for the scan | 
|  | * | 
|  | * Arguments include pointers to callback functions test_task() and | 
|  | * process_task(). | 
|  | * Iterate through all the tasks in a cgroup, calling test_task() for each, | 
|  | * and if it returns true, call process_task() for it also. | 
|  | * The test_task pointer may be NULL, meaning always true (select all tasks). | 
|  | * Effectively duplicates cgroup_iter_{start,next,end}() | 
|  | * but does not lock css_set_lock for the call to process_task(). | 
|  | * The struct cgroup_scanner may be embedded in any structure of the caller's | 
|  | * creation. | 
|  | * It is guaranteed that process_task() will act on every task that | 
|  | * is a member of the cgroup for the duration of this call. This | 
|  | * function may or may not call process_task() for tasks that exit | 
|  | * or move to a different cgroup during the call, or are forked or | 
|  | * move into the cgroup during the call. | 
|  | * | 
|  | * Note that test_task() may be called with locks held, and may in some | 
|  | * situations be called multiple times for the same task, so it should | 
|  | * be cheap. | 
|  | * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been | 
|  | * pre-allocated and will be used for heap operations (and its "gt" member will | 
|  | * be overwritten), else a temporary heap will be used (allocation of which | 
|  | * may cause this function to fail). | 
|  | */ | 
|  | int cgroup_scan_tasks(struct cgroup_scanner *scan) | 
|  | { | 
|  | int retval, i; | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *p, *dropped; | 
|  | /* Never dereference latest_task, since it's not refcounted */ | 
|  | struct task_struct *latest_task = NULL; | 
|  | struct ptr_heap tmp_heap; | 
|  | struct ptr_heap *heap; | 
|  | struct timespec latest_time = { 0, 0 }; | 
|  |  | 
|  | if (scan->heap) { | 
|  | /* The caller supplied our heap and pre-allocated its memory */ | 
|  | heap = scan->heap; | 
|  | heap->gt = &started_after; | 
|  | } else { | 
|  | /* We need to allocate our own heap memory */ | 
|  | heap = &tmp_heap; | 
|  | retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after); | 
|  | if (retval) | 
|  | /* cannot allocate the heap */ | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * Scan tasks in the cgroup, using the scanner's "test_task" callback | 
|  | * to determine which are of interest, and using the scanner's | 
|  | * "process_task" callback to process any of them that need an update. | 
|  | * Since we don't want to hold any locks during the task updates, | 
|  | * gather tasks to be processed in a heap structure. | 
|  | * The heap is sorted by descending task start time. | 
|  | * If the statically-sized heap fills up, we overflow tasks that | 
|  | * started later, and in future iterations only consider tasks that | 
|  | * started after the latest task in the previous pass. This | 
|  | * guarantees forward progress and that we don't miss any tasks. | 
|  | */ | 
|  | heap->size = 0; | 
|  | cgroup_iter_start(scan->cg, &it); | 
|  | while ((p = cgroup_iter_next(scan->cg, &it))) { | 
|  | /* | 
|  | * Only affect tasks that qualify per the caller's callback, | 
|  | * if he provided one | 
|  | */ | 
|  | if (scan->test_task && !scan->test_task(p, scan)) | 
|  | continue; | 
|  | /* | 
|  | * Only process tasks that started after the last task | 
|  | * we processed | 
|  | */ | 
|  | if (!started_after_time(p, &latest_time, latest_task)) | 
|  | continue; | 
|  | dropped = heap_insert(heap, p); | 
|  | if (dropped == NULL) { | 
|  | /* | 
|  | * The new task was inserted; the heap wasn't | 
|  | * previously full | 
|  | */ | 
|  | get_task_struct(p); | 
|  | } else if (dropped != p) { | 
|  | /* | 
|  | * The new task was inserted, and pushed out a | 
|  | * different task | 
|  | */ | 
|  | get_task_struct(p); | 
|  | put_task_struct(dropped); | 
|  | } | 
|  | /* | 
|  | * Else the new task was newer than anything already in | 
|  | * the heap and wasn't inserted | 
|  | */ | 
|  | } | 
|  | cgroup_iter_end(scan->cg, &it); | 
|  |  | 
|  | if (heap->size) { | 
|  | for (i = 0; i < heap->size; i++) { | 
|  | struct task_struct *q = heap->ptrs[i]; | 
|  | if (i == 0) { | 
|  | latest_time = q->start_time; | 
|  | latest_task = q; | 
|  | } | 
|  | /* Process the task per the caller's callback */ | 
|  | scan->process_task(q, scan); | 
|  | put_task_struct(q); | 
|  | } | 
|  | /* | 
|  | * If we had to process any tasks at all, scan again | 
|  | * in case some of them were in the middle of forking | 
|  | * children that didn't get processed. | 
|  | * Not the most efficient way to do it, but it avoids | 
|  | * having to take callback_mutex in the fork path | 
|  | */ | 
|  | goto again; | 
|  | } | 
|  | if (heap == &tmp_heap) | 
|  | heap_free(&tmp_heap); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stuff for reading the 'tasks'/'procs' files. | 
|  | * | 
|  | * Reading this file can return large amounts of data if a cgroup has | 
|  | * *lots* of attached tasks. So it may need several calls to read(), | 
|  | * but we cannot guarantee that the information we produce is correct | 
|  | * unless we produce it entirely atomically. | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* which pidlist file are we talking about? */ | 
|  | enum cgroup_filetype { | 
|  | CGROUP_FILE_PROCS, | 
|  | CGROUP_FILE_TASKS, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * A pidlist is a list of pids that virtually represents the contents of one | 
|  | * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, | 
|  | * a pair (one each for procs, tasks) for each pid namespace that's relevant | 
|  | * to the cgroup. | 
|  | */ | 
|  | struct cgroup_pidlist { | 
|  | /* | 
|  | * used to find which pidlist is wanted. doesn't change as long as | 
|  | * this particular list stays in the list. | 
|  | */ | 
|  | struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; | 
|  | /* array of xids */ | 
|  | pid_t *list; | 
|  | /* how many elements the above list has */ | 
|  | int length; | 
|  | /* how many files are using the current array */ | 
|  | int use_count; | 
|  | /* each of these stored in a list by its cgroup */ | 
|  | struct list_head links; | 
|  | /* pointer to the cgroup we belong to, for list removal purposes */ | 
|  | struct cgroup *owner; | 
|  | /* protects the other fields */ | 
|  | struct rw_semaphore mutex; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The following two functions "fix" the issue where there are more pids | 
|  | * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. | 
|  | * TODO: replace with a kernel-wide solution to this problem | 
|  | */ | 
|  | #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) | 
|  | static void *pidlist_allocate(int count) | 
|  | { | 
|  | if (PIDLIST_TOO_LARGE(count)) | 
|  | return vmalloc(count * sizeof(pid_t)); | 
|  | else | 
|  | return kmalloc(count * sizeof(pid_t), GFP_KERNEL); | 
|  | } | 
|  | static void pidlist_free(void *p) | 
|  | { | 
|  | if (is_vmalloc_addr(p)) | 
|  | vfree(p); | 
|  | else | 
|  | kfree(p); | 
|  | } | 
|  | static void *pidlist_resize(void *p, int newcount) | 
|  | { | 
|  | void *newlist; | 
|  | /* note: if new alloc fails, old p will still be valid either way */ | 
|  | if (is_vmalloc_addr(p)) { | 
|  | newlist = vmalloc(newcount * sizeof(pid_t)); | 
|  | if (!newlist) | 
|  | return NULL; | 
|  | memcpy(newlist, p, newcount * sizeof(pid_t)); | 
|  | vfree(p); | 
|  | } else { | 
|  | newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL); | 
|  | } | 
|  | return newlist; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries | 
|  | * If the new stripped list is sufficiently smaller and there's enough memory | 
|  | * to allocate a new buffer, will let go of the unneeded memory. Returns the | 
|  | * number of unique elements. | 
|  | */ | 
|  | /* is the size difference enough that we should re-allocate the array? */ | 
|  | #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new)) | 
|  | static int pidlist_uniq(pid_t **p, int length) | 
|  | { | 
|  | int src, dest = 1; | 
|  | pid_t *list = *p; | 
|  | pid_t *newlist; | 
|  |  | 
|  | /* | 
|  | * we presume the 0th element is unique, so i starts at 1. trivial | 
|  | * edge cases first; no work needs to be done for either | 
|  | */ | 
|  | if (length == 0 || length == 1) | 
|  | return length; | 
|  | /* src and dest walk down the list; dest counts unique elements */ | 
|  | for (src = 1; src < length; src++) { | 
|  | /* find next unique element */ | 
|  | while (list[src] == list[src-1]) { | 
|  | src++; | 
|  | if (src == length) | 
|  | goto after; | 
|  | } | 
|  | /* dest always points to where the next unique element goes */ | 
|  | list[dest] = list[src]; | 
|  | dest++; | 
|  | } | 
|  | after: | 
|  | /* | 
|  | * if the length difference is large enough, we want to allocate a | 
|  | * smaller buffer to save memory. if this fails due to out of memory, | 
|  | * we'll just stay with what we've got. | 
|  | */ | 
|  | if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) { | 
|  | newlist = pidlist_resize(list, dest); | 
|  | if (newlist) | 
|  | *p = newlist; | 
|  | } | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | static int cmppid(const void *a, const void *b) | 
|  | { | 
|  | return *(pid_t *)a - *(pid_t *)b; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find the appropriate pidlist for our purpose (given procs vs tasks) | 
|  | * returns with the lock on that pidlist already held, and takes care | 
|  | * of the use count, or returns NULL with no locks held if we're out of | 
|  | * memory. | 
|  | */ | 
|  | static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, | 
|  | enum cgroup_filetype type) | 
|  | { | 
|  | struct cgroup_pidlist *l; | 
|  | /* don't need task_nsproxy() if we're looking at ourself */ | 
|  | struct pid_namespace *ns = current->nsproxy->pid_ns; | 
|  |  | 
|  | /* | 
|  | * We can't drop the pidlist_mutex before taking the l->mutex in case | 
|  | * the last ref-holder is trying to remove l from the list at the same | 
|  | * time. Holding the pidlist_mutex precludes somebody taking whichever | 
|  | * list we find out from under us - compare release_pid_array(). | 
|  | */ | 
|  | mutex_lock(&cgrp->pidlist_mutex); | 
|  | list_for_each_entry(l, &cgrp->pidlists, links) { | 
|  | if (l->key.type == type && l->key.ns == ns) { | 
|  | /* make sure l doesn't vanish out from under us */ | 
|  | down_write(&l->mutex); | 
|  | mutex_unlock(&cgrp->pidlist_mutex); | 
|  | return l; | 
|  | } | 
|  | } | 
|  | /* entry not found; create a new one */ | 
|  | l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); | 
|  | if (!l) { | 
|  | mutex_unlock(&cgrp->pidlist_mutex); | 
|  | return l; | 
|  | } | 
|  | init_rwsem(&l->mutex); | 
|  | down_write(&l->mutex); | 
|  | l->key.type = type; | 
|  | l->key.ns = get_pid_ns(ns); | 
|  | l->use_count = 0; /* don't increment here */ | 
|  | l->list = NULL; | 
|  | l->owner = cgrp; | 
|  | list_add(&l->links, &cgrp->pidlists); | 
|  | mutex_unlock(&cgrp->pidlist_mutex); | 
|  | return l; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load a cgroup's pidarray with either procs' tgids or tasks' pids | 
|  | */ | 
|  | static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, | 
|  | struct cgroup_pidlist **lp) | 
|  | { | 
|  | pid_t *array; | 
|  | int length; | 
|  | int pid, n = 0; /* used for populating the array */ | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *tsk; | 
|  | struct cgroup_pidlist *l; | 
|  |  | 
|  | /* | 
|  | * If cgroup gets more users after we read count, we won't have | 
|  | * enough space - tough.  This race is indistinguishable to the | 
|  | * caller from the case that the additional cgroup users didn't | 
|  | * show up until sometime later on. | 
|  | */ | 
|  | length = cgroup_task_count(cgrp); | 
|  | array = pidlist_allocate(length); | 
|  | if (!array) | 
|  | return -ENOMEM; | 
|  | /* now, populate the array */ | 
|  | cgroup_iter_start(cgrp, &it); | 
|  | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 
|  | if (unlikely(n == length)) | 
|  | break; | 
|  | /* get tgid or pid for procs or tasks file respectively */ | 
|  | if (type == CGROUP_FILE_PROCS) | 
|  | pid = task_tgid_vnr(tsk); | 
|  | else | 
|  | pid = task_pid_vnr(tsk); | 
|  | if (pid > 0) /* make sure to only use valid results */ | 
|  | array[n++] = pid; | 
|  | } | 
|  | cgroup_iter_end(cgrp, &it); | 
|  | length = n; | 
|  | /* now sort & (if procs) strip out duplicates */ | 
|  | sort(array, length, sizeof(pid_t), cmppid, NULL); | 
|  | if (type == CGROUP_FILE_PROCS) | 
|  | length = pidlist_uniq(&array, length); | 
|  | l = cgroup_pidlist_find(cgrp, type); | 
|  | if (!l) { | 
|  | pidlist_free(array); | 
|  | return -ENOMEM; | 
|  | } | 
|  | /* store array, freeing old if necessary - lock already held */ | 
|  | pidlist_free(l->list); | 
|  | l->list = array; | 
|  | l->length = length; | 
|  | l->use_count++; | 
|  | up_write(&l->mutex); | 
|  | *lp = l; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroupstats_build - build and fill cgroupstats | 
|  | * @stats: cgroupstats to fill information into | 
|  | * @dentry: A dentry entry belonging to the cgroup for which stats have | 
|  | * been requested. | 
|  | * | 
|  | * Build and fill cgroupstats so that taskstats can export it to user | 
|  | * space. | 
|  | */ | 
|  | int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | struct cgroup *cgrp; | 
|  | struct cgroup_iter it; | 
|  | struct task_struct *tsk; | 
|  |  | 
|  | /* | 
|  | * Validate dentry by checking the superblock operations, | 
|  | * and make sure it's a directory. | 
|  | */ | 
|  | if (dentry->d_sb->s_op != &cgroup_ops || | 
|  | !S_ISDIR(dentry->d_inode->i_mode)) | 
|  | goto err; | 
|  |  | 
|  | ret = 0; | 
|  | cgrp = dentry->d_fsdata; | 
|  |  | 
|  | cgroup_iter_start(cgrp, &it); | 
|  | while ((tsk = cgroup_iter_next(cgrp, &it))) { | 
|  | switch (tsk->state) { | 
|  | case TASK_RUNNING: | 
|  | stats->nr_running++; | 
|  | break; | 
|  | case TASK_INTERRUPTIBLE: | 
|  | stats->nr_sleeping++; | 
|  | break; | 
|  | case TASK_UNINTERRUPTIBLE: | 
|  | stats->nr_uninterruptible++; | 
|  | break; | 
|  | case TASK_STOPPED: | 
|  | stats->nr_stopped++; | 
|  | break; | 
|  | default: | 
|  | if (delayacct_is_task_waiting_on_io(tsk)) | 
|  | stats->nr_io_wait++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | cgroup_iter_end(cgrp, &it); | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * seq_file methods for the tasks/procs files. The seq_file position is the | 
|  | * next pid to display; the seq_file iterator is a pointer to the pid | 
|  | * in the cgroup->l->list array. | 
|  | */ | 
|  |  | 
|  | static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) | 
|  | { | 
|  | /* | 
|  | * Initially we receive a position value that corresponds to | 
|  | * one more than the last pid shown (or 0 on the first call or | 
|  | * after a seek to the start). Use a binary-search to find the | 
|  | * next pid to display, if any | 
|  | */ | 
|  | struct cgroup_pidlist *l = s->private; | 
|  | int index = 0, pid = *pos; | 
|  | int *iter; | 
|  |  | 
|  | down_read(&l->mutex); | 
|  | if (pid) { | 
|  | int end = l->length; | 
|  |  | 
|  | while (index < end) { | 
|  | int mid = (index + end) / 2; | 
|  | if (l->list[mid] == pid) { | 
|  | index = mid; | 
|  | break; | 
|  | } else if (l->list[mid] <= pid) | 
|  | index = mid + 1; | 
|  | else | 
|  | end = mid; | 
|  | } | 
|  | } | 
|  | /* If we're off the end of the array, we're done */ | 
|  | if (index >= l->length) | 
|  | return NULL; | 
|  | /* Update the abstract position to be the actual pid that we found */ | 
|  | iter = l->list + index; | 
|  | *pos = *iter; | 
|  | return iter; | 
|  | } | 
|  |  | 
|  | static void cgroup_pidlist_stop(struct seq_file *s, void *v) | 
|  | { | 
|  | struct cgroup_pidlist *l = s->private; | 
|  | up_read(&l->mutex); | 
|  | } | 
|  |  | 
|  | static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) | 
|  | { | 
|  | struct cgroup_pidlist *l = s->private; | 
|  | pid_t *p = v; | 
|  | pid_t *end = l->list + l->length; | 
|  | /* | 
|  | * Advance to the next pid in the array. If this goes off the | 
|  | * end, we're done | 
|  | */ | 
|  | p++; | 
|  | if (p >= end) { | 
|  | return NULL; | 
|  | } else { | 
|  | *pos = *p; | 
|  | return p; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int cgroup_pidlist_show(struct seq_file *s, void *v) | 
|  | { | 
|  | return seq_printf(s, "%d\n", *(int *)v); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * seq_operations functions for iterating on pidlists through seq_file - | 
|  | * independent of whether it's tasks or procs | 
|  | */ | 
|  | static const struct seq_operations cgroup_pidlist_seq_operations = { | 
|  | .start = cgroup_pidlist_start, | 
|  | .stop = cgroup_pidlist_stop, | 
|  | .next = cgroup_pidlist_next, | 
|  | .show = cgroup_pidlist_show, | 
|  | }; | 
|  |  | 
|  | static void cgroup_release_pid_array(struct cgroup_pidlist *l) | 
|  | { | 
|  | /* | 
|  | * the case where we're the last user of this particular pidlist will | 
|  | * have us remove it from the cgroup's list, which entails taking the | 
|  | * mutex. since in pidlist_find the pidlist->lock depends on cgroup-> | 
|  | * pidlist_mutex, we have to take pidlist_mutex first. | 
|  | */ | 
|  | mutex_lock(&l->owner->pidlist_mutex); | 
|  | down_write(&l->mutex); | 
|  | BUG_ON(!l->use_count); | 
|  | if (!--l->use_count) { | 
|  | /* we're the last user if refcount is 0; remove and free */ | 
|  | list_del(&l->links); | 
|  | mutex_unlock(&l->owner->pidlist_mutex); | 
|  | pidlist_free(l->list); | 
|  | put_pid_ns(l->key.ns); | 
|  | up_write(&l->mutex); | 
|  | kfree(l); | 
|  | return; | 
|  | } | 
|  | mutex_unlock(&l->owner->pidlist_mutex); | 
|  | up_write(&l->mutex); | 
|  | } | 
|  |  | 
|  | static int cgroup_pidlist_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct cgroup_pidlist *l; | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return 0; | 
|  | /* | 
|  | * the seq_file will only be initialized if the file was opened for | 
|  | * reading; hence we check if it's not null only in that case. | 
|  | */ | 
|  | l = ((struct seq_file *)file->private_data)->private; | 
|  | cgroup_release_pid_array(l); | 
|  | return seq_release(inode, file); | 
|  | } | 
|  |  | 
|  | static const struct file_operations cgroup_pidlist_operations = { | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .write = cgroup_file_write, | 
|  | .release = cgroup_pidlist_release, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The following functions handle opens on a file that displays a pidlist | 
|  | * (tasks or procs). Prepare an array of the process/thread IDs of whoever's | 
|  | * in the cgroup. | 
|  | */ | 
|  | /* helper function for the two below it */ | 
|  | static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type) | 
|  | { | 
|  | struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent); | 
|  | struct cgroup_pidlist *l; | 
|  | int retval; | 
|  |  | 
|  | /* Nothing to do for write-only files */ | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return 0; | 
|  |  | 
|  | /* have the array populated */ | 
|  | retval = pidlist_array_load(cgrp, type, &l); | 
|  | if (retval) | 
|  | return retval; | 
|  | /* configure file information */ | 
|  | file->f_op = &cgroup_pidlist_operations; | 
|  |  | 
|  | retval = seq_open(file, &cgroup_pidlist_seq_operations); | 
|  | if (retval) { | 
|  | cgroup_release_pid_array(l); | 
|  | return retval; | 
|  | } | 
|  | ((struct seq_file *)file->private_data)->private = l; | 
|  | return 0; | 
|  | } | 
|  | static int cgroup_tasks_open(struct inode *unused, struct file *file) | 
|  | { | 
|  | return cgroup_pidlist_open(file, CGROUP_FILE_TASKS); | 
|  | } | 
|  | static int cgroup_procs_open(struct inode *unused, struct file *file) | 
|  | { | 
|  | return cgroup_pidlist_open(file, CGROUP_FILE_PROCS); | 
|  | } | 
|  |  | 
|  | static u64 cgroup_read_notify_on_release(struct cgroup *cgrp, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return notify_on_release(cgrp); | 
|  | } | 
|  |  | 
|  | static int cgroup_write_notify_on_release(struct cgroup *cgrp, | 
|  | struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | clear_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | if (val) | 
|  | set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | else | 
|  | clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unregister event and free resources. | 
|  | * | 
|  | * Gets called from workqueue. | 
|  | */ | 
|  | static void cgroup_event_remove(struct work_struct *work) | 
|  | { | 
|  | struct cgroup_event *event = container_of(work, struct cgroup_event, | 
|  | remove); | 
|  | struct cgroup *cgrp = event->cgrp; | 
|  |  | 
|  | event->cft->unregister_event(cgrp, event->cft, event->eventfd); | 
|  |  | 
|  | eventfd_ctx_put(event->eventfd); | 
|  | kfree(event); | 
|  | dput(cgrp->dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gets called on POLLHUP on eventfd when user closes it. | 
|  | * | 
|  | * Called with wqh->lock held and interrupts disabled. | 
|  | */ | 
|  | static int cgroup_event_wake(wait_queue_t *wait, unsigned mode, | 
|  | int sync, void *key) | 
|  | { | 
|  | struct cgroup_event *event = container_of(wait, | 
|  | struct cgroup_event, wait); | 
|  | struct cgroup *cgrp = event->cgrp; | 
|  | unsigned long flags = (unsigned long)key; | 
|  |  | 
|  | if (flags & POLLHUP) { | 
|  | __remove_wait_queue(event->wqh, &event->wait); | 
|  | spin_lock(&cgrp->event_list_lock); | 
|  | list_del(&event->list); | 
|  | spin_unlock(&cgrp->event_list_lock); | 
|  | /* | 
|  | * We are in atomic context, but cgroup_event_remove() may | 
|  | * sleep, so we have to call it in workqueue. | 
|  | */ | 
|  | schedule_work(&event->remove); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cgroup_event_ptable_queue_proc(struct file *file, | 
|  | wait_queue_head_t *wqh, poll_table *pt) | 
|  | { | 
|  | struct cgroup_event *event = container_of(pt, | 
|  | struct cgroup_event, pt); | 
|  |  | 
|  | event->wqh = wqh; | 
|  | add_wait_queue(wqh, &event->wait); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Parse input and register new cgroup event handler. | 
|  | * | 
|  | * Input must be in format '<event_fd> <control_fd> <args>'. | 
|  | * Interpretation of args is defined by control file implementation. | 
|  | */ | 
|  | static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft, | 
|  | const char *buffer) | 
|  | { | 
|  | struct cgroup_event *event = NULL; | 
|  | unsigned int efd, cfd; | 
|  | struct file *efile = NULL; | 
|  | struct file *cfile = NULL; | 
|  | char *endp; | 
|  | int ret; | 
|  |  | 
|  | efd = simple_strtoul(buffer, &endp, 10); | 
|  | if (*endp != ' ') | 
|  | return -EINVAL; | 
|  | buffer = endp + 1; | 
|  |  | 
|  | cfd = simple_strtoul(buffer, &endp, 10); | 
|  | if ((*endp != ' ') && (*endp != '\0')) | 
|  | return -EINVAL; | 
|  | buffer = endp + 1; | 
|  |  | 
|  | event = kzalloc(sizeof(*event), GFP_KERNEL); | 
|  | if (!event) | 
|  | return -ENOMEM; | 
|  | event->cgrp = cgrp; | 
|  | INIT_LIST_HEAD(&event->list); | 
|  | init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc); | 
|  | init_waitqueue_func_entry(&event->wait, cgroup_event_wake); | 
|  | INIT_WORK(&event->remove, cgroup_event_remove); | 
|  |  | 
|  | efile = eventfd_fget(efd); | 
|  | if (IS_ERR(efile)) { | 
|  | ret = PTR_ERR(efile); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | event->eventfd = eventfd_ctx_fileget(efile); | 
|  | if (IS_ERR(event->eventfd)) { | 
|  | ret = PTR_ERR(event->eventfd); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | cfile = fget(cfd); | 
|  | if (!cfile) { | 
|  | ret = -EBADF; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* the process need read permission on control file */ | 
|  | /* AV: shouldn't we check that it's been opened for read instead? */ | 
|  | ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ); | 
|  | if (ret < 0) | 
|  | goto fail; | 
|  |  | 
|  | event->cft = __file_cft(cfile); | 
|  | if (IS_ERR(event->cft)) { | 
|  | ret = PTR_ERR(event->cft); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (!event->cft->register_event || !event->cft->unregister_event) { | 
|  | ret = -EINVAL; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ret = event->cft->register_event(cgrp, event->cft, | 
|  | event->eventfd, buffer); | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | if (efile->f_op->poll(efile, &event->pt) & POLLHUP) { | 
|  | event->cft->unregister_event(cgrp, event->cft, event->eventfd); | 
|  | ret = 0; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Events should be removed after rmdir of cgroup directory, but before | 
|  | * destroying subsystem state objects. Let's take reference to cgroup | 
|  | * directory dentry to do that. | 
|  | */ | 
|  | dget(cgrp->dentry); | 
|  |  | 
|  | spin_lock(&cgrp->event_list_lock); | 
|  | list_add(&event->list, &cgrp->event_list); | 
|  | spin_unlock(&cgrp->event_list_lock); | 
|  |  | 
|  | fput(cfile); | 
|  | fput(efile); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (cfile) | 
|  | fput(cfile); | 
|  |  | 
|  | if (event && event->eventfd && !IS_ERR(event->eventfd)) | 
|  | eventfd_ctx_put(event->eventfd); | 
|  |  | 
|  | if (!IS_ERR_OR_NULL(efile)) | 
|  | fput(efile); | 
|  |  | 
|  | kfree(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 cgroup_clone_children_read(struct cgroup *cgrp, | 
|  | struct cftype *cft) | 
|  | { | 
|  | return clone_children(cgrp); | 
|  | } | 
|  |  | 
|  | static int cgroup_clone_children_write(struct cgroup *cgrp, | 
|  | struct cftype *cft, | 
|  | u64 val) | 
|  | { | 
|  | if (val) | 
|  | set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); | 
|  | else | 
|  | clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for the common functions, 'private' gives the type of file | 
|  | */ | 
|  | /* for hysterical raisins, we can't put this on the older files */ | 
|  | #define CGROUP_FILE_GENERIC_PREFIX "cgroup." | 
|  | static struct cftype files[] = { | 
|  | { | 
|  | .name = "tasks", | 
|  | .open = cgroup_tasks_open, | 
|  | .write_u64 = cgroup_tasks_write, | 
|  | .release = cgroup_pidlist_release, | 
|  | .mode = S_IRUGO | S_IWUSR, | 
|  | }, | 
|  | { | 
|  | .name = CGROUP_FILE_GENERIC_PREFIX "procs", | 
|  | .open = cgroup_procs_open, | 
|  | .write_u64 = cgroup_procs_write, | 
|  | .release = cgroup_pidlist_release, | 
|  | .mode = S_IRUGO | S_IWUSR, | 
|  | }, | 
|  | { | 
|  | .name = "notify_on_release", | 
|  | .read_u64 = cgroup_read_notify_on_release, | 
|  | .write_u64 = cgroup_write_notify_on_release, | 
|  | }, | 
|  | { | 
|  | .name = CGROUP_FILE_GENERIC_PREFIX "event_control", | 
|  | .write_string = cgroup_write_event_control, | 
|  | .mode = S_IWUGO, | 
|  | }, | 
|  | { | 
|  | .name = "cgroup.clone_children", | 
|  | .read_u64 = cgroup_clone_children_read, | 
|  | .write_u64 = cgroup_clone_children_write, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static struct cftype cft_release_agent = { | 
|  | .name = "release_agent", | 
|  | .read_seq_string = cgroup_release_agent_show, | 
|  | .write_string = cgroup_release_agent_write, | 
|  | .max_write_len = PATH_MAX, | 
|  | }; | 
|  |  | 
|  | static int cgroup_populate_dir(struct cgroup *cgrp) | 
|  | { | 
|  | int err; | 
|  | struct cgroup_subsys *ss; | 
|  |  | 
|  | /* First clear out any existing files */ | 
|  | cgroup_clear_directory(cgrp->dentry); | 
|  |  | 
|  | err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files)); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | if (cgrp == cgrp->top_cgroup) { | 
|  | if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | for_each_subsys(cgrp->root, ss) { | 
|  | if (ss->populate && (err = ss->populate(ss, cgrp)) < 0) | 
|  | return err; | 
|  | } | 
|  | /* This cgroup is ready now */ | 
|  | for_each_subsys(cgrp->root, ss) { | 
|  | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | 
|  | /* | 
|  | * Update id->css pointer and make this css visible from | 
|  | * CSS ID functions. This pointer will be dereferened | 
|  | * from RCU-read-side without locks. | 
|  | */ | 
|  | if (css->id) | 
|  | rcu_assign_pointer(css->id->css, css); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void init_cgroup_css(struct cgroup_subsys_state *css, | 
|  | struct cgroup_subsys *ss, | 
|  | struct cgroup *cgrp) | 
|  | { | 
|  | css->cgroup = cgrp; | 
|  | atomic_set(&css->refcnt, 1); | 
|  | css->flags = 0; | 
|  | css->id = NULL; | 
|  | if (cgrp == dummytop) | 
|  | set_bit(CSS_ROOT, &css->flags); | 
|  | BUG_ON(cgrp->subsys[ss->subsys_id]); | 
|  | cgrp->subsys[ss->subsys_id] = css; | 
|  | } | 
|  |  | 
|  | static void cgroup_lock_hierarchy(struct cgroupfs_root *root) | 
|  | { | 
|  | /* We need to take each hierarchy_mutex in a consistent order */ | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * No worry about a race with rebind_subsystems that might mess up the | 
|  | * locking order, since both parties are under cgroup_mutex. | 
|  | */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss == NULL) | 
|  | continue; | 
|  | if (ss->root == root) | 
|  | mutex_lock(&ss->hierarchy_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cgroup_unlock_hierarchy(struct cgroupfs_root *root) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss == NULL) | 
|  | continue; | 
|  | if (ss->root == root) | 
|  | mutex_unlock(&ss->hierarchy_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cgroup_create - create a cgroup | 
|  | * @parent: cgroup that will be parent of the new cgroup | 
|  | * @dentry: dentry of the new cgroup | 
|  | * @mode: mode to set on new inode | 
|  | * | 
|  | * Must be called with the mutex on the parent inode held | 
|  | */ | 
|  | static long cgroup_create(struct cgroup *parent, struct dentry *dentry, | 
|  | umode_t mode) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  | struct cgroupfs_root *root = parent->root; | 
|  | int err = 0; | 
|  | struct cgroup_subsys *ss; | 
|  | struct super_block *sb = root->sb; | 
|  |  | 
|  | cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL); | 
|  | if (!cgrp) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Grab a reference on the superblock so the hierarchy doesn't | 
|  | * get deleted on unmount if there are child cgroups.  This | 
|  | * can be done outside cgroup_mutex, since the sb can't | 
|  | * disappear while someone has an open control file on the | 
|  | * fs */ | 
|  | atomic_inc(&sb->s_active); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | init_cgroup_housekeeping(cgrp); | 
|  |  | 
|  | cgrp->parent = parent; | 
|  | cgrp->root = parent->root; | 
|  | cgrp->top_cgroup = parent->top_cgroup; | 
|  |  | 
|  | if (notify_on_release(parent)) | 
|  | set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); | 
|  |  | 
|  | if (clone_children(parent)) | 
|  | set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags); | 
|  |  | 
|  | for_each_subsys(root, ss) { | 
|  | struct cgroup_subsys_state *css = ss->create(cgrp); | 
|  |  | 
|  | if (IS_ERR(css)) { | 
|  | err = PTR_ERR(css); | 
|  | goto err_destroy; | 
|  | } | 
|  | init_cgroup_css(css, ss, cgrp); | 
|  | if (ss->use_id) { | 
|  | err = alloc_css_id(ss, parent, cgrp); | 
|  | if (err) | 
|  | goto err_destroy; | 
|  | } | 
|  | /* At error, ->destroy() callback has to free assigned ID. */ | 
|  | if (clone_children(parent) && ss->post_clone) | 
|  | ss->post_clone(cgrp); | 
|  | } | 
|  |  | 
|  | cgroup_lock_hierarchy(root); | 
|  | list_add(&cgrp->sibling, &cgrp->parent->children); | 
|  | cgroup_unlock_hierarchy(root); | 
|  | root->number_of_cgroups++; | 
|  |  | 
|  | err = cgroup_create_dir(cgrp, dentry, mode); | 
|  | if (err < 0) | 
|  | goto err_remove; | 
|  |  | 
|  | set_bit(CGRP_RELEASABLE, &parent->flags); | 
|  |  | 
|  | /* The cgroup directory was pre-locked for us */ | 
|  | BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex)); | 
|  |  | 
|  | err = cgroup_populate_dir(cgrp); | 
|  | /* If err < 0, we have a half-filled directory - oh well ;) */ | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | mutex_unlock(&cgrp->dentry->d_inode->i_mutex); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_remove: | 
|  |  | 
|  | cgroup_lock_hierarchy(root); | 
|  | list_del(&cgrp->sibling); | 
|  | cgroup_unlock_hierarchy(root); | 
|  | root->number_of_cgroups--; | 
|  |  | 
|  | err_destroy: | 
|  |  | 
|  | for_each_subsys(root, ss) { | 
|  | if (cgrp->subsys[ss->subsys_id]) | 
|  | ss->destroy(cgrp); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* Release the reference count that we took on the superblock */ | 
|  | deactivate_super(sb); | 
|  |  | 
|  | kfree(cgrp); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | 
|  | { | 
|  | struct cgroup *c_parent = dentry->d_parent->d_fsdata; | 
|  |  | 
|  | /* the vfs holds inode->i_mutex already */ | 
|  | return cgroup_create(c_parent, dentry, mode | S_IFDIR); | 
|  | } | 
|  |  | 
|  | static int cgroup_has_css_refs(struct cgroup *cgrp) | 
|  | { | 
|  | /* Check the reference count on each subsystem. Since we | 
|  | * already established that there are no tasks in the | 
|  | * cgroup, if the css refcount is also 1, then there should | 
|  | * be no outstanding references, so the subsystem is safe to | 
|  | * destroy. We scan across all subsystems rather than using | 
|  | * the per-hierarchy linked list of mounted subsystems since | 
|  | * we can be called via check_for_release() with no | 
|  | * synchronization other than RCU, and the subsystem linked | 
|  | * list isn't RCU-safe */ | 
|  | int i; | 
|  | /* | 
|  | * We won't need to lock the subsys array, because the subsystems | 
|  | * we're concerned about aren't going anywhere since our cgroup root | 
|  | * has a reference on them. | 
|  | */ | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | struct cgroup_subsys_state *css; | 
|  | /* Skip subsystems not present or not in this hierarchy */ | 
|  | if (ss == NULL || ss->root != cgrp->root) | 
|  | continue; | 
|  | css = cgrp->subsys[ss->subsys_id]; | 
|  | /* When called from check_for_release() it's possible | 
|  | * that by this point the cgroup has been removed | 
|  | * and the css deleted. But a false-positive doesn't | 
|  | * matter, since it can only happen if the cgroup | 
|  | * has been deleted and hence no longer needs the | 
|  | * release agent to be called anyway. */ | 
|  | if (css && (atomic_read(&css->refcnt) > 1)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Atomically mark all (or else none) of the cgroup's CSS objects as | 
|  | * CSS_REMOVED. Return true on success, or false if the cgroup has | 
|  | * busy subsystems. Call with cgroup_mutex held | 
|  | */ | 
|  |  | 
|  | static int cgroup_clear_css_refs(struct cgroup *cgrp) | 
|  | { | 
|  | struct cgroup_subsys *ss; | 
|  | unsigned long flags; | 
|  | bool failed = false; | 
|  | local_irq_save(flags); | 
|  | for_each_subsys(cgrp->root, ss) { | 
|  | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | 
|  | int refcnt; | 
|  | while (1) { | 
|  | /* We can only remove a CSS with a refcnt==1 */ | 
|  | refcnt = atomic_read(&css->refcnt); | 
|  | if (refcnt > 1) { | 
|  | failed = true; | 
|  | goto done; | 
|  | } | 
|  | BUG_ON(!refcnt); | 
|  | /* | 
|  | * Drop the refcnt to 0 while we check other | 
|  | * subsystems. This will cause any racing | 
|  | * css_tryget() to spin until we set the | 
|  | * CSS_REMOVED bits or abort | 
|  | */ | 
|  | if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt) | 
|  | break; | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  | done: | 
|  | for_each_subsys(cgrp->root, ss) { | 
|  | struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id]; | 
|  | if (failed) { | 
|  | /* | 
|  | * Restore old refcnt if we previously managed | 
|  | * to clear it from 1 to 0 | 
|  | */ | 
|  | if (!atomic_read(&css->refcnt)) | 
|  | atomic_set(&css->refcnt, 1); | 
|  | } else { | 
|  | /* Commit the fact that the CSS is removed */ | 
|  | set_bit(CSS_REMOVED, &css->flags); | 
|  | } | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | return !failed; | 
|  | } | 
|  |  | 
|  | /* checks if all of the css_sets attached to a cgroup have a refcount of 0. | 
|  | * Must be called with css_set_lock held */ | 
|  | static int cgroup_css_sets_empty(struct cgroup *cgrp) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) { | 
|  | struct css_set *cg = link->cg; | 
|  | if (atomic_read(&cg->refcount) > 0) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry) | 
|  | { | 
|  | struct cgroup *cgrp = dentry->d_fsdata; | 
|  | struct dentry *d; | 
|  | struct cgroup *parent; | 
|  | DEFINE_WAIT(wait); | 
|  | struct cgroup_event *event, *tmp; | 
|  | int ret; | 
|  |  | 
|  | /* the vfs holds both inode->i_mutex already */ | 
|  | again: | 
|  | mutex_lock(&cgroup_mutex); | 
|  | if (!cgroup_css_sets_empty(cgrp)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return -EBUSY; | 
|  | } | 
|  | if (!list_empty(&cgrp->children)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return -EBUSY; | 
|  | } | 
|  | mutex_unlock(&cgroup_mutex); | 
|  |  | 
|  | /* | 
|  | * In general, subsystem has no css->refcnt after pre_destroy(). But | 
|  | * in racy cases, subsystem may have to get css->refcnt after | 
|  | * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes | 
|  | * make rmdir return -EBUSY too often. To avoid that, we use waitqueue | 
|  | * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir | 
|  | * and subsystem's reference count handling. Please see css_get/put | 
|  | * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation. | 
|  | */ | 
|  | set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | 
|  |  | 
|  | /* | 
|  | * Call pre_destroy handlers of subsys. Notify subsystems | 
|  | * that rmdir() request comes. | 
|  | */ | 
|  | ret = cgroup_call_pre_destroy(cgrp); | 
|  | if (ret) { | 
|  | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | parent = cgrp->parent; | 
|  | if (!cgroup_css_sets_empty(cgrp) || !list_empty(&cgrp->children)) { | 
|  | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return -EBUSY; | 
|  | } | 
|  | prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE); | 
|  | if (!cgroup_clear_css_refs(cgrp)) { | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | /* | 
|  | * Because someone may call cgroup_wakeup_rmdir_waiter() before | 
|  | * prepare_to_wait(), we need to check this flag. | 
|  | */ | 
|  | if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)) | 
|  | schedule(); | 
|  | finish_wait(&cgroup_rmdir_waitq, &wait); | 
|  | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | 
|  | if (signal_pending(current)) | 
|  | return -EINTR; | 
|  | goto again; | 
|  | } | 
|  | /* NO css_tryget() can success after here. */ | 
|  | finish_wait(&cgroup_rmdir_waitq, &wait); | 
|  | clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags); | 
|  |  | 
|  | raw_spin_lock(&release_list_lock); | 
|  | set_bit(CGRP_REMOVED, &cgrp->flags); | 
|  | if (!list_empty(&cgrp->release_list)) | 
|  | list_del_init(&cgrp->release_list); | 
|  | raw_spin_unlock(&release_list_lock); | 
|  |  | 
|  | cgroup_lock_hierarchy(cgrp->root); | 
|  | /* delete this cgroup from parent->children */ | 
|  | list_del_init(&cgrp->sibling); | 
|  | cgroup_unlock_hierarchy(cgrp->root); | 
|  |  | 
|  | d = dget(cgrp->dentry); | 
|  |  | 
|  | cgroup_d_remove_dir(d); | 
|  | dput(d); | 
|  |  | 
|  | check_for_release(parent); | 
|  |  | 
|  | /* | 
|  | * Unregister events and notify userspace. | 
|  | * Notify userspace about cgroup removing only after rmdir of cgroup | 
|  | * directory to avoid race between userspace and kernelspace | 
|  | */ | 
|  | spin_lock(&cgrp->event_list_lock); | 
|  | list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) { | 
|  | list_del(&event->list); | 
|  | remove_wait_queue(event->wqh, &event->wait); | 
|  | eventfd_signal(event->eventfd, 1); | 
|  | schedule_work(&event->remove); | 
|  | } | 
|  | spin_unlock(&cgrp->event_list_lock); | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init cgroup_init_subsys(struct cgroup_subsys *ss) | 
|  | { | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name); | 
|  |  | 
|  | /* Create the top cgroup state for this subsystem */ | 
|  | list_add(&ss->sibling, &rootnode.subsys_list); | 
|  | ss->root = &rootnode; | 
|  | css = ss->create(dummytop); | 
|  | /* We don't handle early failures gracefully */ | 
|  | BUG_ON(IS_ERR(css)); | 
|  | init_cgroup_css(css, ss, dummytop); | 
|  |  | 
|  | /* Update the init_css_set to contain a subsys | 
|  | * pointer to this state - since the subsystem is | 
|  | * newly registered, all tasks and hence the | 
|  | * init_css_set is in the subsystem's top cgroup. */ | 
|  | init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id]; | 
|  |  | 
|  | need_forkexit_callback |= ss->fork || ss->exit; | 
|  |  | 
|  | /* At system boot, before all subsystems have been | 
|  | * registered, no tasks have been forked, so we don't | 
|  | * need to invoke fork callbacks here. */ | 
|  | BUG_ON(!list_empty(&init_task.tasks)); | 
|  |  | 
|  | mutex_init(&ss->hierarchy_mutex); | 
|  | lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); | 
|  | ss->active = 1; | 
|  |  | 
|  | /* this function shouldn't be used with modular subsystems, since they | 
|  | * need to register a subsys_id, among other things */ | 
|  | BUG_ON(ss->module); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_load_subsys: load and register a modular subsystem at runtime | 
|  | * @ss: the subsystem to load | 
|  | * | 
|  | * This function should be called in a modular subsystem's initcall. If the | 
|  | * subsystem is built as a module, it will be assigned a new subsys_id and set | 
|  | * up for use. If the subsystem is built-in anyway, work is delegated to the | 
|  | * simpler cgroup_init_subsys. | 
|  | */ | 
|  | int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss) | 
|  | { | 
|  | int i; | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | /* check name and function validity */ | 
|  | if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN || | 
|  | ss->create == NULL || ss->destroy == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * we don't support callbacks in modular subsystems. this check is | 
|  | * before the ss->module check for consistency; a subsystem that could | 
|  | * be a module should still have no callbacks even if the user isn't | 
|  | * compiling it as one. | 
|  | */ | 
|  | if (ss->fork || ss->exit) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * an optionally modular subsystem is built-in: we want to do nothing, | 
|  | * since cgroup_init_subsys will have already taken care of it. | 
|  | */ | 
|  | if (ss->module == NULL) { | 
|  | /* a few sanity checks */ | 
|  | BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT); | 
|  | BUG_ON(subsys[ss->subsys_id] != ss); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * need to register a subsys id before anything else - for example, | 
|  | * init_cgroup_css needs it. | 
|  | */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  | /* find the first empty slot in the array */ | 
|  | for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | if (subsys[i] == NULL) | 
|  | break; | 
|  | } | 
|  | if (i == CGROUP_SUBSYS_COUNT) { | 
|  | /* maximum number of subsystems already registered! */ | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return -EBUSY; | 
|  | } | 
|  | /* assign ourselves the subsys_id */ | 
|  | ss->subsys_id = i; | 
|  | subsys[i] = ss; | 
|  |  | 
|  | /* | 
|  | * no ss->create seems to need anything important in the ss struct, so | 
|  | * this can happen first (i.e. before the rootnode attachment). | 
|  | */ | 
|  | css = ss->create(dummytop); | 
|  | if (IS_ERR(css)) { | 
|  | /* failure case - need to deassign the subsys[] slot. */ | 
|  | subsys[i] = NULL; | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return PTR_ERR(css); | 
|  | } | 
|  |  | 
|  | list_add(&ss->sibling, &rootnode.subsys_list); | 
|  | ss->root = &rootnode; | 
|  |  | 
|  | /* our new subsystem will be attached to the dummy hierarchy. */ | 
|  | init_cgroup_css(css, ss, dummytop); | 
|  | /* init_idr must be after init_cgroup_css because it sets css->id. */ | 
|  | if (ss->use_id) { | 
|  | int ret = cgroup_init_idr(ss, css); | 
|  | if (ret) { | 
|  | dummytop->subsys[ss->subsys_id] = NULL; | 
|  | ss->destroy(dummytop); | 
|  | subsys[i] = NULL; | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we need to entangle the css into the existing css_sets. unlike | 
|  | * in cgroup_init_subsys, there are now multiple css_sets, so each one | 
|  | * will need a new pointer to it; done by iterating the css_set_table. | 
|  | * furthermore, modifying the existing css_sets will corrupt the hash | 
|  | * table state, so each changed css_set will need its hash recomputed. | 
|  | * this is all done under the css_set_lock. | 
|  | */ | 
|  | write_lock(&css_set_lock); | 
|  | for (i = 0; i < CSS_SET_TABLE_SIZE; i++) { | 
|  | struct css_set *cg; | 
|  | struct hlist_node *node, *tmp; | 
|  | struct hlist_head *bucket = &css_set_table[i], *new_bucket; | 
|  |  | 
|  | hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) { | 
|  | /* skip entries that we already rehashed */ | 
|  | if (cg->subsys[ss->subsys_id]) | 
|  | continue; | 
|  | /* remove existing entry */ | 
|  | hlist_del(&cg->hlist); | 
|  | /* set new value */ | 
|  | cg->subsys[ss->subsys_id] = css; | 
|  | /* recompute hash and restore entry */ | 
|  | new_bucket = css_set_hash(cg->subsys); | 
|  | hlist_add_head(&cg->hlist, new_bucket); | 
|  | } | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | mutex_init(&ss->hierarchy_mutex); | 
|  | lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key); | 
|  | ss->active = 1; | 
|  |  | 
|  | /* success! */ | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_load_subsys); | 
|  |  | 
|  | /** | 
|  | * cgroup_unload_subsys: unload a modular subsystem | 
|  | * @ss: the subsystem to unload | 
|  | * | 
|  | * This function should be called in a modular subsystem's exitcall. When this | 
|  | * function is invoked, the refcount on the subsystem's module will be 0, so | 
|  | * the subsystem will not be attached to any hierarchy. | 
|  | */ | 
|  | void cgroup_unload_subsys(struct cgroup_subsys *ss) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  | struct hlist_head *hhead; | 
|  |  | 
|  | BUG_ON(ss->module == NULL); | 
|  |  | 
|  | /* | 
|  | * we shouldn't be called if the subsystem is in use, and the use of | 
|  | * try_module_get in parse_cgroupfs_options should ensure that it | 
|  | * doesn't start being used while we're killing it off. | 
|  | */ | 
|  | BUG_ON(ss->root != &rootnode); | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  | /* deassign the subsys_id */ | 
|  | BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT); | 
|  | subsys[ss->subsys_id] = NULL; | 
|  |  | 
|  | /* remove subsystem from rootnode's list of subsystems */ | 
|  | list_del_init(&ss->sibling); | 
|  |  | 
|  | /* | 
|  | * disentangle the css from all css_sets attached to the dummytop. as | 
|  | * in loading, we need to pay our respects to the hashtable gods. | 
|  | */ | 
|  | write_lock(&css_set_lock); | 
|  | list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) { | 
|  | struct css_set *cg = link->cg; | 
|  |  | 
|  | hlist_del(&cg->hlist); | 
|  | BUG_ON(!cg->subsys[ss->subsys_id]); | 
|  | cg->subsys[ss->subsys_id] = NULL; | 
|  | hhead = css_set_hash(cg->subsys); | 
|  | hlist_add_head(&cg->hlist, hhead); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  |  | 
|  | /* | 
|  | * remove subsystem's css from the dummytop and free it - need to free | 
|  | * before marking as null because ss->destroy needs the cgrp->subsys | 
|  | * pointer to find their state. note that this also takes care of | 
|  | * freeing the css_id. | 
|  | */ | 
|  | ss->destroy(dummytop); | 
|  | dummytop->subsys[ss->subsys_id] = NULL; | 
|  |  | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cgroup_unload_subsys); | 
|  |  | 
|  | /** | 
|  | * cgroup_init_early - cgroup initialization at system boot | 
|  | * | 
|  | * Initialize cgroups at system boot, and initialize any | 
|  | * subsystems that request early init. | 
|  | */ | 
|  | int __init cgroup_init_early(void) | 
|  | { | 
|  | int i; | 
|  | atomic_set(&init_css_set.refcount, 1); | 
|  | INIT_LIST_HEAD(&init_css_set.cg_links); | 
|  | INIT_LIST_HEAD(&init_css_set.tasks); | 
|  | INIT_HLIST_NODE(&init_css_set.hlist); | 
|  | css_set_count = 1; | 
|  | init_cgroup_root(&rootnode); | 
|  | root_count = 1; | 
|  | init_task.cgroups = &init_css_set; | 
|  |  | 
|  | init_css_set_link.cg = &init_css_set; | 
|  | init_css_set_link.cgrp = dummytop; | 
|  | list_add(&init_css_set_link.cgrp_link_list, | 
|  | &rootnode.top_cgroup.css_sets); | 
|  | list_add(&init_css_set_link.cg_link_list, | 
|  | &init_css_set.cg_links); | 
|  |  | 
|  | for (i = 0; i < CSS_SET_TABLE_SIZE; i++) | 
|  | INIT_HLIST_HEAD(&css_set_table[i]); | 
|  |  | 
|  | /* at bootup time, we don't worry about modular subsystems */ | 
|  | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  |  | 
|  | BUG_ON(!ss->name); | 
|  | BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN); | 
|  | BUG_ON(!ss->create); | 
|  | BUG_ON(!ss->destroy); | 
|  | if (ss->subsys_id != i) { | 
|  | printk(KERN_ERR "cgroup: Subsys %s id == %d\n", | 
|  | ss->name, ss->subsys_id); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (ss->early_init) | 
|  | cgroup_init_subsys(ss); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_init - cgroup initialization | 
|  | * | 
|  | * Register cgroup filesystem and /proc file, and initialize | 
|  | * any subsystems that didn't request early init. | 
|  | */ | 
|  | int __init cgroup_init(void) | 
|  | { | 
|  | int err; | 
|  | int i; | 
|  | struct hlist_head *hhead; | 
|  |  | 
|  | err = bdi_init(&cgroup_backing_dev_info); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* at bootup time, we don't worry about modular subsystems */ | 
|  | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (!ss->early_init) | 
|  | cgroup_init_subsys(ss); | 
|  | if (ss->use_id) | 
|  | cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]); | 
|  | } | 
|  |  | 
|  | /* Add init_css_set to the hash table */ | 
|  | hhead = css_set_hash(init_css_set.subsys); | 
|  | hlist_add_head(&init_css_set.hlist, hhead); | 
|  | BUG_ON(!init_root_id(&rootnode)); | 
|  |  | 
|  | cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj); | 
|  | if (!cgroup_kobj) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = register_filesystem(&cgroup_fs_type); | 
|  | if (err < 0) { | 
|  | kobject_put(cgroup_kobj); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations); | 
|  |  | 
|  | out: | 
|  | if (err) | 
|  | bdi_destroy(&cgroup_backing_dev_info); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * proc_cgroup_show() | 
|  | *  - Print task's cgroup paths into seq_file, one line for each hierarchy | 
|  | *  - Used for /proc/<pid>/cgroup. | 
|  | *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it | 
|  | *    doesn't really matter if tsk->cgroup changes after we read it, | 
|  | *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it | 
|  | *    anyway.  No need to check that tsk->cgroup != NULL, thanks to | 
|  | *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks | 
|  | *    cgroup to top_cgroup. | 
|  | */ | 
|  |  | 
|  | /* TODO: Use a proper seq_file iterator */ | 
|  | static int proc_cgroup_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct pid *pid; | 
|  | struct task_struct *tsk; | 
|  | char *buf; | 
|  | int retval; | 
|  | struct cgroupfs_root *root; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!buf) | 
|  | goto out; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | pid = m->private; | 
|  | tsk = get_pid_task(pid, PIDTYPE_PID); | 
|  | if (!tsk) | 
|  | goto out_free; | 
|  |  | 
|  | retval = 0; | 
|  |  | 
|  | mutex_lock(&cgroup_mutex); | 
|  |  | 
|  | for_each_active_root(root) { | 
|  | struct cgroup_subsys *ss; | 
|  | struct cgroup *cgrp; | 
|  | int count = 0; | 
|  |  | 
|  | seq_printf(m, "%d:", root->hierarchy_id); | 
|  | for_each_subsys(root, ss) | 
|  | seq_printf(m, "%s%s", count++ ? "," : "", ss->name); | 
|  | if (strlen(root->name)) | 
|  | seq_printf(m, "%sname=%s", count ? "," : "", | 
|  | root->name); | 
|  | seq_putc(m, ':'); | 
|  | cgrp = task_cgroup_from_root(tsk, root); | 
|  | retval = cgroup_path(cgrp, buf, PAGE_SIZE); | 
|  | if (retval < 0) | 
|  | goto out_unlock; | 
|  | seq_puts(m, buf); | 
|  | seq_putc(m, '\n'); | 
|  | } | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | put_task_struct(tsk); | 
|  | out_free: | 
|  | kfree(buf); | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cgroup_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct pid *pid = PROC_I(inode)->pid; | 
|  | return single_open(file, proc_cgroup_show, pid); | 
|  | } | 
|  |  | 
|  | const struct file_operations proc_cgroup_operations = { | 
|  | .open		= cgroup_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  |  | 
|  | /* Display information about each subsystem and each hierarchy */ | 
|  | static int proc_cgroupstats_show(struct seq_file *m, void *v) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); | 
|  | /* | 
|  | * ideally we don't want subsystems moving around while we do this. | 
|  | * cgroup_mutex is also necessary to guarantee an atomic snapshot of | 
|  | * subsys/hierarchy state. | 
|  | */ | 
|  | mutex_lock(&cgroup_mutex); | 
|  | for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss == NULL) | 
|  | continue; | 
|  | seq_printf(m, "%s\t%d\t%d\t%d\n", | 
|  | ss->name, ss->root->hierarchy_id, | 
|  | ss->root->number_of_cgroups, !ss->disabled); | 
|  | } | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cgroupstats_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, proc_cgroupstats_show, NULL); | 
|  | } | 
|  |  | 
|  | static const struct file_operations proc_cgroupstats_operations = { | 
|  | .open = cgroupstats_open, | 
|  | .read = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .release = single_release, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * cgroup_fork - attach newly forked task to its parents cgroup. | 
|  | * @child: pointer to task_struct of forking parent process. | 
|  | * | 
|  | * Description: A task inherits its parent's cgroup at fork(). | 
|  | * | 
|  | * A pointer to the shared css_set was automatically copied in | 
|  | * fork.c by dup_task_struct().  However, we ignore that copy, since | 
|  | * it was not made under the protection of RCU, cgroup_mutex or | 
|  | * threadgroup_change_begin(), so it might no longer be a valid | 
|  | * cgroup pointer.  cgroup_attach_task() might have already changed | 
|  | * current->cgroups, allowing the previously referenced cgroup | 
|  | * group to be removed and freed. | 
|  | * | 
|  | * Outside the pointer validity we also need to process the css_set | 
|  | * inheritance between threadgoup_change_begin() and | 
|  | * threadgoup_change_end(), this way there is no leak in any process | 
|  | * wide migration performed by cgroup_attach_proc() that could otherwise | 
|  | * miss a thread because it is too early or too late in the fork stage. | 
|  | * | 
|  | * At the point that cgroup_fork() is called, 'current' is the parent | 
|  | * task, and the passed argument 'child' points to the child task. | 
|  | */ | 
|  | void cgroup_fork(struct task_struct *child) | 
|  | { | 
|  | /* | 
|  | * We don't need to task_lock() current because current->cgroups | 
|  | * can't be changed concurrently here. The parent obviously hasn't | 
|  | * exited and called cgroup_exit(), and we are synchronized against | 
|  | * cgroup migration through threadgroup_change_begin(). | 
|  | */ | 
|  | child->cgroups = current->cgroups; | 
|  | get_css_set(child->cgroups); | 
|  | INIT_LIST_HEAD(&child->cg_list); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_fork_callbacks - run fork callbacks | 
|  | * @child: the new task | 
|  | * | 
|  | * Called on a new task very soon before adding it to the | 
|  | * tasklist. No need to take any locks since no-one can | 
|  | * be operating on this task. | 
|  | */ | 
|  | void cgroup_fork_callbacks(struct task_struct *child) | 
|  | { | 
|  | if (need_forkexit_callback) { | 
|  | int i; | 
|  | /* | 
|  | * forkexit callbacks are only supported for builtin | 
|  | * subsystems, and the builtin section of the subsys array is | 
|  | * immutable, so we don't need to lock the subsys array here. | 
|  | */ | 
|  | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss->fork) | 
|  | ss->fork(child); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_post_fork - called on a new task after adding it to the task list | 
|  | * @child: the task in question | 
|  | * | 
|  | * Adds the task to the list running through its css_set if necessary. | 
|  | * Has to be after the task is visible on the task list in case we race | 
|  | * with the first call to cgroup_iter_start() - to guarantee that the | 
|  | * new task ends up on its list. | 
|  | */ | 
|  | void cgroup_post_fork(struct task_struct *child) | 
|  | { | 
|  | /* | 
|  | * use_task_css_set_links is set to 1 before we walk the tasklist | 
|  | * under the tasklist_lock and we read it here after we added the child | 
|  | * to the tasklist under the tasklist_lock as well. If the child wasn't | 
|  | * yet in the tasklist when we walked through it from | 
|  | * cgroup_enable_task_cg_lists(), then use_task_css_set_links value | 
|  | * should be visible now due to the paired locking and barriers implied | 
|  | * by LOCK/UNLOCK: it is written before the tasklist_lock unlock | 
|  | * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock | 
|  | * lock on fork. | 
|  | */ | 
|  | if (use_task_css_set_links) { | 
|  | write_lock(&css_set_lock); | 
|  | if (list_empty(&child->cg_list)) { | 
|  | /* | 
|  | * It's safe to use child->cgroups without task_lock() | 
|  | * here because we are protected through | 
|  | * threadgroup_change_begin() against concurrent | 
|  | * css_set change in cgroup_task_migrate(). Also | 
|  | * the task can't exit at that point until | 
|  | * wake_up_new_task() is called, so we are protected | 
|  | * against cgroup_exit() setting child->cgroup to | 
|  | * init_css_set. | 
|  | */ | 
|  | list_add(&child->cg_list, &child->cgroups->tasks); | 
|  | } | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  | } | 
|  | /** | 
|  | * cgroup_exit - detach cgroup from exiting task | 
|  | * @tsk: pointer to task_struct of exiting process | 
|  | * @run_callback: run exit callbacks? | 
|  | * | 
|  | * Description: Detach cgroup from @tsk and release it. | 
|  | * | 
|  | * Note that cgroups marked notify_on_release force every task in | 
|  | * them to take the global cgroup_mutex mutex when exiting. | 
|  | * This could impact scaling on very large systems.  Be reluctant to | 
|  | * use notify_on_release cgroups where very high task exit scaling | 
|  | * is required on large systems. | 
|  | * | 
|  | * the_top_cgroup_hack: | 
|  | * | 
|  | *    Set the exiting tasks cgroup to the root cgroup (top_cgroup). | 
|  | * | 
|  | *    We call cgroup_exit() while the task is still competent to | 
|  | *    handle notify_on_release(), then leave the task attached to the | 
|  | *    root cgroup in each hierarchy for the remainder of its exit. | 
|  | * | 
|  | *    To do this properly, we would increment the reference count on | 
|  | *    top_cgroup, and near the very end of the kernel/exit.c do_exit() | 
|  | *    code we would add a second cgroup function call, to drop that | 
|  | *    reference.  This would just create an unnecessary hot spot on | 
|  | *    the top_cgroup reference count, to no avail. | 
|  | * | 
|  | *    Normally, holding a reference to a cgroup without bumping its | 
|  | *    count is unsafe.   The cgroup could go away, or someone could | 
|  | *    attach us to a different cgroup, decrementing the count on | 
|  | *    the first cgroup that we never incremented.  But in this case, | 
|  | *    top_cgroup isn't going away, and either task has PF_EXITING set, | 
|  | *    which wards off any cgroup_attach_task() attempts, or task is a failed | 
|  | *    fork, never visible to cgroup_attach_task. | 
|  | */ | 
|  | void cgroup_exit(struct task_struct *tsk, int run_callbacks) | 
|  | { | 
|  | struct css_set *cg; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Unlink from the css_set task list if necessary. | 
|  | * Optimistically check cg_list before taking | 
|  | * css_set_lock | 
|  | */ | 
|  | if (!list_empty(&tsk->cg_list)) { | 
|  | write_lock(&css_set_lock); | 
|  | if (!list_empty(&tsk->cg_list)) | 
|  | list_del_init(&tsk->cg_list); | 
|  | write_unlock(&css_set_lock); | 
|  | } | 
|  |  | 
|  | /* Reassign the task to the init_css_set. */ | 
|  | task_lock(tsk); | 
|  | cg = tsk->cgroups; | 
|  | tsk->cgroups = &init_css_set; | 
|  |  | 
|  | if (run_callbacks && need_forkexit_callback) { | 
|  | /* | 
|  | * modular subsystems can't use callbacks, so no need to lock | 
|  | * the subsys array | 
|  | */ | 
|  | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  | if (ss->exit) { | 
|  | struct cgroup *old_cgrp = | 
|  | rcu_dereference_raw(cg->subsys[i])->cgroup; | 
|  | struct cgroup *cgrp = task_cgroup(tsk, i); | 
|  | ss->exit(cgrp, old_cgrp, tsk); | 
|  | } | 
|  | } | 
|  | } | 
|  | task_unlock(tsk); | 
|  |  | 
|  | if (cg) | 
|  | put_css_set(cg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp | 
|  | * @cgrp: the cgroup in question | 
|  | * @task: the task in question | 
|  | * | 
|  | * See if @cgrp is a descendant of @task's cgroup in the appropriate | 
|  | * hierarchy. | 
|  | * | 
|  | * If we are sending in dummytop, then presumably we are creating | 
|  | * the top cgroup in the subsystem. | 
|  | * | 
|  | * Called only by the ns (nsproxy) cgroup. | 
|  | */ | 
|  | int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task) | 
|  | { | 
|  | int ret; | 
|  | struct cgroup *target; | 
|  |  | 
|  | if (cgrp == dummytop) | 
|  | return 1; | 
|  |  | 
|  | target = task_cgroup_from_root(task, cgrp->root); | 
|  | while (cgrp != target && cgrp!= cgrp->top_cgroup) | 
|  | cgrp = cgrp->parent; | 
|  | ret = (cgrp == target); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void check_for_release(struct cgroup *cgrp) | 
|  | { | 
|  | /* All of these checks rely on RCU to keep the cgroup | 
|  | * structure alive */ | 
|  | if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count) | 
|  | && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) { | 
|  | /* Control Group is currently removeable. If it's not | 
|  | * already queued for a userspace notification, queue | 
|  | * it now */ | 
|  | int need_schedule_work = 0; | 
|  | raw_spin_lock(&release_list_lock); | 
|  | if (!cgroup_is_removed(cgrp) && | 
|  | list_empty(&cgrp->release_list)) { | 
|  | list_add(&cgrp->release_list, &release_list); | 
|  | need_schedule_work = 1; | 
|  | } | 
|  | raw_spin_unlock(&release_list_lock); | 
|  | if (need_schedule_work) | 
|  | schedule_work(&release_agent_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Caller must verify that the css is not for root cgroup */ | 
|  | void __css_get(struct cgroup_subsys_state *css, int count) | 
|  | { | 
|  | atomic_add(count, &css->refcnt); | 
|  | set_bit(CGRP_RELEASABLE, &css->cgroup->flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__css_get); | 
|  |  | 
|  | /* Caller must verify that the css is not for root cgroup */ | 
|  | void __css_put(struct cgroup_subsys_state *css, int count) | 
|  | { | 
|  | struct cgroup *cgrp = css->cgroup; | 
|  | int val; | 
|  | rcu_read_lock(); | 
|  | val = atomic_sub_return(count, &css->refcnt); | 
|  | if (val == 1) { | 
|  | check_for_release(cgrp); | 
|  | cgroup_wakeup_rmdir_waiter(cgrp); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | WARN_ON_ONCE(val < 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__css_put); | 
|  |  | 
|  | /* | 
|  | * Notify userspace when a cgroup is released, by running the | 
|  | * configured release agent with the name of the cgroup (path | 
|  | * relative to the root of cgroup file system) as the argument. | 
|  | * | 
|  | * Most likely, this user command will try to rmdir this cgroup. | 
|  | * | 
|  | * This races with the possibility that some other task will be | 
|  | * attached to this cgroup before it is removed, or that some other | 
|  | * user task will 'mkdir' a child cgroup of this cgroup.  That's ok. | 
|  | * The presumed 'rmdir' will fail quietly if this cgroup is no longer | 
|  | * unused, and this cgroup will be reprieved from its death sentence, | 
|  | * to continue to serve a useful existence.  Next time it's released, | 
|  | * we will get notified again, if it still has 'notify_on_release' set. | 
|  | * | 
|  | * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which | 
|  | * means only wait until the task is successfully execve()'d.  The | 
|  | * separate release agent task is forked by call_usermodehelper(), | 
|  | * then control in this thread returns here, without waiting for the | 
|  | * release agent task.  We don't bother to wait because the caller of | 
|  | * this routine has no use for the exit status of the release agent | 
|  | * task, so no sense holding our caller up for that. | 
|  | */ | 
|  | static void cgroup_release_agent(struct work_struct *work) | 
|  | { | 
|  | BUG_ON(work != &release_agent_work); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | raw_spin_lock(&release_list_lock); | 
|  | while (!list_empty(&release_list)) { | 
|  | char *argv[3], *envp[3]; | 
|  | int i; | 
|  | char *pathbuf = NULL, *agentbuf = NULL; | 
|  | struct cgroup *cgrp = list_entry(release_list.next, | 
|  | struct cgroup, | 
|  | release_list); | 
|  | list_del_init(&cgrp->release_list); | 
|  | raw_spin_unlock(&release_list_lock); | 
|  | pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!pathbuf) | 
|  | goto continue_free; | 
|  | if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) | 
|  | goto continue_free; | 
|  | agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); | 
|  | if (!agentbuf) | 
|  | goto continue_free; | 
|  |  | 
|  | i = 0; | 
|  | argv[i++] = agentbuf; | 
|  | argv[i++] = pathbuf; | 
|  | argv[i] = NULL; | 
|  |  | 
|  | i = 0; | 
|  | /* minimal command environment */ | 
|  | envp[i++] = "HOME=/"; | 
|  | envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | 
|  | envp[i] = NULL; | 
|  |  | 
|  | /* Drop the lock while we invoke the usermode helper, | 
|  | * since the exec could involve hitting disk and hence | 
|  | * be a slow process */ | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); | 
|  | mutex_lock(&cgroup_mutex); | 
|  | continue_free: | 
|  | kfree(pathbuf); | 
|  | kfree(agentbuf); | 
|  | raw_spin_lock(&release_list_lock); | 
|  | } | 
|  | raw_spin_unlock(&release_list_lock); | 
|  | mutex_unlock(&cgroup_mutex); | 
|  | } | 
|  |  | 
|  | static int __init cgroup_disable(char *str) | 
|  | { | 
|  | int i; | 
|  | char *token; | 
|  |  | 
|  | while ((token = strsep(&str, ",")) != NULL) { | 
|  | if (!*token) | 
|  | continue; | 
|  | /* | 
|  | * cgroup_disable, being at boot time, can't know about module | 
|  | * subsystems, so we don't worry about them. | 
|  | */ | 
|  | for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) { | 
|  | struct cgroup_subsys *ss = subsys[i]; | 
|  |  | 
|  | if (!strcmp(token, ss->name)) { | 
|  | ss->disabled = 1; | 
|  | printk(KERN_INFO "Disabling %s control group" | 
|  | " subsystem\n", ss->name); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | __setup("cgroup_disable=", cgroup_disable); | 
|  |  | 
|  | /* | 
|  | * Functons for CSS ID. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *To get ID other than 0, this should be called when !cgroup_is_removed(). | 
|  | */ | 
|  | unsigned short css_id(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct css_id *cssid; | 
|  |  | 
|  | /* | 
|  | * This css_id() can return correct value when somone has refcnt | 
|  | * on this or this is under rcu_read_lock(). Once css->id is allocated, | 
|  | * it's unchanged until freed. | 
|  | */ | 
|  | cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt)); | 
|  |  | 
|  | if (cssid) | 
|  | return cssid->id; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(css_id); | 
|  |  | 
|  | unsigned short css_depth(struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct css_id *cssid; | 
|  |  | 
|  | cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt)); | 
|  |  | 
|  | if (cssid) | 
|  | return cssid->depth; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(css_depth); | 
|  |  | 
|  | /** | 
|  | *  css_is_ancestor - test "root" css is an ancestor of "child" | 
|  | * @child: the css to be tested. | 
|  | * @root: the css supporsed to be an ancestor of the child. | 
|  | * | 
|  | * Returns true if "root" is an ancestor of "child" in its hierarchy. Because | 
|  | * this function reads css->id, this use rcu_dereference() and rcu_read_lock(). | 
|  | * But, considering usual usage, the csses should be valid objects after test. | 
|  | * Assuming that the caller will do some action to the child if this returns | 
|  | * returns true, the caller must take "child";s reference count. | 
|  | * If "child" is valid object and this returns true, "root" is valid, too. | 
|  | */ | 
|  |  | 
|  | bool css_is_ancestor(struct cgroup_subsys_state *child, | 
|  | const struct cgroup_subsys_state *root) | 
|  | { | 
|  | struct css_id *child_id; | 
|  | struct css_id *root_id; | 
|  | bool ret = true; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | child_id  = rcu_dereference(child->id); | 
|  | root_id = rcu_dereference(root->id); | 
|  | if (!child_id | 
|  | || !root_id | 
|  | || (child_id->depth < root_id->depth) | 
|  | || (child_id->stack[root_id->depth] != root_id->id)) | 
|  | ret = false; | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css) | 
|  | { | 
|  | struct css_id *id = css->id; | 
|  | /* When this is called before css_id initialization, id can be NULL */ | 
|  | if (!id) | 
|  | return; | 
|  |  | 
|  | BUG_ON(!ss->use_id); | 
|  |  | 
|  | rcu_assign_pointer(id->css, NULL); | 
|  | rcu_assign_pointer(css->id, NULL); | 
|  | spin_lock(&ss->id_lock); | 
|  | idr_remove(&ss->idr, id->id); | 
|  | spin_unlock(&ss->id_lock); | 
|  | kfree_rcu(id, rcu_head); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(free_css_id); | 
|  |  | 
|  | /* | 
|  | * This is called by init or create(). Then, calls to this function are | 
|  | * always serialized (By cgroup_mutex() at create()). | 
|  | */ | 
|  |  | 
|  | static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth) | 
|  | { | 
|  | struct css_id *newid; | 
|  | int myid, error, size; | 
|  |  | 
|  | BUG_ON(!ss->use_id); | 
|  |  | 
|  | size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1); | 
|  | newid = kzalloc(size, GFP_KERNEL); | 
|  | if (!newid) | 
|  | return ERR_PTR(-ENOMEM); | 
|  | /* get id */ | 
|  | if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) { | 
|  | error = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  | spin_lock(&ss->id_lock); | 
|  | /* Don't use 0. allocates an ID of 1-65535 */ | 
|  | error = idr_get_new_above(&ss->idr, newid, 1, &myid); | 
|  | spin_unlock(&ss->id_lock); | 
|  |  | 
|  | /* Returns error when there are no free spaces for new ID.*/ | 
|  | if (error) { | 
|  | error = -ENOSPC; | 
|  | goto err_out; | 
|  | } | 
|  | if (myid > CSS_ID_MAX) | 
|  | goto remove_idr; | 
|  |  | 
|  | newid->id = myid; | 
|  | newid->depth = depth; | 
|  | return newid; | 
|  | remove_idr: | 
|  | error = -ENOSPC; | 
|  | spin_lock(&ss->id_lock); | 
|  | idr_remove(&ss->idr, myid); | 
|  | spin_unlock(&ss->id_lock); | 
|  | err_out: | 
|  | kfree(newid); | 
|  | return ERR_PTR(error); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss, | 
|  | struct cgroup_subsys_state *rootcss) | 
|  | { | 
|  | struct css_id *newid; | 
|  |  | 
|  | spin_lock_init(&ss->id_lock); | 
|  | idr_init(&ss->idr); | 
|  |  | 
|  | newid = get_new_cssid(ss, 0); | 
|  | if (IS_ERR(newid)) | 
|  | return PTR_ERR(newid); | 
|  |  | 
|  | newid->stack[0] = newid->id; | 
|  | newid->css = rootcss; | 
|  | rootcss->id = newid; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent, | 
|  | struct cgroup *child) | 
|  | { | 
|  | int subsys_id, i, depth = 0; | 
|  | struct cgroup_subsys_state *parent_css, *child_css; | 
|  | struct css_id *child_id, *parent_id; | 
|  |  | 
|  | subsys_id = ss->subsys_id; | 
|  | parent_css = parent->subsys[subsys_id]; | 
|  | child_css = child->subsys[subsys_id]; | 
|  | parent_id = parent_css->id; | 
|  | depth = parent_id->depth + 1; | 
|  |  | 
|  | child_id = get_new_cssid(ss, depth); | 
|  | if (IS_ERR(child_id)) | 
|  | return PTR_ERR(child_id); | 
|  |  | 
|  | for (i = 0; i < depth; i++) | 
|  | child_id->stack[i] = parent_id->stack[i]; | 
|  | child_id->stack[depth] = child_id->id; | 
|  | /* | 
|  | * child_id->css pointer will be set after this cgroup is available | 
|  | * see cgroup_populate_dir() | 
|  | */ | 
|  | rcu_assign_pointer(child_css->id, child_id); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * css_lookup - lookup css by id | 
|  | * @ss: cgroup subsys to be looked into. | 
|  | * @id: the id | 
|  | * | 
|  | * Returns pointer to cgroup_subsys_state if there is valid one with id. | 
|  | * NULL if not. Should be called under rcu_read_lock() | 
|  | */ | 
|  | struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id) | 
|  | { | 
|  | struct css_id *cssid = NULL; | 
|  |  | 
|  | BUG_ON(!ss->use_id); | 
|  | cssid = idr_find(&ss->idr, id); | 
|  |  | 
|  | if (unlikely(!cssid)) | 
|  | return NULL; | 
|  |  | 
|  | return rcu_dereference(cssid->css); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(css_lookup); | 
|  |  | 
|  | /** | 
|  | * css_get_next - lookup next cgroup under specified hierarchy. | 
|  | * @ss: pointer to subsystem | 
|  | * @id: current position of iteration. | 
|  | * @root: pointer to css. search tree under this. | 
|  | * @foundid: position of found object. | 
|  | * | 
|  | * Search next css under the specified hierarchy of rootid. Calling under | 
|  | * rcu_read_lock() is necessary. Returns NULL if it reaches the end. | 
|  | */ | 
|  | struct cgroup_subsys_state * | 
|  | css_get_next(struct cgroup_subsys *ss, int id, | 
|  | struct cgroup_subsys_state *root, int *foundid) | 
|  | { | 
|  | struct cgroup_subsys_state *ret = NULL; | 
|  | struct css_id *tmp; | 
|  | int tmpid; | 
|  | int rootid = css_id(root); | 
|  | int depth = css_depth(root); | 
|  |  | 
|  | if (!rootid) | 
|  | return NULL; | 
|  |  | 
|  | BUG_ON(!ss->use_id); | 
|  | WARN_ON_ONCE(!rcu_read_lock_held()); | 
|  |  | 
|  | /* fill start point for scan */ | 
|  | tmpid = id; | 
|  | while (1) { | 
|  | /* | 
|  | * scan next entry from bitmap(tree), tmpid is updated after | 
|  | * idr_get_next(). | 
|  | */ | 
|  | tmp = idr_get_next(&ss->idr, &tmpid); | 
|  | if (!tmp) | 
|  | break; | 
|  | if (tmp->depth >= depth && tmp->stack[depth] == rootid) { | 
|  | ret = rcu_dereference(tmp->css); | 
|  | if (ret) { | 
|  | *foundid = tmpid; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* continue to scan from next id */ | 
|  | tmpid = tmpid + 1; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get corresponding css from file open on cgroupfs directory | 
|  | */ | 
|  | struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id) | 
|  | { | 
|  | struct cgroup *cgrp; | 
|  | struct inode *inode; | 
|  | struct cgroup_subsys_state *css; | 
|  |  | 
|  | inode = f->f_dentry->d_inode; | 
|  | /* check in cgroup filesystem dir */ | 
|  | if (inode->i_op != &cgroup_dir_inode_operations) | 
|  | return ERR_PTR(-EBADF); | 
|  |  | 
|  | if (id < 0 || id >= CGROUP_SUBSYS_COUNT) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | /* get cgroup */ | 
|  | cgrp = __d_cgrp(f->f_dentry); | 
|  | css = cgrp->subsys[id]; | 
|  | return css ? css : ERR_PTR(-ENOENT); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_DEBUG | 
|  | static struct cgroup_subsys_state *debug_create(struct cgroup *cont) | 
|  | { | 
|  | struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); | 
|  |  | 
|  | if (!css) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | return css; | 
|  | } | 
|  |  | 
|  | static void debug_destroy(struct cgroup *cont) | 
|  | { | 
|  | kfree(cont->subsys[debug_subsys_id]); | 
|  | } | 
|  |  | 
|  | static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft) | 
|  | { | 
|  | return atomic_read(&cont->count); | 
|  | } | 
|  |  | 
|  | static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft) | 
|  | { | 
|  | return cgroup_task_count(cont); | 
|  | } | 
|  |  | 
|  | static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft) | 
|  | { | 
|  | return (u64)(unsigned long)current->cgroups; | 
|  | } | 
|  |  | 
|  | static u64 current_css_set_refcount_read(struct cgroup *cont, | 
|  | struct cftype *cft) | 
|  | { | 
|  | u64 count; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | count = atomic_read(¤t->cgroups->refcount); | 
|  | rcu_read_unlock(); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static int current_css_set_cg_links_read(struct cgroup *cont, | 
|  | struct cftype *cft, | 
|  | struct seq_file *seq) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  | struct css_set *cg; | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | rcu_read_lock(); | 
|  | cg = rcu_dereference(current->cgroups); | 
|  | list_for_each_entry(link, &cg->cg_links, cg_link_list) { | 
|  | struct cgroup *c = link->cgrp; | 
|  | const char *name; | 
|  |  | 
|  | if (c->dentry) | 
|  | name = c->dentry->d_name.name; | 
|  | else | 
|  | name = "?"; | 
|  | seq_printf(seq, "Root %d group %s\n", | 
|  | c->root->hierarchy_id, name); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | read_unlock(&css_set_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define MAX_TASKS_SHOWN_PER_CSS 25 | 
|  | static int cgroup_css_links_read(struct cgroup *cont, | 
|  | struct cftype *cft, | 
|  | struct seq_file *seq) | 
|  | { | 
|  | struct cg_cgroup_link *link; | 
|  |  | 
|  | read_lock(&css_set_lock); | 
|  | list_for_each_entry(link, &cont->css_sets, cgrp_link_list) { | 
|  | struct css_set *cg = link->cg; | 
|  | struct task_struct *task; | 
|  | int count = 0; | 
|  | seq_printf(seq, "css_set %p\n", cg); | 
|  | list_for_each_entry(task, &cg->tasks, cg_list) { | 
|  | if (count++ > MAX_TASKS_SHOWN_PER_CSS) { | 
|  | seq_puts(seq, "  ...\n"); | 
|  | break; | 
|  | } else { | 
|  | seq_printf(seq, "  task %d\n", | 
|  | task_pid_vnr(task)); | 
|  | } | 
|  | } | 
|  | } | 
|  | read_unlock(&css_set_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | return test_bit(CGRP_RELEASABLE, &cgrp->flags); | 
|  | } | 
|  |  | 
|  | static struct cftype debug_files[] =  { | 
|  | { | 
|  | .name = "cgroup_refcount", | 
|  | .read_u64 = cgroup_refcount_read, | 
|  | }, | 
|  | { | 
|  | .name = "taskcount", | 
|  | .read_u64 = debug_taskcount_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "current_css_set", | 
|  | .read_u64 = current_css_set_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "current_css_set_refcount", | 
|  | .read_u64 = current_css_set_refcount_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "current_css_set_cg_links", | 
|  | .read_seq_string = current_css_set_cg_links_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "cgroup_css_links", | 
|  | .read_seq_string = cgroup_css_links_read, | 
|  | }, | 
|  |  | 
|  | { | 
|  | .name = "releasable", | 
|  | .read_u64 = releasable_read, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 
|  | { | 
|  | return cgroup_add_files(cont, ss, debug_files, | 
|  | ARRAY_SIZE(debug_files)); | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys debug_subsys = { | 
|  | .name = "debug", | 
|  | .create = debug_create, | 
|  | .destroy = debug_destroy, | 
|  | .populate = debug_populate, | 
|  | .subsys_id = debug_subsys_id, | 
|  | }; | 
|  | #endif /* CONFIG_CGROUP_DEBUG */ |