|  | /* | 
|  | * Memory Migration functionality - linux/mm/migration.c | 
|  | * | 
|  | * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter | 
|  | * | 
|  | * Page migration was first developed in the context of the memory hotplug | 
|  | * project. The main authors of the migration code are: | 
|  | * | 
|  | * IWAMOTO Toshihiro <iwamoto@valinux.co.jp> | 
|  | * Hirokazu Takahashi <taka@valinux.co.jp> | 
|  | * Dave Hansen <haveblue@us.ibm.com> | 
|  | * Christoph Lameter | 
|  | */ | 
|  |  | 
|  | #include <linux/migrate.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/swapops.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/mm_inline.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/ksm.h> | 
|  | #include <linux/rmap.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/memcontrol.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  | /* | 
|  | * migrate_prep() needs to be called before we start compiling a list of pages | 
|  | * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is | 
|  | * undesirable, use migrate_prep_local() | 
|  | */ | 
|  | int migrate_prep(void) | 
|  | { | 
|  | /* | 
|  | * Clear the LRU lists so pages can be isolated. | 
|  | * Note that pages may be moved off the LRU after we have | 
|  | * drained them. Those pages will fail to migrate like other | 
|  | * pages that may be busy. | 
|  | */ | 
|  | lru_add_drain_all(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do the necessary work of migrate_prep but not if it involves other CPUs */ | 
|  | int migrate_prep_local(void) | 
|  | { | 
|  | lru_add_drain(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add isolated pages on the list back to the LRU under page lock | 
|  | * to avoid leaking evictable pages back onto unevictable list. | 
|  | */ | 
|  | void putback_lru_pages(struct list_head *l) | 
|  | { | 
|  | struct page *page; | 
|  | struct page *page2; | 
|  |  | 
|  | list_for_each_entry_safe(page, page2, l, lru) { | 
|  | list_del(&page->lru); | 
|  | dec_zone_page_state(page, NR_ISOLATED_ANON + | 
|  | page_is_file_cache(page)); | 
|  | putback_lru_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore a potential migration pte to a working pte entry | 
|  | */ | 
|  | static int remove_migration_pte(struct page *new, struct vm_area_struct *vma, | 
|  | unsigned long addr, void *old) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | swp_entry_t entry; | 
|  | pgd_t *pgd; | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  |  | 
|  | if (unlikely(PageHuge(new))) { | 
|  | ptep = huge_pte_offset(mm, addr); | 
|  | if (!ptep) | 
|  | goto out; | 
|  | ptl = &mm->page_table_lock; | 
|  | } else { | 
|  | pgd = pgd_offset(mm, addr); | 
|  | if (!pgd_present(*pgd)) | 
|  | goto out; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | if (!pud_present(*pud)) | 
|  | goto out; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (pmd_trans_huge(*pmd)) | 
|  | goto out; | 
|  | if (!pmd_present(*pmd)) | 
|  | goto out; | 
|  |  | 
|  | ptep = pte_offset_map(pmd, addr); | 
|  |  | 
|  | /* | 
|  | * Peek to check is_swap_pte() before taking ptlock?  No, we | 
|  | * can race mremap's move_ptes(), which skips anon_vma lock. | 
|  | */ | 
|  |  | 
|  | ptl = pte_lockptr(mm, pmd); | 
|  | } | 
|  |  | 
|  | spin_lock(ptl); | 
|  | pte = *ptep; | 
|  | if (!is_swap_pte(pte)) | 
|  | goto unlock; | 
|  |  | 
|  | entry = pte_to_swp_entry(pte); | 
|  |  | 
|  | if (!is_migration_entry(entry) || | 
|  | migration_entry_to_page(entry) != old) | 
|  | goto unlock; | 
|  |  | 
|  | get_page(new); | 
|  | pte = pte_mkold(mk_pte(new, vma->vm_page_prot)); | 
|  | if (is_write_migration_entry(entry)) | 
|  | pte = pte_mkwrite(pte); | 
|  | #ifdef CONFIG_HUGETLB_PAGE | 
|  | if (PageHuge(new)) | 
|  | pte = pte_mkhuge(pte); | 
|  | #endif | 
|  | flush_cache_page(vma, addr, pte_pfn(pte)); | 
|  | set_pte_at(mm, addr, ptep, pte); | 
|  |  | 
|  | if (PageHuge(new)) { | 
|  | if (PageAnon(new)) | 
|  | hugepage_add_anon_rmap(new, vma, addr); | 
|  | else | 
|  | page_dup_rmap(new); | 
|  | } else if (PageAnon(new)) | 
|  | page_add_anon_rmap(new, vma, addr); | 
|  | else | 
|  | page_add_file_rmap(new); | 
|  |  | 
|  | /* No need to invalidate - it was non-present before */ | 
|  | update_mmu_cache(vma, addr, ptep); | 
|  | unlock: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | out: | 
|  | return SWAP_AGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get rid of all migration entries and replace them by | 
|  | * references to the indicated page. | 
|  | */ | 
|  | static void remove_migration_ptes(struct page *old, struct page *new) | 
|  | { | 
|  | rmap_walk(new, remove_migration_pte, old); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Something used the pte of a page under migration. We need to | 
|  | * get to the page and wait until migration is finished. | 
|  | * When we return from this function the fault will be retried. | 
|  | */ | 
|  | void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd, | 
|  | unsigned long address) | 
|  | { | 
|  | pte_t *ptep, pte; | 
|  | spinlock_t *ptl; | 
|  | swp_entry_t entry; | 
|  | struct page *page; | 
|  |  | 
|  | ptep = pte_offset_map_lock(mm, pmd, address, &ptl); | 
|  | pte = *ptep; | 
|  | if (!is_swap_pte(pte)) | 
|  | goto out; | 
|  |  | 
|  | entry = pte_to_swp_entry(pte); | 
|  | if (!is_migration_entry(entry)) | 
|  | goto out; | 
|  |  | 
|  | page = migration_entry_to_page(entry); | 
|  |  | 
|  | /* | 
|  | * Once radix-tree replacement of page migration started, page_count | 
|  | * *must* be zero. And, we don't want to call wait_on_page_locked() | 
|  | * against a page without get_page(). | 
|  | * So, we use get_page_unless_zero(), here. Even failed, page fault | 
|  | * will occur again. | 
|  | */ | 
|  | if (!get_page_unless_zero(page)) | 
|  | goto out; | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | wait_on_page_locked(page); | 
|  | put_page(page); | 
|  | return; | 
|  | out: | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | /* Returns true if all buffers are successfully locked */ | 
|  | static bool buffer_migrate_lock_buffers(struct buffer_head *head, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | struct buffer_head *bh = head; | 
|  |  | 
|  | /* Simple case, sync compaction */ | 
|  | if (mode != MIGRATE_ASYNC) { | 
|  | do { | 
|  | get_bh(bh); | 
|  | lock_buffer(bh); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* async case, we cannot block on lock_buffer so use trylock_buffer */ | 
|  | do { | 
|  | get_bh(bh); | 
|  | if (!trylock_buffer(bh)) { | 
|  | /* | 
|  | * We failed to lock the buffer and cannot stall in | 
|  | * async migration. Release the taken locks | 
|  | */ | 
|  | struct buffer_head *failed_bh = bh; | 
|  | put_bh(failed_bh); | 
|  | bh = head; | 
|  | while (bh != failed_bh) { | 
|  | unlock_buffer(bh); | 
|  | put_bh(bh); | 
|  | bh = bh->b_this_page; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bh = bh->b_this_page; | 
|  | } while (bh != head); | 
|  | return true; | 
|  | } | 
|  | #else | 
|  | static inline bool buffer_migrate_lock_buffers(struct buffer_head *head, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | return true; | 
|  | } | 
|  | #endif /* CONFIG_BLOCK */ | 
|  |  | 
|  | /* | 
|  | * Replace the page in the mapping. | 
|  | * | 
|  | * The number of remaining references must be: | 
|  | * 1 for anonymous pages without a mapping | 
|  | * 2 for pages with a mapping | 
|  | * 3 for pages with a mapping and PagePrivate/PagePrivate2 set. | 
|  | */ | 
|  | static int migrate_page_move_mapping(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, | 
|  | struct buffer_head *head, enum migrate_mode mode) | 
|  | { | 
|  | int expected_count; | 
|  | void **pslot; | 
|  |  | 
|  | if (!mapping) { | 
|  | /* Anonymous page without mapping */ | 
|  | if (page_count(page) != 1) | 
|  | return -EAGAIN; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  |  | 
|  | pslot = radix_tree_lookup_slot(&mapping->page_tree, | 
|  | page_index(page)); | 
|  |  | 
|  | expected_count = 2 + page_has_private(page); | 
|  | if (page_count(page) != expected_count || | 
|  | radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (!page_freeze_refs(page, expected_count)) { | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In the async migration case of moving a page with buffers, lock the | 
|  | * buffers using trylock before the mapping is moved. If the mapping | 
|  | * was moved, we later failed to lock the buffers and could not move | 
|  | * the mapping back due to an elevated page count, we would have to | 
|  | * block waiting on other references to be dropped. | 
|  | */ | 
|  | if (mode == MIGRATE_ASYNC && head && | 
|  | !buffer_migrate_lock_buffers(head, mode)) { | 
|  | page_unfreeze_refs(page, expected_count); | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we know that no one else is looking at the page. | 
|  | */ | 
|  | get_page(newpage);	/* add cache reference */ | 
|  | if (PageSwapCache(page)) { | 
|  | SetPageSwapCache(newpage); | 
|  | set_page_private(newpage, page_private(page)); | 
|  | } | 
|  |  | 
|  | radix_tree_replace_slot(pslot, newpage); | 
|  |  | 
|  | /* | 
|  | * Drop cache reference from old page by unfreezing | 
|  | * to one less reference. | 
|  | * We know this isn't the last reference. | 
|  | */ | 
|  | page_unfreeze_refs(page, expected_count - 1); | 
|  |  | 
|  | /* | 
|  | * If moved to a different zone then also account | 
|  | * the page for that zone. Other VM counters will be | 
|  | * taken care of when we establish references to the | 
|  | * new page and drop references to the old page. | 
|  | * | 
|  | * Note that anonymous pages are accounted for | 
|  | * via NR_FILE_PAGES and NR_ANON_PAGES if they | 
|  | * are mapped to swap space. | 
|  | */ | 
|  | __dec_zone_page_state(page, NR_FILE_PAGES); | 
|  | __inc_zone_page_state(newpage, NR_FILE_PAGES); | 
|  | if (!PageSwapCache(page) && PageSwapBacked(page)) { | 
|  | __dec_zone_page_state(page, NR_SHMEM); | 
|  | __inc_zone_page_state(newpage, NR_SHMEM); | 
|  | } | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The expected number of remaining references is the same as that | 
|  | * of migrate_page_move_mapping(). | 
|  | */ | 
|  | int migrate_huge_page_move_mapping(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page) | 
|  | { | 
|  | int expected_count; | 
|  | void **pslot; | 
|  |  | 
|  | if (!mapping) { | 
|  | if (page_count(page) != 1) | 
|  | return -EAGAIN; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&mapping->tree_lock); | 
|  |  | 
|  | pslot = radix_tree_lookup_slot(&mapping->page_tree, | 
|  | page_index(page)); | 
|  |  | 
|  | expected_count = 2 + page_has_private(page); | 
|  | if (page_count(page) != expected_count || | 
|  | radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) { | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (!page_freeze_refs(page, expected_count)) { | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | get_page(newpage); | 
|  |  | 
|  | radix_tree_replace_slot(pslot, newpage); | 
|  |  | 
|  | page_unfreeze_refs(page, expected_count - 1); | 
|  |  | 
|  | spin_unlock_irq(&mapping->tree_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy the page to its new location | 
|  | */ | 
|  | void migrate_page_copy(struct page *newpage, struct page *page) | 
|  | { | 
|  | if (PageHuge(page)) | 
|  | copy_huge_page(newpage, page); | 
|  | else | 
|  | copy_highpage(newpage, page); | 
|  |  | 
|  | if (PageError(page)) | 
|  | SetPageError(newpage); | 
|  | if (PageReferenced(page)) | 
|  | SetPageReferenced(newpage); | 
|  | if (PageUptodate(page)) | 
|  | SetPageUptodate(newpage); | 
|  | if (TestClearPageActive(page)) { | 
|  | VM_BUG_ON(PageUnevictable(page)); | 
|  | SetPageActive(newpage); | 
|  | } else if (TestClearPageUnevictable(page)) | 
|  | SetPageUnevictable(newpage); | 
|  | if (PageChecked(page)) | 
|  | SetPageChecked(newpage); | 
|  | if (PageMappedToDisk(page)) | 
|  | SetPageMappedToDisk(newpage); | 
|  |  | 
|  | if (PageDirty(page)) { | 
|  | clear_page_dirty_for_io(page); | 
|  | /* | 
|  | * Want to mark the page and the radix tree as dirty, and | 
|  | * redo the accounting that clear_page_dirty_for_io undid, | 
|  | * but we can't use set_page_dirty because that function | 
|  | * is actually a signal that all of the page has become dirty. | 
|  | * Whereas only part of our page may be dirty. | 
|  | */ | 
|  | __set_page_dirty_nobuffers(newpage); | 
|  | } | 
|  |  | 
|  | mlock_migrate_page(newpage, page); | 
|  | ksm_migrate_page(newpage, page); | 
|  |  | 
|  | ClearPageSwapCache(page); | 
|  | ClearPagePrivate(page); | 
|  | set_page_private(page, 0); | 
|  |  | 
|  | /* | 
|  | * If any waiters have accumulated on the new page then | 
|  | * wake them up. | 
|  | */ | 
|  | if (PageWriteback(newpage)) | 
|  | end_page_writeback(newpage); | 
|  | } | 
|  |  | 
|  | /************************************************************ | 
|  | *                    Migration functions | 
|  | ***********************************************************/ | 
|  |  | 
|  | /* Always fail migration. Used for mappings that are not movable */ | 
|  | int fail_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page) | 
|  | { | 
|  | return -EIO; | 
|  | } | 
|  | EXPORT_SYMBOL(fail_migrate_page); | 
|  |  | 
|  | /* | 
|  | * Common logic to directly migrate a single page suitable for | 
|  | * pages that do not use PagePrivate/PagePrivate2. | 
|  | * | 
|  | * Pages are locked upon entry and exit. | 
|  | */ | 
|  | int migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | BUG_ON(PageWriteback(page));	/* Writeback must be complete */ | 
|  |  | 
|  | rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | migrate_page_copy(newpage, page); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(migrate_page); | 
|  |  | 
|  | #ifdef CONFIG_BLOCK | 
|  | /* | 
|  | * Migration function for pages with buffers. This function can only be used | 
|  | * if the underlying filesystem guarantees that no other references to "page" | 
|  | * exist. | 
|  | */ | 
|  | int buffer_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, enum migrate_mode mode) | 
|  | { | 
|  | struct buffer_head *bh, *head; | 
|  | int rc; | 
|  |  | 
|  | if (!page_has_buffers(page)) | 
|  | return migrate_page(mapping, newpage, page, mode); | 
|  |  | 
|  | head = page_buffers(page); | 
|  |  | 
|  | rc = migrate_page_move_mapping(mapping, newpage, page, head, mode); | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* | 
|  | * In the async case, migrate_page_move_mapping locked the buffers | 
|  | * with an IRQ-safe spinlock held. In the sync case, the buffers | 
|  | * need to be locked now | 
|  | */ | 
|  | if (mode != MIGRATE_ASYNC) | 
|  | BUG_ON(!buffer_migrate_lock_buffers(head, mode)); | 
|  |  | 
|  | ClearPagePrivate(page); | 
|  | set_page_private(newpage, page_private(page)); | 
|  | set_page_private(page, 0); | 
|  | put_page(page); | 
|  | get_page(newpage); | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | set_bh_page(bh, newpage, bh_offset(bh)); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | SetPagePrivate(newpage); | 
|  |  | 
|  | migrate_page_copy(newpage, page); | 
|  |  | 
|  | bh = head; | 
|  | do { | 
|  | unlock_buffer(bh); | 
|  | put_bh(bh); | 
|  | bh = bh->b_this_page; | 
|  |  | 
|  | } while (bh != head); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(buffer_migrate_page); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Writeback a page to clean the dirty state | 
|  | */ | 
|  | static int writeout(struct address_space *mapping, struct page *page) | 
|  | { | 
|  | struct writeback_control wbc = { | 
|  | .sync_mode = WB_SYNC_NONE, | 
|  | .nr_to_write = 1, | 
|  | .range_start = 0, | 
|  | .range_end = LLONG_MAX, | 
|  | .for_reclaim = 1 | 
|  | }; | 
|  | int rc; | 
|  |  | 
|  | if (!mapping->a_ops->writepage) | 
|  | /* No write method for the address space */ | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!clear_page_dirty_for_io(page)) | 
|  | /* Someone else already triggered a write */ | 
|  | return -EAGAIN; | 
|  |  | 
|  | /* | 
|  | * A dirty page may imply that the underlying filesystem has | 
|  | * the page on some queue. So the page must be clean for | 
|  | * migration. Writeout may mean we loose the lock and the | 
|  | * page state is no longer what we checked for earlier. | 
|  | * At this point we know that the migration attempt cannot | 
|  | * be successful. | 
|  | */ | 
|  | remove_migration_ptes(page, page); | 
|  |  | 
|  | rc = mapping->a_ops->writepage(page, &wbc); | 
|  |  | 
|  | if (rc != AOP_WRITEPAGE_ACTIVATE) | 
|  | /* unlocked. Relock */ | 
|  | lock_page(page); | 
|  |  | 
|  | return (rc < 0) ? -EIO : -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Default handling if a filesystem does not provide a migration function. | 
|  | */ | 
|  | static int fallback_migrate_page(struct address_space *mapping, | 
|  | struct page *newpage, struct page *page, enum migrate_mode mode) | 
|  | { | 
|  | if (PageDirty(page)) { | 
|  | /* Only writeback pages in full synchronous migration */ | 
|  | if (mode != MIGRATE_SYNC) | 
|  | return -EBUSY; | 
|  | return writeout(mapping, page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Buffers may be managed in a filesystem specific way. | 
|  | * We must have no buffers or drop them. | 
|  | */ | 
|  | if (page_has_private(page) && | 
|  | !try_to_release_page(page, GFP_KERNEL)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | return migrate_page(mapping, newpage, page, mode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a page to a newly allocated page | 
|  | * The page is locked and all ptes have been successfully removed. | 
|  | * | 
|  | * The new page will have replaced the old page if this function | 
|  | * is successful. | 
|  | * | 
|  | * Return value: | 
|  | *   < 0 - error code | 
|  | *  == 0 - success | 
|  | */ | 
|  | static int move_to_new_page(struct page *newpage, struct page *page, | 
|  | int remap_swapcache, enum migrate_mode mode) | 
|  | { | 
|  | struct address_space *mapping; | 
|  | int rc; | 
|  |  | 
|  | /* | 
|  | * Block others from accessing the page when we get around to | 
|  | * establishing additional references. We are the only one | 
|  | * holding a reference to the new page at this point. | 
|  | */ | 
|  | if (!trylock_page(newpage)) | 
|  | BUG(); | 
|  |  | 
|  | /* Prepare mapping for the new page.*/ | 
|  | newpage->index = page->index; | 
|  | newpage->mapping = page->mapping; | 
|  | if (PageSwapBacked(page)) | 
|  | SetPageSwapBacked(newpage); | 
|  |  | 
|  | mapping = page_mapping(page); | 
|  | if (!mapping) | 
|  | rc = migrate_page(mapping, newpage, page, mode); | 
|  | else if (mapping->a_ops->migratepage) | 
|  | /* | 
|  | * Most pages have a mapping and most filesystems provide a | 
|  | * migratepage callback. Anonymous pages are part of swap | 
|  | * space which also has its own migratepage callback. This | 
|  | * is the most common path for page migration. | 
|  | */ | 
|  | rc = mapping->a_ops->migratepage(mapping, | 
|  | newpage, page, mode); | 
|  | else | 
|  | rc = fallback_migrate_page(mapping, newpage, page, mode); | 
|  |  | 
|  | if (rc) { | 
|  | newpage->mapping = NULL; | 
|  | } else { | 
|  | if (remap_swapcache) | 
|  | remove_migration_ptes(page, newpage); | 
|  | page->mapping = NULL; | 
|  | } | 
|  |  | 
|  | unlock_page(newpage); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int __unmap_and_move(struct page *page, struct page *newpage, | 
|  | int force, bool offlining, enum migrate_mode mode) | 
|  | { | 
|  | int rc = -EAGAIN; | 
|  | int remap_swapcache = 1; | 
|  | int charge = 0; | 
|  | struct mem_cgroup *mem; | 
|  | struct anon_vma *anon_vma = NULL; | 
|  |  | 
|  | if (!trylock_page(page)) { | 
|  | if (!force || mode == MIGRATE_ASYNC) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * It's not safe for direct compaction to call lock_page. | 
|  | * For example, during page readahead pages are added locked | 
|  | * to the LRU. Later, when the IO completes the pages are | 
|  | * marked uptodate and unlocked. However, the queueing | 
|  | * could be merging multiple pages for one bio (e.g. | 
|  | * mpage_readpages). If an allocation happens for the | 
|  | * second or third page, the process can end up locking | 
|  | * the same page twice and deadlocking. Rather than | 
|  | * trying to be clever about what pages can be locked, | 
|  | * avoid the use of lock_page for direct compaction | 
|  | * altogether. | 
|  | */ | 
|  | if (current->flags & PF_MEMALLOC) | 
|  | goto out; | 
|  |  | 
|  | lock_page(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only memory hotplug's offline_pages() caller has locked out KSM, | 
|  | * and can safely migrate a KSM page.  The other cases have skipped | 
|  | * PageKsm along with PageReserved - but it is only now when we have | 
|  | * the page lock that we can be certain it will not go KSM beneath us | 
|  | * (KSM will not upgrade a page from PageAnon to PageKsm when it sees | 
|  | * its pagecount raised, but only here do we take the page lock which | 
|  | * serializes that). | 
|  | */ | 
|  | if (PageKsm(page) && !offlining) { | 
|  | rc = -EBUSY; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | /* charge against new page */ | 
|  | charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL); | 
|  | if (charge == -ENOMEM) { | 
|  | rc = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  | BUG_ON(charge); | 
|  |  | 
|  | if (PageWriteback(page)) { | 
|  | /* | 
|  | * Only in the case of a full syncronous migration is it | 
|  | * necessary to wait for PageWriteback. In the async case, | 
|  | * the retry loop is too short and in the sync-light case, | 
|  | * the overhead of stalling is too much | 
|  | */ | 
|  | if (mode != MIGRATE_SYNC) { | 
|  | rc = -EBUSY; | 
|  | goto uncharge; | 
|  | } | 
|  | if (!force) | 
|  | goto uncharge; | 
|  | wait_on_page_writeback(page); | 
|  | } | 
|  | /* | 
|  | * By try_to_unmap(), page->mapcount goes down to 0 here. In this case, | 
|  | * we cannot notice that anon_vma is freed while we migrates a page. | 
|  | * This get_anon_vma() delays freeing anon_vma pointer until the end | 
|  | * of migration. File cache pages are no problem because of page_lock() | 
|  | * File Caches may use write_page() or lock_page() in migration, then, | 
|  | * just care Anon page here. | 
|  | */ | 
|  | if (PageAnon(page)) { | 
|  | /* | 
|  | * Only page_lock_anon_vma() understands the subtleties of | 
|  | * getting a hold on an anon_vma from outside one of its mms. | 
|  | */ | 
|  | anon_vma = page_get_anon_vma(page); | 
|  | if (anon_vma) { | 
|  | /* | 
|  | * Anon page | 
|  | */ | 
|  | } else if (PageSwapCache(page)) { | 
|  | /* | 
|  | * We cannot be sure that the anon_vma of an unmapped | 
|  | * swapcache page is safe to use because we don't | 
|  | * know in advance if the VMA that this page belonged | 
|  | * to still exists. If the VMA and others sharing the | 
|  | * data have been freed, then the anon_vma could | 
|  | * already be invalid. | 
|  | * | 
|  | * To avoid this possibility, swapcache pages get | 
|  | * migrated but are not remapped when migration | 
|  | * completes | 
|  | */ | 
|  | remap_swapcache = 0; | 
|  | } else { | 
|  | goto uncharge; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Corner case handling: | 
|  | * 1. When a new swap-cache page is read into, it is added to the LRU | 
|  | * and treated as swapcache but it has no rmap yet. | 
|  | * Calling try_to_unmap() against a page->mapping==NULL page will | 
|  | * trigger a BUG.  So handle it here. | 
|  | * 2. An orphaned page (see truncate_complete_page) might have | 
|  | * fs-private metadata. The page can be picked up due to memory | 
|  | * offlining.  Everywhere else except page reclaim, the page is | 
|  | * invisible to the vm, so the page can not be migrated.  So try to | 
|  | * free the metadata, so the page can be freed. | 
|  | */ | 
|  | if (!page->mapping) { | 
|  | VM_BUG_ON(PageAnon(page)); | 
|  | if (page_has_private(page)) { | 
|  | try_to_free_buffers(page); | 
|  | goto uncharge; | 
|  | } | 
|  | goto skip_unmap; | 
|  | } | 
|  |  | 
|  | /* Establish migration ptes or remove ptes */ | 
|  | try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); | 
|  |  | 
|  | skip_unmap: | 
|  | if (!page_mapped(page)) | 
|  | rc = move_to_new_page(newpage, page, remap_swapcache, mode); | 
|  |  | 
|  | if (rc && remap_swapcache) | 
|  | remove_migration_ptes(page, page); | 
|  |  | 
|  | /* Drop an anon_vma reference if we took one */ | 
|  | if (anon_vma) | 
|  | put_anon_vma(anon_vma); | 
|  |  | 
|  | uncharge: | 
|  | if (!charge) | 
|  | mem_cgroup_end_migration(mem, page, newpage, rc == 0); | 
|  | unlock: | 
|  | unlock_page(page); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain the lock on page, remove all ptes and migrate the page | 
|  | * to the newly allocated page in newpage. | 
|  | */ | 
|  | static int unmap_and_move(new_page_t get_new_page, unsigned long private, | 
|  | struct page *page, int force, bool offlining, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | int rc = 0; | 
|  | int *result = NULL; | 
|  | struct page *newpage = get_new_page(page, private, &result); | 
|  |  | 
|  | if (!newpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (page_count(page) == 1) { | 
|  | /* page was freed from under us. So we are done. */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(PageTransHuge(page))) | 
|  | if (unlikely(split_huge_page(page))) | 
|  | goto out; | 
|  |  | 
|  | rc = __unmap_and_move(page, newpage, force, offlining, mode); | 
|  | out: | 
|  | if (rc != -EAGAIN) { | 
|  | /* | 
|  | * A page that has been migrated has all references | 
|  | * removed and will be freed. A page that has not been | 
|  | * migrated will have kepts its references and be | 
|  | * restored. | 
|  | */ | 
|  | list_del(&page->lru); | 
|  | dec_zone_page_state(page, NR_ISOLATED_ANON + | 
|  | page_is_file_cache(page)); | 
|  | putback_lru_page(page); | 
|  | } | 
|  | /* | 
|  | * Move the new page to the LRU. If migration was not successful | 
|  | * then this will free the page. | 
|  | */ | 
|  | putback_lru_page(newpage); | 
|  | if (result) { | 
|  | if (rc) | 
|  | *result = rc; | 
|  | else | 
|  | *result = page_to_nid(newpage); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Counterpart of unmap_and_move_page() for hugepage migration. | 
|  | * | 
|  | * This function doesn't wait the completion of hugepage I/O | 
|  | * because there is no race between I/O and migration for hugepage. | 
|  | * Note that currently hugepage I/O occurs only in direct I/O | 
|  | * where no lock is held and PG_writeback is irrelevant, | 
|  | * and writeback status of all subpages are counted in the reference | 
|  | * count of the head page (i.e. if all subpages of a 2MB hugepage are | 
|  | * under direct I/O, the reference of the head page is 512 and a bit more.) | 
|  | * This means that when we try to migrate hugepage whose subpages are | 
|  | * doing direct I/O, some references remain after try_to_unmap() and | 
|  | * hugepage migration fails without data corruption. | 
|  | * | 
|  | * There is also no race when direct I/O is issued on the page under migration, | 
|  | * because then pte is replaced with migration swap entry and direct I/O code | 
|  | * will wait in the page fault for migration to complete. | 
|  | */ | 
|  | static int unmap_and_move_huge_page(new_page_t get_new_page, | 
|  | unsigned long private, struct page *hpage, | 
|  | int force, bool offlining, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | int rc = 0; | 
|  | int *result = NULL; | 
|  | struct page *new_hpage = get_new_page(hpage, private, &result); | 
|  | struct anon_vma *anon_vma = NULL; | 
|  |  | 
|  | if (!new_hpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = -EAGAIN; | 
|  |  | 
|  | if (!trylock_page(hpage)) { | 
|  | if (!force || mode != MIGRATE_SYNC) | 
|  | goto out; | 
|  | lock_page(hpage); | 
|  | } | 
|  |  | 
|  | if (PageAnon(hpage)) | 
|  | anon_vma = page_get_anon_vma(hpage); | 
|  |  | 
|  | try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS); | 
|  |  | 
|  | if (!page_mapped(hpage)) | 
|  | rc = move_to_new_page(new_hpage, hpage, 1, mode); | 
|  |  | 
|  | if (rc) | 
|  | remove_migration_ptes(hpage, hpage); | 
|  |  | 
|  | if (anon_vma) | 
|  | put_anon_vma(anon_vma); | 
|  | unlock_page(hpage); | 
|  |  | 
|  | out: | 
|  | if (rc != -EAGAIN) { | 
|  | list_del(&hpage->lru); | 
|  | put_page(hpage); | 
|  | } | 
|  |  | 
|  | put_page(new_hpage); | 
|  |  | 
|  | if (result) { | 
|  | if (rc) | 
|  | *result = rc; | 
|  | else | 
|  | *result = page_to_nid(new_hpage); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migrate_pages | 
|  | * | 
|  | * The function takes one list of pages to migrate and a function | 
|  | * that determines from the page to be migrated and the private data | 
|  | * the target of the move and allocates the page. | 
|  | * | 
|  | * The function returns after 10 attempts or if no pages | 
|  | * are movable anymore because to has become empty | 
|  | * or no retryable pages exist anymore. | 
|  | * Caller should call putback_lru_pages to return pages to the LRU | 
|  | * or free list only if ret != 0. | 
|  | * | 
|  | * Return: Number of pages not migrated or error code. | 
|  | */ | 
|  | int migrate_pages(struct list_head *from, | 
|  | new_page_t get_new_page, unsigned long private, bool offlining, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | int retry = 1; | 
|  | int nr_failed = 0; | 
|  | int pass = 0; | 
|  | struct page *page; | 
|  | struct page *page2; | 
|  | int swapwrite = current->flags & PF_SWAPWRITE; | 
|  | int rc; | 
|  |  | 
|  | if (!swapwrite) | 
|  | current->flags |= PF_SWAPWRITE; | 
|  |  | 
|  | for(pass = 0; pass < 10 && retry; pass++) { | 
|  | retry = 0; | 
|  |  | 
|  | list_for_each_entry_safe(page, page2, from, lru) { | 
|  | cond_resched(); | 
|  |  | 
|  | rc = unmap_and_move(get_new_page, private, | 
|  | page, pass > 2, offlining, | 
|  | mode); | 
|  |  | 
|  | switch(rc) { | 
|  | case -ENOMEM: | 
|  | goto out; | 
|  | case -EAGAIN: | 
|  | retry++; | 
|  | break; | 
|  | case 0: | 
|  | break; | 
|  | default: | 
|  | /* Permanent failure */ | 
|  | nr_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | rc = 0; | 
|  | out: | 
|  | if (!swapwrite) | 
|  | current->flags &= ~PF_SWAPWRITE; | 
|  |  | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | return nr_failed + retry; | 
|  | } | 
|  |  | 
|  | int migrate_huge_pages(struct list_head *from, | 
|  | new_page_t get_new_page, unsigned long private, bool offlining, | 
|  | enum migrate_mode mode) | 
|  | { | 
|  | int retry = 1; | 
|  | int nr_failed = 0; | 
|  | int pass = 0; | 
|  | struct page *page; | 
|  | struct page *page2; | 
|  | int rc; | 
|  |  | 
|  | for (pass = 0; pass < 10 && retry; pass++) { | 
|  | retry = 0; | 
|  |  | 
|  | list_for_each_entry_safe(page, page2, from, lru) { | 
|  | cond_resched(); | 
|  |  | 
|  | rc = unmap_and_move_huge_page(get_new_page, | 
|  | private, page, pass > 2, offlining, | 
|  | mode); | 
|  |  | 
|  | switch(rc) { | 
|  | case -ENOMEM: | 
|  | goto out; | 
|  | case -EAGAIN: | 
|  | retry++; | 
|  | break; | 
|  | case 0: | 
|  | break; | 
|  | default: | 
|  | /* Permanent failure */ | 
|  | nr_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | rc = 0; | 
|  | out: | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | return nr_failed + retry; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * Move a list of individual pages | 
|  | */ | 
|  | struct page_to_node { | 
|  | unsigned long addr; | 
|  | struct page *page; | 
|  | int node; | 
|  | int status; | 
|  | }; | 
|  |  | 
|  | static struct page *new_page_node(struct page *p, unsigned long private, | 
|  | int **result) | 
|  | { | 
|  | struct page_to_node *pm = (struct page_to_node *)private; | 
|  |  | 
|  | while (pm->node != MAX_NUMNODES && pm->page != p) | 
|  | pm++; | 
|  |  | 
|  | if (pm->node == MAX_NUMNODES) | 
|  | return NULL; | 
|  |  | 
|  | *result = &pm->status; | 
|  |  | 
|  | return alloc_pages_exact_node(pm->node, | 
|  | GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a set of pages as indicated in the pm array. The addr | 
|  | * field must be set to the virtual address of the page to be moved | 
|  | * and the node number must contain a valid target node. | 
|  | * The pm array ends with node = MAX_NUMNODES. | 
|  | */ | 
|  | static int do_move_page_to_node_array(struct mm_struct *mm, | 
|  | struct page_to_node *pm, | 
|  | int migrate_all) | 
|  | { | 
|  | int err; | 
|  | struct page_to_node *pp; | 
|  | LIST_HEAD(pagelist); | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  |  | 
|  | /* | 
|  | * Build a list of pages to migrate | 
|  | */ | 
|  | for (pp = pm; pp->node != MAX_NUMNODES; pp++) { | 
|  | struct vm_area_struct *vma; | 
|  | struct page *page; | 
|  |  | 
|  | err = -EFAULT; | 
|  | vma = find_vma(mm, pp->addr); | 
|  | if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma)) | 
|  | goto set_status; | 
|  |  | 
|  | page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT); | 
|  |  | 
|  | err = PTR_ERR(page); | 
|  | if (IS_ERR(page)) | 
|  | goto set_status; | 
|  |  | 
|  | err = -ENOENT; | 
|  | if (!page) | 
|  | goto set_status; | 
|  |  | 
|  | /* Use PageReserved to check for zero page */ | 
|  | if (PageReserved(page) || PageKsm(page)) | 
|  | goto put_and_set; | 
|  |  | 
|  | pp->page = page; | 
|  | err = page_to_nid(page); | 
|  |  | 
|  | if (err == pp->node) | 
|  | /* | 
|  | * Node already in the right place | 
|  | */ | 
|  | goto put_and_set; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (page_mapcount(page) > 1 && | 
|  | !migrate_all) | 
|  | goto put_and_set; | 
|  |  | 
|  | err = isolate_lru_page(page); | 
|  | if (!err) { | 
|  | list_add_tail(&page->lru, &pagelist); | 
|  | inc_zone_page_state(page, NR_ISOLATED_ANON + | 
|  | page_is_file_cache(page)); | 
|  | } | 
|  | put_and_set: | 
|  | /* | 
|  | * Either remove the duplicate refcount from | 
|  | * isolate_lru_page() or drop the page ref if it was | 
|  | * not isolated. | 
|  | */ | 
|  | put_page(page); | 
|  | set_status: | 
|  | pp->status = err; | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  | if (!list_empty(&pagelist)) { | 
|  | err = migrate_pages(&pagelist, new_page_node, | 
|  | (unsigned long)pm, 0, MIGRATE_SYNC); | 
|  | if (err) | 
|  | putback_lru_pages(&pagelist); | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Migrate an array of page address onto an array of nodes and fill | 
|  | * the corresponding array of status. | 
|  | */ | 
|  | static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes, | 
|  | unsigned long nr_pages, | 
|  | const void __user * __user *pages, | 
|  | const int __user *nodes, | 
|  | int __user *status, int flags) | 
|  | { | 
|  | struct page_to_node *pm; | 
|  | unsigned long chunk_nr_pages; | 
|  | unsigned long chunk_start; | 
|  | int err; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | pm = (struct page_to_node *)__get_free_page(GFP_KERNEL); | 
|  | if (!pm) | 
|  | goto out; | 
|  |  | 
|  | migrate_prep(); | 
|  |  | 
|  | /* | 
|  | * Store a chunk of page_to_node array in a page, | 
|  | * but keep the last one as a marker | 
|  | */ | 
|  | chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1; | 
|  |  | 
|  | for (chunk_start = 0; | 
|  | chunk_start < nr_pages; | 
|  | chunk_start += chunk_nr_pages) { | 
|  | int j; | 
|  |  | 
|  | if (chunk_start + chunk_nr_pages > nr_pages) | 
|  | chunk_nr_pages = nr_pages - chunk_start; | 
|  |  | 
|  | /* fill the chunk pm with addrs and nodes from user-space */ | 
|  | for (j = 0; j < chunk_nr_pages; j++) { | 
|  | const void __user *p; | 
|  | int node; | 
|  |  | 
|  | err = -EFAULT; | 
|  | if (get_user(p, pages + j + chunk_start)) | 
|  | goto out_pm; | 
|  | pm[j].addr = (unsigned long) p; | 
|  |  | 
|  | if (get_user(node, nodes + j + chunk_start)) | 
|  | goto out_pm; | 
|  |  | 
|  | err = -ENODEV; | 
|  | if (node < 0 || node >= MAX_NUMNODES) | 
|  | goto out_pm; | 
|  |  | 
|  | if (!node_state(node, N_HIGH_MEMORY)) | 
|  | goto out_pm; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (!node_isset(node, task_nodes)) | 
|  | goto out_pm; | 
|  |  | 
|  | pm[j].node = node; | 
|  | } | 
|  |  | 
|  | /* End marker for this chunk */ | 
|  | pm[chunk_nr_pages].node = MAX_NUMNODES; | 
|  |  | 
|  | /* Migrate this chunk */ | 
|  | err = do_move_page_to_node_array(mm, pm, | 
|  | flags & MPOL_MF_MOVE_ALL); | 
|  | if (err < 0) | 
|  | goto out_pm; | 
|  |  | 
|  | /* Return status information */ | 
|  | for (j = 0; j < chunk_nr_pages; j++) | 
|  | if (put_user(pm[j].status, status + j + chunk_start)) { | 
|  | err = -EFAULT; | 
|  | goto out_pm; | 
|  | } | 
|  | } | 
|  | err = 0; | 
|  |  | 
|  | out_pm: | 
|  | free_page((unsigned long)pm); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the nodes of an array of pages and store it in an array of status. | 
|  | */ | 
|  | static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages, | 
|  | const void __user **pages, int *status) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | unsigned long addr = (unsigned long)(*pages); | 
|  | struct vm_area_struct *vma; | 
|  | struct page *page; | 
|  | int err = -EFAULT; | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  | if (!vma || addr < vma->vm_start) | 
|  | goto set_status; | 
|  |  | 
|  | page = follow_page(vma, addr, 0); | 
|  |  | 
|  | err = PTR_ERR(page); | 
|  | if (IS_ERR(page)) | 
|  | goto set_status; | 
|  |  | 
|  | err = -ENOENT; | 
|  | /* Use PageReserved to check for zero page */ | 
|  | if (!page || PageReserved(page) || PageKsm(page)) | 
|  | goto set_status; | 
|  |  | 
|  | err = page_to_nid(page); | 
|  | set_status: | 
|  | *status = err; | 
|  |  | 
|  | pages++; | 
|  | status++; | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine the nodes of a user array of pages and store it in | 
|  | * a user array of status. | 
|  | */ | 
|  | static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages, | 
|  | const void __user * __user *pages, | 
|  | int __user *status) | 
|  | { | 
|  | #define DO_PAGES_STAT_CHUNK_NR 16 | 
|  | const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR]; | 
|  | int chunk_status[DO_PAGES_STAT_CHUNK_NR]; | 
|  |  | 
|  | while (nr_pages) { | 
|  | unsigned long chunk_nr; | 
|  |  | 
|  | chunk_nr = nr_pages; | 
|  | if (chunk_nr > DO_PAGES_STAT_CHUNK_NR) | 
|  | chunk_nr = DO_PAGES_STAT_CHUNK_NR; | 
|  |  | 
|  | if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages))) | 
|  | break; | 
|  |  | 
|  | do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status); | 
|  |  | 
|  | if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status))) | 
|  | break; | 
|  |  | 
|  | pages += chunk_nr; | 
|  | status += chunk_nr; | 
|  | nr_pages -= chunk_nr; | 
|  | } | 
|  | return nr_pages ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a list of pages in the address space of the currently executing | 
|  | * process. | 
|  | */ | 
|  | SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages, | 
|  | const void __user * __user *, pages, | 
|  | const int __user *, nodes, | 
|  | int __user *, status, int, flags) | 
|  | { | 
|  | const struct cred *cred = current_cred(), *tcred; | 
|  | struct task_struct *task; | 
|  | struct mm_struct *mm; | 
|  | int err; | 
|  | nodemask_t task_nodes; | 
|  |  | 
|  | /* Check flags */ | 
|  | if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Find the mm_struct */ | 
|  | rcu_read_lock(); | 
|  | task = pid ? find_task_by_vpid(pid) : current; | 
|  | if (!task) { | 
|  | rcu_read_unlock(); | 
|  | return -ESRCH; | 
|  | } | 
|  | get_task_struct(task); | 
|  |  | 
|  | /* | 
|  | * Check if this process has the right to modify the specified | 
|  | * process. The right exists if the process has administrative | 
|  | * capabilities, superuser privileges or the same | 
|  | * userid as the target process. | 
|  | */ | 
|  | tcred = __task_cred(task); | 
|  | if (cred->euid != tcred->suid && cred->euid != tcred->uid && | 
|  | cred->uid  != tcred->suid && cred->uid  != tcred->uid && | 
|  | !capable(CAP_SYS_NICE)) { | 
|  | rcu_read_unlock(); | 
|  | err = -EPERM; | 
|  | goto out; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | err = security_task_movememory(task); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | task_nodes = cpuset_mems_allowed(task); | 
|  | mm = get_task_mm(task); | 
|  | put_task_struct(task); | 
|  |  | 
|  | if (!mm) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (nodes) | 
|  | err = do_pages_move(mm, task_nodes, nr_pages, pages, | 
|  | nodes, status, flags); | 
|  | else | 
|  | err = do_pages_stat(mm, nr_pages, pages, status); | 
|  |  | 
|  | mmput(mm); | 
|  | return err; | 
|  |  | 
|  | out: | 
|  | put_task_struct(task); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call migration functions in the vma_ops that may prepare | 
|  | * memory in a vm for migration. migration functions may perform | 
|  | * the migration for vmas that do not have an underlying page struct. | 
|  | */ | 
|  | int migrate_vmas(struct mm_struct *mm, const nodemask_t *to, | 
|  | const nodemask_t *from, unsigned long flags) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | int err = 0; | 
|  |  | 
|  | for (vma = mm->mmap; vma && !err; vma = vma->vm_next) { | 
|  | if (vma->vm_ops && vma->vm_ops->migrate) { | 
|  | err = vma->vm_ops->migrate(vma, to, from, flags); | 
|  | if (err) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return err; | 
|  | } | 
|  | #endif |