|  | /* | 
|  | * Copyright (c) 2006 Oracle.  All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | * | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/ratelimit.h> | 
|  |  | 
|  | #include "rds.h" | 
|  | #include "ib.h" | 
|  |  | 
|  | static char *rds_ib_wc_status_strings[] = { | 
|  | #define RDS_IB_WC_STATUS_STR(foo) \ | 
|  | [IB_WC_##foo] = __stringify(IB_WC_##foo) | 
|  | RDS_IB_WC_STATUS_STR(SUCCESS), | 
|  | RDS_IB_WC_STATUS_STR(LOC_LEN_ERR), | 
|  | RDS_IB_WC_STATUS_STR(LOC_QP_OP_ERR), | 
|  | RDS_IB_WC_STATUS_STR(LOC_EEC_OP_ERR), | 
|  | RDS_IB_WC_STATUS_STR(LOC_PROT_ERR), | 
|  | RDS_IB_WC_STATUS_STR(WR_FLUSH_ERR), | 
|  | RDS_IB_WC_STATUS_STR(MW_BIND_ERR), | 
|  | RDS_IB_WC_STATUS_STR(BAD_RESP_ERR), | 
|  | RDS_IB_WC_STATUS_STR(LOC_ACCESS_ERR), | 
|  | RDS_IB_WC_STATUS_STR(REM_INV_REQ_ERR), | 
|  | RDS_IB_WC_STATUS_STR(REM_ACCESS_ERR), | 
|  | RDS_IB_WC_STATUS_STR(REM_OP_ERR), | 
|  | RDS_IB_WC_STATUS_STR(RETRY_EXC_ERR), | 
|  | RDS_IB_WC_STATUS_STR(RNR_RETRY_EXC_ERR), | 
|  | RDS_IB_WC_STATUS_STR(LOC_RDD_VIOL_ERR), | 
|  | RDS_IB_WC_STATUS_STR(REM_INV_RD_REQ_ERR), | 
|  | RDS_IB_WC_STATUS_STR(REM_ABORT_ERR), | 
|  | RDS_IB_WC_STATUS_STR(INV_EECN_ERR), | 
|  | RDS_IB_WC_STATUS_STR(INV_EEC_STATE_ERR), | 
|  | RDS_IB_WC_STATUS_STR(FATAL_ERR), | 
|  | RDS_IB_WC_STATUS_STR(RESP_TIMEOUT_ERR), | 
|  | RDS_IB_WC_STATUS_STR(GENERAL_ERR), | 
|  | #undef RDS_IB_WC_STATUS_STR | 
|  | }; | 
|  |  | 
|  | char *rds_ib_wc_status_str(enum ib_wc_status status) | 
|  | { | 
|  | return rds_str_array(rds_ib_wc_status_strings, | 
|  | ARRAY_SIZE(rds_ib_wc_status_strings), status); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert IB-specific error message to RDS error message and call core | 
|  | * completion handler. | 
|  | */ | 
|  | static void rds_ib_send_complete(struct rds_message *rm, | 
|  | int wc_status, | 
|  | void (*complete)(struct rds_message *rm, int status)) | 
|  | { | 
|  | int notify_status; | 
|  |  | 
|  | switch (wc_status) { | 
|  | case IB_WC_WR_FLUSH_ERR: | 
|  | return; | 
|  |  | 
|  | case IB_WC_SUCCESS: | 
|  | notify_status = RDS_RDMA_SUCCESS; | 
|  | break; | 
|  |  | 
|  | case IB_WC_REM_ACCESS_ERR: | 
|  | notify_status = RDS_RDMA_REMOTE_ERROR; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | notify_status = RDS_RDMA_OTHER_ERROR; | 
|  | break; | 
|  | } | 
|  | complete(rm, notify_status); | 
|  | } | 
|  |  | 
|  | static void rds_ib_send_unmap_data(struct rds_ib_connection *ic, | 
|  | struct rm_data_op *op, | 
|  | int wc_status) | 
|  | { | 
|  | if (op->op_nents) | 
|  | ib_dma_unmap_sg(ic->i_cm_id->device, | 
|  | op->op_sg, op->op_nents, | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic, | 
|  | struct rm_rdma_op *op, | 
|  | int wc_status) | 
|  | { | 
|  | if (op->op_mapped) { | 
|  | ib_dma_unmap_sg(ic->i_cm_id->device, | 
|  | op->op_sg, op->op_nents, | 
|  | op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
|  | op->op_mapped = 0; | 
|  | } | 
|  |  | 
|  | /* If the user asked for a completion notification on this | 
|  | * message, we can implement three different semantics: | 
|  | *  1.	Notify when we received the ACK on the RDS message | 
|  | *	that was queued with the RDMA. This provides reliable | 
|  | *	notification of RDMA status at the expense of a one-way | 
|  | *	packet delay. | 
|  | *  2.	Notify when the IB stack gives us the completion event for | 
|  | *	the RDMA operation. | 
|  | *  3.	Notify when the IB stack gives us the completion event for | 
|  | *	the accompanying RDS messages. | 
|  | * Here, we implement approach #3. To implement approach #2, | 
|  | * we would need to take an event for the rdma WR. To implement #1, | 
|  | * don't call rds_rdma_send_complete at all, and fall back to the notify | 
|  | * handling in the ACK processing code. | 
|  | * | 
|  | * Note: There's no need to explicitly sync any RDMA buffers using | 
|  | * ib_dma_sync_sg_for_cpu - the completion for the RDMA | 
|  | * operation itself unmapped the RDMA buffers, which takes care | 
|  | * of synching. | 
|  | */ | 
|  | rds_ib_send_complete(container_of(op, struct rds_message, rdma), | 
|  | wc_status, rds_rdma_send_complete); | 
|  |  | 
|  | if (op->op_write) | 
|  | rds_stats_add(s_send_rdma_bytes, op->op_bytes); | 
|  | else | 
|  | rds_stats_add(s_recv_rdma_bytes, op->op_bytes); | 
|  | } | 
|  |  | 
|  | static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic, | 
|  | struct rm_atomic_op *op, | 
|  | int wc_status) | 
|  | { | 
|  | /* unmap atomic recvbuf */ | 
|  | if (op->op_mapped) { | 
|  | ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1, | 
|  | DMA_FROM_DEVICE); | 
|  | op->op_mapped = 0; | 
|  | } | 
|  |  | 
|  | rds_ib_send_complete(container_of(op, struct rds_message, atomic), | 
|  | wc_status, rds_atomic_send_complete); | 
|  |  | 
|  | if (op->op_type == RDS_ATOMIC_TYPE_CSWP) | 
|  | rds_ib_stats_inc(s_ib_atomic_cswp); | 
|  | else | 
|  | rds_ib_stats_inc(s_ib_atomic_fadd); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmap the resources associated with a struct send_work. | 
|  | * | 
|  | * Returns the rm for no good reason other than it is unobtainable | 
|  | * other than by switching on wr.opcode, currently, and the caller, | 
|  | * the event handler, needs it. | 
|  | */ | 
|  | static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic, | 
|  | struct rds_ib_send_work *send, | 
|  | int wc_status) | 
|  | { | 
|  | struct rds_message *rm = NULL; | 
|  |  | 
|  | /* In the error case, wc.opcode sometimes contains garbage */ | 
|  | switch (send->s_wr.opcode) { | 
|  | case IB_WR_SEND: | 
|  | if (send->s_op) { | 
|  | rm = container_of(send->s_op, struct rds_message, data); | 
|  | rds_ib_send_unmap_data(ic, send->s_op, wc_status); | 
|  | } | 
|  | break; | 
|  | case IB_WR_RDMA_WRITE: | 
|  | case IB_WR_RDMA_READ: | 
|  | if (send->s_op) { | 
|  | rm = container_of(send->s_op, struct rds_message, rdma); | 
|  | rds_ib_send_unmap_rdma(ic, send->s_op, wc_status); | 
|  | } | 
|  | break; | 
|  | case IB_WR_ATOMIC_FETCH_AND_ADD: | 
|  | case IB_WR_ATOMIC_CMP_AND_SWP: | 
|  | if (send->s_op) { | 
|  | rm = container_of(send->s_op, struct rds_message, atomic); | 
|  | rds_ib_send_unmap_atomic(ic, send->s_op, wc_status); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | printk_ratelimited(KERN_NOTICE | 
|  | "RDS/IB: %s: unexpected opcode 0x%x in WR!\n", | 
|  | __func__, send->s_wr.opcode); | 
|  | break; | 
|  | } | 
|  |  | 
|  | send->s_wr.opcode = 0xdead; | 
|  |  | 
|  | return rm; | 
|  | } | 
|  |  | 
|  | void rds_ib_send_init_ring(struct rds_ib_connection *ic) | 
|  | { | 
|  | struct rds_ib_send_work *send; | 
|  | u32 i; | 
|  |  | 
|  | for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { | 
|  | struct ib_sge *sge; | 
|  |  | 
|  | send->s_op = NULL; | 
|  |  | 
|  | send->s_wr.wr_id = i; | 
|  | send->s_wr.sg_list = send->s_sge; | 
|  | send->s_wr.ex.imm_data = 0; | 
|  |  | 
|  | sge = &send->s_sge[0]; | 
|  | sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header)); | 
|  | sge->length = sizeof(struct rds_header); | 
|  | sge->lkey = ic->i_mr->lkey; | 
|  |  | 
|  | send->s_sge[1].lkey = ic->i_mr->lkey; | 
|  | } | 
|  | } | 
|  |  | 
|  | void rds_ib_send_clear_ring(struct rds_ib_connection *ic) | 
|  | { | 
|  | struct rds_ib_send_work *send; | 
|  | u32 i; | 
|  |  | 
|  | for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) { | 
|  | if (send->s_op && send->s_wr.opcode != 0xdead) | 
|  | rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The only fast path caller always has a non-zero nr, so we don't | 
|  | * bother testing nr before performing the atomic sub. | 
|  | */ | 
|  | static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr) | 
|  | { | 
|  | if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) && | 
|  | waitqueue_active(&rds_ib_ring_empty_wait)) | 
|  | wake_up(&rds_ib_ring_empty_wait); | 
|  | BUG_ON(atomic_read(&ic->i_signaled_sends) < 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The _oldest/_free ring operations here race cleanly with the alloc/unalloc | 
|  | * operations performed in the send path.  As the sender allocs and potentially | 
|  | * unallocs the next free entry in the ring it doesn't alter which is | 
|  | * the next to be freed, which is what this is concerned with. | 
|  | */ | 
|  | void rds_ib_send_cq_comp_handler(struct ib_cq *cq, void *context) | 
|  | { | 
|  | struct rds_connection *conn = context; | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | struct rds_message *rm = NULL; | 
|  | struct ib_wc wc; | 
|  | struct rds_ib_send_work *send; | 
|  | u32 completed; | 
|  | u32 oldest; | 
|  | u32 i = 0; | 
|  | int ret; | 
|  | int nr_sig = 0; | 
|  |  | 
|  | rdsdebug("cq %p conn %p\n", cq, conn); | 
|  | rds_ib_stats_inc(s_ib_tx_cq_call); | 
|  | ret = ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); | 
|  | if (ret) | 
|  | rdsdebug("ib_req_notify_cq send failed: %d\n", ret); | 
|  |  | 
|  | while (ib_poll_cq(cq, 1, &wc) > 0) { | 
|  | rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n", | 
|  | (unsigned long long)wc.wr_id, wc.status, | 
|  | rds_ib_wc_status_str(wc.status), wc.byte_len, | 
|  | be32_to_cpu(wc.ex.imm_data)); | 
|  | rds_ib_stats_inc(s_ib_tx_cq_event); | 
|  |  | 
|  | if (wc.wr_id == RDS_IB_ACK_WR_ID) { | 
|  | if (ic->i_ack_queued + HZ/2 < jiffies) | 
|  | rds_ib_stats_inc(s_ib_tx_stalled); | 
|  | rds_ib_ack_send_complete(ic); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | oldest = rds_ib_ring_oldest(&ic->i_send_ring); | 
|  |  | 
|  | completed = rds_ib_ring_completed(&ic->i_send_ring, wc.wr_id, oldest); | 
|  |  | 
|  | for (i = 0; i < completed; i++) { | 
|  | send = &ic->i_sends[oldest]; | 
|  | if (send->s_wr.send_flags & IB_SEND_SIGNALED) | 
|  | nr_sig++; | 
|  |  | 
|  | rm = rds_ib_send_unmap_op(ic, send, wc.status); | 
|  |  | 
|  | if (send->s_queued + HZ/2 < jiffies) | 
|  | rds_ib_stats_inc(s_ib_tx_stalled); | 
|  |  | 
|  | if (send->s_op) { | 
|  | if (send->s_op == rm->m_final_op) { | 
|  | /* If anyone waited for this message to get flushed out, wake | 
|  | * them up now */ | 
|  | rds_message_unmapped(rm); | 
|  | } | 
|  | rds_message_put(rm); | 
|  | send->s_op = NULL; | 
|  | } | 
|  |  | 
|  | oldest = (oldest + 1) % ic->i_send_ring.w_nr; | 
|  | } | 
|  |  | 
|  | rds_ib_ring_free(&ic->i_send_ring, completed); | 
|  | rds_ib_sub_signaled(ic, nr_sig); | 
|  | nr_sig = 0; | 
|  |  | 
|  | if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) || | 
|  | test_bit(0, &conn->c_map_queued)) | 
|  | queue_delayed_work(rds_wq, &conn->c_send_w, 0); | 
|  |  | 
|  | /* We expect errors as the qp is drained during shutdown */ | 
|  | if (wc.status != IB_WC_SUCCESS && rds_conn_up(conn)) { | 
|  | rds_ib_conn_error(conn, "send completion on %pI4 had status " | 
|  | "%u (%s), disconnecting and reconnecting\n", | 
|  | &conn->c_faddr, wc.status, | 
|  | rds_ib_wc_status_str(wc.status)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the main function for allocating credits when sending | 
|  | * messages. | 
|  | * | 
|  | * Conceptually, we have two counters: | 
|  | *  -	send credits: this tells us how many WRs we're allowed | 
|  | *	to submit without overruning the receiver's queue. For | 
|  | *	each SEND WR we post, we decrement this by one. | 
|  | * | 
|  | *  -	posted credits: this tells us how many WRs we recently | 
|  | *	posted to the receive queue. This value is transferred | 
|  | *	to the peer as a "credit update" in a RDS header field. | 
|  | *	Every time we transmit credits to the peer, we subtract | 
|  | *	the amount of transferred credits from this counter. | 
|  | * | 
|  | * It is essential that we avoid situations where both sides have | 
|  | * exhausted their send credits, and are unable to send new credits | 
|  | * to the peer. We achieve this by requiring that we send at least | 
|  | * one credit update to the peer before exhausting our credits. | 
|  | * When new credits arrive, we subtract one credit that is withheld | 
|  | * until we've posted new buffers and are ready to transmit these | 
|  | * credits (see rds_ib_send_add_credits below). | 
|  | * | 
|  | * The RDS send code is essentially single-threaded; rds_send_xmit | 
|  | * sets RDS_IN_XMIT to ensure exclusive access to the send ring. | 
|  | * However, the ACK sending code is independent and can race with | 
|  | * message SENDs. | 
|  | * | 
|  | * In the send path, we need to update the counters for send credits | 
|  | * and the counter of posted buffers atomically - when we use the | 
|  | * last available credit, we cannot allow another thread to race us | 
|  | * and grab the posted credits counter.  Hence, we have to use a | 
|  | * spinlock to protect the credit counter, or use atomics. | 
|  | * | 
|  | * Spinlocks shared between the send and the receive path are bad, | 
|  | * because they create unnecessary delays. An early implementation | 
|  | * using a spinlock showed a 5% degradation in throughput at some | 
|  | * loads. | 
|  | * | 
|  | * This implementation avoids spinlocks completely, putting both | 
|  | * counters into a single atomic, and updating that atomic using | 
|  | * atomic_add (in the receive path, when receiving fresh credits), | 
|  | * and using atomic_cmpxchg when updating the two counters. | 
|  | */ | 
|  | int rds_ib_send_grab_credits(struct rds_ib_connection *ic, | 
|  | u32 wanted, u32 *adv_credits, int need_posted, int max_posted) | 
|  | { | 
|  | unsigned int avail, posted, got = 0, advertise; | 
|  | long oldval, newval; | 
|  |  | 
|  | *adv_credits = 0; | 
|  | if (!ic->i_flowctl) | 
|  | return wanted; | 
|  |  | 
|  | try_again: | 
|  | advertise = 0; | 
|  | oldval = newval = atomic_read(&ic->i_credits); | 
|  | posted = IB_GET_POST_CREDITS(oldval); | 
|  | avail = IB_GET_SEND_CREDITS(oldval); | 
|  |  | 
|  | rdsdebug("rds_ib_send_grab_credits(%u): credits=%u posted=%u\n", | 
|  | wanted, avail, posted); | 
|  |  | 
|  | /* The last credit must be used to send a credit update. */ | 
|  | if (avail && !posted) | 
|  | avail--; | 
|  |  | 
|  | if (avail < wanted) { | 
|  | struct rds_connection *conn = ic->i_cm_id->context; | 
|  |  | 
|  | /* Oops, there aren't that many credits left! */ | 
|  | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | 
|  | got = avail; | 
|  | } else { | 
|  | /* Sometimes you get what you want, lalala. */ | 
|  | got = wanted; | 
|  | } | 
|  | newval -= IB_SET_SEND_CREDITS(got); | 
|  |  | 
|  | /* | 
|  | * If need_posted is non-zero, then the caller wants | 
|  | * the posted regardless of whether any send credits are | 
|  | * available. | 
|  | */ | 
|  | if (posted && (got || need_posted)) { | 
|  | advertise = min_t(unsigned int, posted, max_posted); | 
|  | newval -= IB_SET_POST_CREDITS(advertise); | 
|  | } | 
|  |  | 
|  | /* Finally bill everything */ | 
|  | if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval) | 
|  | goto try_again; | 
|  |  | 
|  | *adv_credits = advertise; | 
|  | return got; | 
|  | } | 
|  |  | 
|  | void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  |  | 
|  | if (credits == 0) | 
|  | return; | 
|  |  | 
|  | rdsdebug("rds_ib_send_add_credits(%u): current=%u%s\n", | 
|  | credits, | 
|  | IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)), | 
|  | test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : ""); | 
|  |  | 
|  | atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits); | 
|  | if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags)) | 
|  | queue_delayed_work(rds_wq, &conn->c_send_w, 0); | 
|  |  | 
|  | WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384); | 
|  |  | 
|  | rds_ib_stats_inc(s_ib_rx_credit_updates); | 
|  | } | 
|  |  | 
|  | void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  |  | 
|  | if (posted == 0) | 
|  | return; | 
|  |  | 
|  | atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits); | 
|  |  | 
|  | /* Decide whether to send an update to the peer now. | 
|  | * If we would send a credit update for every single buffer we | 
|  | * post, we would end up with an ACK storm (ACK arrives, | 
|  | * consumes buffer, we refill the ring, send ACK to remote | 
|  | * advertising the newly posted buffer... ad inf) | 
|  | * | 
|  | * Performance pretty much depends on how often we send | 
|  | * credit updates - too frequent updates mean lots of ACKs. | 
|  | * Too infrequent updates, and the peer will run out of | 
|  | * credits and has to throttle. | 
|  | * For the time being, 16 seems to be a good compromise. | 
|  | */ | 
|  | if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16) | 
|  | set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags); | 
|  | } | 
|  |  | 
|  | static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic, | 
|  | struct rds_ib_send_work *send, | 
|  | bool notify) | 
|  | { | 
|  | /* | 
|  | * We want to delay signaling completions just enough to get | 
|  | * the batching benefits but not so much that we create dead time | 
|  | * on the wire. | 
|  | */ | 
|  | if (ic->i_unsignaled_wrs-- == 0 || notify) { | 
|  | ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs; | 
|  | send->s_wr.send_flags |= IB_SEND_SIGNALED; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This can be called multiple times for a given message.  The first time | 
|  | * we see a message we map its scatterlist into the IB device so that | 
|  | * we can provide that mapped address to the IB scatter gather entries | 
|  | * in the IB work requests.  We translate the scatterlist into a series | 
|  | * of work requests that fragment the message.  These work requests complete | 
|  | * in order so we pass ownership of the message to the completion handler | 
|  | * once we send the final fragment. | 
|  | * | 
|  | * The RDS core uses the c_send_lock to only enter this function once | 
|  | * per connection.  This makes sure that the tx ring alloc/unalloc pairs | 
|  | * don't get out of sync and confuse the ring. | 
|  | */ | 
|  | int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm, | 
|  | unsigned int hdr_off, unsigned int sg, unsigned int off) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | struct ib_device *dev = ic->i_cm_id->device; | 
|  | struct rds_ib_send_work *send = NULL; | 
|  | struct rds_ib_send_work *first; | 
|  | struct rds_ib_send_work *prev; | 
|  | struct ib_send_wr *failed_wr; | 
|  | struct scatterlist *scat; | 
|  | u32 pos; | 
|  | u32 i; | 
|  | u32 work_alloc; | 
|  | u32 credit_alloc = 0; | 
|  | u32 posted; | 
|  | u32 adv_credits = 0; | 
|  | int send_flags = 0; | 
|  | int bytes_sent = 0; | 
|  | int ret; | 
|  | int flow_controlled = 0; | 
|  | int nr_sig = 0; | 
|  |  | 
|  | BUG_ON(off % RDS_FRAG_SIZE); | 
|  | BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header)); | 
|  |  | 
|  | /* Do not send cong updates to IB loopback */ | 
|  | if (conn->c_loopback | 
|  | && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) { | 
|  | rds_cong_map_updated(conn->c_fcong, ~(u64) 0); | 
|  | scat = &rm->data.op_sg[sg]; | 
|  | ret = sizeof(struct rds_header) + RDS_CONG_MAP_BYTES; | 
|  | ret = min_t(int, ret, scat->length - conn->c_xmit_data_off); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* FIXME we may overallocate here */ | 
|  | if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0) | 
|  | i = 1; | 
|  | else | 
|  | i = ceil(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE); | 
|  |  | 
|  | work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); | 
|  | if (work_alloc == 0) { | 
|  | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | 
|  | rds_ib_stats_inc(s_ib_tx_ring_full); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ic->i_flowctl) { | 
|  | credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT); | 
|  | adv_credits += posted; | 
|  | if (credit_alloc < work_alloc) { | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc); | 
|  | work_alloc = credit_alloc; | 
|  | flow_controlled = 1; | 
|  | } | 
|  | if (work_alloc == 0) { | 
|  | set_bit(RDS_LL_SEND_FULL, &conn->c_flags); | 
|  | rds_ib_stats_inc(s_ib_tx_throttle); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* map the message the first time we see it */ | 
|  | if (!ic->i_data_op) { | 
|  | if (rm->data.op_nents) { | 
|  | rm->data.op_count = ib_dma_map_sg(dev, | 
|  | rm->data.op_sg, | 
|  | rm->data.op_nents, | 
|  | DMA_TO_DEVICE); | 
|  | rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count); | 
|  | if (rm->data.op_count == 0) { | 
|  | rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | ret = -ENOMEM; /* XXX ? */ | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | rm->data.op_count = 0; | 
|  | } | 
|  |  | 
|  | rds_message_addref(rm); | 
|  | ic->i_data_op = &rm->data; | 
|  |  | 
|  | /* Finalize the header */ | 
|  | if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags)) | 
|  | rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED; | 
|  | if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) | 
|  | rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED; | 
|  |  | 
|  | /* If it has a RDMA op, tell the peer we did it. This is | 
|  | * used by the peer to release use-once RDMA MRs. */ | 
|  | if (rm->rdma.op_active) { | 
|  | struct rds_ext_header_rdma ext_hdr; | 
|  |  | 
|  | ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey); | 
|  | rds_message_add_extension(&rm->m_inc.i_hdr, | 
|  | RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr)); | 
|  | } | 
|  | if (rm->m_rdma_cookie) { | 
|  | rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr, | 
|  | rds_rdma_cookie_key(rm->m_rdma_cookie), | 
|  | rds_rdma_cookie_offset(rm->m_rdma_cookie)); | 
|  | } | 
|  |  | 
|  | /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so | 
|  | * we should not do this unless we have a chance of at least | 
|  | * sticking the header into the send ring. Which is why we | 
|  | * should call rds_ib_ring_alloc first. */ | 
|  | rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic)); | 
|  | rds_message_make_checksum(&rm->m_inc.i_hdr); | 
|  |  | 
|  | /* | 
|  | * Update adv_credits since we reset the ACK_REQUIRED bit. | 
|  | */ | 
|  | if (ic->i_flowctl) { | 
|  | rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits); | 
|  | adv_credits += posted; | 
|  | BUG_ON(adv_credits > 255); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sometimes you want to put a fence between an RDMA | 
|  | * READ and the following SEND. | 
|  | * We could either do this all the time | 
|  | * or when requested by the user. Right now, we let | 
|  | * the application choose. | 
|  | */ | 
|  | if (rm->rdma.op_active && rm->rdma.op_fence) | 
|  | send_flags = IB_SEND_FENCE; | 
|  |  | 
|  | /* Each frag gets a header. Msgs may be 0 bytes */ | 
|  | send = &ic->i_sends[pos]; | 
|  | first = send; | 
|  | prev = NULL; | 
|  | scat = &ic->i_data_op->op_sg[sg]; | 
|  | i = 0; | 
|  | do { | 
|  | unsigned int len = 0; | 
|  |  | 
|  | /* Set up the header */ | 
|  | send->s_wr.send_flags = send_flags; | 
|  | send->s_wr.opcode = IB_WR_SEND; | 
|  | send->s_wr.num_sge = 1; | 
|  | send->s_wr.next = NULL; | 
|  | send->s_queued = jiffies; | 
|  | send->s_op = NULL; | 
|  |  | 
|  | send->s_sge[0].addr = ic->i_send_hdrs_dma | 
|  | + (pos * sizeof(struct rds_header)); | 
|  | send->s_sge[0].length = sizeof(struct rds_header); | 
|  |  | 
|  | memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header)); | 
|  |  | 
|  | /* Set up the data, if present */ | 
|  | if (i < work_alloc | 
|  | && scat != &rm->data.op_sg[rm->data.op_count]) { | 
|  | len = min(RDS_FRAG_SIZE, ib_sg_dma_len(dev, scat) - off); | 
|  | send->s_wr.num_sge = 2; | 
|  |  | 
|  | send->s_sge[1].addr = ib_sg_dma_address(dev, scat) + off; | 
|  | send->s_sge[1].length = len; | 
|  |  | 
|  | bytes_sent += len; | 
|  | off += len; | 
|  | if (off == ib_sg_dma_len(dev, scat)) { | 
|  | scat++; | 
|  | off = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | rds_ib_set_wr_signal_state(ic, send, 0); | 
|  |  | 
|  | /* | 
|  | * Always signal the last one if we're stopping due to flow control. | 
|  | */ | 
|  | if (ic->i_flowctl && flow_controlled && i == (work_alloc-1)) | 
|  | send->s_wr.send_flags |= IB_SEND_SIGNALED | IB_SEND_SOLICITED; | 
|  |  | 
|  | if (send->s_wr.send_flags & IB_SEND_SIGNALED) | 
|  | nr_sig++; | 
|  |  | 
|  | rdsdebug("send %p wr %p num_sge %u next %p\n", send, | 
|  | &send->s_wr, send->s_wr.num_sge, send->s_wr.next); | 
|  |  | 
|  | if (ic->i_flowctl && adv_credits) { | 
|  | struct rds_header *hdr = &ic->i_send_hdrs[pos]; | 
|  |  | 
|  | /* add credit and redo the header checksum */ | 
|  | hdr->h_credit = adv_credits; | 
|  | rds_message_make_checksum(hdr); | 
|  | adv_credits = 0; | 
|  | rds_ib_stats_inc(s_ib_tx_credit_updates); | 
|  | } | 
|  |  | 
|  | if (prev) | 
|  | prev->s_wr.next = &send->s_wr; | 
|  | prev = send; | 
|  |  | 
|  | pos = (pos + 1) % ic->i_send_ring.w_nr; | 
|  | send = &ic->i_sends[pos]; | 
|  | i++; | 
|  |  | 
|  | } while (i < work_alloc | 
|  | && scat != &rm->data.op_sg[rm->data.op_count]); | 
|  |  | 
|  | /* Account the RDS header in the number of bytes we sent, but just once. | 
|  | * The caller has no concept of fragmentation. */ | 
|  | if (hdr_off == 0) | 
|  | bytes_sent += sizeof(struct rds_header); | 
|  |  | 
|  | /* if we finished the message then send completion owns it */ | 
|  | if (scat == &rm->data.op_sg[rm->data.op_count]) { | 
|  | prev->s_op = ic->i_data_op; | 
|  | prev->s_wr.send_flags |= IB_SEND_SOLICITED; | 
|  | ic->i_data_op = NULL; | 
|  | } | 
|  |  | 
|  | /* Put back wrs & credits we didn't use */ | 
|  | if (i < work_alloc) { | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); | 
|  | work_alloc = i; | 
|  | } | 
|  | if (ic->i_flowctl && i < credit_alloc) | 
|  | rds_ib_send_add_credits(conn, credit_alloc - i); | 
|  |  | 
|  | if (nr_sig) | 
|  | atomic_add(nr_sig, &ic->i_signaled_sends); | 
|  |  | 
|  | /* XXX need to worry about failed_wr and partial sends. */ | 
|  | failed_wr = &first->s_wr; | 
|  | ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); | 
|  | rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, | 
|  | first, &first->s_wr, ret, failed_wr); | 
|  | BUG_ON(failed_wr != &first->s_wr); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "RDS/IB: ib_post_send to %pI4 " | 
|  | "returned %d\n", &conn->c_faddr, ret); | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | rds_ib_sub_signaled(ic, nr_sig); | 
|  | if (prev->s_op) { | 
|  | ic->i_data_op = prev->s_op; | 
|  | prev->s_op = NULL; | 
|  | } | 
|  |  | 
|  | rds_ib_conn_error(ic->conn, "ib_post_send failed\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = bytes_sent; | 
|  | out: | 
|  | BUG_ON(adv_credits); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Issue atomic operation. | 
|  | * A simplified version of the rdma case, we always map 1 SG, and | 
|  | * only 8 bytes, for the return value from the atomic operation. | 
|  | */ | 
|  | int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | struct rds_ib_send_work *send = NULL; | 
|  | struct ib_send_wr *failed_wr; | 
|  | struct rds_ib_device *rds_ibdev; | 
|  | u32 pos; | 
|  | u32 work_alloc; | 
|  | int ret; | 
|  | int nr_sig = 0; | 
|  |  | 
|  | rds_ibdev = ib_get_client_data(ic->i_cm_id->device, &rds_ib_client); | 
|  |  | 
|  | work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos); | 
|  | if (work_alloc != 1) { | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | rds_ib_stats_inc(s_ib_tx_ring_full); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* address of send request in ring */ | 
|  | send = &ic->i_sends[pos]; | 
|  | send->s_queued = jiffies; | 
|  |  | 
|  | if (op->op_type == RDS_ATOMIC_TYPE_CSWP) { | 
|  | send->s_wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP; | 
|  | send->s_wr.wr.atomic.compare_add = op->op_m_cswp.compare; | 
|  | send->s_wr.wr.atomic.swap = op->op_m_cswp.swap; | 
|  | send->s_wr.wr.atomic.compare_add_mask = op->op_m_cswp.compare_mask; | 
|  | send->s_wr.wr.atomic.swap_mask = op->op_m_cswp.swap_mask; | 
|  | } else { /* FADD */ | 
|  | send->s_wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD; | 
|  | send->s_wr.wr.atomic.compare_add = op->op_m_fadd.add; | 
|  | send->s_wr.wr.atomic.swap = 0; | 
|  | send->s_wr.wr.atomic.compare_add_mask = op->op_m_fadd.nocarry_mask; | 
|  | send->s_wr.wr.atomic.swap_mask = 0; | 
|  | } | 
|  | nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify); | 
|  | send->s_wr.num_sge = 1; | 
|  | send->s_wr.next = NULL; | 
|  | send->s_wr.wr.atomic.remote_addr = op->op_remote_addr; | 
|  | send->s_wr.wr.atomic.rkey = op->op_rkey; | 
|  | send->s_op = op; | 
|  | rds_message_addref(container_of(send->s_op, struct rds_message, atomic)); | 
|  |  | 
|  | /* map 8 byte retval buffer to the device */ | 
|  | ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE); | 
|  | rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret); | 
|  | if (ret != 1) { | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); | 
|  | ret = -ENOMEM; /* XXX ? */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Convert our struct scatterlist to struct ib_sge */ | 
|  | send->s_sge[0].addr = ib_sg_dma_address(ic->i_cm_id->device, op->op_sg); | 
|  | send->s_sge[0].length = ib_sg_dma_len(ic->i_cm_id->device, op->op_sg); | 
|  | send->s_sge[0].lkey = ic->i_mr->lkey; | 
|  |  | 
|  | rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr, | 
|  | send->s_sge[0].addr, send->s_sge[0].length); | 
|  |  | 
|  | if (nr_sig) | 
|  | atomic_add(nr_sig, &ic->i_signaled_sends); | 
|  |  | 
|  | failed_wr = &send->s_wr; | 
|  | ret = ib_post_send(ic->i_cm_id->qp, &send->s_wr, &failed_wr); | 
|  | rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic, | 
|  | send, &send->s_wr, ret, failed_wr); | 
|  | BUG_ON(failed_wr != &send->s_wr); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI4 " | 
|  | "returned %d\n", &conn->c_faddr, ret); | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | rds_ib_sub_signaled(ic, nr_sig); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(failed_wr != &send->s_wr)) { | 
|  | printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret); | 
|  | BUG_ON(failed_wr != &send->s_wr); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  | struct rds_ib_send_work *send = NULL; | 
|  | struct rds_ib_send_work *first; | 
|  | struct rds_ib_send_work *prev; | 
|  | struct ib_send_wr *failed_wr; | 
|  | struct scatterlist *scat; | 
|  | unsigned long len; | 
|  | u64 remote_addr = op->op_remote_addr; | 
|  | u32 max_sge = ic->rds_ibdev->max_sge; | 
|  | u32 pos; | 
|  | u32 work_alloc; | 
|  | u32 i; | 
|  | u32 j; | 
|  | int sent; | 
|  | int ret; | 
|  | int num_sge; | 
|  | int nr_sig = 0; | 
|  |  | 
|  | /* map the op the first time we see it */ | 
|  | if (!op->op_mapped) { | 
|  | op->op_count = ib_dma_map_sg(ic->i_cm_id->device, | 
|  | op->op_sg, op->op_nents, (op->op_write) ? | 
|  | DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
|  | rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count); | 
|  | if (op->op_count == 0) { | 
|  | rds_ib_stats_inc(s_ib_tx_sg_mapping_failure); | 
|  | ret = -ENOMEM; /* XXX ? */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | op->op_mapped = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Instead of knowing how to return a partial rdma read/write we insist that there | 
|  | * be enough work requests to send the entire message. | 
|  | */ | 
|  | i = ceil(op->op_count, max_sge); | 
|  |  | 
|  | work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos); | 
|  | if (work_alloc != i) { | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | rds_ib_stats_inc(s_ib_tx_ring_full); | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | send = &ic->i_sends[pos]; | 
|  | first = send; | 
|  | prev = NULL; | 
|  | scat = &op->op_sg[0]; | 
|  | sent = 0; | 
|  | num_sge = op->op_count; | 
|  |  | 
|  | for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) { | 
|  | send->s_wr.send_flags = 0; | 
|  | send->s_queued = jiffies; | 
|  | send->s_op = NULL; | 
|  |  | 
|  | nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify); | 
|  |  | 
|  | send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ; | 
|  | send->s_wr.wr.rdma.remote_addr = remote_addr; | 
|  | send->s_wr.wr.rdma.rkey = op->op_rkey; | 
|  |  | 
|  | if (num_sge > max_sge) { | 
|  | send->s_wr.num_sge = max_sge; | 
|  | num_sge -= max_sge; | 
|  | } else { | 
|  | send->s_wr.num_sge = num_sge; | 
|  | } | 
|  |  | 
|  | send->s_wr.next = NULL; | 
|  |  | 
|  | if (prev) | 
|  | prev->s_wr.next = &send->s_wr; | 
|  |  | 
|  | for (j = 0; j < send->s_wr.num_sge && scat != &op->op_sg[op->op_count]; j++) { | 
|  | len = ib_sg_dma_len(ic->i_cm_id->device, scat); | 
|  | send->s_sge[j].addr = | 
|  | ib_sg_dma_address(ic->i_cm_id->device, scat); | 
|  | send->s_sge[j].length = len; | 
|  | send->s_sge[j].lkey = ic->i_mr->lkey; | 
|  |  | 
|  | sent += len; | 
|  | rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr); | 
|  |  | 
|  | remote_addr += len; | 
|  | scat++; | 
|  | } | 
|  |  | 
|  | rdsdebug("send %p wr %p num_sge %u next %p\n", send, | 
|  | &send->s_wr, send->s_wr.num_sge, send->s_wr.next); | 
|  |  | 
|  | prev = send; | 
|  | if (++send == &ic->i_sends[ic->i_send_ring.w_nr]) | 
|  | send = ic->i_sends; | 
|  | } | 
|  |  | 
|  | /* give a reference to the last op */ | 
|  | if (scat == &op->op_sg[op->op_count]) { | 
|  | prev->s_op = op; | 
|  | rds_message_addref(container_of(op, struct rds_message, rdma)); | 
|  | } | 
|  |  | 
|  | if (i < work_alloc) { | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i); | 
|  | work_alloc = i; | 
|  | } | 
|  |  | 
|  | if (nr_sig) | 
|  | atomic_add(nr_sig, &ic->i_signaled_sends); | 
|  |  | 
|  | failed_wr = &first->s_wr; | 
|  | ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr); | 
|  | rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic, | 
|  | first, &first->s_wr, ret, failed_wr); | 
|  | BUG_ON(failed_wr != &first->s_wr); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI4 " | 
|  | "returned %d\n", &conn->c_faddr, ret); | 
|  | rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc); | 
|  | rds_ib_sub_signaled(ic, nr_sig); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(failed_wr != &first->s_wr)) { | 
|  | printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret); | 
|  | BUG_ON(failed_wr != &first->s_wr); | 
|  | } | 
|  |  | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void rds_ib_xmit_complete(struct rds_connection *conn) | 
|  | { | 
|  | struct rds_ib_connection *ic = conn->c_transport_data; | 
|  |  | 
|  | /* We may have a pending ACK or window update we were unable | 
|  | * to send previously (due to flow control). Try again. */ | 
|  | rds_ib_attempt_ack(ic); | 
|  | } |