| /* | 
 |  * SLUB: A slab allocator that limits cache line use instead of queuing | 
 |  * objects in per cpu and per node lists. | 
 |  * | 
 |  * The allocator synchronizes using per slab locks and only | 
 |  * uses a centralized lock to manage a pool of partial slabs. | 
 |  * | 
 |  * (C) 2007 SGI, Christoph Lameter | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/cpuset.h> | 
 | #include <linux/mempolicy.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/debugobjects.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/math64.h> | 
 |  | 
 | /* | 
 |  * Lock order: | 
 |  *   1. slab_lock(page) | 
 |  *   2. slab->list_lock | 
 |  * | 
 |  *   The slab_lock protects operations on the object of a particular | 
 |  *   slab and its metadata in the page struct. If the slab lock | 
 |  *   has been taken then no allocations nor frees can be performed | 
 |  *   on the objects in the slab nor can the slab be added or removed | 
 |  *   from the partial or full lists since this would mean modifying | 
 |  *   the page_struct of the slab. | 
 |  * | 
 |  *   The list_lock protects the partial and full list on each node and | 
 |  *   the partial slab counter. If taken then no new slabs may be added or | 
 |  *   removed from the lists nor make the number of partial slabs be modified. | 
 |  *   (Note that the total number of slabs is an atomic value that may be | 
 |  *   modified without taking the list lock). | 
 |  * | 
 |  *   The list_lock is a centralized lock and thus we avoid taking it as | 
 |  *   much as possible. As long as SLUB does not have to handle partial | 
 |  *   slabs, operations can continue without any centralized lock. F.e. | 
 |  *   allocating a long series of objects that fill up slabs does not require | 
 |  *   the list lock. | 
 |  * | 
 |  *   The lock order is sometimes inverted when we are trying to get a slab | 
 |  *   off a list. We take the list_lock and then look for a page on the list | 
 |  *   to use. While we do that objects in the slabs may be freed. We can | 
 |  *   only operate on the slab if we have also taken the slab_lock. So we use | 
 |  *   a slab_trylock() on the slab. If trylock was successful then no frees | 
 |  *   can occur anymore and we can use the slab for allocations etc. If the | 
 |  *   slab_trylock() does not succeed then frees are in progress in the slab and | 
 |  *   we must stay away from it for a while since we may cause a bouncing | 
 |  *   cacheline if we try to acquire the lock. So go onto the next slab. | 
 |  *   If all pages are busy then we may allocate a new slab instead of reusing | 
 |  *   a partial slab. A new slab has noone operating on it and thus there is | 
 |  *   no danger of cacheline contention. | 
 |  * | 
 |  *   Interrupts are disabled during allocation and deallocation in order to | 
 |  *   make the slab allocator safe to use in the context of an irq. In addition | 
 |  *   interrupts are disabled to ensure that the processor does not change | 
 |  *   while handling per_cpu slabs, due to kernel preemption. | 
 |  * | 
 |  * SLUB assigns one slab for allocation to each processor. | 
 |  * Allocations only occur from these slabs called cpu slabs. | 
 |  * | 
 |  * Slabs with free elements are kept on a partial list and during regular | 
 |  * operations no list for full slabs is used. If an object in a full slab is | 
 |  * freed then the slab will show up again on the partial lists. | 
 |  * We track full slabs for debugging purposes though because otherwise we | 
 |  * cannot scan all objects. | 
 |  * | 
 |  * Slabs are freed when they become empty. Teardown and setup is | 
 |  * minimal so we rely on the page allocators per cpu caches for | 
 |  * fast frees and allocs. | 
 |  * | 
 |  * Overloading of page flags that are otherwise used for LRU management. | 
 |  * | 
 |  * PageActive 		The slab is frozen and exempt from list processing. | 
 |  * 			This means that the slab is dedicated to a purpose | 
 |  * 			such as satisfying allocations for a specific | 
 |  * 			processor. Objects may be freed in the slab while | 
 |  * 			it is frozen but slab_free will then skip the usual | 
 |  * 			list operations. It is up to the processor holding | 
 |  * 			the slab to integrate the slab into the slab lists | 
 |  * 			when the slab is no longer needed. | 
 |  * | 
 |  * 			One use of this flag is to mark slabs that are | 
 |  * 			used for allocations. Then such a slab becomes a cpu | 
 |  * 			slab. The cpu slab may be equipped with an additional | 
 |  * 			freelist that allows lockless access to | 
 |  * 			free objects in addition to the regular freelist | 
 |  * 			that requires the slab lock. | 
 |  * | 
 |  * PageError		Slab requires special handling due to debug | 
 |  * 			options set. This moves	slab handling out of | 
 |  * 			the fast path and disables lockless freelists. | 
 |  */ | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | #define SLABDEBUG 1 | 
 | #else | 
 | #define SLABDEBUG 0 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Issues still to be resolved: | 
 |  * | 
 |  * - Support PAGE_ALLOC_DEBUG. Should be easy to do. | 
 |  * | 
 |  * - Variable sizing of the per node arrays | 
 |  */ | 
 |  | 
 | /* Enable to test recovery from slab corruption on boot */ | 
 | #undef SLUB_RESILIENCY_TEST | 
 |  | 
 | /* | 
 |  * Mininum number of partial slabs. These will be left on the partial | 
 |  * lists even if they are empty. kmem_cache_shrink may reclaim them. | 
 |  */ | 
 | #define MIN_PARTIAL 5 | 
 |  | 
 | /* | 
 |  * Maximum number of desirable partial slabs. | 
 |  * The existence of more partial slabs makes kmem_cache_shrink | 
 |  * sort the partial list by the number of objects in the. | 
 |  */ | 
 | #define MAX_PARTIAL 10 | 
 |  | 
 | #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ | 
 | 				SLAB_POISON | SLAB_STORE_USER) | 
 |  | 
 | /* | 
 |  * Set of flags that will prevent slab merging | 
 |  */ | 
 | #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ | 
 | 		SLAB_TRACE | SLAB_DESTROY_BY_RCU) | 
 |  | 
 | #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \ | 
 | 		SLAB_CACHE_DMA) | 
 |  | 
 | #ifndef ARCH_KMALLOC_MINALIGN | 
 | #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) | 
 | #endif | 
 |  | 
 | #ifndef ARCH_SLAB_MINALIGN | 
 | #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) | 
 | #endif | 
 |  | 
 | /* Internal SLUB flags */ | 
 | #define __OBJECT_POISON		0x80000000 /* Poison object */ | 
 | #define __SYSFS_ADD_DEFERRED	0x40000000 /* Not yet visible via sysfs */ | 
 |  | 
 | static int kmem_size = sizeof(struct kmem_cache); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | static struct notifier_block slab_notifier; | 
 | #endif | 
 |  | 
 | static enum { | 
 | 	DOWN,		/* No slab functionality available */ | 
 | 	PARTIAL,	/* kmem_cache_open() works but kmalloc does not */ | 
 | 	UP,		/* Everything works but does not show up in sysfs */ | 
 | 	SYSFS		/* Sysfs up */ | 
 | } slab_state = DOWN; | 
 |  | 
 | /* A list of all slab caches on the system */ | 
 | static DECLARE_RWSEM(slub_lock); | 
 | static LIST_HEAD(slab_caches); | 
 |  | 
 | /* | 
 |  * Tracking user of a slab. | 
 |  */ | 
 | struct track { | 
 | 	void *addr;		/* Called from address */ | 
 | 	int cpu;		/* Was running on cpu */ | 
 | 	int pid;		/* Pid context */ | 
 | 	unsigned long when;	/* When did the operation occur */ | 
 | }; | 
 |  | 
 | enum track_item { TRACK_ALLOC, TRACK_FREE }; | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static int sysfs_slab_add(struct kmem_cache *); | 
 | static int sysfs_slab_alias(struct kmem_cache *, const char *); | 
 | static void sysfs_slab_remove(struct kmem_cache *); | 
 |  | 
 | #else | 
 | static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } | 
 | static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) | 
 | 							{ return 0; } | 
 | static inline void sysfs_slab_remove(struct kmem_cache *s) | 
 | { | 
 | 	kfree(s); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static inline void stat(struct kmem_cache_cpu *c, enum stat_item si) | 
 | { | 
 | #ifdef CONFIG_SLUB_STATS | 
 | 	c->stat[si]++; | 
 | #endif | 
 | } | 
 |  | 
 | /******************************************************************** | 
 |  * 			Core slab cache functions | 
 |  *******************************************************************/ | 
 |  | 
 | int slab_is_available(void) | 
 | { | 
 | 	return slab_state >= UP; | 
 | } | 
 |  | 
 | static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	return s->node[node]; | 
 | #else | 
 | 	return &s->local_node; | 
 | #endif | 
 | } | 
 |  | 
 | static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	return s->cpu_slab[cpu]; | 
 | #else | 
 | 	return &s->cpu_slab; | 
 | #endif | 
 | } | 
 |  | 
 | /* Verify that a pointer has an address that is valid within a slab page */ | 
 | static inline int check_valid_pointer(struct kmem_cache *s, | 
 | 				struct page *page, const void *object) | 
 | { | 
 | 	void *base; | 
 |  | 
 | 	if (!object) | 
 | 		return 1; | 
 |  | 
 | 	base = page_address(page); | 
 | 	if (object < base || object >= base + page->objects * s->size || | 
 | 		(object - base) % s->size) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Slow version of get and set free pointer. | 
 |  * | 
 |  * This version requires touching the cache lines of kmem_cache which | 
 |  * we avoid to do in the fast alloc free paths. There we obtain the offset | 
 |  * from the page struct. | 
 |  */ | 
 | static inline void *get_freepointer(struct kmem_cache *s, void *object) | 
 | { | 
 | 	return *(void **)(object + s->offset); | 
 | } | 
 |  | 
 | static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) | 
 | { | 
 | 	*(void **)(object + s->offset) = fp; | 
 | } | 
 |  | 
 | /* Loop over all objects in a slab */ | 
 | #define for_each_object(__p, __s, __addr, __objects) \ | 
 | 	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\ | 
 | 			__p += (__s)->size) | 
 |  | 
 | /* Scan freelist */ | 
 | #define for_each_free_object(__p, __s, __free) \ | 
 | 	for (__p = (__free); __p; __p = get_freepointer((__s), __p)) | 
 |  | 
 | /* Determine object index from a given position */ | 
 | static inline int slab_index(void *p, struct kmem_cache *s, void *addr) | 
 | { | 
 | 	return (p - addr) / s->size; | 
 | } | 
 |  | 
 | static inline struct kmem_cache_order_objects oo_make(int order, | 
 | 						unsigned long size) | 
 | { | 
 | 	struct kmem_cache_order_objects x = { | 
 | 		(order << 16) + (PAGE_SIZE << order) / size | 
 | 	}; | 
 |  | 
 | 	return x; | 
 | } | 
 |  | 
 | static inline int oo_order(struct kmem_cache_order_objects x) | 
 | { | 
 | 	return x.x >> 16; | 
 | } | 
 |  | 
 | static inline int oo_objects(struct kmem_cache_order_objects x) | 
 | { | 
 | 	return x.x & ((1 << 16) - 1); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | /* | 
 |  * Debug settings: | 
 |  */ | 
 | #ifdef CONFIG_SLUB_DEBUG_ON | 
 | static int slub_debug = DEBUG_DEFAULT_FLAGS; | 
 | #else | 
 | static int slub_debug; | 
 | #endif | 
 |  | 
 | static char *slub_debug_slabs; | 
 |  | 
 | /* | 
 |  * Object debugging | 
 |  */ | 
 | static void print_section(char *text, u8 *addr, unsigned int length) | 
 | { | 
 | 	int i, offset; | 
 | 	int newline = 1; | 
 | 	char ascii[17]; | 
 |  | 
 | 	ascii[16] = 0; | 
 |  | 
 | 	for (i = 0; i < length; i++) { | 
 | 		if (newline) { | 
 | 			printk(KERN_ERR "%8s 0x%p: ", text, addr + i); | 
 | 			newline = 0; | 
 | 		} | 
 | 		printk(KERN_CONT " %02x", addr[i]); | 
 | 		offset = i % 16; | 
 | 		ascii[offset] = isgraph(addr[i]) ? addr[i] : '.'; | 
 | 		if (offset == 15) { | 
 | 			printk(KERN_CONT " %s\n", ascii); | 
 | 			newline = 1; | 
 | 		} | 
 | 	} | 
 | 	if (!newline) { | 
 | 		i %= 16; | 
 | 		while (i < 16) { | 
 | 			printk(KERN_CONT "   "); | 
 | 			ascii[i] = ' '; | 
 | 			i++; | 
 | 		} | 
 | 		printk(KERN_CONT " %s\n", ascii); | 
 | 	} | 
 | } | 
 |  | 
 | static struct track *get_track(struct kmem_cache *s, void *object, | 
 | 	enum track_item alloc) | 
 | { | 
 | 	struct track *p; | 
 |  | 
 | 	if (s->offset) | 
 | 		p = object + s->offset + sizeof(void *); | 
 | 	else | 
 | 		p = object + s->inuse; | 
 |  | 
 | 	return p + alloc; | 
 | } | 
 |  | 
 | static void set_track(struct kmem_cache *s, void *object, | 
 | 				enum track_item alloc, void *addr) | 
 | { | 
 | 	struct track *p; | 
 |  | 
 | 	if (s->offset) | 
 | 		p = object + s->offset + sizeof(void *); | 
 | 	else | 
 | 		p = object + s->inuse; | 
 |  | 
 | 	p += alloc; | 
 | 	if (addr) { | 
 | 		p->addr = addr; | 
 | 		p->cpu = smp_processor_id(); | 
 | 		p->pid = current->pid; | 
 | 		p->when = jiffies; | 
 | 	} else | 
 | 		memset(p, 0, sizeof(struct track)); | 
 | } | 
 |  | 
 | static void init_tracking(struct kmem_cache *s, void *object) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	set_track(s, object, TRACK_FREE, NULL); | 
 | 	set_track(s, object, TRACK_ALLOC, NULL); | 
 | } | 
 |  | 
 | static void print_track(const char *s, struct track *t) | 
 | { | 
 | 	if (!t->addr) | 
 | 		return; | 
 |  | 
 | 	printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n", | 
 | 		s, t->addr, jiffies - t->when, t->cpu, t->pid); | 
 | } | 
 |  | 
 | static void print_tracking(struct kmem_cache *s, void *object) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	print_track("Allocated", get_track(s, object, TRACK_ALLOC)); | 
 | 	print_track("Freed", get_track(s, object, TRACK_FREE)); | 
 | } | 
 |  | 
 | static void print_page_info(struct page *page) | 
 | { | 
 | 	printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", | 
 | 		page, page->objects, page->inuse, page->freelist, page->flags); | 
 |  | 
 | } | 
 |  | 
 | static void slab_bug(struct kmem_cache *s, char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char buf[100]; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vsnprintf(buf, sizeof(buf), fmt, args); | 
 | 	va_end(args); | 
 | 	printk(KERN_ERR "========================================" | 
 | 			"=====================================\n"); | 
 | 	printk(KERN_ERR "BUG %s: %s\n", s->name, buf); | 
 | 	printk(KERN_ERR "----------------------------------------" | 
 | 			"-------------------------------------\n\n"); | 
 | } | 
 |  | 
 | static void slab_fix(struct kmem_cache *s, char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char buf[100]; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vsnprintf(buf, sizeof(buf), fmt, args); | 
 | 	va_end(args); | 
 | 	printk(KERN_ERR "FIX %s: %s\n", s->name, buf); | 
 | } | 
 |  | 
 | static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) | 
 | { | 
 | 	unsigned int off;	/* Offset of last byte */ | 
 | 	u8 *addr = page_address(page); | 
 |  | 
 | 	print_tracking(s, p); | 
 |  | 
 | 	print_page_info(page); | 
 |  | 
 | 	printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", | 
 | 			p, p - addr, get_freepointer(s, p)); | 
 |  | 
 | 	if (p > addr + 16) | 
 | 		print_section("Bytes b4", p - 16, 16); | 
 |  | 
 | 	print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE)); | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		print_section("Redzone", p + s->objsize, | 
 | 			s->inuse - s->objsize); | 
 |  | 
 | 	if (s->offset) | 
 | 		off = s->offset + sizeof(void *); | 
 | 	else | 
 | 		off = s->inuse; | 
 |  | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		off += 2 * sizeof(struct track); | 
 |  | 
 | 	if (off != s->size) | 
 | 		/* Beginning of the filler is the free pointer */ | 
 | 		print_section("Padding", p + off, s->size - off); | 
 |  | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | static void object_err(struct kmem_cache *s, struct page *page, | 
 | 			u8 *object, char *reason) | 
 | { | 
 | 	slab_bug(s, "%s", reason); | 
 | 	print_trailer(s, page, object); | 
 | } | 
 |  | 
 | static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...) | 
 | { | 
 | 	va_list args; | 
 | 	char buf[100]; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vsnprintf(buf, sizeof(buf), fmt, args); | 
 | 	va_end(args); | 
 | 	slab_bug(s, "%s", buf); | 
 | 	print_page_info(page); | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | static void init_object(struct kmem_cache *s, void *object, int active) | 
 | { | 
 | 	u8 *p = object; | 
 |  | 
 | 	if (s->flags & __OBJECT_POISON) { | 
 | 		memset(p, POISON_FREE, s->objsize - 1); | 
 | 		p[s->objsize - 1] = POISON_END; | 
 | 	} | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) | 
 | 		memset(p + s->objsize, | 
 | 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE, | 
 | 			s->inuse - s->objsize); | 
 | } | 
 |  | 
 | static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes) | 
 | { | 
 | 	while (bytes) { | 
 | 		if (*start != (u8)value) | 
 | 			return start; | 
 | 		start++; | 
 | 		bytes--; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void restore_bytes(struct kmem_cache *s, char *message, u8 data, | 
 | 						void *from, void *to) | 
 | { | 
 | 	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); | 
 | 	memset(from, data, to - from); | 
 | } | 
 |  | 
 | static int check_bytes_and_report(struct kmem_cache *s, struct page *page, | 
 | 			u8 *object, char *what, | 
 | 			u8 *start, unsigned int value, unsigned int bytes) | 
 | { | 
 | 	u8 *fault; | 
 | 	u8 *end; | 
 |  | 
 | 	fault = check_bytes(start, value, bytes); | 
 | 	if (!fault) | 
 | 		return 1; | 
 |  | 
 | 	end = start + bytes; | 
 | 	while (end > fault && end[-1] == value) | 
 | 		end--; | 
 |  | 
 | 	slab_bug(s, "%s overwritten", what); | 
 | 	printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", | 
 | 					fault, end - 1, fault[0], value); | 
 | 	print_trailer(s, page, object); | 
 |  | 
 | 	restore_bytes(s, what, value, fault, end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Object layout: | 
 |  * | 
 |  * object address | 
 |  * 	Bytes of the object to be managed. | 
 |  * 	If the freepointer may overlay the object then the free | 
 |  * 	pointer is the first word of the object. | 
 |  * | 
 |  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is | 
 |  * 	0xa5 (POISON_END) | 
 |  * | 
 |  * object + s->objsize | 
 |  * 	Padding to reach word boundary. This is also used for Redzoning. | 
 |  * 	Padding is extended by another word if Redzoning is enabled and | 
 |  * 	objsize == inuse. | 
 |  * | 
 |  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with | 
 |  * 	0xcc (RED_ACTIVE) for objects in use. | 
 |  * | 
 |  * object + s->inuse | 
 |  * 	Meta data starts here. | 
 |  * | 
 |  * 	A. Free pointer (if we cannot overwrite object on free) | 
 |  * 	B. Tracking data for SLAB_STORE_USER | 
 |  * 	C. Padding to reach required alignment boundary or at mininum | 
 |  * 		one word if debugging is on to be able to detect writes | 
 |  * 		before the word boundary. | 
 |  * | 
 |  *	Padding is done using 0x5a (POISON_INUSE) | 
 |  * | 
 |  * object + s->size | 
 |  * 	Nothing is used beyond s->size. | 
 |  * | 
 |  * If slabcaches are merged then the objsize and inuse boundaries are mostly | 
 |  * ignored. And therefore no slab options that rely on these boundaries | 
 |  * may be used with merged slabcaches. | 
 |  */ | 
 |  | 
 | static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) | 
 | { | 
 | 	unsigned long off = s->inuse;	/* The end of info */ | 
 |  | 
 | 	if (s->offset) | 
 | 		/* Freepointer is placed after the object. */ | 
 | 		off += sizeof(void *); | 
 |  | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		/* We also have user information there */ | 
 | 		off += 2 * sizeof(struct track); | 
 |  | 
 | 	if (s->size == off) | 
 | 		return 1; | 
 |  | 
 | 	return check_bytes_and_report(s, page, p, "Object padding", | 
 | 				p + off, POISON_INUSE, s->size - off); | 
 | } | 
 |  | 
 | /* Check the pad bytes at the end of a slab page */ | 
 | static int slab_pad_check(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	u8 *start; | 
 | 	u8 *fault; | 
 | 	u8 *end; | 
 | 	int length; | 
 | 	int remainder; | 
 |  | 
 | 	if (!(s->flags & SLAB_POISON)) | 
 | 		return 1; | 
 |  | 
 | 	start = page_address(page); | 
 | 	length = (PAGE_SIZE << compound_order(page)); | 
 | 	end = start + length; | 
 | 	remainder = length % s->size; | 
 | 	if (!remainder) | 
 | 		return 1; | 
 |  | 
 | 	fault = check_bytes(end - remainder, POISON_INUSE, remainder); | 
 | 	if (!fault) | 
 | 		return 1; | 
 | 	while (end > fault && end[-1] == POISON_INUSE) | 
 | 		end--; | 
 |  | 
 | 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); | 
 | 	print_section("Padding", end - remainder, remainder); | 
 |  | 
 | 	restore_bytes(s, "slab padding", POISON_INUSE, start, end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int check_object(struct kmem_cache *s, struct page *page, | 
 | 					void *object, int active) | 
 | { | 
 | 	u8 *p = object; | 
 | 	u8 *endobject = object + s->objsize; | 
 |  | 
 | 	if (s->flags & SLAB_RED_ZONE) { | 
 | 		unsigned int red = | 
 | 			active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE; | 
 |  | 
 | 		if (!check_bytes_and_report(s, page, object, "Redzone", | 
 | 			endobject, red, s->inuse - s->objsize)) | 
 | 			return 0; | 
 | 	} else { | 
 | 		if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) { | 
 | 			check_bytes_and_report(s, page, p, "Alignment padding", | 
 | 				endobject, POISON_INUSE, s->inuse - s->objsize); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (s->flags & SLAB_POISON) { | 
 | 		if (!active && (s->flags & __OBJECT_POISON) && | 
 | 			(!check_bytes_and_report(s, page, p, "Poison", p, | 
 | 					POISON_FREE, s->objsize - 1) || | 
 | 			 !check_bytes_and_report(s, page, p, "Poison", | 
 | 				p + s->objsize - 1, POISON_END, 1))) | 
 | 			return 0; | 
 | 		/* | 
 | 		 * check_pad_bytes cleans up on its own. | 
 | 		 */ | 
 | 		check_pad_bytes(s, page, p); | 
 | 	} | 
 |  | 
 | 	if (!s->offset && active) | 
 | 		/* | 
 | 		 * Object and freepointer overlap. Cannot check | 
 | 		 * freepointer while object is allocated. | 
 | 		 */ | 
 | 		return 1; | 
 |  | 
 | 	/* Check free pointer validity */ | 
 | 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) { | 
 | 		object_err(s, page, p, "Freepointer corrupt"); | 
 | 		/* | 
 | 		 * No choice but to zap it and thus loose the remainder | 
 | 		 * of the free objects in this slab. May cause | 
 | 		 * another error because the object count is now wrong. | 
 | 		 */ | 
 | 		set_freepointer(s, p, NULL); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int check_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	int maxobj; | 
 |  | 
 | 	VM_BUG_ON(!irqs_disabled()); | 
 |  | 
 | 	if (!PageSlab(page)) { | 
 | 		slab_err(s, page, "Not a valid slab page"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	maxobj = (PAGE_SIZE << compound_order(page)) / s->size; | 
 | 	if (page->objects > maxobj) { | 
 | 		slab_err(s, page, "objects %u > max %u", | 
 | 			s->name, page->objects, maxobj); | 
 | 		return 0; | 
 | 	} | 
 | 	if (page->inuse > page->objects) { | 
 | 		slab_err(s, page, "inuse %u > max %u", | 
 | 			s->name, page->inuse, page->objects); | 
 | 		return 0; | 
 | 	} | 
 | 	/* Slab_pad_check fixes things up after itself */ | 
 | 	slab_pad_check(s, page); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Determine if a certain object on a page is on the freelist. Must hold the | 
 |  * slab lock to guarantee that the chains are in a consistent state. | 
 |  */ | 
 | static int on_freelist(struct kmem_cache *s, struct page *page, void *search) | 
 | { | 
 | 	int nr = 0; | 
 | 	void *fp = page->freelist; | 
 | 	void *object = NULL; | 
 | 	unsigned long max_objects; | 
 |  | 
 | 	while (fp && nr <= page->objects) { | 
 | 		if (fp == search) | 
 | 			return 1; | 
 | 		if (!check_valid_pointer(s, page, fp)) { | 
 | 			if (object) { | 
 | 				object_err(s, page, object, | 
 | 					"Freechain corrupt"); | 
 | 				set_freepointer(s, object, NULL); | 
 | 				break; | 
 | 			} else { | 
 | 				slab_err(s, page, "Freepointer corrupt"); | 
 | 				page->freelist = NULL; | 
 | 				page->inuse = page->objects; | 
 | 				slab_fix(s, "Freelist cleared"); | 
 | 				return 0; | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		object = fp; | 
 | 		fp = get_freepointer(s, object); | 
 | 		nr++; | 
 | 	} | 
 |  | 
 | 	max_objects = (PAGE_SIZE << compound_order(page)) / s->size; | 
 | 	if (max_objects > 65535) | 
 | 		max_objects = 65535; | 
 |  | 
 | 	if (page->objects != max_objects) { | 
 | 		slab_err(s, page, "Wrong number of objects. Found %d but " | 
 | 			"should be %d", page->objects, max_objects); | 
 | 		page->objects = max_objects; | 
 | 		slab_fix(s, "Number of objects adjusted."); | 
 | 	} | 
 | 	if (page->inuse != page->objects - nr) { | 
 | 		slab_err(s, page, "Wrong object count. Counter is %d but " | 
 | 			"counted were %d", page->inuse, page->objects - nr); | 
 | 		page->inuse = page->objects - nr; | 
 | 		slab_fix(s, "Object count adjusted."); | 
 | 	} | 
 | 	return search == NULL; | 
 | } | 
 |  | 
 | static void trace(struct kmem_cache *s, struct page *page, void *object, | 
 | 								int alloc) | 
 | { | 
 | 	if (s->flags & SLAB_TRACE) { | 
 | 		printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n", | 
 | 			s->name, | 
 | 			alloc ? "alloc" : "free", | 
 | 			object, page->inuse, | 
 | 			page->freelist); | 
 |  | 
 | 		if (!alloc) | 
 | 			print_section("Object", (void *)object, s->objsize); | 
 |  | 
 | 		dump_stack(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Tracking of fully allocated slabs for debugging purposes. | 
 |  */ | 
 | static void add_full(struct kmem_cache_node *n, struct page *page) | 
 | { | 
 | 	spin_lock(&n->list_lock); | 
 | 	list_add(&page->lru, &n->full); | 
 | 	spin_unlock(&n->list_lock); | 
 | } | 
 |  | 
 | static void remove_full(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	struct kmem_cache_node *n; | 
 |  | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return; | 
 |  | 
 | 	n = get_node(s, page_to_nid(page)); | 
 |  | 
 | 	spin_lock(&n->list_lock); | 
 | 	list_del(&page->lru); | 
 | 	spin_unlock(&n->list_lock); | 
 | } | 
 |  | 
 | /* Tracking of the number of slabs for debugging purposes */ | 
 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	return atomic_long_read(&n->nr_slabs); | 
 | } | 
 |  | 
 | static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	/* | 
 | 	 * May be called early in order to allocate a slab for the | 
 | 	 * kmem_cache_node structure. Solve the chicken-egg | 
 | 	 * dilemma by deferring the increment of the count during | 
 | 	 * bootstrap (see early_kmem_cache_node_alloc). | 
 | 	 */ | 
 | 	if (!NUMA_BUILD || n) { | 
 | 		atomic_long_inc(&n->nr_slabs); | 
 | 		atomic_long_add(objects, &n->total_objects); | 
 | 	} | 
 | } | 
 | static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 	atomic_long_dec(&n->nr_slabs); | 
 | 	atomic_long_sub(objects, &n->total_objects); | 
 | } | 
 |  | 
 | /* Object debug checks for alloc/free paths */ | 
 | static void setup_object_debug(struct kmem_cache *s, struct page *page, | 
 | 								void *object) | 
 | { | 
 | 	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) | 
 | 		return; | 
 |  | 
 | 	init_object(s, object, 0); | 
 | 	init_tracking(s, object); | 
 | } | 
 |  | 
 | static int alloc_debug_processing(struct kmem_cache *s, struct page *page, | 
 | 						void *object, void *addr) | 
 | { | 
 | 	if (!check_slab(s, page)) | 
 | 		goto bad; | 
 |  | 
 | 	if (!on_freelist(s, page, object)) { | 
 | 		object_err(s, page, object, "Object already allocated"); | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (!check_valid_pointer(s, page, object)) { | 
 | 		object_err(s, page, object, "Freelist Pointer check fails"); | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (!check_object(s, page, object, 0)) | 
 | 		goto bad; | 
 |  | 
 | 	/* Success perform special debug activities for allocs */ | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		set_track(s, object, TRACK_ALLOC, addr); | 
 | 	trace(s, page, object, 1); | 
 | 	init_object(s, object, 1); | 
 | 	return 1; | 
 |  | 
 | bad: | 
 | 	if (PageSlab(page)) { | 
 | 		/* | 
 | 		 * If this is a slab page then lets do the best we can | 
 | 		 * to avoid issues in the future. Marking all objects | 
 | 		 * as used avoids touching the remaining objects. | 
 | 		 */ | 
 | 		slab_fix(s, "Marking all objects used"); | 
 | 		page->inuse = page->objects; | 
 | 		page->freelist = NULL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int free_debug_processing(struct kmem_cache *s, struct page *page, | 
 | 						void *object, void *addr) | 
 | { | 
 | 	if (!check_slab(s, page)) | 
 | 		goto fail; | 
 |  | 
 | 	if (!check_valid_pointer(s, page, object)) { | 
 | 		slab_err(s, page, "Invalid object pointer 0x%p", object); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (on_freelist(s, page, object)) { | 
 | 		object_err(s, page, object, "Object already free"); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	if (!check_object(s, page, object, 1)) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(s != page->slab)) { | 
 | 		if (!PageSlab(page)) { | 
 | 			slab_err(s, page, "Attempt to free object(0x%p) " | 
 | 				"outside of slab", object); | 
 | 		} else if (!page->slab) { | 
 | 			printk(KERN_ERR | 
 | 				"SLUB <none>: no slab for object 0x%p.\n", | 
 | 						object); | 
 | 			dump_stack(); | 
 | 		} else | 
 | 			object_err(s, page, object, | 
 | 					"page slab pointer corrupt."); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* Special debug activities for freeing objects */ | 
 | 	if (!PageSlubFrozen(page) && !page->freelist) | 
 | 		remove_full(s, page); | 
 | 	if (s->flags & SLAB_STORE_USER) | 
 | 		set_track(s, object, TRACK_FREE, addr); | 
 | 	trace(s, page, object, 0); | 
 | 	init_object(s, object, 0); | 
 | 	return 1; | 
 |  | 
 | fail: | 
 | 	slab_fix(s, "Object at 0x%p not freed", object); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init setup_slub_debug(char *str) | 
 | { | 
 | 	slub_debug = DEBUG_DEFAULT_FLAGS; | 
 | 	if (*str++ != '=' || !*str) | 
 | 		/* | 
 | 		 * No options specified. Switch on full debugging. | 
 | 		 */ | 
 | 		goto out; | 
 |  | 
 | 	if (*str == ',') | 
 | 		/* | 
 | 		 * No options but restriction on slabs. This means full | 
 | 		 * debugging for slabs matching a pattern. | 
 | 		 */ | 
 | 		goto check_slabs; | 
 |  | 
 | 	slub_debug = 0; | 
 | 	if (*str == '-') | 
 | 		/* | 
 | 		 * Switch off all debugging measures. | 
 | 		 */ | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Determine which debug features should be switched on | 
 | 	 */ | 
 | 	for (; *str && *str != ','; str++) { | 
 | 		switch (tolower(*str)) { | 
 | 		case 'f': | 
 | 			slub_debug |= SLAB_DEBUG_FREE; | 
 | 			break; | 
 | 		case 'z': | 
 | 			slub_debug |= SLAB_RED_ZONE; | 
 | 			break; | 
 | 		case 'p': | 
 | 			slub_debug |= SLAB_POISON; | 
 | 			break; | 
 | 		case 'u': | 
 | 			slub_debug |= SLAB_STORE_USER; | 
 | 			break; | 
 | 		case 't': | 
 | 			slub_debug |= SLAB_TRACE; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_ERR "slub_debug option '%c' " | 
 | 				"unknown. skipped\n", *str); | 
 | 		} | 
 | 	} | 
 |  | 
 | check_slabs: | 
 | 	if (*str == ',') | 
 | 		slub_debug_slabs = str + 1; | 
 | out: | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_debug", setup_slub_debug); | 
 |  | 
 | static unsigned long kmem_cache_flags(unsigned long objsize, | 
 | 	unsigned long flags, const char *name, | 
 | 	void (*ctor)(void *)) | 
 | { | 
 | 	/* | 
 | 	 * Enable debugging if selected on the kernel commandline. | 
 | 	 */ | 
 | 	if (slub_debug && (!slub_debug_slabs || | 
 | 	    strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0)) | 
 | 			flags |= slub_debug; | 
 |  | 
 | 	return flags; | 
 | } | 
 | #else | 
 | static inline void setup_object_debug(struct kmem_cache *s, | 
 | 			struct page *page, void *object) {} | 
 |  | 
 | static inline int alloc_debug_processing(struct kmem_cache *s, | 
 | 	struct page *page, void *object, void *addr) { return 0; } | 
 |  | 
 | static inline int free_debug_processing(struct kmem_cache *s, | 
 | 	struct page *page, void *object, void *addr) { return 0; } | 
 |  | 
 | static inline int slab_pad_check(struct kmem_cache *s, struct page *page) | 
 | 			{ return 1; } | 
 | static inline int check_object(struct kmem_cache *s, struct page *page, | 
 | 			void *object, int active) { return 1; } | 
 | static inline void add_full(struct kmem_cache_node *n, struct page *page) {} | 
 | static inline unsigned long kmem_cache_flags(unsigned long objsize, | 
 | 	unsigned long flags, const char *name, | 
 | 	void (*ctor)(void *)) | 
 | { | 
 | 	return flags; | 
 | } | 
 | #define slub_debug 0 | 
 |  | 
 | static inline unsigned long slabs_node(struct kmem_cache *s, int node) | 
 | 							{ return 0; } | 
 | static inline void inc_slabs_node(struct kmem_cache *s, int node, | 
 | 							int objects) {} | 
 | static inline void dec_slabs_node(struct kmem_cache *s, int node, | 
 | 							int objects) {} | 
 | #endif | 
 |  | 
 | /* | 
 |  * Slab allocation and freeing | 
 |  */ | 
 | static inline struct page *alloc_slab_page(gfp_t flags, int node, | 
 | 					struct kmem_cache_order_objects oo) | 
 | { | 
 | 	int order = oo_order(oo); | 
 |  | 
 | 	if (node == -1) | 
 | 		return alloc_pages(flags, order); | 
 | 	else | 
 | 		return alloc_pages_node(node, flags, order); | 
 | } | 
 |  | 
 | static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kmem_cache_order_objects oo = s->oo; | 
 |  | 
 | 	flags |= s->allocflags; | 
 |  | 
 | 	page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node, | 
 | 									oo); | 
 | 	if (unlikely(!page)) { | 
 | 		oo = s->min; | 
 | 		/* | 
 | 		 * Allocation may have failed due to fragmentation. | 
 | 		 * Try a lower order alloc if possible | 
 | 		 */ | 
 | 		page = alloc_slab_page(flags, node, oo); | 
 | 		if (!page) | 
 | 			return NULL; | 
 |  | 
 | 		stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK); | 
 | 	} | 
 | 	page->objects = oo_objects(oo); | 
 | 	mod_zone_page_state(page_zone(page), | 
 | 		(s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
 | 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
 | 		1 << oo_order(oo)); | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void setup_object(struct kmem_cache *s, struct page *page, | 
 | 				void *object) | 
 | { | 
 | 	setup_object_debug(s, page, object); | 
 | 	if (unlikely(s->ctor)) | 
 | 		s->ctor(object); | 
 | } | 
 |  | 
 | static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) | 
 | { | 
 | 	struct page *page; | 
 | 	void *start; | 
 | 	void *last; | 
 | 	void *p; | 
 |  | 
 | 	BUG_ON(flags & GFP_SLAB_BUG_MASK); | 
 |  | 
 | 	page = allocate_slab(s, | 
 | 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); | 
 | 	if (!page) | 
 | 		goto out; | 
 |  | 
 | 	inc_slabs_node(s, page_to_nid(page), page->objects); | 
 | 	page->slab = s; | 
 | 	page->flags |= 1 << PG_slab; | 
 | 	if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON | | 
 | 			SLAB_STORE_USER | SLAB_TRACE)) | 
 | 		__SetPageSlubDebug(page); | 
 |  | 
 | 	start = page_address(page); | 
 |  | 
 | 	if (unlikely(s->flags & SLAB_POISON)) | 
 | 		memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page)); | 
 |  | 
 | 	last = start; | 
 | 	for_each_object(p, s, start, page->objects) { | 
 | 		setup_object(s, page, last); | 
 | 		set_freepointer(s, last, p); | 
 | 		last = p; | 
 | 	} | 
 | 	setup_object(s, page, last); | 
 | 	set_freepointer(s, last, NULL); | 
 |  | 
 | 	page->freelist = start; | 
 | 	page->inuse = 0; | 
 | out: | 
 | 	return page; | 
 | } | 
 |  | 
 | static void __free_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	int order = compound_order(page); | 
 | 	int pages = 1 << order; | 
 |  | 
 | 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) { | 
 | 		void *p; | 
 |  | 
 | 		slab_pad_check(s, page); | 
 | 		for_each_object(p, s, page_address(page), | 
 | 						page->objects) | 
 | 			check_object(s, page, p, 0); | 
 | 		__ClearPageSlubDebug(page); | 
 | 	} | 
 |  | 
 | 	mod_zone_page_state(page_zone(page), | 
 | 		(s->flags & SLAB_RECLAIM_ACCOUNT) ? | 
 | 		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, | 
 | 		-pages); | 
 |  | 
 | 	__ClearPageSlab(page); | 
 | 	reset_page_mapcount(page); | 
 | 	__free_pages(page, order); | 
 | } | 
 |  | 
 | static void rcu_free_slab(struct rcu_head *h) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = container_of((struct list_head *)h, struct page, lru); | 
 | 	__free_slab(page->slab, page); | 
 | } | 
 |  | 
 | static void free_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) { | 
 | 		/* | 
 | 		 * RCU free overloads the RCU head over the LRU | 
 | 		 */ | 
 | 		struct rcu_head *head = (void *)&page->lru; | 
 |  | 
 | 		call_rcu(head, rcu_free_slab); | 
 | 	} else | 
 | 		__free_slab(s, page); | 
 | } | 
 |  | 
 | static void discard_slab(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	dec_slabs_node(s, page_to_nid(page), page->objects); | 
 | 	free_slab(s, page); | 
 | } | 
 |  | 
 | /* | 
 |  * Per slab locking using the pagelock | 
 |  */ | 
 | static __always_inline void slab_lock(struct page *page) | 
 | { | 
 | 	bit_spin_lock(PG_locked, &page->flags); | 
 | } | 
 |  | 
 | static __always_inline void slab_unlock(struct page *page) | 
 | { | 
 | 	__bit_spin_unlock(PG_locked, &page->flags); | 
 | } | 
 |  | 
 | static __always_inline int slab_trylock(struct page *page) | 
 | { | 
 | 	int rc = 1; | 
 |  | 
 | 	rc = bit_spin_trylock(PG_locked, &page->flags); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /* | 
 |  * Management of partially allocated slabs | 
 |  */ | 
 | static void add_partial(struct kmem_cache_node *n, | 
 | 				struct page *page, int tail) | 
 | { | 
 | 	spin_lock(&n->list_lock); | 
 | 	n->nr_partial++; | 
 | 	if (tail) | 
 | 		list_add_tail(&page->lru, &n->partial); | 
 | 	else | 
 | 		list_add(&page->lru, &n->partial); | 
 | 	spin_unlock(&n->list_lock); | 
 | } | 
 |  | 
 | static void remove_partial(struct kmem_cache *s, struct page *page) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
 |  | 
 | 	spin_lock(&n->list_lock); | 
 | 	list_del(&page->lru); | 
 | 	n->nr_partial--; | 
 | 	spin_unlock(&n->list_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * Lock slab and remove from the partial list. | 
 |  * | 
 |  * Must hold list_lock. | 
 |  */ | 
 | static inline int lock_and_freeze_slab(struct kmem_cache_node *n, | 
 | 							struct page *page) | 
 | { | 
 | 	if (slab_trylock(page)) { | 
 | 		list_del(&page->lru); | 
 | 		n->nr_partial--; | 
 | 		__SetPageSlubFrozen(page); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Try to allocate a partial slab from a specific node. | 
 |  */ | 
 | static struct page *get_partial_node(struct kmem_cache_node *n) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	/* | 
 | 	 * Racy check. If we mistakenly see no partial slabs then we | 
 | 	 * just allocate an empty slab. If we mistakenly try to get a | 
 | 	 * partial slab and there is none available then get_partials() | 
 | 	 * will return NULL. | 
 | 	 */ | 
 | 	if (!n || !n->nr_partial) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock(&n->list_lock); | 
 | 	list_for_each_entry(page, &n->partial, lru) | 
 | 		if (lock_and_freeze_slab(n, page)) | 
 | 			goto out; | 
 | 	page = NULL; | 
 | out: | 
 | 	spin_unlock(&n->list_lock); | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Get a page from somewhere. Search in increasing NUMA distances. | 
 |  */ | 
 | static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	struct zonelist *zonelist; | 
 | 	struct zoneref *z; | 
 | 	struct zone *zone; | 
 | 	enum zone_type high_zoneidx = gfp_zone(flags); | 
 | 	struct page *page; | 
 |  | 
 | 	/* | 
 | 	 * The defrag ratio allows a configuration of the tradeoffs between | 
 | 	 * inter node defragmentation and node local allocations. A lower | 
 | 	 * defrag_ratio increases the tendency to do local allocations | 
 | 	 * instead of attempting to obtain partial slabs from other nodes. | 
 | 	 * | 
 | 	 * If the defrag_ratio is set to 0 then kmalloc() always | 
 | 	 * returns node local objects. If the ratio is higher then kmalloc() | 
 | 	 * may return off node objects because partial slabs are obtained | 
 | 	 * from other nodes and filled up. | 
 | 	 * | 
 | 	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes | 
 | 	 * defrag_ratio = 1000) then every (well almost) allocation will | 
 | 	 * first attempt to defrag slab caches on other nodes. This means | 
 | 	 * scanning over all nodes to look for partial slabs which may be | 
 | 	 * expensive if we do it every time we are trying to find a slab | 
 | 	 * with available objects. | 
 | 	 */ | 
 | 	if (!s->remote_node_defrag_ratio || | 
 | 			get_cycles() % 1024 > s->remote_node_defrag_ratio) | 
 | 		return NULL; | 
 |  | 
 | 	zonelist = node_zonelist(slab_node(current->mempolicy), flags); | 
 | 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { | 
 | 		struct kmem_cache_node *n; | 
 |  | 
 | 		n = get_node(s, zone_to_nid(zone)); | 
 |  | 
 | 		if (n && cpuset_zone_allowed_hardwall(zone, flags) && | 
 | 				n->nr_partial > n->min_partial) { | 
 | 			page = get_partial_node(n); | 
 | 			if (page) | 
 | 				return page; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Get a partial page, lock it and return it. | 
 |  */ | 
 | static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node) | 
 | { | 
 | 	struct page *page; | 
 | 	int searchnode = (node == -1) ? numa_node_id() : node; | 
 |  | 
 | 	page = get_partial_node(get_node(s, searchnode)); | 
 | 	if (page || (flags & __GFP_THISNODE)) | 
 | 		return page; | 
 |  | 
 | 	return get_any_partial(s, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Move a page back to the lists. | 
 |  * | 
 |  * Must be called with the slab lock held. | 
 |  * | 
 |  * On exit the slab lock will have been dropped. | 
 |  */ | 
 | static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail) | 
 | { | 
 | 	struct kmem_cache_node *n = get_node(s, page_to_nid(page)); | 
 | 	struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id()); | 
 |  | 
 | 	__ClearPageSlubFrozen(page); | 
 | 	if (page->inuse) { | 
 |  | 
 | 		if (page->freelist) { | 
 | 			add_partial(n, page, tail); | 
 | 			stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); | 
 | 		} else { | 
 | 			stat(c, DEACTIVATE_FULL); | 
 | 			if (SLABDEBUG && PageSlubDebug(page) && | 
 | 						(s->flags & SLAB_STORE_USER)) | 
 | 				add_full(n, page); | 
 | 		} | 
 | 		slab_unlock(page); | 
 | 	} else { | 
 | 		stat(c, DEACTIVATE_EMPTY); | 
 | 		if (n->nr_partial < n->min_partial) { | 
 | 			/* | 
 | 			 * Adding an empty slab to the partial slabs in order | 
 | 			 * to avoid page allocator overhead. This slab needs | 
 | 			 * to come after the other slabs with objects in | 
 | 			 * so that the others get filled first. That way the | 
 | 			 * size of the partial list stays small. | 
 | 			 * | 
 | 			 * kmem_cache_shrink can reclaim any empty slabs from | 
 | 			 * the partial list. | 
 | 			 */ | 
 | 			add_partial(n, page, 1); | 
 | 			slab_unlock(page); | 
 | 		} else { | 
 | 			slab_unlock(page); | 
 | 			stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB); | 
 | 			discard_slab(s, page); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Remove the cpu slab | 
 |  */ | 
 | static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
 | { | 
 | 	struct page *page = c->page; | 
 | 	int tail = 1; | 
 |  | 
 | 	if (page->freelist) | 
 | 		stat(c, DEACTIVATE_REMOTE_FREES); | 
 | 	/* | 
 | 	 * Merge cpu freelist into slab freelist. Typically we get here | 
 | 	 * because both freelists are empty. So this is unlikely | 
 | 	 * to occur. | 
 | 	 */ | 
 | 	while (unlikely(c->freelist)) { | 
 | 		void **object; | 
 |  | 
 | 		tail = 0;	/* Hot objects. Put the slab first */ | 
 |  | 
 | 		/* Retrieve object from cpu_freelist */ | 
 | 		object = c->freelist; | 
 | 		c->freelist = c->freelist[c->offset]; | 
 |  | 
 | 		/* And put onto the regular freelist */ | 
 | 		object[c->offset] = page->freelist; | 
 | 		page->freelist = object; | 
 | 		page->inuse--; | 
 | 	} | 
 | 	c->page = NULL; | 
 | 	unfreeze_slab(s, page, tail); | 
 | } | 
 |  | 
 | static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) | 
 | { | 
 | 	stat(c, CPUSLAB_FLUSH); | 
 | 	slab_lock(c->page); | 
 | 	deactivate_slab(s, c); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush cpu slab. | 
 |  * | 
 |  * Called from IPI handler with interrupts disabled. | 
 |  */ | 
 | static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) | 
 | { | 
 | 	struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
 |  | 
 | 	if (likely(c && c->page)) | 
 | 		flush_slab(s, c); | 
 | } | 
 |  | 
 | static void flush_cpu_slab(void *d) | 
 | { | 
 | 	struct kmem_cache *s = d; | 
 |  | 
 | 	__flush_cpu_slab(s, smp_processor_id()); | 
 | } | 
 |  | 
 | static void flush_all(struct kmem_cache *s) | 
 | { | 
 | 	on_each_cpu(flush_cpu_slab, s, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if the objects in a per cpu structure fit numa | 
 |  * locality expectations. | 
 |  */ | 
 | static inline int node_match(struct kmem_cache_cpu *c, int node) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	if (node != -1 && c->node != node) | 
 | 		return 0; | 
 | #endif | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Slow path. The lockless freelist is empty or we need to perform | 
 |  * debugging duties. | 
 |  * | 
 |  * Interrupts are disabled. | 
 |  * | 
 |  * Processing is still very fast if new objects have been freed to the | 
 |  * regular freelist. In that case we simply take over the regular freelist | 
 |  * as the lockless freelist and zap the regular freelist. | 
 |  * | 
 |  * If that is not working then we fall back to the partial lists. We take the | 
 |  * first element of the freelist as the object to allocate now and move the | 
 |  * rest of the freelist to the lockless freelist. | 
 |  * | 
 |  * And if we were unable to get a new slab from the partial slab lists then | 
 |  * we need to allocate a new slab. This is the slowest path since it involves | 
 |  * a call to the page allocator and the setup of a new slab. | 
 |  */ | 
 | static void *__slab_alloc(struct kmem_cache *s, | 
 | 		gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c) | 
 | { | 
 | 	void **object; | 
 | 	struct page *new; | 
 |  | 
 | 	/* We handle __GFP_ZERO in the caller */ | 
 | 	gfpflags &= ~__GFP_ZERO; | 
 |  | 
 | 	if (!c->page) | 
 | 		goto new_slab; | 
 |  | 
 | 	slab_lock(c->page); | 
 | 	if (unlikely(!node_match(c, node))) | 
 | 		goto another_slab; | 
 |  | 
 | 	stat(c, ALLOC_REFILL); | 
 |  | 
 | load_freelist: | 
 | 	object = c->page->freelist; | 
 | 	if (unlikely(!object)) | 
 | 		goto another_slab; | 
 | 	if (unlikely(SLABDEBUG && PageSlubDebug(c->page))) | 
 | 		goto debug; | 
 |  | 
 | 	c->freelist = object[c->offset]; | 
 | 	c->page->inuse = c->page->objects; | 
 | 	c->page->freelist = NULL; | 
 | 	c->node = page_to_nid(c->page); | 
 | unlock_out: | 
 | 	slab_unlock(c->page); | 
 | 	stat(c, ALLOC_SLOWPATH); | 
 | 	return object; | 
 |  | 
 | another_slab: | 
 | 	deactivate_slab(s, c); | 
 |  | 
 | new_slab: | 
 | 	new = get_partial(s, gfpflags, node); | 
 | 	if (new) { | 
 | 		c->page = new; | 
 | 		stat(c, ALLOC_FROM_PARTIAL); | 
 | 		goto load_freelist; | 
 | 	} | 
 |  | 
 | 	if (gfpflags & __GFP_WAIT) | 
 | 		local_irq_enable(); | 
 |  | 
 | 	new = new_slab(s, gfpflags, node); | 
 |  | 
 | 	if (gfpflags & __GFP_WAIT) | 
 | 		local_irq_disable(); | 
 |  | 
 | 	if (new) { | 
 | 		c = get_cpu_slab(s, smp_processor_id()); | 
 | 		stat(c, ALLOC_SLAB); | 
 | 		if (c->page) | 
 | 			flush_slab(s, c); | 
 | 		slab_lock(new); | 
 | 		__SetPageSlubFrozen(new); | 
 | 		c->page = new; | 
 | 		goto load_freelist; | 
 | 	} | 
 | 	return NULL; | 
 | debug: | 
 | 	if (!alloc_debug_processing(s, c->page, object, addr)) | 
 | 		goto another_slab; | 
 |  | 
 | 	c->page->inuse++; | 
 | 	c->page->freelist = object[c->offset]; | 
 | 	c->node = -1; | 
 | 	goto unlock_out; | 
 | } | 
 |  | 
 | /* | 
 |  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) | 
 |  * have the fastpath folded into their functions. So no function call | 
 |  * overhead for requests that can be satisfied on the fastpath. | 
 |  * | 
 |  * The fastpath works by first checking if the lockless freelist can be used. | 
 |  * If not then __slab_alloc is called for slow processing. | 
 |  * | 
 |  * Otherwise we can simply pick the next object from the lockless free list. | 
 |  */ | 
 | static __always_inline void *slab_alloc(struct kmem_cache *s, | 
 | 		gfp_t gfpflags, int node, void *addr) | 
 | { | 
 | 	void **object; | 
 | 	struct kmem_cache_cpu *c; | 
 | 	unsigned long flags; | 
 | 	unsigned int objsize; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	c = get_cpu_slab(s, smp_processor_id()); | 
 | 	objsize = c->objsize; | 
 | 	if (unlikely(!c->freelist || !node_match(c, node))) | 
 |  | 
 | 		object = __slab_alloc(s, gfpflags, node, addr, c); | 
 |  | 
 | 	else { | 
 | 		object = c->freelist; | 
 | 		c->freelist = object[c->offset]; | 
 | 		stat(c, ALLOC_FASTPATH); | 
 | 	} | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	if (unlikely((gfpflags & __GFP_ZERO) && object)) | 
 | 		memset(object, 0, objsize); | 
 |  | 
 | 	return object; | 
 | } | 
 |  | 
 | void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) | 
 | { | 
 | 	return slab_alloc(s, gfpflags, -1, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) | 
 | { | 
 | 	return slab_alloc(s, gfpflags, node, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Slow patch handling. This may still be called frequently since objects | 
 |  * have a longer lifetime than the cpu slabs in most processing loads. | 
 |  * | 
 |  * So we still attempt to reduce cache line usage. Just take the slab | 
 |  * lock and free the item. If there is no additional partial page | 
 |  * handling required then we can return immediately. | 
 |  */ | 
 | static void __slab_free(struct kmem_cache *s, struct page *page, | 
 | 				void *x, void *addr, unsigned int offset) | 
 | { | 
 | 	void *prior; | 
 | 	void **object = (void *)x; | 
 | 	struct kmem_cache_cpu *c; | 
 |  | 
 | 	c = get_cpu_slab(s, raw_smp_processor_id()); | 
 | 	stat(c, FREE_SLOWPATH); | 
 | 	slab_lock(page); | 
 |  | 
 | 	if (unlikely(SLABDEBUG && PageSlubDebug(page))) | 
 | 		goto debug; | 
 |  | 
 | checks_ok: | 
 | 	prior = object[offset] = page->freelist; | 
 | 	page->freelist = object; | 
 | 	page->inuse--; | 
 |  | 
 | 	if (unlikely(PageSlubFrozen(page))) { | 
 | 		stat(c, FREE_FROZEN); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!page->inuse)) | 
 | 		goto slab_empty; | 
 |  | 
 | 	/* | 
 | 	 * Objects left in the slab. If it was not on the partial list before | 
 | 	 * then add it. | 
 | 	 */ | 
 | 	if (unlikely(!prior)) { | 
 | 		add_partial(get_node(s, page_to_nid(page)), page, 1); | 
 | 		stat(c, FREE_ADD_PARTIAL); | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	slab_unlock(page); | 
 | 	return; | 
 |  | 
 | slab_empty: | 
 | 	if (prior) { | 
 | 		/* | 
 | 		 * Slab still on the partial list. | 
 | 		 */ | 
 | 		remove_partial(s, page); | 
 | 		stat(c, FREE_REMOVE_PARTIAL); | 
 | 	} | 
 | 	slab_unlock(page); | 
 | 	stat(c, FREE_SLAB); | 
 | 	discard_slab(s, page); | 
 | 	return; | 
 |  | 
 | debug: | 
 | 	if (!free_debug_processing(s, page, x, addr)) | 
 | 		goto out_unlock; | 
 | 	goto checks_ok; | 
 | } | 
 |  | 
 | /* | 
 |  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that | 
 |  * can perform fastpath freeing without additional function calls. | 
 |  * | 
 |  * The fastpath is only possible if we are freeing to the current cpu slab | 
 |  * of this processor. This typically the case if we have just allocated | 
 |  * the item before. | 
 |  * | 
 |  * If fastpath is not possible then fall back to __slab_free where we deal | 
 |  * with all sorts of special processing. | 
 |  */ | 
 | static __always_inline void slab_free(struct kmem_cache *s, | 
 | 			struct page *page, void *x, void *addr) | 
 | { | 
 | 	void **object = (void *)x; | 
 | 	struct kmem_cache_cpu *c; | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	c = get_cpu_slab(s, smp_processor_id()); | 
 | 	debug_check_no_locks_freed(object, c->objsize); | 
 | 	if (!(s->flags & SLAB_DEBUG_OBJECTS)) | 
 | 		debug_check_no_obj_freed(object, s->objsize); | 
 | 	if (likely(page == c->page && c->node >= 0)) { | 
 | 		object[c->offset] = c->freelist; | 
 | 		c->freelist = object; | 
 | 		stat(c, FREE_FASTPATH); | 
 | 	} else | 
 | 		__slab_free(s, page, x, addr, c->offset); | 
 |  | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | void kmem_cache_free(struct kmem_cache *s, void *x) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = virt_to_head_page(x); | 
 |  | 
 | 	slab_free(s, page, x, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free); | 
 |  | 
 | /* Figure out on which slab object the object resides */ | 
 | static struct page *get_object_page(const void *x) | 
 | { | 
 | 	struct page *page = virt_to_head_page(x); | 
 |  | 
 | 	if (!PageSlab(page)) | 
 | 		return NULL; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * Object placement in a slab is made very easy because we always start at | 
 |  * offset 0. If we tune the size of the object to the alignment then we can | 
 |  * get the required alignment by putting one properly sized object after | 
 |  * another. | 
 |  * | 
 |  * Notice that the allocation order determines the sizes of the per cpu | 
 |  * caches. Each processor has always one slab available for allocations. | 
 |  * Increasing the allocation order reduces the number of times that slabs | 
 |  * must be moved on and off the partial lists and is therefore a factor in | 
 |  * locking overhead. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Mininum / Maximum order of slab pages. This influences locking overhead | 
 |  * and slab fragmentation. A higher order reduces the number of partial slabs | 
 |  * and increases the number of allocations possible without having to | 
 |  * take the list_lock. | 
 |  */ | 
 | static int slub_min_order; | 
 | static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; | 
 | static int slub_min_objects; | 
 |  | 
 | /* | 
 |  * Merge control. If this is set then no merging of slab caches will occur. | 
 |  * (Could be removed. This was introduced to pacify the merge skeptics.) | 
 |  */ | 
 | static int slub_nomerge; | 
 |  | 
 | /* | 
 |  * Calculate the order of allocation given an slab object size. | 
 |  * | 
 |  * The order of allocation has significant impact on performance and other | 
 |  * system components. Generally order 0 allocations should be preferred since | 
 |  * order 0 does not cause fragmentation in the page allocator. Larger objects | 
 |  * be problematic to put into order 0 slabs because there may be too much | 
 |  * unused space left. We go to a higher order if more than 1/16th of the slab | 
 |  * would be wasted. | 
 |  * | 
 |  * In order to reach satisfactory performance we must ensure that a minimum | 
 |  * number of objects is in one slab. Otherwise we may generate too much | 
 |  * activity on the partial lists which requires taking the list_lock. This is | 
 |  * less a concern for large slabs though which are rarely used. | 
 |  * | 
 |  * slub_max_order specifies the order where we begin to stop considering the | 
 |  * number of objects in a slab as critical. If we reach slub_max_order then | 
 |  * we try to keep the page order as low as possible. So we accept more waste | 
 |  * of space in favor of a small page order. | 
 |  * | 
 |  * Higher order allocations also allow the placement of more objects in a | 
 |  * slab and thereby reduce object handling overhead. If the user has | 
 |  * requested a higher mininum order then we start with that one instead of | 
 |  * the smallest order which will fit the object. | 
 |  */ | 
 | static inline int slab_order(int size, int min_objects, | 
 | 				int max_order, int fract_leftover) | 
 | { | 
 | 	int order; | 
 | 	int rem; | 
 | 	int min_order = slub_min_order; | 
 |  | 
 | 	if ((PAGE_SIZE << min_order) / size > 65535) | 
 | 		return get_order(size * 65535) - 1; | 
 |  | 
 | 	for (order = max(min_order, | 
 | 				fls(min_objects * size - 1) - PAGE_SHIFT); | 
 | 			order <= max_order; order++) { | 
 |  | 
 | 		unsigned long slab_size = PAGE_SIZE << order; | 
 |  | 
 | 		if (slab_size < min_objects * size) | 
 | 			continue; | 
 |  | 
 | 		rem = slab_size % size; | 
 |  | 
 | 		if (rem <= slab_size / fract_leftover) | 
 | 			break; | 
 |  | 
 | 	} | 
 |  | 
 | 	return order; | 
 | } | 
 |  | 
 | static inline int calculate_order(int size) | 
 | { | 
 | 	int order; | 
 | 	int min_objects; | 
 | 	int fraction; | 
 |  | 
 | 	/* | 
 | 	 * Attempt to find best configuration for a slab. This | 
 | 	 * works by first attempting to generate a layout with | 
 | 	 * the best configuration and backing off gradually. | 
 | 	 * | 
 | 	 * First we reduce the acceptable waste in a slab. Then | 
 | 	 * we reduce the minimum objects required in a slab. | 
 | 	 */ | 
 | 	min_objects = slub_min_objects; | 
 | 	if (!min_objects) | 
 | 		min_objects = 4 * (fls(nr_cpu_ids) + 1); | 
 | 	while (min_objects > 1) { | 
 | 		fraction = 16; | 
 | 		while (fraction >= 4) { | 
 | 			order = slab_order(size, min_objects, | 
 | 						slub_max_order, fraction); | 
 | 			if (order <= slub_max_order) | 
 | 				return order; | 
 | 			fraction /= 2; | 
 | 		} | 
 | 		min_objects /= 2; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We were unable to place multiple objects in a slab. Now | 
 | 	 * lets see if we can place a single object there. | 
 | 	 */ | 
 | 	order = slab_order(size, 1, slub_max_order, 1); | 
 | 	if (order <= slub_max_order) | 
 | 		return order; | 
 |  | 
 | 	/* | 
 | 	 * Doh this slab cannot be placed using slub_max_order. | 
 | 	 */ | 
 | 	order = slab_order(size, 1, MAX_ORDER, 1); | 
 | 	if (order <= MAX_ORDER) | 
 | 		return order; | 
 | 	return -ENOSYS; | 
 | } | 
 |  | 
 | /* | 
 |  * Figure out what the alignment of the objects will be. | 
 |  */ | 
 | static unsigned long calculate_alignment(unsigned long flags, | 
 | 		unsigned long align, unsigned long size) | 
 | { | 
 | 	/* | 
 | 	 * If the user wants hardware cache aligned objects then follow that | 
 | 	 * suggestion if the object is sufficiently large. | 
 | 	 * | 
 | 	 * The hardware cache alignment cannot override the specified | 
 | 	 * alignment though. If that is greater then use it. | 
 | 	 */ | 
 | 	if (flags & SLAB_HWCACHE_ALIGN) { | 
 | 		unsigned long ralign = cache_line_size(); | 
 | 		while (size <= ralign / 2) | 
 | 			ralign /= 2; | 
 | 		align = max(align, ralign); | 
 | 	} | 
 |  | 
 | 	if (align < ARCH_SLAB_MINALIGN) | 
 | 		align = ARCH_SLAB_MINALIGN; | 
 |  | 
 | 	return ALIGN(align, sizeof(void *)); | 
 | } | 
 |  | 
 | static void init_kmem_cache_cpu(struct kmem_cache *s, | 
 | 			struct kmem_cache_cpu *c) | 
 | { | 
 | 	c->page = NULL; | 
 | 	c->freelist = NULL; | 
 | 	c->node = 0; | 
 | 	c->offset = s->offset / sizeof(void *); | 
 | 	c->objsize = s->objsize; | 
 | #ifdef CONFIG_SLUB_STATS | 
 | 	memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned)); | 
 | #endif | 
 | } | 
 |  | 
 | static void | 
 | init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s) | 
 | { | 
 | 	n->nr_partial = 0; | 
 |  | 
 | 	/* | 
 | 	 * The larger the object size is, the more pages we want on the partial | 
 | 	 * list to avoid pounding the page allocator excessively. | 
 | 	 */ | 
 | 	n->min_partial = ilog2(s->size); | 
 | 	if (n->min_partial < MIN_PARTIAL) | 
 | 		n->min_partial = MIN_PARTIAL; | 
 | 	else if (n->min_partial > MAX_PARTIAL) | 
 | 		n->min_partial = MAX_PARTIAL; | 
 |  | 
 | 	spin_lock_init(&n->list_lock); | 
 | 	INIT_LIST_HEAD(&n->partial); | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	atomic_long_set(&n->nr_slabs, 0); | 
 | 	INIT_LIST_HEAD(&n->full); | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * Per cpu array for per cpu structures. | 
 |  * | 
 |  * The per cpu array places all kmem_cache_cpu structures from one processor | 
 |  * close together meaning that it becomes possible that multiple per cpu | 
 |  * structures are contained in one cacheline. This may be particularly | 
 |  * beneficial for the kmalloc caches. | 
 |  * | 
 |  * A desktop system typically has around 60-80 slabs. With 100 here we are | 
 |  * likely able to get per cpu structures for all caches from the array defined | 
 |  * here. We must be able to cover all kmalloc caches during bootstrap. | 
 |  * | 
 |  * If the per cpu array is exhausted then fall back to kmalloc | 
 |  * of individual cachelines. No sharing is possible then. | 
 |  */ | 
 | #define NR_KMEM_CACHE_CPU 100 | 
 |  | 
 | static DEFINE_PER_CPU(struct kmem_cache_cpu, | 
 | 				kmem_cache_cpu)[NR_KMEM_CACHE_CPU]; | 
 |  | 
 | static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free); | 
 | static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE; | 
 |  | 
 | static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s, | 
 | 							int cpu, gfp_t flags) | 
 | { | 
 | 	struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu); | 
 |  | 
 | 	if (c) | 
 | 		per_cpu(kmem_cache_cpu_free, cpu) = | 
 | 				(void *)c->freelist; | 
 | 	else { | 
 | 		/* Table overflow: So allocate ourselves */ | 
 | 		c = kmalloc_node( | 
 | 			ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()), | 
 | 			flags, cpu_to_node(cpu)); | 
 | 		if (!c) | 
 | 			return NULL; | 
 | 	} | 
 |  | 
 | 	init_kmem_cache_cpu(s, c); | 
 | 	return c; | 
 | } | 
 |  | 
 | static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu) | 
 | { | 
 | 	if (c < per_cpu(kmem_cache_cpu, cpu) || | 
 | 			c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) { | 
 | 		kfree(c); | 
 | 		return; | 
 | 	} | 
 | 	c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu); | 
 | 	per_cpu(kmem_cache_cpu_free, cpu) = c; | 
 | } | 
 |  | 
 | static void free_kmem_cache_cpus(struct kmem_cache *s) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
 |  | 
 | 		if (c) { | 
 | 			s->cpu_slab[cpu] = NULL; | 
 | 			free_kmem_cache_cpu(c, cpu); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
 |  | 
 | 		if (c) | 
 | 			continue; | 
 |  | 
 | 		c = alloc_kmem_cache_cpu(s, cpu, flags); | 
 | 		if (!c) { | 
 | 			free_kmem_cache_cpus(s); | 
 | 			return 0; | 
 | 		} | 
 | 		s->cpu_slab[cpu] = c; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Initialize the per cpu array. | 
 |  */ | 
 | static void init_alloc_cpu_cpu(int cpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (cpu_isset(cpu, kmem_cach_cpu_free_init_once)) | 
 | 		return; | 
 |  | 
 | 	for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--) | 
 | 		free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu); | 
 |  | 
 | 	cpu_set(cpu, kmem_cach_cpu_free_init_once); | 
 | } | 
 |  | 
 | static void __init init_alloc_cpu(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		init_alloc_cpu_cpu(cpu); | 
 |   } | 
 |  | 
 | #else | 
 | static inline void free_kmem_cache_cpus(struct kmem_cache *s) {} | 
 | static inline void init_alloc_cpu(void) {} | 
 |  | 
 | static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags) | 
 | { | 
 | 	init_kmem_cache_cpu(s, &s->cpu_slab); | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | /* | 
 |  * No kmalloc_node yet so do it by hand. We know that this is the first | 
 |  * slab on the node for this slabcache. There are no concurrent accesses | 
 |  * possible. | 
 |  * | 
 |  * Note that this function only works on the kmalloc_node_cache | 
 |  * when allocating for the kmalloc_node_cache. This is used for bootstrapping | 
 |  * memory on a fresh node that has no slab structures yet. | 
 |  */ | 
 | static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags, | 
 | 							   int node) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kmem_cache_node *n; | 
 | 	unsigned long flags; | 
 |  | 
 | 	BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node)); | 
 |  | 
 | 	page = new_slab(kmalloc_caches, gfpflags, node); | 
 |  | 
 | 	BUG_ON(!page); | 
 | 	if (page_to_nid(page) != node) { | 
 | 		printk(KERN_ERR "SLUB: Unable to allocate memory from " | 
 | 				"node %d\n", node); | 
 | 		printk(KERN_ERR "SLUB: Allocating a useless per node structure " | 
 | 				"in order to be able to continue\n"); | 
 | 	} | 
 |  | 
 | 	n = page->freelist; | 
 | 	BUG_ON(!n); | 
 | 	page->freelist = get_freepointer(kmalloc_caches, n); | 
 | 	page->inuse++; | 
 | 	kmalloc_caches->node[node] = n; | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	init_object(kmalloc_caches, n, 1); | 
 | 	init_tracking(kmalloc_caches, n); | 
 | #endif | 
 | 	init_kmem_cache_node(n, kmalloc_caches); | 
 | 	inc_slabs_node(kmalloc_caches, node, page->objects); | 
 |  | 
 | 	/* | 
 | 	 * lockdep requires consistent irq usage for each lock | 
 | 	 * so even though there cannot be a race this early in | 
 | 	 * the boot sequence, we still disable irqs. | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 | 	add_partial(n, page, 0); | 
 | 	local_irq_restore(flags); | 
 | 	return n; | 
 | } | 
 |  | 
 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = s->node[node]; | 
 | 		if (n && n != &s->local_node) | 
 | 			kmem_cache_free(kmalloc_caches, n); | 
 | 		s->node[node] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 
 | { | 
 | 	int node; | 
 | 	int local_node; | 
 |  | 
 | 	if (slab_state >= UP) | 
 | 		local_node = page_to_nid(virt_to_page(s)); | 
 | 	else | 
 | 		local_node = 0; | 
 |  | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n; | 
 |  | 
 | 		if (local_node == node) | 
 | 			n = &s->local_node; | 
 | 		else { | 
 | 			if (slab_state == DOWN) { | 
 | 				n = early_kmem_cache_node_alloc(gfpflags, | 
 | 								node); | 
 | 				continue; | 
 | 			} | 
 | 			n = kmem_cache_alloc_node(kmalloc_caches, | 
 | 							gfpflags, node); | 
 |  | 
 | 			if (!n) { | 
 | 				free_kmem_cache_nodes(s); | 
 | 				return 0; | 
 | 			} | 
 |  | 
 | 		} | 
 | 		s->node[node] = n; | 
 | 		init_kmem_cache_node(n, s); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | #else | 
 | static void free_kmem_cache_nodes(struct kmem_cache *s) | 
 | { | 
 | } | 
 |  | 
 | static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags) | 
 | { | 
 | 	init_kmem_cache_node(&s->local_node, s); | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * calculate_sizes() determines the order and the distribution of data within | 
 |  * a slab object. | 
 |  */ | 
 | static int calculate_sizes(struct kmem_cache *s, int forced_order) | 
 | { | 
 | 	unsigned long flags = s->flags; | 
 | 	unsigned long size = s->objsize; | 
 | 	unsigned long align = s->align; | 
 | 	int order; | 
 |  | 
 | 	/* | 
 | 	 * Round up object size to the next word boundary. We can only | 
 | 	 * place the free pointer at word boundaries and this determines | 
 | 	 * the possible location of the free pointer. | 
 | 	 */ | 
 | 	size = ALIGN(size, sizeof(void *)); | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	/* | 
 | 	 * Determine if we can poison the object itself. If the user of | 
 | 	 * the slab may touch the object after free or before allocation | 
 | 	 * then we should never poison the object itself. | 
 | 	 */ | 
 | 	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) && | 
 | 			!s->ctor) | 
 | 		s->flags |= __OBJECT_POISON; | 
 | 	else | 
 | 		s->flags &= ~__OBJECT_POISON; | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * If we are Redzoning then check if there is some space between the | 
 | 	 * end of the object and the free pointer. If not then add an | 
 | 	 * additional word to have some bytes to store Redzone information. | 
 | 	 */ | 
 | 	if ((flags & SLAB_RED_ZONE) && size == s->objsize) | 
 | 		size += sizeof(void *); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * With that we have determined the number of bytes in actual use | 
 | 	 * by the object. This is the potential offset to the free pointer. | 
 | 	 */ | 
 | 	s->inuse = size; | 
 |  | 
 | 	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) || | 
 | 		s->ctor)) { | 
 | 		/* | 
 | 		 * Relocate free pointer after the object if it is not | 
 | 		 * permitted to overwrite the first word of the object on | 
 | 		 * kmem_cache_free. | 
 | 		 * | 
 | 		 * This is the case if we do RCU, have a constructor or | 
 | 		 * destructor or are poisoning the objects. | 
 | 		 */ | 
 | 		s->offset = size; | 
 | 		size += sizeof(void *); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	if (flags & SLAB_STORE_USER) | 
 | 		/* | 
 | 		 * Need to store information about allocs and frees after | 
 | 		 * the object. | 
 | 		 */ | 
 | 		size += 2 * sizeof(struct track); | 
 |  | 
 | 	if (flags & SLAB_RED_ZONE) | 
 | 		/* | 
 | 		 * Add some empty padding so that we can catch | 
 | 		 * overwrites from earlier objects rather than let | 
 | 		 * tracking information or the free pointer be | 
 | 		 * corrupted if an user writes before the start | 
 | 		 * of the object. | 
 | 		 */ | 
 | 		size += sizeof(void *); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Determine the alignment based on various parameters that the | 
 | 	 * user specified and the dynamic determination of cache line size | 
 | 	 * on bootup. | 
 | 	 */ | 
 | 	align = calculate_alignment(flags, align, s->objsize); | 
 |  | 
 | 	/* | 
 | 	 * SLUB stores one object immediately after another beginning from | 
 | 	 * offset 0. In order to align the objects we have to simply size | 
 | 	 * each object to conform to the alignment. | 
 | 	 */ | 
 | 	size = ALIGN(size, align); | 
 | 	s->size = size; | 
 | 	if (forced_order >= 0) | 
 | 		order = forced_order; | 
 | 	else | 
 | 		order = calculate_order(size); | 
 |  | 
 | 	if (order < 0) | 
 | 		return 0; | 
 |  | 
 | 	s->allocflags = 0; | 
 | 	if (order) | 
 | 		s->allocflags |= __GFP_COMP; | 
 |  | 
 | 	if (s->flags & SLAB_CACHE_DMA) | 
 | 		s->allocflags |= SLUB_DMA; | 
 |  | 
 | 	if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		s->allocflags |= __GFP_RECLAIMABLE; | 
 |  | 
 | 	/* | 
 | 	 * Determine the number of objects per slab | 
 | 	 */ | 
 | 	s->oo = oo_make(order, size); | 
 | 	s->min = oo_make(get_order(size), size); | 
 | 	if (oo_objects(s->oo) > oo_objects(s->max)) | 
 | 		s->max = s->oo; | 
 |  | 
 | 	return !!oo_objects(s->oo); | 
 |  | 
 | } | 
 |  | 
 | static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags, | 
 | 		const char *name, size_t size, | 
 | 		size_t align, unsigned long flags, | 
 | 		void (*ctor)(void *)) | 
 | { | 
 | 	memset(s, 0, kmem_size); | 
 | 	s->name = name; | 
 | 	s->ctor = ctor; | 
 | 	s->objsize = size; | 
 | 	s->align = align; | 
 | 	s->flags = kmem_cache_flags(size, flags, name, ctor); | 
 |  | 
 | 	if (!calculate_sizes(s, -1)) | 
 | 		goto error; | 
 |  | 
 | 	s->refcount = 1; | 
 | #ifdef CONFIG_NUMA | 
 | 	s->remote_node_defrag_ratio = 1000; | 
 | #endif | 
 | 	if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA)) | 
 | 		goto error; | 
 |  | 
 | 	if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA)) | 
 | 		return 1; | 
 | 	free_kmem_cache_nodes(s); | 
 | error: | 
 | 	if (flags & SLAB_PANIC) | 
 | 		panic("Cannot create slab %s size=%lu realsize=%u " | 
 | 			"order=%u offset=%u flags=%lx\n", | 
 | 			s->name, (unsigned long)size, s->size, oo_order(s->oo), | 
 | 			s->offset, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if a given pointer is valid | 
 |  */ | 
 | int kmem_ptr_validate(struct kmem_cache *s, const void *object) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = get_object_page(object); | 
 |  | 
 | 	if (!page || s != page->slab) | 
 | 		/* No slab or wrong slab */ | 
 | 		return 0; | 
 |  | 
 | 	if (!check_valid_pointer(s, page, object)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We could also check if the object is on the slabs freelist. | 
 | 	 * But this would be too expensive and it seems that the main | 
 | 	 * purpose of kmem_ptr_valid() is to check if the object belongs | 
 | 	 * to a certain slab. | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL(kmem_ptr_validate); | 
 |  | 
 | /* | 
 |  * Determine the size of a slab object | 
 |  */ | 
 | unsigned int kmem_cache_size(struct kmem_cache *s) | 
 | { | 
 | 	return s->objsize; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_size); | 
 |  | 
 | const char *kmem_cache_name(struct kmem_cache *s) | 
 | { | 
 | 	return s->name; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_name); | 
 |  | 
 | static void list_slab_objects(struct kmem_cache *s, struct page *page, | 
 | 							const char *text) | 
 | { | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	void *addr = page_address(page); | 
 | 	void *p; | 
 | 	DECLARE_BITMAP(map, page->objects); | 
 |  | 
 | 	bitmap_zero(map, page->objects); | 
 | 	slab_err(s, page, "%s", text); | 
 | 	slab_lock(page); | 
 | 	for_each_free_object(p, s, page->freelist) | 
 | 		set_bit(slab_index(p, s, addr), map); | 
 |  | 
 | 	for_each_object(p, s, addr, page->objects) { | 
 |  | 
 | 		if (!test_bit(slab_index(p, s, addr), map)) { | 
 | 			printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n", | 
 | 							p, p - addr); | 
 | 			print_tracking(s, p); | 
 | 		} | 
 | 	} | 
 | 	slab_unlock(page); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to free all partial slabs on a node. | 
 |  */ | 
 | static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct page *page, *h; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 	list_for_each_entry_safe(page, h, &n->partial, lru) { | 
 | 		if (!page->inuse) { | 
 | 			list_del(&page->lru); | 
 | 			discard_slab(s, page); | 
 | 			n->nr_partial--; | 
 | 		} else { | 
 | 			list_slab_objects(s, page, | 
 | 				"Objects remaining on kmem_cache_close()"); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Release all resources used by a slab cache. | 
 |  */ | 
 | static inline int kmem_cache_close(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	flush_all(s); | 
 |  | 
 | 	/* Attempt to free all objects */ | 
 | 	free_kmem_cache_cpus(s); | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		free_partial(s, n); | 
 | 		if (n->nr_partial || slabs_node(s, node)) | 
 | 			return 1; | 
 | 	} | 
 | 	free_kmem_cache_nodes(s); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Close a cache and release the kmem_cache structure | 
 |  * (must be used for caches created using kmem_cache_create) | 
 |  */ | 
 | void kmem_cache_destroy(struct kmem_cache *s) | 
 | { | 
 | 	down_write(&slub_lock); | 
 | 	s->refcount--; | 
 | 	if (!s->refcount) { | 
 | 		list_del(&s->list); | 
 | 		up_write(&slub_lock); | 
 | 		if (kmem_cache_close(s)) { | 
 | 			printk(KERN_ERR "SLUB %s: %s called for cache that " | 
 | 				"still has objects.\n", s->name, __func__); | 
 | 			dump_stack(); | 
 | 		} | 
 | 		sysfs_slab_remove(s); | 
 | 	} else | 
 | 		up_write(&slub_lock); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_destroy); | 
 |  | 
 | /******************************************************************** | 
 |  *		Kmalloc subsystem | 
 |  *******************************************************************/ | 
 |  | 
 | struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned; | 
 | EXPORT_SYMBOL(kmalloc_caches); | 
 |  | 
 | static int __init setup_slub_min_order(char *str) | 
 | { | 
 | 	get_option(&str, &slub_min_order); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_min_order=", setup_slub_min_order); | 
 |  | 
 | static int __init setup_slub_max_order(char *str) | 
 | { | 
 | 	get_option(&str, &slub_max_order); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_max_order=", setup_slub_max_order); | 
 |  | 
 | static int __init setup_slub_min_objects(char *str) | 
 | { | 
 | 	get_option(&str, &slub_min_objects); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_min_objects=", setup_slub_min_objects); | 
 |  | 
 | static int __init setup_slub_nomerge(char *str) | 
 | { | 
 | 	slub_nomerge = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("slub_nomerge", setup_slub_nomerge); | 
 |  | 
 | static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s, | 
 | 		const char *name, int size, gfp_t gfp_flags) | 
 | { | 
 | 	unsigned int flags = 0; | 
 |  | 
 | 	if (gfp_flags & SLUB_DMA) | 
 | 		flags = SLAB_CACHE_DMA; | 
 |  | 
 | 	down_write(&slub_lock); | 
 | 	if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN, | 
 | 								flags, NULL)) | 
 | 		goto panic; | 
 |  | 
 | 	list_add(&s->list, &slab_caches); | 
 | 	up_write(&slub_lock); | 
 | 	if (sysfs_slab_add(s)) | 
 | 		goto panic; | 
 | 	return s; | 
 |  | 
 | panic: | 
 | 	panic("Creation of kmalloc slab %s size=%d failed.\n", name, size); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1]; | 
 |  | 
 | static void sysfs_add_func(struct work_struct *w) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	down_write(&slub_lock); | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		if (s->flags & __SYSFS_ADD_DEFERRED) { | 
 | 			s->flags &= ~__SYSFS_ADD_DEFERRED; | 
 | 			sysfs_slab_add(s); | 
 | 		} | 
 | 	} | 
 | 	up_write(&slub_lock); | 
 | } | 
 |  | 
 | static DECLARE_WORK(sysfs_add_work, sysfs_add_func); | 
 |  | 
 | static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	char *text; | 
 | 	size_t realsize; | 
 |  | 
 | 	s = kmalloc_caches_dma[index]; | 
 | 	if (s) | 
 | 		return s; | 
 |  | 
 | 	/* Dynamically create dma cache */ | 
 | 	if (flags & __GFP_WAIT) | 
 | 		down_write(&slub_lock); | 
 | 	else { | 
 | 		if (!down_write_trylock(&slub_lock)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (kmalloc_caches_dma[index]) | 
 | 		goto unlock_out; | 
 |  | 
 | 	realsize = kmalloc_caches[index].objsize; | 
 | 	text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", | 
 | 			 (unsigned int)realsize); | 
 | 	s = kmalloc(kmem_size, flags & ~SLUB_DMA); | 
 |  | 
 | 	if (!s || !text || !kmem_cache_open(s, flags, text, | 
 | 			realsize, ARCH_KMALLOC_MINALIGN, | 
 | 			SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) { | 
 | 		kfree(s); | 
 | 		kfree(text); | 
 | 		goto unlock_out; | 
 | 	} | 
 |  | 
 | 	list_add(&s->list, &slab_caches); | 
 | 	kmalloc_caches_dma[index] = s; | 
 |  | 
 | 	schedule_work(&sysfs_add_work); | 
 |  | 
 | unlock_out: | 
 | 	up_write(&slub_lock); | 
 | out: | 
 | 	return kmalloc_caches_dma[index]; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Conversion table for small slabs sizes / 8 to the index in the | 
 |  * kmalloc array. This is necessary for slabs < 192 since we have non power | 
 |  * of two cache sizes there. The size of larger slabs can be determined using | 
 |  * fls. | 
 |  */ | 
 | static s8 size_index[24] = { | 
 | 	3,	/* 8 */ | 
 | 	4,	/* 16 */ | 
 | 	5,	/* 24 */ | 
 | 	5,	/* 32 */ | 
 | 	6,	/* 40 */ | 
 | 	6,	/* 48 */ | 
 | 	6,	/* 56 */ | 
 | 	6,	/* 64 */ | 
 | 	1,	/* 72 */ | 
 | 	1,	/* 80 */ | 
 | 	1,	/* 88 */ | 
 | 	1,	/* 96 */ | 
 | 	7,	/* 104 */ | 
 | 	7,	/* 112 */ | 
 | 	7,	/* 120 */ | 
 | 	7,	/* 128 */ | 
 | 	2,	/* 136 */ | 
 | 	2,	/* 144 */ | 
 | 	2,	/* 152 */ | 
 | 	2,	/* 160 */ | 
 | 	2,	/* 168 */ | 
 | 	2,	/* 176 */ | 
 | 	2,	/* 184 */ | 
 | 	2	/* 192 */ | 
 | }; | 
 |  | 
 | static struct kmem_cache *get_slab(size_t size, gfp_t flags) | 
 | { | 
 | 	int index; | 
 |  | 
 | 	if (size <= 192) { | 
 | 		if (!size) | 
 | 			return ZERO_SIZE_PTR; | 
 |  | 
 | 		index = size_index[(size - 1) / 8]; | 
 | 	} else | 
 | 		index = fls(size - 1); | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	if (unlikely((flags & SLUB_DMA))) | 
 | 		return dma_kmalloc_cache(index, flags); | 
 |  | 
 | #endif | 
 | 	return &kmalloc_caches[index]; | 
 | } | 
 |  | 
 | void *__kmalloc(size_t size, gfp_t flags) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	if (unlikely(size > PAGE_SIZE)) | 
 | 		return kmalloc_large(size, flags); | 
 |  | 
 | 	s = get_slab(size, flags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	return slab_alloc(s, flags, -1, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc); | 
 |  | 
 | static void *kmalloc_large_node(size_t size, gfp_t flags, int node) | 
 | { | 
 | 	struct page *page = alloc_pages_node(node, flags | __GFP_COMP, | 
 | 						get_order(size)); | 
 |  | 
 | 	if (page) | 
 | 		return page_address(page); | 
 | 	else | 
 | 		return NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | void *__kmalloc_node(size_t size, gfp_t flags, int node) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	if (unlikely(size > PAGE_SIZE)) | 
 | 		return kmalloc_large_node(size, flags, node); | 
 |  | 
 | 	s = get_slab(size, flags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	return slab_alloc(s, flags, node, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node); | 
 | #endif | 
 |  | 
 | size_t ksize(const void *object) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	if (unlikely(object == ZERO_SIZE_PTR)) | 
 | 		return 0; | 
 |  | 
 | 	page = virt_to_head_page(object); | 
 |  | 
 | 	if (unlikely(!PageSlab(page))) { | 
 | 		WARN_ON(!PageCompound(page)); | 
 | 		return PAGE_SIZE << compound_order(page); | 
 | 	} | 
 | 	s = page->slab; | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | 	/* | 
 | 	 * Debugging requires use of the padding between object | 
 | 	 * and whatever may come after it. | 
 | 	 */ | 
 | 	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON)) | 
 | 		return s->objsize; | 
 |  | 
 | #endif | 
 | 	/* | 
 | 	 * If we have the need to store the freelist pointer | 
 | 	 * back there or track user information then we can | 
 | 	 * only use the space before that information. | 
 | 	 */ | 
 | 	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER)) | 
 | 		return s->inuse; | 
 | 	/* | 
 | 	 * Else we can use all the padding etc for the allocation | 
 | 	 */ | 
 | 	return s->size; | 
 | } | 
 |  | 
 | void kfree(const void *x) | 
 | { | 
 | 	struct page *page; | 
 | 	void *object = (void *)x; | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(x))) | 
 | 		return; | 
 |  | 
 | 	page = virt_to_head_page(x); | 
 | 	if (unlikely(!PageSlab(page))) { | 
 | 		BUG_ON(!PageCompound(page)); | 
 | 		put_page(page); | 
 | 		return; | 
 | 	} | 
 | 	slab_free(page->slab, page, object, __builtin_return_address(0)); | 
 | } | 
 | EXPORT_SYMBOL(kfree); | 
 |  | 
 | /* | 
 |  * kmem_cache_shrink removes empty slabs from the partial lists and sorts | 
 |  * the remaining slabs by the number of items in use. The slabs with the | 
 |  * most items in use come first. New allocations will then fill those up | 
 |  * and thus they can be removed from the partial lists. | 
 |  * | 
 |  * The slabs with the least items are placed last. This results in them | 
 |  * being allocated from last increasing the chance that the last objects | 
 |  * are freed in them. | 
 |  */ | 
 | int kmem_cache_shrink(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	int i; | 
 | 	struct kmem_cache_node *n; | 
 | 	struct page *page; | 
 | 	struct page *t; | 
 | 	int objects = oo_objects(s->max); | 
 | 	struct list_head *slabs_by_inuse = | 
 | 		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!slabs_by_inuse) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	flush_all(s); | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		n = get_node(s, node); | 
 |  | 
 | 		if (!n->nr_partial) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < objects; i++) | 
 | 			INIT_LIST_HEAD(slabs_by_inuse + i); | 
 |  | 
 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 |  | 
 | 		/* | 
 | 		 * Build lists indexed by the items in use in each slab. | 
 | 		 * | 
 | 		 * Note that concurrent frees may occur while we hold the | 
 | 		 * list_lock. page->inuse here is the upper limit. | 
 | 		 */ | 
 | 		list_for_each_entry_safe(page, t, &n->partial, lru) { | 
 | 			if (!page->inuse && slab_trylock(page)) { | 
 | 				/* | 
 | 				 * Must hold slab lock here because slab_free | 
 | 				 * may have freed the last object and be | 
 | 				 * waiting to release the slab. | 
 | 				 */ | 
 | 				list_del(&page->lru); | 
 | 				n->nr_partial--; | 
 | 				slab_unlock(page); | 
 | 				discard_slab(s, page); | 
 | 			} else { | 
 | 				list_move(&page->lru, | 
 | 				slabs_by_inuse + page->inuse); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Rebuild the partial list with the slabs filled up most | 
 | 		 * first and the least used slabs at the end. | 
 | 		 */ | 
 | 		for (i = objects - 1; i >= 0; i--) | 
 | 			list_splice(slabs_by_inuse + i, n->partial.prev); | 
 |  | 
 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	} | 
 |  | 
 | 	kfree(slabs_by_inuse); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_shrink); | 
 |  | 
 | #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG) | 
 | static int slab_mem_going_offline_callback(void *arg) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	down_read(&slub_lock); | 
 | 	list_for_each_entry(s, &slab_caches, list) | 
 | 		kmem_cache_shrink(s); | 
 | 	up_read(&slub_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void slab_mem_offline_callback(void *arg) | 
 | { | 
 | 	struct kmem_cache_node *n; | 
 | 	struct kmem_cache *s; | 
 | 	struct memory_notify *marg = arg; | 
 | 	int offline_node; | 
 |  | 
 | 	offline_node = marg->status_change_nid; | 
 |  | 
 | 	/* | 
 | 	 * If the node still has available memory. we need kmem_cache_node | 
 | 	 * for it yet. | 
 | 	 */ | 
 | 	if (offline_node < 0) | 
 | 		return; | 
 |  | 
 | 	down_read(&slub_lock); | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		n = get_node(s, offline_node); | 
 | 		if (n) { | 
 | 			/* | 
 | 			 * if n->nr_slabs > 0, slabs still exist on the node | 
 | 			 * that is going down. We were unable to free them, | 
 | 			 * and offline_pages() function shoudn't call this | 
 | 			 * callback. So, we must fail. | 
 | 			 */ | 
 | 			BUG_ON(slabs_node(s, offline_node)); | 
 |  | 
 | 			s->node[offline_node] = NULL; | 
 | 			kmem_cache_free(kmalloc_caches, n); | 
 | 		} | 
 | 	} | 
 | 	up_read(&slub_lock); | 
 | } | 
 |  | 
 | static int slab_mem_going_online_callback(void *arg) | 
 | { | 
 | 	struct kmem_cache_node *n; | 
 | 	struct kmem_cache *s; | 
 | 	struct memory_notify *marg = arg; | 
 | 	int nid = marg->status_change_nid; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the node's memory is already available, then kmem_cache_node is | 
 | 	 * already created. Nothing to do. | 
 | 	 */ | 
 | 	if (nid < 0) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We are bringing a node online. No memory is available yet. We must | 
 | 	 * allocate a kmem_cache_node structure in order to bring the node | 
 | 	 * online. | 
 | 	 */ | 
 | 	down_read(&slub_lock); | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		/* | 
 | 		 * XXX: kmem_cache_alloc_node will fallback to other nodes | 
 | 		 *      since memory is not yet available from the node that | 
 | 		 *      is brought up. | 
 | 		 */ | 
 | 		n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL); | 
 | 		if (!n) { | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		init_kmem_cache_node(n, s); | 
 | 		s->node[nid] = n; | 
 | 	} | 
 | out: | 
 | 	up_read(&slub_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int slab_memory_callback(struct notifier_block *self, | 
 | 				unsigned long action, void *arg) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	switch (action) { | 
 | 	case MEM_GOING_ONLINE: | 
 | 		ret = slab_mem_going_online_callback(arg); | 
 | 		break; | 
 | 	case MEM_GOING_OFFLINE: | 
 | 		ret = slab_mem_going_offline_callback(arg); | 
 | 		break; | 
 | 	case MEM_OFFLINE: | 
 | 	case MEM_CANCEL_ONLINE: | 
 | 		slab_mem_offline_callback(arg); | 
 | 		break; | 
 | 	case MEM_ONLINE: | 
 | 	case MEM_CANCEL_OFFLINE: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ret = notifier_from_errno(ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | /******************************************************************** | 
 |  *			Basic setup of slabs | 
 |  *******************************************************************/ | 
 |  | 
 | void __init kmem_cache_init(void) | 
 | { | 
 | 	int i; | 
 | 	int caches = 0; | 
 |  | 
 | 	init_alloc_cpu(); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * Must first have the slab cache available for the allocations of the | 
 | 	 * struct kmem_cache_node's. There is special bootstrap code in | 
 | 	 * kmem_cache_open for slab_state == DOWN. | 
 | 	 */ | 
 | 	create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", | 
 | 		sizeof(struct kmem_cache_node), GFP_KERNEL); | 
 | 	kmalloc_caches[0].refcount = -1; | 
 | 	caches++; | 
 |  | 
 | 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI); | 
 | #endif | 
 |  | 
 | 	/* Able to allocate the per node structures */ | 
 | 	slab_state = PARTIAL; | 
 |  | 
 | 	/* Caches that are not of the two-to-the-power-of size */ | 
 | 	if (KMALLOC_MIN_SIZE <= 64) { | 
 | 		create_kmalloc_cache(&kmalloc_caches[1], | 
 | 				"kmalloc-96", 96, GFP_KERNEL); | 
 | 		caches++; | 
 | 		create_kmalloc_cache(&kmalloc_caches[2], | 
 | 				"kmalloc-192", 192, GFP_KERNEL); | 
 | 		caches++; | 
 | 	} | 
 |  | 
 | 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) { | 
 | 		create_kmalloc_cache(&kmalloc_caches[i], | 
 | 			"kmalloc", 1 << i, GFP_KERNEL); | 
 | 		caches++; | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Patch up the size_index table if we have strange large alignment | 
 | 	 * requirements for the kmalloc array. This is only the case for | 
 | 	 * MIPS it seems. The standard arches will not generate any code here. | 
 | 	 * | 
 | 	 * Largest permitted alignment is 256 bytes due to the way we | 
 | 	 * handle the index determination for the smaller caches. | 
 | 	 * | 
 | 	 * Make sure that nothing crazy happens if someone starts tinkering | 
 | 	 * around with ARCH_KMALLOC_MINALIGN | 
 | 	 */ | 
 | 	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || | 
 | 		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1))); | 
 |  | 
 | 	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) | 
 | 		size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW; | 
 |  | 
 | 	if (KMALLOC_MIN_SIZE == 128) { | 
 | 		/* | 
 | 		 * The 192 byte sized cache is not used if the alignment | 
 | 		 * is 128 byte. Redirect kmalloc to use the 256 byte cache | 
 | 		 * instead. | 
 | 		 */ | 
 | 		for (i = 128 + 8; i <= 192; i += 8) | 
 | 			size_index[(i - 1) / 8] = 8; | 
 | 	} | 
 |  | 
 | 	slab_state = UP; | 
 |  | 
 | 	/* Provide the correct kmalloc names now that the caches are up */ | 
 | 	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) | 
 | 		kmalloc_caches[i]. name = | 
 | 			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	register_cpu_notifier(&slab_notifier); | 
 | 	kmem_size = offsetof(struct kmem_cache, cpu_slab) + | 
 | 				nr_cpu_ids * sizeof(struct kmem_cache_cpu *); | 
 | #else | 
 | 	kmem_size = sizeof(struct kmem_cache); | 
 | #endif | 
 |  | 
 | 	printk(KERN_INFO | 
 | 		"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d," | 
 | 		" CPUs=%d, Nodes=%d\n", | 
 | 		caches, cache_line_size(), | 
 | 		slub_min_order, slub_max_order, slub_min_objects, | 
 | 		nr_cpu_ids, nr_node_ids); | 
 | } | 
 |  | 
 | /* | 
 |  * Find a mergeable slab cache | 
 |  */ | 
 | static int slab_unmergeable(struct kmem_cache *s) | 
 | { | 
 | 	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE)) | 
 | 		return 1; | 
 |  | 
 | 	if (s->ctor) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * We may have set a slab to be unmergeable during bootstrap. | 
 | 	 */ | 
 | 	if (s->refcount < 0) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kmem_cache *find_mergeable(size_t size, | 
 | 		size_t align, unsigned long flags, const char *name, | 
 | 		void (*ctor)(void *)) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	if (slub_nomerge || (flags & SLUB_NEVER_MERGE)) | 
 | 		return NULL; | 
 |  | 
 | 	if (ctor) | 
 | 		return NULL; | 
 |  | 
 | 	size = ALIGN(size, sizeof(void *)); | 
 | 	align = calculate_alignment(flags, align, size); | 
 | 	size = ALIGN(size, align); | 
 | 	flags = kmem_cache_flags(size, flags, name, NULL); | 
 |  | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		if (slab_unmergeable(s)) | 
 | 			continue; | 
 |  | 
 | 		if (size > s->size) | 
 | 			continue; | 
 |  | 
 | 		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME)) | 
 | 				continue; | 
 | 		/* | 
 | 		 * Check if alignment is compatible. | 
 | 		 * Courtesy of Adrian Drzewiecki | 
 | 		 */ | 
 | 		if ((s->size & ~(align - 1)) != s->size) | 
 | 			continue; | 
 |  | 
 | 		if (s->size - size >= sizeof(void *)) | 
 | 			continue; | 
 |  | 
 | 		return s; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 
 | 		size_t align, unsigned long flags, void (*ctor)(void *)) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	down_write(&slub_lock); | 
 | 	s = find_mergeable(size, align, flags, name, ctor); | 
 | 	if (s) { | 
 | 		int cpu; | 
 |  | 
 | 		s->refcount++; | 
 | 		/* | 
 | 		 * Adjust the object sizes so that we clear | 
 | 		 * the complete object on kzalloc. | 
 | 		 */ | 
 | 		s->objsize = max(s->objsize, (int)size); | 
 |  | 
 | 		/* | 
 | 		 * And then we need to update the object size in the | 
 | 		 * per cpu structures | 
 | 		 */ | 
 | 		for_each_online_cpu(cpu) | 
 | 			get_cpu_slab(s, cpu)->objsize = s->objsize; | 
 |  | 
 | 		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); | 
 | 		up_write(&slub_lock); | 
 |  | 
 | 		if (sysfs_slab_alias(s, name)) | 
 | 			goto err; | 
 | 		return s; | 
 | 	} | 
 |  | 
 | 	s = kmalloc(kmem_size, GFP_KERNEL); | 
 | 	if (s) { | 
 | 		if (kmem_cache_open(s, GFP_KERNEL, name, | 
 | 				size, align, flags, ctor)) { | 
 | 			list_add(&s->list, &slab_caches); | 
 | 			up_write(&slub_lock); | 
 | 			if (sysfs_slab_add(s)) | 
 | 				goto err; | 
 | 			return s; | 
 | 		} | 
 | 		kfree(s); | 
 | 	} | 
 | 	up_write(&slub_lock); | 
 |  | 
 | err: | 
 | 	if (flags & SLAB_PANIC) | 
 | 		panic("Cannot create slabcache %s\n", name); | 
 | 	else | 
 | 		s = NULL; | 
 | 	return s; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_create); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | /* | 
 |  * Use the cpu notifier to insure that the cpu slabs are flushed when | 
 |  * necessary. | 
 |  */ | 
 | static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, | 
 | 		unsigned long action, void *hcpu) | 
 | { | 
 | 	long cpu = (long)hcpu; | 
 | 	struct kmem_cache *s; | 
 | 	unsigned long flags; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		init_alloc_cpu_cpu(cpu); | 
 | 		down_read(&slub_lock); | 
 | 		list_for_each_entry(s, &slab_caches, list) | 
 | 			s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu, | 
 | 							GFP_KERNEL); | 
 | 		up_read(&slub_lock); | 
 | 		break; | 
 |  | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 		down_read(&slub_lock); | 
 | 		list_for_each_entry(s, &slab_caches, list) { | 
 | 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
 |  | 
 | 			local_irq_save(flags); | 
 | 			__flush_cpu_slab(s, cpu); | 
 | 			local_irq_restore(flags); | 
 | 			free_kmem_cache_cpu(c, cpu); | 
 | 			s->cpu_slab[cpu] = NULL; | 
 | 		} | 
 | 		up_read(&slub_lock); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block __cpuinitdata slab_notifier = { | 
 | 	.notifier_call = slab_cpuup_callback | 
 | }; | 
 |  | 
 | #endif | 
 |  | 
 | void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	if (unlikely(size > PAGE_SIZE)) | 
 | 		return kmalloc_large(size, gfpflags); | 
 |  | 
 | 	s = get_slab(size, gfpflags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	return slab_alloc(s, gfpflags, -1, caller); | 
 | } | 
 |  | 
 | void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, | 
 | 					int node, void *caller) | 
 | { | 
 | 	struct kmem_cache *s; | 
 |  | 
 | 	if (unlikely(size > PAGE_SIZE)) | 
 | 		return kmalloc_large_node(size, gfpflags, node); | 
 |  | 
 | 	s = get_slab(size, gfpflags); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(s))) | 
 | 		return s; | 
 |  | 
 | 	return slab_alloc(s, gfpflags, node, caller); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SLUB_DEBUG | 
 | static unsigned long count_partial(struct kmem_cache_node *n, | 
 | 					int (*get_count)(struct page *)) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long x = 0; | 
 | 	struct page *page; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 | 	list_for_each_entry(page, &n->partial, lru) | 
 | 		x += get_count(page); | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	return x; | 
 | } | 
 |  | 
 | static int count_inuse(struct page *page) | 
 | { | 
 | 	return page->inuse; | 
 | } | 
 |  | 
 | static int count_total(struct page *page) | 
 | { | 
 | 	return page->objects; | 
 | } | 
 |  | 
 | static int count_free(struct page *page) | 
 | { | 
 | 	return page->objects - page->inuse; | 
 | } | 
 |  | 
 | static int validate_slab(struct kmem_cache *s, struct page *page, | 
 | 						unsigned long *map) | 
 | { | 
 | 	void *p; | 
 | 	void *addr = page_address(page); | 
 |  | 
 | 	if (!check_slab(s, page) || | 
 | 			!on_freelist(s, page, NULL)) | 
 | 		return 0; | 
 |  | 
 | 	/* Now we know that a valid freelist exists */ | 
 | 	bitmap_zero(map, page->objects); | 
 |  | 
 | 	for_each_free_object(p, s, page->freelist) { | 
 | 		set_bit(slab_index(p, s, addr), map); | 
 | 		if (!check_object(s, page, p, 0)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	for_each_object(p, s, addr, page->objects) | 
 | 		if (!test_bit(slab_index(p, s, addr), map)) | 
 | 			if (!check_object(s, page, p, 1)) | 
 | 				return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void validate_slab_slab(struct kmem_cache *s, struct page *page, | 
 | 						unsigned long *map) | 
 | { | 
 | 	if (slab_trylock(page)) { | 
 | 		validate_slab(s, page, map); | 
 | 		slab_unlock(page); | 
 | 	} else | 
 | 		printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n", | 
 | 			s->name, page); | 
 |  | 
 | 	if (s->flags & DEBUG_DEFAULT_FLAGS) { | 
 | 		if (!PageSlubDebug(page)) | 
 | 			printk(KERN_ERR "SLUB %s: SlubDebug not set " | 
 | 				"on slab 0x%p\n", s->name, page); | 
 | 	} else { | 
 | 		if (PageSlubDebug(page)) | 
 | 			printk(KERN_ERR "SLUB %s: SlubDebug set on " | 
 | 				"slab 0x%p\n", s->name, page); | 
 | 	} | 
 | } | 
 |  | 
 | static int validate_slab_node(struct kmem_cache *s, | 
 | 		struct kmem_cache_node *n, unsigned long *map) | 
 | { | 
 | 	unsigned long count = 0; | 
 | 	struct page *page; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&n->list_lock, flags); | 
 |  | 
 | 	list_for_each_entry(page, &n->partial, lru) { | 
 | 		validate_slab_slab(s, page, map); | 
 | 		count++; | 
 | 	} | 
 | 	if (count != n->nr_partial) | 
 | 		printk(KERN_ERR "SLUB %s: %ld partial slabs counted but " | 
 | 			"counter=%ld\n", s->name, count, n->nr_partial); | 
 |  | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry(page, &n->full, lru) { | 
 | 		validate_slab_slab(s, page, map); | 
 | 		count++; | 
 | 	} | 
 | 	if (count != atomic_long_read(&n->nr_slabs)) | 
 | 		printk(KERN_ERR "SLUB: %s %ld slabs counted but " | 
 | 			"counter=%ld\n", s->name, count, | 
 | 			atomic_long_read(&n->nr_slabs)); | 
 |  | 
 | out: | 
 | 	spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	return count; | 
 | } | 
 |  | 
 | static long validate_slab_cache(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 | 	unsigned long count = 0; | 
 | 	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * | 
 | 				sizeof(unsigned long), GFP_KERNEL); | 
 |  | 
 | 	if (!map) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	flush_all(s); | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		count += validate_slab_node(s, n, map); | 
 | 	} | 
 | 	kfree(map); | 
 | 	return count; | 
 | } | 
 |  | 
 | #ifdef SLUB_RESILIENCY_TEST | 
 | static void resiliency_test(void) | 
 | { | 
 | 	u8 *p; | 
 |  | 
 | 	printk(KERN_ERR "SLUB resiliency testing\n"); | 
 | 	printk(KERN_ERR "-----------------------\n"); | 
 | 	printk(KERN_ERR "A. Corruption after allocation\n"); | 
 |  | 
 | 	p = kzalloc(16, GFP_KERNEL); | 
 | 	p[16] = 0x12; | 
 | 	printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer" | 
 | 			" 0x12->0x%p\n\n", p + 16); | 
 |  | 
 | 	validate_slab_cache(kmalloc_caches + 4); | 
 |  | 
 | 	/* Hmmm... The next two are dangerous */ | 
 | 	p = kzalloc(32, GFP_KERNEL); | 
 | 	p[32 + sizeof(void *)] = 0x34; | 
 | 	printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab" | 
 | 			" 0x34 -> -0x%p\n", p); | 
 | 	printk(KERN_ERR | 
 | 		"If allocated object is overwritten then not detectable\n\n"); | 
 |  | 
 | 	validate_slab_cache(kmalloc_caches + 5); | 
 | 	p = kzalloc(64, GFP_KERNEL); | 
 | 	p += 64 + (get_cycles() & 0xff) * sizeof(void *); | 
 | 	*p = 0x56; | 
 | 	printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", | 
 | 									p); | 
 | 	printk(KERN_ERR | 
 | 		"If allocated object is overwritten then not detectable\n\n"); | 
 | 	validate_slab_cache(kmalloc_caches + 6); | 
 |  | 
 | 	printk(KERN_ERR "\nB. Corruption after free\n"); | 
 | 	p = kzalloc(128, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	*p = 0x78; | 
 | 	printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); | 
 | 	validate_slab_cache(kmalloc_caches + 7); | 
 |  | 
 | 	p = kzalloc(256, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	p[50] = 0x9a; | 
 | 	printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", | 
 | 			p); | 
 | 	validate_slab_cache(kmalloc_caches + 8); | 
 |  | 
 | 	p = kzalloc(512, GFP_KERNEL); | 
 | 	kfree(p); | 
 | 	p[512] = 0xab; | 
 | 	printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); | 
 | 	validate_slab_cache(kmalloc_caches + 9); | 
 | } | 
 | #else | 
 | static void resiliency_test(void) {}; | 
 | #endif | 
 |  | 
 | /* | 
 |  * Generate lists of code addresses where slabcache objects are allocated | 
 |  * and freed. | 
 |  */ | 
 |  | 
 | struct location { | 
 | 	unsigned long count; | 
 | 	void *addr; | 
 | 	long long sum_time; | 
 | 	long min_time; | 
 | 	long max_time; | 
 | 	long min_pid; | 
 | 	long max_pid; | 
 | 	cpumask_t cpus; | 
 | 	nodemask_t nodes; | 
 | }; | 
 |  | 
 | struct loc_track { | 
 | 	unsigned long max; | 
 | 	unsigned long count; | 
 | 	struct location *loc; | 
 | }; | 
 |  | 
 | static void free_loc_track(struct loc_track *t) | 
 | { | 
 | 	if (t->max) | 
 | 		free_pages((unsigned long)t->loc, | 
 | 			get_order(sizeof(struct location) * t->max)); | 
 | } | 
 |  | 
 | static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) | 
 | { | 
 | 	struct location *l; | 
 | 	int order; | 
 |  | 
 | 	order = get_order(sizeof(struct location) * max); | 
 |  | 
 | 	l = (void *)__get_free_pages(flags, order); | 
 | 	if (!l) | 
 | 		return 0; | 
 |  | 
 | 	if (t->count) { | 
 | 		memcpy(l, t->loc, sizeof(struct location) * t->count); | 
 | 		free_loc_track(t); | 
 | 	} | 
 | 	t->max = max; | 
 | 	t->loc = l; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int add_location(struct loc_track *t, struct kmem_cache *s, | 
 | 				const struct track *track) | 
 | { | 
 | 	long start, end, pos; | 
 | 	struct location *l; | 
 | 	void *caddr; | 
 | 	unsigned long age = jiffies - track->when; | 
 |  | 
 | 	start = -1; | 
 | 	end = t->count; | 
 |  | 
 | 	for ( ; ; ) { | 
 | 		pos = start + (end - start + 1) / 2; | 
 |  | 
 | 		/* | 
 | 		 * There is nothing at "end". If we end up there | 
 | 		 * we need to add something to before end. | 
 | 		 */ | 
 | 		if (pos == end) | 
 | 			break; | 
 |  | 
 | 		caddr = t->loc[pos].addr; | 
 | 		if (track->addr == caddr) { | 
 |  | 
 | 			l = &t->loc[pos]; | 
 | 			l->count++; | 
 | 			if (track->when) { | 
 | 				l->sum_time += age; | 
 | 				if (age < l->min_time) | 
 | 					l->min_time = age; | 
 | 				if (age > l->max_time) | 
 | 					l->max_time = age; | 
 |  | 
 | 				if (track->pid < l->min_pid) | 
 | 					l->min_pid = track->pid; | 
 | 				if (track->pid > l->max_pid) | 
 | 					l->max_pid = track->pid; | 
 |  | 
 | 				cpu_set(track->cpu, l->cpus); | 
 | 			} | 
 | 			node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		if (track->addr < caddr) | 
 | 			end = pos; | 
 | 		else | 
 | 			start = pos; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Not found. Insert new tracking element. | 
 | 	 */ | 
 | 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) | 
 | 		return 0; | 
 |  | 
 | 	l = t->loc + pos; | 
 | 	if (pos < t->count) | 
 | 		memmove(l + 1, l, | 
 | 			(t->count - pos) * sizeof(struct location)); | 
 | 	t->count++; | 
 | 	l->count = 1; | 
 | 	l->addr = track->addr; | 
 | 	l->sum_time = age; | 
 | 	l->min_time = age; | 
 | 	l->max_time = age; | 
 | 	l->min_pid = track->pid; | 
 | 	l->max_pid = track->pid; | 
 | 	cpus_clear(l->cpus); | 
 | 	cpu_set(track->cpu, l->cpus); | 
 | 	nodes_clear(l->nodes); | 
 | 	node_set(page_to_nid(virt_to_page(track)), l->nodes); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void process_slab(struct loc_track *t, struct kmem_cache *s, | 
 | 		struct page *page, enum track_item alloc) | 
 | { | 
 | 	void *addr = page_address(page); | 
 | 	DECLARE_BITMAP(map, page->objects); | 
 | 	void *p; | 
 |  | 
 | 	bitmap_zero(map, page->objects); | 
 | 	for_each_free_object(p, s, page->freelist) | 
 | 		set_bit(slab_index(p, s, addr), map); | 
 |  | 
 | 	for_each_object(p, s, addr, page->objects) | 
 | 		if (!test_bit(slab_index(p, s, addr), map)) | 
 | 			add_location(t, s, get_track(s, p, alloc)); | 
 | } | 
 |  | 
 | static int list_locations(struct kmem_cache *s, char *buf, | 
 | 					enum track_item alloc) | 
 | { | 
 | 	int len = 0; | 
 | 	unsigned long i; | 
 | 	struct loc_track t = { 0, 0, NULL }; | 
 | 	int node; | 
 |  | 
 | 	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), | 
 | 			GFP_TEMPORARY)) | 
 | 		return sprintf(buf, "Out of memory\n"); | 
 |  | 
 | 	/* Push back cpu slabs */ | 
 | 	flush_all(s); | 
 |  | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 | 		unsigned long flags; | 
 | 		struct page *page; | 
 |  | 
 | 		if (!atomic_long_read(&n->nr_slabs)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock_irqsave(&n->list_lock, flags); | 
 | 		list_for_each_entry(page, &n->partial, lru) | 
 | 			process_slab(&t, s, page, alloc); | 
 | 		list_for_each_entry(page, &n->full, lru) | 
 | 			process_slab(&t, s, page, alloc); | 
 | 		spin_unlock_irqrestore(&n->list_lock, flags); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < t.count; i++) { | 
 | 		struct location *l = &t.loc[i]; | 
 |  | 
 | 		if (len > PAGE_SIZE - 100) | 
 | 			break; | 
 | 		len += sprintf(buf + len, "%7ld ", l->count); | 
 |  | 
 | 		if (l->addr) | 
 | 			len += sprint_symbol(buf + len, (unsigned long)l->addr); | 
 | 		else | 
 | 			len += sprintf(buf + len, "<not-available>"); | 
 |  | 
 | 		if (l->sum_time != l->min_time) { | 
 | 			len += sprintf(buf + len, " age=%ld/%ld/%ld", | 
 | 				l->min_time, | 
 | 				(long)div_u64(l->sum_time, l->count), | 
 | 				l->max_time); | 
 | 		} else | 
 | 			len += sprintf(buf + len, " age=%ld", | 
 | 				l->min_time); | 
 |  | 
 | 		if (l->min_pid != l->max_pid) | 
 | 			len += sprintf(buf + len, " pid=%ld-%ld", | 
 | 				l->min_pid, l->max_pid); | 
 | 		else | 
 | 			len += sprintf(buf + len, " pid=%ld", | 
 | 				l->min_pid); | 
 |  | 
 | 		if (num_online_cpus() > 1 && !cpus_empty(l->cpus) && | 
 | 				len < PAGE_SIZE - 60) { | 
 | 			len += sprintf(buf + len, " cpus="); | 
 | 			len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50, | 
 | 					l->cpus); | 
 | 		} | 
 |  | 
 | 		if (num_online_nodes() > 1 && !nodes_empty(l->nodes) && | 
 | 				len < PAGE_SIZE - 60) { | 
 | 			len += sprintf(buf + len, " nodes="); | 
 | 			len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50, | 
 | 					l->nodes); | 
 | 		} | 
 |  | 
 | 		len += sprintf(buf + len, "\n"); | 
 | 	} | 
 |  | 
 | 	free_loc_track(&t); | 
 | 	if (!t.count) | 
 | 		len += sprintf(buf, "No data\n"); | 
 | 	return len; | 
 | } | 
 |  | 
 | enum slab_stat_type { | 
 | 	SL_ALL,			/* All slabs */ | 
 | 	SL_PARTIAL,		/* Only partially allocated slabs */ | 
 | 	SL_CPU,			/* Only slabs used for cpu caches */ | 
 | 	SL_OBJECTS,		/* Determine allocated objects not slabs */ | 
 | 	SL_TOTAL		/* Determine object capacity not slabs */ | 
 | }; | 
 |  | 
 | #define SO_ALL		(1 << SL_ALL) | 
 | #define SO_PARTIAL	(1 << SL_PARTIAL) | 
 | #define SO_CPU		(1 << SL_CPU) | 
 | #define SO_OBJECTS	(1 << SL_OBJECTS) | 
 | #define SO_TOTAL	(1 << SL_TOTAL) | 
 |  | 
 | static ssize_t show_slab_objects(struct kmem_cache *s, | 
 | 			    char *buf, unsigned long flags) | 
 | { | 
 | 	unsigned long total = 0; | 
 | 	int node; | 
 | 	int x; | 
 | 	unsigned long *nodes; | 
 | 	unsigned long *per_cpu; | 
 |  | 
 | 	nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); | 
 | 	if (!nodes) | 
 | 		return -ENOMEM; | 
 | 	per_cpu = nodes + nr_node_ids; | 
 |  | 
 | 	if (flags & SO_CPU) { | 
 | 		int cpu; | 
 |  | 
 | 		for_each_possible_cpu(cpu) { | 
 | 			struct kmem_cache_cpu *c = get_cpu_slab(s, cpu); | 
 |  | 
 | 			if (!c || c->node < 0) | 
 | 				continue; | 
 |  | 
 | 			if (c->page) { | 
 | 					if (flags & SO_TOTAL) | 
 | 						x = c->page->objects; | 
 | 				else if (flags & SO_OBJECTS) | 
 | 					x = c->page->inuse; | 
 | 				else | 
 | 					x = 1; | 
 |  | 
 | 				total += x; | 
 | 				nodes[c->node] += x; | 
 | 			} | 
 | 			per_cpu[c->node]++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (flags & SO_ALL) { | 
 | 		for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 			struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		if (flags & SO_TOTAL) | 
 | 			x = atomic_long_read(&n->total_objects); | 
 | 		else if (flags & SO_OBJECTS) | 
 | 			x = atomic_long_read(&n->total_objects) - | 
 | 				count_partial(n, count_free); | 
 |  | 
 | 			else | 
 | 				x = atomic_long_read(&n->nr_slabs); | 
 | 			total += x; | 
 | 			nodes[node] += x; | 
 | 		} | 
 |  | 
 | 	} else if (flags & SO_PARTIAL) { | 
 | 		for_each_node_state(node, N_NORMAL_MEMORY) { | 
 | 			struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 			if (flags & SO_TOTAL) | 
 | 				x = count_partial(n, count_total); | 
 | 			else if (flags & SO_OBJECTS) | 
 | 				x = count_partial(n, count_inuse); | 
 | 			else | 
 | 				x = n->nr_partial; | 
 | 			total += x; | 
 | 			nodes[node] += x; | 
 | 		} | 
 | 	} | 
 | 	x = sprintf(buf, "%lu", total); | 
 | #ifdef CONFIG_NUMA | 
 | 	for_each_node_state(node, N_NORMAL_MEMORY) | 
 | 		if (nodes[node]) | 
 | 			x += sprintf(buf + x, " N%d=%lu", | 
 | 					node, nodes[node]); | 
 | #endif | 
 | 	kfree(nodes); | 
 | 	return x + sprintf(buf + x, "\n"); | 
 | } | 
 |  | 
 | static int any_slab_objects(struct kmem_cache *s) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		if (atomic_long_read(&n->total_objects)) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) | 
 | #define to_slab(n) container_of(n, struct kmem_cache, kobj); | 
 |  | 
 | struct slab_attribute { | 
 | 	struct attribute attr; | 
 | 	ssize_t (*show)(struct kmem_cache *s, char *buf); | 
 | 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); | 
 | }; | 
 |  | 
 | #define SLAB_ATTR_RO(_name) \ | 
 | 	static struct slab_attribute _name##_attr = __ATTR_RO(_name) | 
 |  | 
 | #define SLAB_ATTR(_name) \ | 
 | 	static struct slab_attribute _name##_attr =  \ | 
 | 	__ATTR(_name, 0644, _name##_show, _name##_store) | 
 |  | 
 | static ssize_t slab_size_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->size); | 
 | } | 
 | SLAB_ATTR_RO(slab_size); | 
 |  | 
 | static ssize_t align_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->align); | 
 | } | 
 | SLAB_ATTR_RO(align); | 
 |  | 
 | static ssize_t object_size_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->objsize); | 
 | } | 
 | SLAB_ATTR_RO(object_size); | 
 |  | 
 | static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", oo_objects(s->oo)); | 
 | } | 
 | SLAB_ATTR_RO(objs_per_slab); | 
 |  | 
 | static ssize_t order_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	unsigned long order; | 
 | 	int err; | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &order); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (order > slub_max_order || order < slub_min_order) | 
 | 		return -EINVAL; | 
 |  | 
 | 	calculate_sizes(s, order); | 
 | 	return length; | 
 | } | 
 |  | 
 | static ssize_t order_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", oo_order(s->oo)); | 
 | } | 
 | SLAB_ATTR(order); | 
 |  | 
 | static ssize_t ctor_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (s->ctor) { | 
 | 		int n = sprint_symbol(buf, (unsigned long)s->ctor); | 
 |  | 
 | 		return n + sprintf(buf + n, "\n"); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | SLAB_ATTR_RO(ctor); | 
 |  | 
 | static ssize_t aliases_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->refcount - 1); | 
 | } | 
 | SLAB_ATTR_RO(aliases); | 
 |  | 
 | static ssize_t slabs_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL); | 
 | } | 
 | SLAB_ATTR_RO(slabs); | 
 |  | 
 | static ssize_t partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_PARTIAL); | 
 | } | 
 | SLAB_ATTR_RO(partial); | 
 |  | 
 | static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_CPU); | 
 | } | 
 | SLAB_ATTR_RO(cpu_slabs); | 
 |  | 
 | static ssize_t objects_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); | 
 | } | 
 | SLAB_ATTR_RO(objects); | 
 |  | 
 | static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); | 
 | } | 
 | SLAB_ATTR_RO(objects_partial); | 
 |  | 
 | static ssize_t total_objects_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); | 
 | } | 
 | SLAB_ATTR_RO(total_objects); | 
 |  | 
 | static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE)); | 
 | } | 
 |  | 
 | static ssize_t sanity_checks_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	s->flags &= ~SLAB_DEBUG_FREE; | 
 | 	if (buf[0] == '1') | 
 | 		s->flags |= SLAB_DEBUG_FREE; | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(sanity_checks); | 
 |  | 
 | static ssize_t trace_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); | 
 | } | 
 |  | 
 | static ssize_t trace_store(struct kmem_cache *s, const char *buf, | 
 | 							size_t length) | 
 | { | 
 | 	s->flags &= ~SLAB_TRACE; | 
 | 	if (buf[0] == '1') | 
 | 		s->flags |= SLAB_TRACE; | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(trace); | 
 |  | 
 | static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); | 
 | } | 
 |  | 
 | static ssize_t reclaim_account_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	s->flags &= ~SLAB_RECLAIM_ACCOUNT; | 
 | 	if (buf[0] == '1') | 
 | 		s->flags |= SLAB_RECLAIM_ACCOUNT; | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(reclaim_account); | 
 |  | 
 | static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); | 
 | } | 
 | SLAB_ATTR_RO(hwcache_align); | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA | 
 | static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); | 
 | } | 
 | SLAB_ATTR_RO(cache_dma); | 
 | #endif | 
 |  | 
 | static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU)); | 
 | } | 
 | SLAB_ATTR_RO(destroy_by_rcu); | 
 |  | 
 | static ssize_t red_zone_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); | 
 | } | 
 |  | 
 | static ssize_t red_zone_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	if (any_slab_objects(s)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	s->flags &= ~SLAB_RED_ZONE; | 
 | 	if (buf[0] == '1') | 
 | 		s->flags |= SLAB_RED_ZONE; | 
 | 	calculate_sizes(s, -1); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(red_zone); | 
 |  | 
 | static ssize_t poison_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); | 
 | } | 
 |  | 
 | static ssize_t poison_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	if (any_slab_objects(s)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	s->flags &= ~SLAB_POISON; | 
 | 	if (buf[0] == '1') | 
 | 		s->flags |= SLAB_POISON; | 
 | 	calculate_sizes(s, -1); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(poison); | 
 |  | 
 | static ssize_t store_user_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); | 
 | } | 
 |  | 
 | static ssize_t store_user_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	if (any_slab_objects(s)) | 
 | 		return -EBUSY; | 
 |  | 
 | 	s->flags &= ~SLAB_STORE_USER; | 
 | 	if (buf[0] == '1') | 
 | 		s->flags |= SLAB_STORE_USER; | 
 | 	calculate_sizes(s, -1); | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(store_user); | 
 |  | 
 | static ssize_t validate_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t validate_store(struct kmem_cache *s, | 
 | 			const char *buf, size_t length) | 
 | { | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	if (buf[0] == '1') { | 
 | 		ret = validate_slab_cache(s); | 
 | 		if (ret >= 0) | 
 | 			ret = length; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | SLAB_ATTR(validate); | 
 |  | 
 | static ssize_t shrink_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static ssize_t shrink_store(struct kmem_cache *s, | 
 | 			const char *buf, size_t length) | 
 | { | 
 | 	if (buf[0] == '1') { | 
 | 		int rc = kmem_cache_shrink(s); | 
 |  | 
 | 		if (rc) | 
 | 			return rc; | 
 | 	} else | 
 | 		return -EINVAL; | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(shrink); | 
 |  | 
 | static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return -ENOSYS; | 
 | 	return list_locations(s, buf, TRACK_ALLOC); | 
 | } | 
 | SLAB_ATTR_RO(alloc_calls); | 
 |  | 
 | static ssize_t free_calls_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	if (!(s->flags & SLAB_STORE_USER)) | 
 | 		return -ENOSYS; | 
 | 	return list_locations(s, buf, TRACK_FREE); | 
 | } | 
 | SLAB_ATTR_RO(free_calls); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); | 
 | } | 
 |  | 
 | static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, | 
 | 				const char *buf, size_t length) | 
 | { | 
 | 	unsigned long ratio; | 
 | 	int err; | 
 |  | 
 | 	err = strict_strtoul(buf, 10, &ratio); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (ratio <= 100) | 
 | 		s->remote_node_defrag_ratio = ratio * 10; | 
 |  | 
 | 	return length; | 
 | } | 
 | SLAB_ATTR(remote_node_defrag_ratio); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SLUB_STATS | 
 | static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) | 
 | { | 
 | 	unsigned long sum  = 0; | 
 | 	int cpu; | 
 | 	int len; | 
 | 	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); | 
 |  | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		unsigned x = get_cpu_slab(s, cpu)->stat[si]; | 
 |  | 
 | 		data[cpu] = x; | 
 | 		sum += x; | 
 | 	} | 
 |  | 
 | 	len = sprintf(buf, "%lu", sum); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (data[cpu] && len < PAGE_SIZE - 20) | 
 | 			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); | 
 | 	} | 
 | #endif | 
 | 	kfree(data); | 
 | 	return len + sprintf(buf + len, "\n"); | 
 | } | 
 |  | 
 | #define STAT_ATTR(si, text) 					\ | 
 | static ssize_t text##_show(struct kmem_cache *s, char *buf)	\ | 
 | {								\ | 
 | 	return show_stat(s, buf, si);				\ | 
 | }								\ | 
 | SLAB_ATTR_RO(text);						\ | 
 |  | 
 | STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); | 
 | STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); | 
 | STAT_ATTR(FREE_FASTPATH, free_fastpath); | 
 | STAT_ATTR(FREE_SLOWPATH, free_slowpath); | 
 | STAT_ATTR(FREE_FROZEN, free_frozen); | 
 | STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); | 
 | STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); | 
 | STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); | 
 | STAT_ATTR(ALLOC_SLAB, alloc_slab); | 
 | STAT_ATTR(ALLOC_REFILL, alloc_refill); | 
 | STAT_ATTR(FREE_SLAB, free_slab); | 
 | STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); | 
 | STAT_ATTR(DEACTIVATE_FULL, deactivate_full); | 
 | STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); | 
 | STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); | 
 | STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); | 
 | STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); | 
 | STAT_ATTR(ORDER_FALLBACK, order_fallback); | 
 | #endif | 
 |  | 
 | static struct attribute *slab_attrs[] = { | 
 | 	&slab_size_attr.attr, | 
 | 	&object_size_attr.attr, | 
 | 	&objs_per_slab_attr.attr, | 
 | 	&order_attr.attr, | 
 | 	&objects_attr.attr, | 
 | 	&objects_partial_attr.attr, | 
 | 	&total_objects_attr.attr, | 
 | 	&slabs_attr.attr, | 
 | 	&partial_attr.attr, | 
 | 	&cpu_slabs_attr.attr, | 
 | 	&ctor_attr.attr, | 
 | 	&aliases_attr.attr, | 
 | 	&align_attr.attr, | 
 | 	&sanity_checks_attr.attr, | 
 | 	&trace_attr.attr, | 
 | 	&hwcache_align_attr.attr, | 
 | 	&reclaim_account_attr.attr, | 
 | 	&destroy_by_rcu_attr.attr, | 
 | 	&red_zone_attr.attr, | 
 | 	&poison_attr.attr, | 
 | 	&store_user_attr.attr, | 
 | 	&validate_attr.attr, | 
 | 	&shrink_attr.attr, | 
 | 	&alloc_calls_attr.attr, | 
 | 	&free_calls_attr.attr, | 
 | #ifdef CONFIG_ZONE_DMA | 
 | 	&cache_dma_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_NUMA | 
 | 	&remote_node_defrag_ratio_attr.attr, | 
 | #endif | 
 | #ifdef CONFIG_SLUB_STATS | 
 | 	&alloc_fastpath_attr.attr, | 
 | 	&alloc_slowpath_attr.attr, | 
 | 	&free_fastpath_attr.attr, | 
 | 	&free_slowpath_attr.attr, | 
 | 	&free_frozen_attr.attr, | 
 | 	&free_add_partial_attr.attr, | 
 | 	&free_remove_partial_attr.attr, | 
 | 	&alloc_from_partial_attr.attr, | 
 | 	&alloc_slab_attr.attr, | 
 | 	&alloc_refill_attr.attr, | 
 | 	&free_slab_attr.attr, | 
 | 	&cpuslab_flush_attr.attr, | 
 | 	&deactivate_full_attr.attr, | 
 | 	&deactivate_empty_attr.attr, | 
 | 	&deactivate_to_head_attr.attr, | 
 | 	&deactivate_to_tail_attr.attr, | 
 | 	&deactivate_remote_frees_attr.attr, | 
 | 	&order_fallback_attr.attr, | 
 | #endif | 
 | 	NULL | 
 | }; | 
 |  | 
 | static struct attribute_group slab_attr_group = { | 
 | 	.attrs = slab_attrs, | 
 | }; | 
 |  | 
 | static ssize_t slab_attr_show(struct kobject *kobj, | 
 | 				struct attribute *attr, | 
 | 				char *buf) | 
 | { | 
 | 	struct slab_attribute *attribute; | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	attribute = to_slab_attr(attr); | 
 | 	s = to_slab(kobj); | 
 |  | 
 | 	if (!attribute->show) | 
 | 		return -EIO; | 
 |  | 
 | 	err = attribute->show(s, buf); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static ssize_t slab_attr_store(struct kobject *kobj, | 
 | 				struct attribute *attr, | 
 | 				const char *buf, size_t len) | 
 | { | 
 | 	struct slab_attribute *attribute; | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	attribute = to_slab_attr(attr); | 
 | 	s = to_slab(kobj); | 
 |  | 
 | 	if (!attribute->store) | 
 | 		return -EIO; | 
 |  | 
 | 	err = attribute->store(s, buf, len); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void kmem_cache_release(struct kobject *kobj) | 
 | { | 
 | 	struct kmem_cache *s = to_slab(kobj); | 
 |  | 
 | 	kfree(s); | 
 | } | 
 |  | 
 | static struct sysfs_ops slab_sysfs_ops = { | 
 | 	.show = slab_attr_show, | 
 | 	.store = slab_attr_store, | 
 | }; | 
 |  | 
 | static struct kobj_type slab_ktype = { | 
 | 	.sysfs_ops = &slab_sysfs_ops, | 
 | 	.release = kmem_cache_release | 
 | }; | 
 |  | 
 | static int uevent_filter(struct kset *kset, struct kobject *kobj) | 
 | { | 
 | 	struct kobj_type *ktype = get_ktype(kobj); | 
 |  | 
 | 	if (ktype == &slab_ktype) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kset_uevent_ops slab_uevent_ops = { | 
 | 	.filter = uevent_filter, | 
 | }; | 
 |  | 
 | static struct kset *slab_kset; | 
 |  | 
 | #define ID_STR_LENGTH 64 | 
 |  | 
 | /* Create a unique string id for a slab cache: | 
 |  * | 
 |  * Format	:[flags-]size | 
 |  */ | 
 | static char *create_unique_id(struct kmem_cache *s) | 
 | { | 
 | 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); | 
 | 	char *p = name; | 
 |  | 
 | 	BUG_ON(!name); | 
 |  | 
 | 	*p++ = ':'; | 
 | 	/* | 
 | 	 * First flags affecting slabcache operations. We will only | 
 | 	 * get here for aliasable slabs so we do not need to support | 
 | 	 * too many flags. The flags here must cover all flags that | 
 | 	 * are matched during merging to guarantee that the id is | 
 | 	 * unique. | 
 | 	 */ | 
 | 	if (s->flags & SLAB_CACHE_DMA) | 
 | 		*p++ = 'd'; | 
 | 	if (s->flags & SLAB_RECLAIM_ACCOUNT) | 
 | 		*p++ = 'a'; | 
 | 	if (s->flags & SLAB_DEBUG_FREE) | 
 | 		*p++ = 'F'; | 
 | 	if (p != name + 1) | 
 | 		*p++ = '-'; | 
 | 	p += sprintf(p, "%07d", s->size); | 
 | 	BUG_ON(p > name + ID_STR_LENGTH - 1); | 
 | 	return name; | 
 | } | 
 |  | 
 | static int sysfs_slab_add(struct kmem_cache *s) | 
 | { | 
 | 	int err; | 
 | 	const char *name; | 
 | 	int unmergeable; | 
 |  | 
 | 	if (slab_state < SYSFS) | 
 | 		/* Defer until later */ | 
 | 		return 0; | 
 |  | 
 | 	unmergeable = slab_unmergeable(s); | 
 | 	if (unmergeable) { | 
 | 		/* | 
 | 		 * Slabcache can never be merged so we can use the name proper. | 
 | 		 * This is typically the case for debug situations. In that | 
 | 		 * case we can catch duplicate names easily. | 
 | 		 */ | 
 | 		sysfs_remove_link(&slab_kset->kobj, s->name); | 
 | 		name = s->name; | 
 | 	} else { | 
 | 		/* | 
 | 		 * Create a unique name for the slab as a target | 
 | 		 * for the symlinks. | 
 | 		 */ | 
 | 		name = create_unique_id(s); | 
 | 	} | 
 |  | 
 | 	s->kobj.kset = slab_kset; | 
 | 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name); | 
 | 	if (err) { | 
 | 		kobject_put(&s->kobj); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = sysfs_create_group(&s->kobj, &slab_attr_group); | 
 | 	if (err) | 
 | 		return err; | 
 | 	kobject_uevent(&s->kobj, KOBJ_ADD); | 
 | 	if (!unmergeable) { | 
 | 		/* Setup first alias */ | 
 | 		sysfs_slab_alias(s, s->name); | 
 | 		kfree(name); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void sysfs_slab_remove(struct kmem_cache *s) | 
 | { | 
 | 	kobject_uevent(&s->kobj, KOBJ_REMOVE); | 
 | 	kobject_del(&s->kobj); | 
 | 	kobject_put(&s->kobj); | 
 | } | 
 |  | 
 | /* | 
 |  * Need to buffer aliases during bootup until sysfs becomes | 
 |  * available lest we loose that information. | 
 |  */ | 
 | struct saved_alias { | 
 | 	struct kmem_cache *s; | 
 | 	const char *name; | 
 | 	struct saved_alias *next; | 
 | }; | 
 |  | 
 | static struct saved_alias *alias_list; | 
 |  | 
 | static int sysfs_slab_alias(struct kmem_cache *s, const char *name) | 
 | { | 
 | 	struct saved_alias *al; | 
 |  | 
 | 	if (slab_state == SYSFS) { | 
 | 		/* | 
 | 		 * If we have a leftover link then remove it. | 
 | 		 */ | 
 | 		sysfs_remove_link(&slab_kset->kobj, name); | 
 | 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); | 
 | 	} | 
 |  | 
 | 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); | 
 | 	if (!al) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	al->s = s; | 
 | 	al->name = name; | 
 | 	al->next = alias_list; | 
 | 	alias_list = al; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int __init slab_sysfs_init(void) | 
 | { | 
 | 	struct kmem_cache *s; | 
 | 	int err; | 
 |  | 
 | 	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); | 
 | 	if (!slab_kset) { | 
 | 		printk(KERN_ERR "Cannot register slab subsystem.\n"); | 
 | 		return -ENOSYS; | 
 | 	} | 
 |  | 
 | 	slab_state = SYSFS; | 
 |  | 
 | 	list_for_each_entry(s, &slab_caches, list) { | 
 | 		err = sysfs_slab_add(s); | 
 | 		if (err) | 
 | 			printk(KERN_ERR "SLUB: Unable to add boot slab %s" | 
 | 						" to sysfs\n", s->name); | 
 | 	} | 
 |  | 
 | 	while (alias_list) { | 
 | 		struct saved_alias *al = alias_list; | 
 |  | 
 | 		alias_list = alias_list->next; | 
 | 		err = sysfs_slab_alias(al->s, al->name); | 
 | 		if (err) | 
 | 			printk(KERN_ERR "SLUB: Unable to add boot slab alias" | 
 | 					" %s to sysfs\n", s->name); | 
 | 		kfree(al); | 
 | 	} | 
 |  | 
 | 	resiliency_test(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | __initcall(slab_sysfs_init); | 
 | #endif | 
 |  | 
 | /* | 
 |  * The /proc/slabinfo ABI | 
 |  */ | 
 | #ifdef CONFIG_SLABINFO | 
 |  | 
 | ssize_t slabinfo_write(struct file *file, const char __user *buffer, | 
 | 		       size_t count, loff_t *ppos) | 
 | { | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 |  | 
 | static void print_slabinfo_header(struct seq_file *m) | 
 | { | 
 | 	seq_puts(m, "slabinfo - version: 2.1\n"); | 
 | 	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> " | 
 | 		 "<objperslab> <pagesperslab>"); | 
 | 	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); | 
 | 	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); | 
 | 	seq_putc(m, '\n'); | 
 | } | 
 |  | 
 | static void *s_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	loff_t n = *pos; | 
 |  | 
 | 	down_read(&slub_lock); | 
 | 	if (!n) | 
 | 		print_slabinfo_header(m); | 
 |  | 
 | 	return seq_list_start(&slab_caches, *pos); | 
 | } | 
 |  | 
 | static void *s_next(struct seq_file *m, void *p, loff_t *pos) | 
 | { | 
 | 	return seq_list_next(p, &slab_caches, pos); | 
 | } | 
 |  | 
 | static void s_stop(struct seq_file *m, void *p) | 
 | { | 
 | 	up_read(&slub_lock); | 
 | } | 
 |  | 
 | static int s_show(struct seq_file *m, void *p) | 
 | { | 
 | 	unsigned long nr_partials = 0; | 
 | 	unsigned long nr_slabs = 0; | 
 | 	unsigned long nr_inuse = 0; | 
 | 	unsigned long nr_objs = 0; | 
 | 	unsigned long nr_free = 0; | 
 | 	struct kmem_cache *s; | 
 | 	int node; | 
 |  | 
 | 	s = list_entry(p, struct kmem_cache, list); | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		struct kmem_cache_node *n = get_node(s, node); | 
 |  | 
 | 		if (!n) | 
 | 			continue; | 
 |  | 
 | 		nr_partials += n->nr_partial; | 
 | 		nr_slabs += atomic_long_read(&n->nr_slabs); | 
 | 		nr_objs += atomic_long_read(&n->total_objects); | 
 | 		nr_free += count_partial(n, count_free); | 
 | 	} | 
 |  | 
 | 	nr_inuse = nr_objs - nr_free; | 
 |  | 
 | 	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse, | 
 | 		   nr_objs, s->size, oo_objects(s->oo), | 
 | 		   (1 << oo_order(s->oo))); | 
 | 	seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0); | 
 | 	seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs, | 
 | 		   0UL); | 
 | 	seq_putc(m, '\n'); | 
 | 	return 0; | 
 | } | 
 |  | 
 | const struct seq_operations slabinfo_op = { | 
 | 	.start = s_start, | 
 | 	.next = s_next, | 
 | 	.stop = s_stop, | 
 | 	.show = s_show, | 
 | }; | 
 |  | 
 | #endif /* CONFIG_SLABINFO */ |