| /* | 
 |  *  linux/fs/exec.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  */ | 
 |  | 
 | /* | 
 |  * #!-checking implemented by tytso. | 
 |  */ | 
 | /* | 
 |  * Demand-loading implemented 01.12.91 - no need to read anything but | 
 |  * the header into memory. The inode of the executable is put into | 
 |  * "current->executable", and page faults do the actual loading. Clean. | 
 |  * | 
 |  * Once more I can proudly say that linux stood up to being changed: it | 
 |  * was less than 2 hours work to get demand-loading completely implemented. | 
 |  * | 
 |  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead, | 
 |  * current->executable is only used by the procfs.  This allows a dispatch | 
 |  * table to check for several different types  of binary formats.  We keep | 
 |  * trying until we recognize the file or we run out of supported binary | 
 |  * formats.  | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fdtable.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/fcntl.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/perf_counter.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/key.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/utsname.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/module.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/security.h> | 
 | #include <linux/ima.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/tsacct_kern.h> | 
 | #include <linux/cn_proc.h> | 
 | #include <linux/audit.h> | 
 | #include <linux/tracehook.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/fsnotify.h> | 
 | #include <linux/fs_struct.h> | 
 |  | 
 | #include <asm/uaccess.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/tlb.h> | 
 | #include "internal.h" | 
 |  | 
 | int core_uses_pid; | 
 | char core_pattern[CORENAME_MAX_SIZE] = "core"; | 
 | int suid_dumpable = 0; | 
 |  | 
 | /* The maximal length of core_pattern is also specified in sysctl.c */ | 
 |  | 
 | static LIST_HEAD(formats); | 
 | static DEFINE_RWLOCK(binfmt_lock); | 
 |  | 
 | int __register_binfmt(struct linux_binfmt * fmt, int insert) | 
 | { | 
 | 	if (!fmt) | 
 | 		return -EINVAL; | 
 | 	write_lock(&binfmt_lock); | 
 | 	insert ? list_add(&fmt->lh, &formats) : | 
 | 		 list_add_tail(&fmt->lh, &formats); | 
 | 	write_unlock(&binfmt_lock); | 
 | 	return 0;	 | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(__register_binfmt); | 
 |  | 
 | void unregister_binfmt(struct linux_binfmt * fmt) | 
 | { | 
 | 	write_lock(&binfmt_lock); | 
 | 	list_del(&fmt->lh); | 
 | 	write_unlock(&binfmt_lock); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(unregister_binfmt); | 
 |  | 
 | static inline void put_binfmt(struct linux_binfmt * fmt) | 
 | { | 
 | 	module_put(fmt->module); | 
 | } | 
 |  | 
 | /* | 
 |  * Note that a shared library must be both readable and executable due to | 
 |  * security reasons. | 
 |  * | 
 |  * Also note that we take the address to load from from the file itself. | 
 |  */ | 
 | SYSCALL_DEFINE1(uselib, const char __user *, library) | 
 | { | 
 | 	struct file *file; | 
 | 	char *tmp = getname(library); | 
 | 	int error = PTR_ERR(tmp); | 
 |  | 
 | 	if (IS_ERR(tmp)) | 
 | 		goto out; | 
 |  | 
 | 	file = do_filp_open(AT_FDCWD, tmp, | 
 | 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, | 
 | 				MAY_READ | MAY_EXEC | MAY_OPEN); | 
 | 	putname(tmp); | 
 | 	error = PTR_ERR(file); | 
 | 	if (IS_ERR(file)) | 
 | 		goto out; | 
 |  | 
 | 	error = -EINVAL; | 
 | 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) | 
 | 		goto exit; | 
 |  | 
 | 	error = -EACCES; | 
 | 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) | 
 | 		goto exit; | 
 |  | 
 | 	fsnotify_open(file->f_path.dentry); | 
 |  | 
 | 	error = -ENOEXEC; | 
 | 	if(file->f_op) { | 
 | 		struct linux_binfmt * fmt; | 
 |  | 
 | 		read_lock(&binfmt_lock); | 
 | 		list_for_each_entry(fmt, &formats, lh) { | 
 | 			if (!fmt->load_shlib) | 
 | 				continue; | 
 | 			if (!try_module_get(fmt->module)) | 
 | 				continue; | 
 | 			read_unlock(&binfmt_lock); | 
 | 			error = fmt->load_shlib(file); | 
 | 			read_lock(&binfmt_lock); | 
 | 			put_binfmt(fmt); | 
 | 			if (error != -ENOEXEC) | 
 | 				break; | 
 | 		} | 
 | 		read_unlock(&binfmt_lock); | 
 | 	} | 
 | exit: | 
 | 	fput(file); | 
 | out: | 
 |   	return error; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
 | 		int write) | 
 | { | 
 | 	struct page *page; | 
 | 	int ret; | 
 |  | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | 	if (write) { | 
 | 		ret = expand_stack_downwards(bprm->vma, pos); | 
 | 		if (ret < 0) | 
 | 			return NULL; | 
 | 	} | 
 | #endif | 
 | 	ret = get_user_pages(current, bprm->mm, pos, | 
 | 			1, write, 1, &page, NULL); | 
 | 	if (ret <= 0) | 
 | 		return NULL; | 
 |  | 
 | 	if (write) { | 
 | 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; | 
 | 		struct rlimit *rlim; | 
 |  | 
 | 		/* | 
 | 		 * We've historically supported up to 32 pages (ARG_MAX) | 
 | 		 * of argument strings even with small stacks | 
 | 		 */ | 
 | 		if (size <= ARG_MAX) | 
 | 			return page; | 
 |  | 
 | 		/* | 
 | 		 * Limit to 1/4-th the stack size for the argv+env strings. | 
 | 		 * This ensures that: | 
 | 		 *  - the remaining binfmt code will not run out of stack space, | 
 | 		 *  - the program will have a reasonable amount of stack left | 
 | 		 *    to work from. | 
 | 		 */ | 
 | 		rlim = current->signal->rlim; | 
 | 		if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { | 
 | 			put_page(page); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void put_arg_page(struct page *page) | 
 | { | 
 | 	put_page(page); | 
 | } | 
 |  | 
 | static void free_arg_page(struct linux_binprm *bprm, int i) | 
 | { | 
 | } | 
 |  | 
 | static void free_arg_pages(struct linux_binprm *bprm) | 
 | { | 
 | } | 
 |  | 
 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
 | 		struct page *page) | 
 | { | 
 | 	flush_cache_page(bprm->vma, pos, page_to_pfn(page)); | 
 | } | 
 |  | 
 | static int __bprm_mm_init(struct linux_binprm *bprm) | 
 | { | 
 | 	int err; | 
 | 	struct vm_area_struct *vma = NULL; | 
 | 	struct mm_struct *mm = bprm->mm; | 
 |  | 
 | 	bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
 | 	if (!vma) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 | 	vma->vm_mm = mm; | 
 |  | 
 | 	/* | 
 | 	 * Place the stack at the largest stack address the architecture | 
 | 	 * supports. Later, we'll move this to an appropriate place. We don't | 
 | 	 * use STACK_TOP because that can depend on attributes which aren't | 
 | 	 * configured yet. | 
 | 	 */ | 
 | 	vma->vm_end = STACK_TOP_MAX; | 
 | 	vma->vm_start = vma->vm_end - PAGE_SIZE; | 
 | 	vma->vm_flags = VM_STACK_FLAGS; | 
 | 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
 | 	err = insert_vm_struct(mm, vma); | 
 | 	if (err) | 
 | 		goto err; | 
 |  | 
 | 	mm->stack_vm = mm->total_vm = 1; | 
 | 	up_write(&mm->mmap_sem); | 
 | 	bprm->p = vma->vm_end - sizeof(void *); | 
 | 	return 0; | 
 | err: | 
 | 	up_write(&mm->mmap_sem); | 
 | 	bprm->vma = NULL; | 
 | 	kmem_cache_free(vm_area_cachep, vma); | 
 | 	return err; | 
 | } | 
 |  | 
 | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
 | { | 
 | 	return len <= MAX_ARG_STRLEN; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
 | 		int write) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	page = bprm->page[pos / PAGE_SIZE]; | 
 | 	if (!page && write) { | 
 | 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); | 
 | 		if (!page) | 
 | 			return NULL; | 
 | 		bprm->page[pos / PAGE_SIZE] = page; | 
 | 	} | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void put_arg_page(struct page *page) | 
 | { | 
 | } | 
 |  | 
 | static void free_arg_page(struct linux_binprm *bprm, int i) | 
 | { | 
 | 	if (bprm->page[i]) { | 
 | 		__free_page(bprm->page[i]); | 
 | 		bprm->page[i] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void free_arg_pages(struct linux_binprm *bprm) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MAX_ARG_PAGES; i++) | 
 | 		free_arg_page(bprm, i); | 
 | } | 
 |  | 
 | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
 | 		struct page *page) | 
 | { | 
 | } | 
 |  | 
 | static int __bprm_mm_init(struct linux_binprm *bprm) | 
 | { | 
 | 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
 | { | 
 | 	return len <= bprm->p; | 
 | } | 
 |  | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | /* | 
 |  * Create a new mm_struct and populate it with a temporary stack | 
 |  * vm_area_struct.  We don't have enough context at this point to set the stack | 
 |  * flags, permissions, and offset, so we use temporary values.  We'll update | 
 |  * them later in setup_arg_pages(). | 
 |  */ | 
 | int bprm_mm_init(struct linux_binprm *bprm) | 
 | { | 
 | 	int err; | 
 | 	struct mm_struct *mm = NULL; | 
 |  | 
 | 	bprm->mm = mm = mm_alloc(); | 
 | 	err = -ENOMEM; | 
 | 	if (!mm) | 
 | 		goto err; | 
 |  | 
 | 	err = init_new_context(current, mm); | 
 | 	if (err) | 
 | 		goto err; | 
 |  | 
 | 	err = __bprm_mm_init(bprm); | 
 | 	if (err) | 
 | 		goto err; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	if (mm) { | 
 | 		bprm->mm = NULL; | 
 | 		mmdrop(mm); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * count() counts the number of strings in array ARGV. | 
 |  */ | 
 | static int count(char __user * __user * argv, int max) | 
 | { | 
 | 	int i = 0; | 
 |  | 
 | 	if (argv != NULL) { | 
 | 		for (;;) { | 
 | 			char __user * p; | 
 |  | 
 | 			if (get_user(p, argv)) | 
 | 				return -EFAULT; | 
 | 			if (!p) | 
 | 				break; | 
 | 			argv++; | 
 | 			if (i++ >= max) | 
 | 				return -E2BIG; | 
 | 			cond_resched(); | 
 | 		} | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * 'copy_strings()' copies argument/environment strings from the old | 
 |  * processes's memory to the new process's stack.  The call to get_user_pages() | 
 |  * ensures the destination page is created and not swapped out. | 
 |  */ | 
 | static int copy_strings(int argc, char __user * __user * argv, | 
 | 			struct linux_binprm *bprm) | 
 | { | 
 | 	struct page *kmapped_page = NULL; | 
 | 	char *kaddr = NULL; | 
 | 	unsigned long kpos = 0; | 
 | 	int ret; | 
 |  | 
 | 	while (argc-- > 0) { | 
 | 		char __user *str; | 
 | 		int len; | 
 | 		unsigned long pos; | 
 |  | 
 | 		if (get_user(str, argv+argc) || | 
 | 				!(len = strnlen_user(str, MAX_ARG_STRLEN))) { | 
 | 			ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (!valid_arg_len(bprm, len)) { | 
 | 			ret = -E2BIG; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		/* We're going to work our way backwords. */ | 
 | 		pos = bprm->p; | 
 | 		str += len; | 
 | 		bprm->p -= len; | 
 |  | 
 | 		while (len > 0) { | 
 | 			int offset, bytes_to_copy; | 
 |  | 
 | 			offset = pos % PAGE_SIZE; | 
 | 			if (offset == 0) | 
 | 				offset = PAGE_SIZE; | 
 |  | 
 | 			bytes_to_copy = offset; | 
 | 			if (bytes_to_copy > len) | 
 | 				bytes_to_copy = len; | 
 |  | 
 | 			offset -= bytes_to_copy; | 
 | 			pos -= bytes_to_copy; | 
 | 			str -= bytes_to_copy; | 
 | 			len -= bytes_to_copy; | 
 |  | 
 | 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) { | 
 | 				struct page *page; | 
 |  | 
 | 				page = get_arg_page(bprm, pos, 1); | 
 | 				if (!page) { | 
 | 					ret = -E2BIG; | 
 | 					goto out; | 
 | 				} | 
 |  | 
 | 				if (kmapped_page) { | 
 | 					flush_kernel_dcache_page(kmapped_page); | 
 | 					kunmap(kmapped_page); | 
 | 					put_arg_page(kmapped_page); | 
 | 				} | 
 | 				kmapped_page = page; | 
 | 				kaddr = kmap(kmapped_page); | 
 | 				kpos = pos & PAGE_MASK; | 
 | 				flush_arg_page(bprm, kpos, kmapped_page); | 
 | 			} | 
 | 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { | 
 | 				ret = -EFAULT; | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	if (kmapped_page) { | 
 | 		flush_kernel_dcache_page(kmapped_page); | 
 | 		kunmap(kmapped_page); | 
 | 		put_arg_page(kmapped_page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Like copy_strings, but get argv and its values from kernel memory. | 
 |  */ | 
 | int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) | 
 | { | 
 | 	int r; | 
 | 	mm_segment_t oldfs = get_fs(); | 
 | 	set_fs(KERNEL_DS); | 
 | 	r = copy_strings(argc, (char __user * __user *)argv, bprm); | 
 | 	set_fs(oldfs); | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL(copy_strings_kernel); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 |  | 
 | /* | 
 |  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once | 
 |  * the binfmt code determines where the new stack should reside, we shift it to | 
 |  * its final location.  The process proceeds as follows: | 
 |  * | 
 |  * 1) Use shift to calculate the new vma endpoints. | 
 |  * 2) Extend vma to cover both the old and new ranges.  This ensures the | 
 |  *    arguments passed to subsequent functions are consistent. | 
 |  * 3) Move vma's page tables to the new range. | 
 |  * 4) Free up any cleared pgd range. | 
 |  * 5) Shrink the vma to cover only the new range. | 
 |  */ | 
 | static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long old_start = vma->vm_start; | 
 | 	unsigned long old_end = vma->vm_end; | 
 | 	unsigned long length = old_end - old_start; | 
 | 	unsigned long new_start = old_start - shift; | 
 | 	unsigned long new_end = old_end - shift; | 
 | 	struct mmu_gather *tlb; | 
 |  | 
 | 	BUG_ON(new_start > new_end); | 
 |  | 
 | 	/* | 
 | 	 * ensure there are no vmas between where we want to go | 
 | 	 * and where we are | 
 | 	 */ | 
 | 	if (vma != find_vma(mm, new_start)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* | 
 | 	 * cover the whole range: [new_start, old_end) | 
 | 	 */ | 
 | 	vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); | 
 |  | 
 | 	/* | 
 | 	 * move the page tables downwards, on failure we rely on | 
 | 	 * process cleanup to remove whatever mess we made. | 
 | 	 */ | 
 | 	if (length != move_page_tables(vma, old_start, | 
 | 				       vma, new_start, length)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	lru_add_drain(); | 
 | 	tlb = tlb_gather_mmu(mm, 0); | 
 | 	if (new_end > old_start) { | 
 | 		/* | 
 | 		 * when the old and new regions overlap clear from new_end. | 
 | 		 */ | 
 | 		free_pgd_range(tlb, new_end, old_end, new_end, | 
 | 			vma->vm_next ? vma->vm_next->vm_start : 0); | 
 | 	} else { | 
 | 		/* | 
 | 		 * otherwise, clean from old_start; this is done to not touch | 
 | 		 * the address space in [new_end, old_start) some architectures | 
 | 		 * have constraints on va-space that make this illegal (IA64) - | 
 | 		 * for the others its just a little faster. | 
 | 		 */ | 
 | 		free_pgd_range(tlb, old_start, old_end, new_end, | 
 | 			vma->vm_next ? vma->vm_next->vm_start : 0); | 
 | 	} | 
 | 	tlb_finish_mmu(tlb, new_end, old_end); | 
 |  | 
 | 	/* | 
 | 	 * shrink the vma to just the new range. | 
 | 	 */ | 
 | 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #define EXTRA_STACK_VM_PAGES	20	/* random */ | 
 |  | 
 | /* | 
 |  * Finalizes the stack vm_area_struct. The flags and permissions are updated, | 
 |  * the stack is optionally relocated, and some extra space is added. | 
 |  */ | 
 | int setup_arg_pages(struct linux_binprm *bprm, | 
 | 		    unsigned long stack_top, | 
 | 		    int executable_stack) | 
 | { | 
 | 	unsigned long ret; | 
 | 	unsigned long stack_shift; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct vm_area_struct *vma = bprm->vma; | 
 | 	struct vm_area_struct *prev = NULL; | 
 | 	unsigned long vm_flags; | 
 | 	unsigned long stack_base; | 
 |  | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | 	/* Limit stack size to 1GB */ | 
 | 	stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; | 
 | 	if (stack_base > (1 << 30)) | 
 | 		stack_base = 1 << 30; | 
 |  | 
 | 	/* Make sure we didn't let the argument array grow too large. */ | 
 | 	if (vma->vm_end - vma->vm_start > stack_base) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	stack_base = PAGE_ALIGN(stack_top - stack_base); | 
 |  | 
 | 	stack_shift = vma->vm_start - stack_base; | 
 | 	mm->arg_start = bprm->p - stack_shift; | 
 | 	bprm->p = vma->vm_end - stack_shift; | 
 | #else | 
 | 	stack_top = arch_align_stack(stack_top); | 
 | 	stack_top = PAGE_ALIGN(stack_top); | 
 | 	stack_shift = vma->vm_end - stack_top; | 
 |  | 
 | 	bprm->p -= stack_shift; | 
 | 	mm->arg_start = bprm->p; | 
 | #endif | 
 |  | 
 | 	if (bprm->loader) | 
 | 		bprm->loader -= stack_shift; | 
 | 	bprm->exec -= stack_shift; | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 | 	vm_flags = VM_STACK_FLAGS; | 
 |  | 
 | 	/* | 
 | 	 * Adjust stack execute permissions; explicitly enable for | 
 | 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone | 
 | 	 * (arch default) otherwise. | 
 | 	 */ | 
 | 	if (unlikely(executable_stack == EXSTACK_ENABLE_X)) | 
 | 		vm_flags |= VM_EXEC; | 
 | 	else if (executable_stack == EXSTACK_DISABLE_X) | 
 | 		vm_flags &= ~VM_EXEC; | 
 | 	vm_flags |= mm->def_flags; | 
 |  | 
 | 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, | 
 | 			vm_flags); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 | 	BUG_ON(prev != vma); | 
 |  | 
 | 	/* Move stack pages down in memory. */ | 
 | 	if (stack_shift) { | 
 | 		ret = shift_arg_pages(vma, stack_shift); | 
 | 		if (ret) { | 
 | 			up_write(&mm->mmap_sem); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | 	stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; | 
 | #else | 
 | 	stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; | 
 | #endif | 
 | 	ret = expand_stack(vma, stack_base); | 
 | 	if (ret) | 
 | 		ret = -EFAULT; | 
 |  | 
 | out_unlock: | 
 | 	up_write(&mm->mmap_sem); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(setup_arg_pages); | 
 |  | 
 | #endif /* CONFIG_MMU */ | 
 |  | 
 | struct file *open_exec(const char *name) | 
 | { | 
 | 	struct file *file; | 
 | 	int err; | 
 |  | 
 | 	file = do_filp_open(AT_FDCWD, name, | 
 | 				O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0, | 
 | 				MAY_EXEC | MAY_OPEN); | 
 | 	if (IS_ERR(file)) | 
 | 		goto out; | 
 |  | 
 | 	err = -EACCES; | 
 | 	if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) | 
 | 		goto exit; | 
 |  | 
 | 	if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) | 
 | 		goto exit; | 
 |  | 
 | 	fsnotify_open(file->f_path.dentry); | 
 |  | 
 | 	err = deny_write_access(file); | 
 | 	if (err) | 
 | 		goto exit; | 
 |  | 
 | out: | 
 | 	return file; | 
 |  | 
 | exit: | 
 | 	fput(file); | 
 | 	return ERR_PTR(err); | 
 | } | 
 | EXPORT_SYMBOL(open_exec); | 
 |  | 
 | int kernel_read(struct file *file, unsigned long offset, | 
 | 	char *addr, unsigned long count) | 
 | { | 
 | 	mm_segment_t old_fs; | 
 | 	loff_t pos = offset; | 
 | 	int result; | 
 |  | 
 | 	old_fs = get_fs(); | 
 | 	set_fs(get_ds()); | 
 | 	/* The cast to a user pointer is valid due to the set_fs() */ | 
 | 	result = vfs_read(file, (void __user *)addr, count, &pos); | 
 | 	set_fs(old_fs); | 
 | 	return result; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(kernel_read); | 
 |  | 
 | static int exec_mmap(struct mm_struct *mm) | 
 | { | 
 | 	struct task_struct *tsk; | 
 | 	struct mm_struct * old_mm, *active_mm; | 
 |  | 
 | 	/* Notify parent that we're no longer interested in the old VM */ | 
 | 	tsk = current; | 
 | 	old_mm = current->mm; | 
 | 	mm_release(tsk, old_mm); | 
 |  | 
 | 	if (old_mm) { | 
 | 		/* | 
 | 		 * Make sure that if there is a core dump in progress | 
 | 		 * for the old mm, we get out and die instead of going | 
 | 		 * through with the exec.  We must hold mmap_sem around | 
 | 		 * checking core_state and changing tsk->mm. | 
 | 		 */ | 
 | 		down_read(&old_mm->mmap_sem); | 
 | 		if (unlikely(old_mm->core_state)) { | 
 | 			up_read(&old_mm->mmap_sem); | 
 | 			return -EINTR; | 
 | 		} | 
 | 	} | 
 | 	task_lock(tsk); | 
 | 	active_mm = tsk->active_mm; | 
 | 	tsk->mm = mm; | 
 | 	tsk->active_mm = mm; | 
 | 	activate_mm(active_mm, mm); | 
 | 	task_unlock(tsk); | 
 | 	arch_pick_mmap_layout(mm); | 
 | 	if (old_mm) { | 
 | 		up_read(&old_mm->mmap_sem); | 
 | 		BUG_ON(active_mm != old_mm); | 
 | 		mm_update_next_owner(old_mm); | 
 | 		mmput(old_mm); | 
 | 		return 0; | 
 | 	} | 
 | 	mmdrop(active_mm); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function makes sure the current process has its own signal table, | 
 |  * so that flush_signal_handlers can later reset the handlers without | 
 |  * disturbing other processes.  (Other processes might share the signal | 
 |  * table via the CLONE_SIGHAND option to clone().) | 
 |  */ | 
 | static int de_thread(struct task_struct *tsk) | 
 | { | 
 | 	struct signal_struct *sig = tsk->signal; | 
 | 	struct sighand_struct *oldsighand = tsk->sighand; | 
 | 	spinlock_t *lock = &oldsighand->siglock; | 
 | 	int count; | 
 |  | 
 | 	if (thread_group_empty(tsk)) | 
 | 		goto no_thread_group; | 
 |  | 
 | 	/* | 
 | 	 * Kill all other threads in the thread group. | 
 | 	 */ | 
 | 	spin_lock_irq(lock); | 
 | 	if (signal_group_exit(sig)) { | 
 | 		/* | 
 | 		 * Another group action in progress, just | 
 | 		 * return so that the signal is processed. | 
 | 		 */ | 
 | 		spin_unlock_irq(lock); | 
 | 		return -EAGAIN; | 
 | 	} | 
 | 	sig->group_exit_task = tsk; | 
 | 	zap_other_threads(tsk); | 
 |  | 
 | 	/* Account for the thread group leader hanging around: */ | 
 | 	count = thread_group_leader(tsk) ? 1 : 2; | 
 | 	sig->notify_count = count; | 
 | 	while (atomic_read(&sig->count) > count) { | 
 | 		__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		spin_unlock_irq(lock); | 
 | 		schedule(); | 
 | 		spin_lock_irq(lock); | 
 | 	} | 
 | 	spin_unlock_irq(lock); | 
 |  | 
 | 	/* | 
 | 	 * At this point all other threads have exited, all we have to | 
 | 	 * do is to wait for the thread group leader to become inactive, | 
 | 	 * and to assume its PID: | 
 | 	 */ | 
 | 	if (!thread_group_leader(tsk)) { | 
 | 		struct task_struct *leader = tsk->group_leader; | 
 |  | 
 | 		sig->notify_count = -1;	/* for exit_notify() */ | 
 | 		for (;;) { | 
 | 			write_lock_irq(&tasklist_lock); | 
 | 			if (likely(leader->exit_state)) | 
 | 				break; | 
 | 			__set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			write_unlock_irq(&tasklist_lock); | 
 | 			schedule(); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * The only record we have of the real-time age of a | 
 | 		 * process, regardless of execs it's done, is start_time. | 
 | 		 * All the past CPU time is accumulated in signal_struct | 
 | 		 * from sister threads now dead.  But in this non-leader | 
 | 		 * exec, nothing survives from the original leader thread, | 
 | 		 * whose birth marks the true age of this process now. | 
 | 		 * When we take on its identity by switching to its PID, we | 
 | 		 * also take its birthdate (always earlier than our own). | 
 | 		 */ | 
 | 		tsk->start_time = leader->start_time; | 
 |  | 
 | 		BUG_ON(!same_thread_group(leader, tsk)); | 
 | 		BUG_ON(has_group_leader_pid(tsk)); | 
 | 		/* | 
 | 		 * An exec() starts a new thread group with the | 
 | 		 * TGID of the previous thread group. Rehash the | 
 | 		 * two threads with a switched PID, and release | 
 | 		 * the former thread group leader: | 
 | 		 */ | 
 |  | 
 | 		/* Become a process group leader with the old leader's pid. | 
 | 		 * The old leader becomes a thread of the this thread group. | 
 | 		 * Note: The old leader also uses this pid until release_task | 
 | 		 *       is called.  Odd but simple and correct. | 
 | 		 */ | 
 | 		detach_pid(tsk, PIDTYPE_PID); | 
 | 		tsk->pid = leader->pid; | 
 | 		attach_pid(tsk, PIDTYPE_PID,  task_pid(leader)); | 
 | 		transfer_pid(leader, tsk, PIDTYPE_PGID); | 
 | 		transfer_pid(leader, tsk, PIDTYPE_SID); | 
 | 		list_replace_rcu(&leader->tasks, &tsk->tasks); | 
 |  | 
 | 		tsk->group_leader = tsk; | 
 | 		leader->group_leader = tsk; | 
 |  | 
 | 		tsk->exit_signal = SIGCHLD; | 
 |  | 
 | 		BUG_ON(leader->exit_state != EXIT_ZOMBIE); | 
 | 		leader->exit_state = EXIT_DEAD; | 
 | 		write_unlock_irq(&tasklist_lock); | 
 |  | 
 | 		release_task(leader); | 
 | 	} | 
 |  | 
 | 	sig->group_exit_task = NULL; | 
 | 	sig->notify_count = 0; | 
 |  | 
 | no_thread_group: | 
 | 	exit_itimers(sig); | 
 | 	flush_itimer_signals(); | 
 |  | 
 | 	if (atomic_read(&oldsighand->count) != 1) { | 
 | 		struct sighand_struct *newsighand; | 
 | 		/* | 
 | 		 * This ->sighand is shared with the CLONE_SIGHAND | 
 | 		 * but not CLONE_THREAD task, switch to the new one. | 
 | 		 */ | 
 | 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
 | 		if (!newsighand) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		atomic_set(&newsighand->count, 1); | 
 | 		memcpy(newsighand->action, oldsighand->action, | 
 | 		       sizeof(newsighand->action)); | 
 |  | 
 | 		write_lock_irq(&tasklist_lock); | 
 | 		spin_lock(&oldsighand->siglock); | 
 | 		rcu_assign_pointer(tsk->sighand, newsighand); | 
 | 		spin_unlock(&oldsighand->siglock); | 
 | 		write_unlock_irq(&tasklist_lock); | 
 |  | 
 | 		__cleanup_sighand(oldsighand); | 
 | 	} | 
 |  | 
 | 	BUG_ON(!thread_group_leader(tsk)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * These functions flushes out all traces of the currently running executable | 
 |  * so that a new one can be started | 
 |  */ | 
 | static void flush_old_files(struct files_struct * files) | 
 | { | 
 | 	long j = -1; | 
 | 	struct fdtable *fdt; | 
 |  | 
 | 	spin_lock(&files->file_lock); | 
 | 	for (;;) { | 
 | 		unsigned long set, i; | 
 |  | 
 | 		j++; | 
 | 		i = j * __NFDBITS; | 
 | 		fdt = files_fdtable(files); | 
 | 		if (i >= fdt->max_fds) | 
 | 			break; | 
 | 		set = fdt->close_on_exec->fds_bits[j]; | 
 | 		if (!set) | 
 | 			continue; | 
 | 		fdt->close_on_exec->fds_bits[j] = 0; | 
 | 		spin_unlock(&files->file_lock); | 
 | 		for ( ; set ; i++,set >>= 1) { | 
 | 			if (set & 1) { | 
 | 				sys_close(i); | 
 | 			} | 
 | 		} | 
 | 		spin_lock(&files->file_lock); | 
 |  | 
 | 	} | 
 | 	spin_unlock(&files->file_lock); | 
 | } | 
 |  | 
 | char *get_task_comm(char *buf, struct task_struct *tsk) | 
 | { | 
 | 	/* buf must be at least sizeof(tsk->comm) in size */ | 
 | 	task_lock(tsk); | 
 | 	strncpy(buf, tsk->comm, sizeof(tsk->comm)); | 
 | 	task_unlock(tsk); | 
 | 	return buf; | 
 | } | 
 |  | 
 | void set_task_comm(struct task_struct *tsk, char *buf) | 
 | { | 
 | 	task_lock(tsk); | 
 | 	strlcpy(tsk->comm, buf, sizeof(tsk->comm)); | 
 | 	task_unlock(tsk); | 
 | 	perf_counter_comm(tsk); | 
 | } | 
 |  | 
 | int flush_old_exec(struct linux_binprm * bprm) | 
 | { | 
 | 	char * name; | 
 | 	int i, ch, retval; | 
 | 	char tcomm[sizeof(current->comm)]; | 
 |  | 
 | 	/* | 
 | 	 * Make sure we have a private signal table and that | 
 | 	 * we are unassociated from the previous thread group. | 
 | 	 */ | 
 | 	retval = de_thread(current); | 
 | 	if (retval) | 
 | 		goto out; | 
 |  | 
 | 	set_mm_exe_file(bprm->mm, bprm->file); | 
 |  | 
 | 	/* | 
 | 	 * Release all of the old mmap stuff | 
 | 	 */ | 
 | 	retval = exec_mmap(bprm->mm); | 
 | 	if (retval) | 
 | 		goto out; | 
 |  | 
 | 	bprm->mm = NULL;		/* We're using it now */ | 
 |  | 
 | 	/* This is the point of no return */ | 
 | 	current->sas_ss_sp = current->sas_ss_size = 0; | 
 |  | 
 | 	if (current_euid() == current_uid() && current_egid() == current_gid()) | 
 | 		set_dumpable(current->mm, 1); | 
 | 	else | 
 | 		set_dumpable(current->mm, suid_dumpable); | 
 |  | 
 | 	name = bprm->filename; | 
 |  | 
 | 	/* Copies the binary name from after last slash */ | 
 | 	for (i=0; (ch = *(name++)) != '\0';) { | 
 | 		if (ch == '/') | 
 | 			i = 0; /* overwrite what we wrote */ | 
 | 		else | 
 | 			if (i < (sizeof(tcomm) - 1)) | 
 | 				tcomm[i++] = ch; | 
 | 	} | 
 | 	tcomm[i] = '\0'; | 
 | 	set_task_comm(current, tcomm); | 
 |  | 
 | 	current->flags &= ~PF_RANDOMIZE; | 
 | 	flush_thread(); | 
 |  | 
 | 	/* Set the new mm task size. We have to do that late because it may | 
 | 	 * depend on TIF_32BIT which is only updated in flush_thread() on | 
 | 	 * some architectures like powerpc | 
 | 	 */ | 
 | 	current->mm->task_size = TASK_SIZE; | 
 |  | 
 | 	/* install the new credentials */ | 
 | 	if (bprm->cred->uid != current_euid() || | 
 | 	    bprm->cred->gid != current_egid()) { | 
 | 		current->pdeath_signal = 0; | 
 | 	} else if (file_permission(bprm->file, MAY_READ) || | 
 | 		   bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { | 
 | 		set_dumpable(current->mm, suid_dumpable); | 
 | 	} | 
 |  | 
 | 	current->personality &= ~bprm->per_clear; | 
 |  | 
 | 	/* | 
 | 	 * Flush performance counters when crossing a | 
 | 	 * security domain: | 
 | 	 */ | 
 | 	if (!get_dumpable(current->mm)) | 
 | 		perf_counter_exit_task(current); | 
 |  | 
 | 	/* An exec changes our domain. We are no longer part of the thread | 
 | 	   group */ | 
 |  | 
 | 	current->self_exec_id++; | 
 | 			 | 
 | 	flush_signal_handlers(current, 0); | 
 | 	flush_old_files(current->files); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(flush_old_exec); | 
 |  | 
 | /* | 
 |  * install the new credentials for this executable | 
 |  */ | 
 | void install_exec_creds(struct linux_binprm *bprm) | 
 | { | 
 | 	security_bprm_committing_creds(bprm); | 
 |  | 
 | 	commit_creds(bprm->cred); | 
 | 	bprm->cred = NULL; | 
 |  | 
 | 	/* cred_guard_mutex must be held at least to this point to prevent | 
 | 	 * ptrace_attach() from altering our determination of the task's | 
 | 	 * credentials; any time after this it may be unlocked */ | 
 |  | 
 | 	security_bprm_committed_creds(bprm); | 
 | } | 
 | EXPORT_SYMBOL(install_exec_creds); | 
 |  | 
 | /* | 
 |  * determine how safe it is to execute the proposed program | 
 |  * - the caller must hold current->cred_guard_mutex to protect against | 
 |  *   PTRACE_ATTACH | 
 |  */ | 
 | int check_unsafe_exec(struct linux_binprm *bprm) | 
 | { | 
 | 	struct task_struct *p = current, *t; | 
 | 	unsigned n_fs; | 
 | 	int res = 0; | 
 |  | 
 | 	bprm->unsafe = tracehook_unsafe_exec(p); | 
 |  | 
 | 	n_fs = 1; | 
 | 	write_lock(&p->fs->lock); | 
 | 	rcu_read_lock(); | 
 | 	for (t = next_thread(p); t != p; t = next_thread(t)) { | 
 | 		if (t->fs == p->fs) | 
 | 			n_fs++; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (p->fs->users > n_fs) { | 
 | 		bprm->unsafe |= LSM_UNSAFE_SHARE; | 
 | 	} else { | 
 | 		res = -EAGAIN; | 
 | 		if (!p->fs->in_exec) { | 
 | 			p->fs->in_exec = 1; | 
 | 			res = 1; | 
 | 		} | 
 | 	} | 
 | 	write_unlock(&p->fs->lock); | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | /*  | 
 |  * Fill the binprm structure from the inode.  | 
 |  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes | 
 |  * | 
 |  * This may be called multiple times for binary chains (scripts for example). | 
 |  */ | 
 | int prepare_binprm(struct linux_binprm *bprm) | 
 | { | 
 | 	umode_t mode; | 
 | 	struct inode * inode = bprm->file->f_path.dentry->d_inode; | 
 | 	int retval; | 
 |  | 
 | 	mode = inode->i_mode; | 
 | 	if (bprm->file->f_op == NULL) | 
 | 		return -EACCES; | 
 |  | 
 | 	/* clear any previous set[ug]id data from a previous binary */ | 
 | 	bprm->cred->euid = current_euid(); | 
 | 	bprm->cred->egid = current_egid(); | 
 |  | 
 | 	if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { | 
 | 		/* Set-uid? */ | 
 | 		if (mode & S_ISUID) { | 
 | 			bprm->per_clear |= PER_CLEAR_ON_SETID; | 
 | 			bprm->cred->euid = inode->i_uid; | 
 | 		} | 
 |  | 
 | 		/* Set-gid? */ | 
 | 		/* | 
 | 		 * If setgid is set but no group execute bit then this | 
 | 		 * is a candidate for mandatory locking, not a setgid | 
 | 		 * executable. | 
 | 		 */ | 
 | 		if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { | 
 | 			bprm->per_clear |= PER_CLEAR_ON_SETID; | 
 | 			bprm->cred->egid = inode->i_gid; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* fill in binprm security blob */ | 
 | 	retval = security_bprm_set_creds(bprm); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	bprm->cred_prepared = 1; | 
 |  | 
 | 	memset(bprm->buf, 0, BINPRM_BUF_SIZE); | 
 | 	return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(prepare_binprm); | 
 |  | 
 | /* | 
 |  * Arguments are '\0' separated strings found at the location bprm->p | 
 |  * points to; chop off the first by relocating brpm->p to right after | 
 |  * the first '\0' encountered. | 
 |  */ | 
 | int remove_arg_zero(struct linux_binprm *bprm) | 
 | { | 
 | 	int ret = 0; | 
 | 	unsigned long offset; | 
 | 	char *kaddr; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!bprm->argc) | 
 | 		return 0; | 
 |  | 
 | 	do { | 
 | 		offset = bprm->p & ~PAGE_MASK; | 
 | 		page = get_arg_page(bprm, bprm->p, 0); | 
 | 		if (!page) { | 
 | 			ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 | 		kaddr = kmap_atomic(page, KM_USER0); | 
 |  | 
 | 		for (; offset < PAGE_SIZE && kaddr[offset]; | 
 | 				offset++, bprm->p++) | 
 | 			; | 
 |  | 
 | 		kunmap_atomic(kaddr, KM_USER0); | 
 | 		put_arg_page(page); | 
 |  | 
 | 		if (offset == PAGE_SIZE) | 
 | 			free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); | 
 | 	} while (offset == PAGE_SIZE); | 
 |  | 
 | 	bprm->p++; | 
 | 	bprm->argc--; | 
 | 	ret = 0; | 
 |  | 
 | out: | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(remove_arg_zero); | 
 |  | 
 | /* | 
 |  * cycle the list of binary formats handler, until one recognizes the image | 
 |  */ | 
 | int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) | 
 | { | 
 | 	unsigned int depth = bprm->recursion_depth; | 
 | 	int try,retval; | 
 | 	struct linux_binfmt *fmt; | 
 |  | 
 | 	retval = security_bprm_check(bprm); | 
 | 	if (retval) | 
 | 		return retval; | 
 | 	retval = ima_bprm_check(bprm); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	/* kernel module loader fixup */ | 
 | 	/* so we don't try to load run modprobe in kernel space. */ | 
 | 	set_fs(USER_DS); | 
 |  | 
 | 	retval = audit_bprm(bprm); | 
 | 	if (retval) | 
 | 		return retval; | 
 |  | 
 | 	retval = -ENOENT; | 
 | 	for (try=0; try<2; try++) { | 
 | 		read_lock(&binfmt_lock); | 
 | 		list_for_each_entry(fmt, &formats, lh) { | 
 | 			int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; | 
 | 			if (!fn) | 
 | 				continue; | 
 | 			if (!try_module_get(fmt->module)) | 
 | 				continue; | 
 | 			read_unlock(&binfmt_lock); | 
 | 			retval = fn(bprm, regs); | 
 | 			/* | 
 | 			 * Restore the depth counter to its starting value | 
 | 			 * in this call, so we don't have to rely on every | 
 | 			 * load_binary function to restore it on return. | 
 | 			 */ | 
 | 			bprm->recursion_depth = depth; | 
 | 			if (retval >= 0) { | 
 | 				if (depth == 0) | 
 | 					tracehook_report_exec(fmt, bprm, regs); | 
 | 				put_binfmt(fmt); | 
 | 				allow_write_access(bprm->file); | 
 | 				if (bprm->file) | 
 | 					fput(bprm->file); | 
 | 				bprm->file = NULL; | 
 | 				current->did_exec = 1; | 
 | 				proc_exec_connector(current); | 
 | 				return retval; | 
 | 			} | 
 | 			read_lock(&binfmt_lock); | 
 | 			put_binfmt(fmt); | 
 | 			if (retval != -ENOEXEC || bprm->mm == NULL) | 
 | 				break; | 
 | 			if (!bprm->file) { | 
 | 				read_unlock(&binfmt_lock); | 
 | 				return retval; | 
 | 			} | 
 | 		} | 
 | 		read_unlock(&binfmt_lock); | 
 | 		if (retval != -ENOEXEC || bprm->mm == NULL) { | 
 | 			break; | 
 | #ifdef CONFIG_MODULES | 
 | 		} else { | 
 | #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) | 
 | 			if (printable(bprm->buf[0]) && | 
 | 			    printable(bprm->buf[1]) && | 
 | 			    printable(bprm->buf[2]) && | 
 | 			    printable(bprm->buf[3])) | 
 | 				break; /* -ENOEXEC */ | 
 | 			request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); | 
 | #endif | 
 | 		} | 
 | 	} | 
 | 	return retval; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(search_binary_handler); | 
 |  | 
 | void free_bprm(struct linux_binprm *bprm) | 
 | { | 
 | 	free_arg_pages(bprm); | 
 | 	if (bprm->cred) | 
 | 		abort_creds(bprm->cred); | 
 | 	kfree(bprm); | 
 | } | 
 |  | 
 | /* | 
 |  * sys_execve() executes a new program. | 
 |  */ | 
 | int do_execve(char * filename, | 
 | 	char __user *__user *argv, | 
 | 	char __user *__user *envp, | 
 | 	struct pt_regs * regs) | 
 | { | 
 | 	struct linux_binprm *bprm; | 
 | 	struct file *file; | 
 | 	struct files_struct *displaced; | 
 | 	bool clear_in_exec; | 
 | 	int retval; | 
 |  | 
 | 	retval = unshare_files(&displaced); | 
 | 	if (retval) | 
 | 		goto out_ret; | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); | 
 | 	if (!bprm) | 
 | 		goto out_files; | 
 |  | 
 | 	retval = -ERESTARTNOINTR; | 
 | 	if (mutex_lock_interruptible(¤t->cred_guard_mutex)) | 
 | 		goto out_free; | 
 | 	current->in_execve = 1; | 
 |  | 
 | 	retval = -ENOMEM; | 
 | 	bprm->cred = prepare_exec_creds(); | 
 | 	if (!bprm->cred) | 
 | 		goto out_unlock; | 
 |  | 
 | 	retval = check_unsafe_exec(bprm); | 
 | 	if (retval < 0) | 
 | 		goto out_unlock; | 
 | 	clear_in_exec = retval; | 
 |  | 
 | 	file = open_exec(filename); | 
 | 	retval = PTR_ERR(file); | 
 | 	if (IS_ERR(file)) | 
 | 		goto out_unmark; | 
 |  | 
 | 	sched_exec(); | 
 |  | 
 | 	bprm->file = file; | 
 | 	bprm->filename = filename; | 
 | 	bprm->interp = filename; | 
 |  | 
 | 	retval = bprm_mm_init(bprm); | 
 | 	if (retval) | 
 | 		goto out_file; | 
 |  | 
 | 	bprm->argc = count(argv, MAX_ARG_STRINGS); | 
 | 	if ((retval = bprm->argc) < 0) | 
 | 		goto out; | 
 |  | 
 | 	bprm->envc = count(envp, MAX_ARG_STRINGS); | 
 | 	if ((retval = bprm->envc) < 0) | 
 | 		goto out; | 
 |  | 
 | 	retval = prepare_binprm(bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	retval = copy_strings_kernel(1, &bprm->filename, bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	bprm->exec = bprm->p; | 
 | 	retval = copy_strings(bprm->envc, envp, bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	retval = copy_strings(bprm->argc, argv, bprm); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	current->flags &= ~PF_KTHREAD; | 
 | 	retval = search_binary_handler(bprm,regs); | 
 | 	if (retval < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* execve succeeded */ | 
 | 	current->fs->in_exec = 0; | 
 | 	current->in_execve = 0; | 
 | 	mutex_unlock(¤t->cred_guard_mutex); | 
 | 	acct_update_integrals(current); | 
 | 	free_bprm(bprm); | 
 | 	if (displaced) | 
 | 		put_files_struct(displaced); | 
 | 	return retval; | 
 |  | 
 | out: | 
 | 	if (bprm->mm) | 
 | 		mmput (bprm->mm); | 
 |  | 
 | out_file: | 
 | 	if (bprm->file) { | 
 | 		allow_write_access(bprm->file); | 
 | 		fput(bprm->file); | 
 | 	} | 
 |  | 
 | out_unmark: | 
 | 	if (clear_in_exec) | 
 | 		current->fs->in_exec = 0; | 
 |  | 
 | out_unlock: | 
 | 	current->in_execve = 0; | 
 | 	mutex_unlock(¤t->cred_guard_mutex); | 
 |  | 
 | out_free: | 
 | 	free_bprm(bprm); | 
 |  | 
 | out_files: | 
 | 	if (displaced) | 
 | 		reset_files_struct(displaced); | 
 | out_ret: | 
 | 	return retval; | 
 | } | 
 |  | 
 | int set_binfmt(struct linux_binfmt *new) | 
 | { | 
 | 	struct linux_binfmt *old = current->binfmt; | 
 |  | 
 | 	if (new) { | 
 | 		if (!try_module_get(new->module)) | 
 | 			return -1; | 
 | 	} | 
 | 	current->binfmt = new; | 
 | 	if (old) | 
 | 		module_put(old->module); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(set_binfmt); | 
 |  | 
 | /* format_corename will inspect the pattern parameter, and output a | 
 |  * name into corename, which must have space for at least | 
 |  * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. | 
 |  */ | 
 | static int format_corename(char *corename, long signr) | 
 | { | 
 | 	const struct cred *cred = current_cred(); | 
 | 	const char *pat_ptr = core_pattern; | 
 | 	int ispipe = (*pat_ptr == '|'); | 
 | 	char *out_ptr = corename; | 
 | 	char *const out_end = corename + CORENAME_MAX_SIZE; | 
 | 	int rc; | 
 | 	int pid_in_pattern = 0; | 
 |  | 
 | 	/* Repeat as long as we have more pattern to process and more output | 
 | 	   space */ | 
 | 	while (*pat_ptr) { | 
 | 		if (*pat_ptr != '%') { | 
 | 			if (out_ptr == out_end) | 
 | 				goto out; | 
 | 			*out_ptr++ = *pat_ptr++; | 
 | 		} else { | 
 | 			switch (*++pat_ptr) { | 
 | 			case 0: | 
 | 				goto out; | 
 | 			/* Double percent, output one percent */ | 
 | 			case '%': | 
 | 				if (out_ptr == out_end) | 
 | 					goto out; | 
 | 				*out_ptr++ = '%'; | 
 | 				break; | 
 | 			/* pid */ | 
 | 			case 'p': | 
 | 				pid_in_pattern = 1; | 
 | 				rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 					      "%d", task_tgid_vnr(current)); | 
 | 				if (rc > out_end - out_ptr) | 
 | 					goto out; | 
 | 				out_ptr += rc; | 
 | 				break; | 
 | 			/* uid */ | 
 | 			case 'u': | 
 | 				rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 					      "%d", cred->uid); | 
 | 				if (rc > out_end - out_ptr) | 
 | 					goto out; | 
 | 				out_ptr += rc; | 
 | 				break; | 
 | 			/* gid */ | 
 | 			case 'g': | 
 | 				rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 					      "%d", cred->gid); | 
 | 				if (rc > out_end - out_ptr) | 
 | 					goto out; | 
 | 				out_ptr += rc; | 
 | 				break; | 
 | 			/* signal that caused the coredump */ | 
 | 			case 's': | 
 | 				rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 					      "%ld", signr); | 
 | 				if (rc > out_end - out_ptr) | 
 | 					goto out; | 
 | 				out_ptr += rc; | 
 | 				break; | 
 | 			/* UNIX time of coredump */ | 
 | 			case 't': { | 
 | 				struct timeval tv; | 
 | 				do_gettimeofday(&tv); | 
 | 				rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 					      "%lu", tv.tv_sec); | 
 | 				if (rc > out_end - out_ptr) | 
 | 					goto out; | 
 | 				out_ptr += rc; | 
 | 				break; | 
 | 			} | 
 | 			/* hostname */ | 
 | 			case 'h': | 
 | 				down_read(&uts_sem); | 
 | 				rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 					      "%s", utsname()->nodename); | 
 | 				up_read(&uts_sem); | 
 | 				if (rc > out_end - out_ptr) | 
 | 					goto out; | 
 | 				out_ptr += rc; | 
 | 				break; | 
 | 			/* executable */ | 
 | 			case 'e': | 
 | 				rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 					      "%s", current->comm); | 
 | 				if (rc > out_end - out_ptr) | 
 | 					goto out; | 
 | 				out_ptr += rc; | 
 | 				break; | 
 | 			/* core limit size */ | 
 | 			case 'c': | 
 | 				rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 					      "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); | 
 | 				if (rc > out_end - out_ptr) | 
 | 					goto out; | 
 | 				out_ptr += rc; | 
 | 				break; | 
 | 			default: | 
 | 				break; | 
 | 			} | 
 | 			++pat_ptr; | 
 | 		} | 
 | 	} | 
 | 	/* Backward compatibility with core_uses_pid: | 
 | 	 * | 
 | 	 * If core_pattern does not include a %p (as is the default) | 
 | 	 * and core_uses_pid is set, then .%pid will be appended to | 
 | 	 * the filename. Do not do this for piped commands. */ | 
 | 	if (!ispipe && !pid_in_pattern && core_uses_pid) { | 
 | 		rc = snprintf(out_ptr, out_end - out_ptr, | 
 | 			      ".%d", task_tgid_vnr(current)); | 
 | 		if (rc > out_end - out_ptr) | 
 | 			goto out; | 
 | 		out_ptr += rc; | 
 | 	} | 
 | out: | 
 | 	*out_ptr = 0; | 
 | 	return ispipe; | 
 | } | 
 |  | 
 | static int zap_process(struct task_struct *start) | 
 | { | 
 | 	struct task_struct *t; | 
 | 	int nr = 0; | 
 |  | 
 | 	start->signal->flags = SIGNAL_GROUP_EXIT; | 
 | 	start->signal->group_stop_count = 0; | 
 |  | 
 | 	t = start; | 
 | 	do { | 
 | 		if (t != current && t->mm) { | 
 | 			sigaddset(&t->pending.signal, SIGKILL); | 
 | 			signal_wake_up(t, 1); | 
 | 			nr++; | 
 | 		} | 
 | 	} while_each_thread(start, t); | 
 |  | 
 | 	return nr; | 
 | } | 
 |  | 
 | static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, | 
 | 				struct core_state *core_state, int exit_code) | 
 | { | 
 | 	struct task_struct *g, *p; | 
 | 	unsigned long flags; | 
 | 	int nr = -EAGAIN; | 
 |  | 
 | 	spin_lock_irq(&tsk->sighand->siglock); | 
 | 	if (!signal_group_exit(tsk->signal)) { | 
 | 		mm->core_state = core_state; | 
 | 		tsk->signal->group_exit_code = exit_code; | 
 | 		nr = zap_process(tsk); | 
 | 	} | 
 | 	spin_unlock_irq(&tsk->sighand->siglock); | 
 | 	if (unlikely(nr < 0)) | 
 | 		return nr; | 
 |  | 
 | 	if (atomic_read(&mm->mm_users) == nr + 1) | 
 | 		goto done; | 
 | 	/* | 
 | 	 * We should find and kill all tasks which use this mm, and we should | 
 | 	 * count them correctly into ->nr_threads. We don't take tasklist | 
 | 	 * lock, but this is safe wrt: | 
 | 	 * | 
 | 	 * fork: | 
 | 	 *	None of sub-threads can fork after zap_process(leader). All | 
 | 	 *	processes which were created before this point should be | 
 | 	 *	visible to zap_threads() because copy_process() adds the new | 
 | 	 *	process to the tail of init_task.tasks list, and lock/unlock | 
 | 	 *	of ->siglock provides a memory barrier. | 
 | 	 * | 
 | 	 * do_exit: | 
 | 	 *	The caller holds mm->mmap_sem. This means that the task which | 
 | 	 *	uses this mm can't pass exit_mm(), so it can't exit or clear | 
 | 	 *	its ->mm. | 
 | 	 * | 
 | 	 * de_thread: | 
 | 	 *	It does list_replace_rcu(&leader->tasks, ¤t->tasks), | 
 | 	 *	we must see either old or new leader, this does not matter. | 
 | 	 *	However, it can change p->sighand, so lock_task_sighand(p) | 
 | 	 *	must be used. Since p->mm != NULL and we hold ->mmap_sem | 
 | 	 *	it can't fail. | 
 | 	 * | 
 | 	 *	Note also that "g" can be the old leader with ->mm == NULL | 
 | 	 *	and already unhashed and thus removed from ->thread_group. | 
 | 	 *	This is OK, __unhash_process()->list_del_rcu() does not | 
 | 	 *	clear the ->next pointer, we will find the new leader via | 
 | 	 *	next_thread(). | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	for_each_process(g) { | 
 | 		if (g == tsk->group_leader) | 
 | 			continue; | 
 | 		if (g->flags & PF_KTHREAD) | 
 | 			continue; | 
 | 		p = g; | 
 | 		do { | 
 | 			if (p->mm) { | 
 | 				if (unlikely(p->mm == mm)) { | 
 | 					lock_task_sighand(p, &flags); | 
 | 					nr += zap_process(p); | 
 | 					unlock_task_sighand(p, &flags); | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 		} while_each_thread(g, p); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 | done: | 
 | 	atomic_set(&core_state->nr_threads, nr); | 
 | 	return nr; | 
 | } | 
 |  | 
 | static int coredump_wait(int exit_code, struct core_state *core_state) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	struct mm_struct *mm = tsk->mm; | 
 | 	struct completion *vfork_done; | 
 | 	int core_waiters; | 
 |  | 
 | 	init_completion(&core_state->startup); | 
 | 	core_state->dumper.task = tsk; | 
 | 	core_state->dumper.next = NULL; | 
 | 	core_waiters = zap_threads(tsk, mm, core_state, exit_code); | 
 | 	up_write(&mm->mmap_sem); | 
 |  | 
 | 	if (unlikely(core_waiters < 0)) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * Make sure nobody is waiting for us to release the VM, | 
 | 	 * otherwise we can deadlock when we wait on each other | 
 | 	 */ | 
 | 	vfork_done = tsk->vfork_done; | 
 | 	if (vfork_done) { | 
 | 		tsk->vfork_done = NULL; | 
 | 		complete(vfork_done); | 
 | 	} | 
 |  | 
 | 	if (core_waiters) | 
 | 		wait_for_completion(&core_state->startup); | 
 | fail: | 
 | 	return core_waiters; | 
 | } | 
 |  | 
 | static void coredump_finish(struct mm_struct *mm) | 
 | { | 
 | 	struct core_thread *curr, *next; | 
 | 	struct task_struct *task; | 
 |  | 
 | 	next = mm->core_state->dumper.next; | 
 | 	while ((curr = next) != NULL) { | 
 | 		next = curr->next; | 
 | 		task = curr->task; | 
 | 		/* | 
 | 		 * see exit_mm(), curr->task must not see | 
 | 		 * ->task == NULL before we read ->next. | 
 | 		 */ | 
 | 		smp_mb(); | 
 | 		curr->task = NULL; | 
 | 		wake_up_process(task); | 
 | 	} | 
 |  | 
 | 	mm->core_state = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * set_dumpable converts traditional three-value dumpable to two flags and | 
 |  * stores them into mm->flags.  It modifies lower two bits of mm->flags, but | 
 |  * these bits are not changed atomically.  So get_dumpable can observe the | 
 |  * intermediate state.  To avoid doing unexpected behavior, get get_dumpable | 
 |  * return either old dumpable or new one by paying attention to the order of | 
 |  * modifying the bits. | 
 |  * | 
 |  * dumpable |   mm->flags (binary) | 
 |  * old  new | initial interim  final | 
 |  * ---------+----------------------- | 
 |  *  0    1  |   00      01      01 | 
 |  *  0    2  |   00      10(*)   11 | 
 |  *  1    0  |   01      00      00 | 
 |  *  1    2  |   01      11      11 | 
 |  *  2    0  |   11      10(*)   00 | 
 |  *  2    1  |   11      11      01 | 
 |  * | 
 |  * (*) get_dumpable regards interim value of 10 as 11. | 
 |  */ | 
 | void set_dumpable(struct mm_struct *mm, int value) | 
 | { | 
 | 	switch (value) { | 
 | 	case 0: | 
 | 		clear_bit(MMF_DUMPABLE, &mm->flags); | 
 | 		smp_wmb(); | 
 | 		clear_bit(MMF_DUMP_SECURELY, &mm->flags); | 
 | 		break; | 
 | 	case 1: | 
 | 		set_bit(MMF_DUMPABLE, &mm->flags); | 
 | 		smp_wmb(); | 
 | 		clear_bit(MMF_DUMP_SECURELY, &mm->flags); | 
 | 		break; | 
 | 	case 2: | 
 | 		set_bit(MMF_DUMP_SECURELY, &mm->flags); | 
 | 		smp_wmb(); | 
 | 		set_bit(MMF_DUMPABLE, &mm->flags); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | int get_dumpable(struct mm_struct *mm) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = mm->flags & 0x3; | 
 | 	return (ret >= 2) ? 2 : ret; | 
 | } | 
 |  | 
 | void do_coredump(long signr, int exit_code, struct pt_regs *regs) | 
 | { | 
 | 	struct core_state core_state; | 
 | 	char corename[CORENAME_MAX_SIZE + 1]; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	struct linux_binfmt * binfmt; | 
 | 	struct inode * inode; | 
 | 	struct file * file; | 
 | 	const struct cred *old_cred; | 
 | 	struct cred *cred; | 
 | 	int retval = 0; | 
 | 	int flag = 0; | 
 | 	int ispipe = 0; | 
 | 	unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; | 
 | 	char **helper_argv = NULL; | 
 | 	int helper_argc = 0; | 
 | 	char *delimit; | 
 |  | 
 | 	audit_core_dumps(signr); | 
 |  | 
 | 	binfmt = current->binfmt; | 
 | 	if (!binfmt || !binfmt->core_dump) | 
 | 		goto fail; | 
 |  | 
 | 	cred = prepare_creds(); | 
 | 	if (!cred) { | 
 | 		retval = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	down_write(&mm->mmap_sem); | 
 | 	/* | 
 | 	 * If another thread got here first, or we are not dumpable, bail out. | 
 | 	 */ | 
 | 	if (mm->core_state || !get_dumpable(mm)) { | 
 | 		up_write(&mm->mmap_sem); | 
 | 		put_cred(cred); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *	We cannot trust fsuid as being the "true" uid of the | 
 | 	 *	process nor do we know its entire history. We only know it | 
 | 	 *	was tainted so we dump it as root in mode 2. | 
 | 	 */ | 
 | 	if (get_dumpable(mm) == 2) {	/* Setuid core dump mode */ | 
 | 		flag = O_EXCL;		/* Stop rewrite attacks */ | 
 | 		cred->fsuid = 0;	/* Dump root private */ | 
 | 	} | 
 |  | 
 | 	retval = coredump_wait(exit_code, &core_state); | 
 | 	if (retval < 0) { | 
 | 		put_cred(cred); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	old_cred = override_creds(cred); | 
 |  | 
 | 	/* | 
 | 	 * Clear any false indication of pending signals that might | 
 | 	 * be seen by the filesystem code called to write the core file. | 
 | 	 */ | 
 | 	clear_thread_flag(TIF_SIGPENDING); | 
 |  | 
 | 	/* | 
 | 	 * lock_kernel() because format_corename() is controlled by sysctl, which | 
 | 	 * uses lock_kernel() | 
 | 	 */ | 
 |  	lock_kernel(); | 
 | 	ispipe = format_corename(corename, signr); | 
 | 	unlock_kernel(); | 
 | 	/* | 
 | 	 * Don't bother to check the RLIMIT_CORE value if core_pattern points | 
 | 	 * to a pipe.  Since we're not writing directly to the filesystem | 
 | 	 * RLIMIT_CORE doesn't really apply, as no actual core file will be | 
 | 	 * created unless the pipe reader choses to write out the core file | 
 | 	 * at which point file size limits and permissions will be imposed | 
 | 	 * as it does with any other process | 
 | 	 */ | 
 | 	if ((!ispipe) && (core_limit < binfmt->min_coredump)) | 
 | 		goto fail_unlock; | 
 |  | 
 |  	if (ispipe) { | 
 | 		helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); | 
 | 		if (!helper_argv) { | 
 | 			printk(KERN_WARNING "%s failed to allocate memory\n", | 
 | 			       __func__); | 
 | 			goto fail_unlock; | 
 | 		} | 
 | 		/* Terminate the string before the first option */ | 
 | 		delimit = strchr(corename, ' '); | 
 | 		if (delimit) | 
 | 			*delimit = '\0'; | 
 | 		delimit = strrchr(helper_argv[0], '/'); | 
 | 		if (delimit) | 
 | 			delimit++; | 
 | 		else | 
 | 			delimit = helper_argv[0]; | 
 | 		if (!strcmp(delimit, current->comm)) { | 
 | 			printk(KERN_NOTICE "Recursive core dump detected, " | 
 | 					"aborting\n"); | 
 | 			goto fail_unlock; | 
 | 		} | 
 |  | 
 | 		core_limit = RLIM_INFINITY; | 
 |  | 
 | 		/* SIGPIPE can happen, but it's just never processed */ | 
 |  		if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, | 
 | 				&file)) { | 
 |  			printk(KERN_INFO "Core dump to %s pipe failed\n", | 
 | 			       corename); | 
 |  			goto fail_unlock; | 
 |  		} | 
 |  	} else | 
 |  		file = filp_open(corename, | 
 | 				 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, | 
 | 				 0600); | 
 | 	if (IS_ERR(file)) | 
 | 		goto fail_unlock; | 
 | 	inode = file->f_path.dentry->d_inode; | 
 | 	if (inode->i_nlink > 1) | 
 | 		goto close_fail;	/* multiple links - don't dump */ | 
 | 	if (!ispipe && d_unhashed(file->f_path.dentry)) | 
 | 		goto close_fail; | 
 |  | 
 | 	/* AK: actually i see no reason to not allow this for named pipes etc., | 
 | 	   but keep the previous behaviour for now. */ | 
 | 	if (!ispipe && !S_ISREG(inode->i_mode)) | 
 | 		goto close_fail; | 
 | 	/* | 
 | 	 * Dont allow local users get cute and trick others to coredump | 
 | 	 * into their pre-created files: | 
 | 	 */ | 
 | 	if (inode->i_uid != current_fsuid()) | 
 | 		goto close_fail; | 
 | 	if (!file->f_op) | 
 | 		goto close_fail; | 
 | 	if (!file->f_op->write) | 
 | 		goto close_fail; | 
 | 	if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) | 
 | 		goto close_fail; | 
 |  | 
 | 	retval = binfmt->core_dump(signr, regs, file, core_limit); | 
 |  | 
 | 	if (retval) | 
 | 		current->signal->group_exit_code |= 0x80; | 
 | close_fail: | 
 | 	filp_close(file, NULL); | 
 | fail_unlock: | 
 | 	if (helper_argv) | 
 | 		argv_free(helper_argv); | 
 |  | 
 | 	revert_creds(old_cred); | 
 | 	put_cred(cred); | 
 | 	coredump_finish(mm); | 
 | fail: | 
 | 	return; | 
 | } |