| /* | 
 |  *  linux/arch/arm/mm/init.c | 
 |  * | 
 |  *  Copyright (C) 1995-2005 Russell King | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/highmem.h> | 
 |  | 
 | #include <asm/mach-types.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/sizes.h> | 
 | #include <asm/tlb.h> | 
 |  | 
 | #include <asm/mach/arch.h> | 
 | #include <asm/mach/map.h> | 
 |  | 
 | #include "mm.h" | 
 |  | 
 | static unsigned long phys_initrd_start __initdata = 0; | 
 | static unsigned long phys_initrd_size __initdata = 0; | 
 |  | 
 | static void __init early_initrd(char **p) | 
 | { | 
 | 	unsigned long start, size; | 
 |  | 
 | 	start = memparse(*p, p); | 
 | 	if (**p == ',') { | 
 | 		size = memparse((*p) + 1, p); | 
 |  | 
 | 		phys_initrd_start = start; | 
 | 		phys_initrd_size = size; | 
 | 	} | 
 | } | 
 | __early_param("initrd=", early_initrd); | 
 |  | 
 | static int __init parse_tag_initrd(const struct tag *tag) | 
 | { | 
 | 	printk(KERN_WARNING "ATAG_INITRD is deprecated; " | 
 | 		"please update your bootloader.\n"); | 
 | 	phys_initrd_start = __virt_to_phys(tag->u.initrd.start); | 
 | 	phys_initrd_size = tag->u.initrd.size; | 
 | 	return 0; | 
 | } | 
 |  | 
 | __tagtable(ATAG_INITRD, parse_tag_initrd); | 
 |  | 
 | static int __init parse_tag_initrd2(const struct tag *tag) | 
 | { | 
 | 	phys_initrd_start = tag->u.initrd.start; | 
 | 	phys_initrd_size = tag->u.initrd.size; | 
 | 	return 0; | 
 | } | 
 |  | 
 | __tagtable(ATAG_INITRD2, parse_tag_initrd2); | 
 |  | 
 | /* | 
 |  * This keeps memory configuration data used by a couple memory | 
 |  * initialization functions, as well as show_mem() for the skipping | 
 |  * of holes in the memory map.  It is populated by arm_add_memory(). | 
 |  */ | 
 | struct meminfo meminfo; | 
 |  | 
 | void show_mem(void) | 
 | { | 
 | 	int free = 0, total = 0, reserved = 0; | 
 | 	int shared = 0, cached = 0, slab = 0, node, i; | 
 | 	struct meminfo * mi = &meminfo; | 
 |  | 
 | 	printk("Mem-info:\n"); | 
 | 	show_free_areas(); | 
 | 	for_each_online_node(node) { | 
 | 		pg_data_t *n = NODE_DATA(node); | 
 | 		struct page *map = pgdat_page_nr(n, 0) - n->node_start_pfn; | 
 |  | 
 | 		for_each_nodebank (i,mi,node) { | 
 | 			struct membank *bank = &mi->bank[i]; | 
 | 			unsigned int pfn1, pfn2; | 
 | 			struct page *page, *end; | 
 |  | 
 | 			pfn1 = bank_pfn_start(bank); | 
 | 			pfn2 = bank_pfn_end(bank); | 
 |  | 
 | 			page = map + pfn1; | 
 | 			end  = map + pfn2; | 
 |  | 
 | 			do { | 
 | 				total++; | 
 | 				if (PageReserved(page)) | 
 | 					reserved++; | 
 | 				else if (PageSwapCache(page)) | 
 | 					cached++; | 
 | 				else if (PageSlab(page)) | 
 | 					slab++; | 
 | 				else if (!page_count(page)) | 
 | 					free++; | 
 | 				else | 
 | 					shared += page_count(page) - 1; | 
 | 				page++; | 
 | 			} while (page < end); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	printk("%d pages of RAM\n", total); | 
 | 	printk("%d free pages\n", free); | 
 | 	printk("%d reserved pages\n", reserved); | 
 | 	printk("%d slab pages\n", slab); | 
 | 	printk("%d pages shared\n", shared); | 
 | 	printk("%d pages swap cached\n", cached); | 
 | } | 
 |  | 
 | /* | 
 |  * FIXME: We really want to avoid allocating the bootmap bitmap | 
 |  * over the top of the initrd.  Hopefully, this is located towards | 
 |  * the start of a bank, so if we allocate the bootmap bitmap at | 
 |  * the end, we won't clash. | 
 |  */ | 
 | static unsigned int __init | 
 | find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) | 
 | { | 
 | 	unsigned int start_pfn, i, bootmap_pfn; | 
 |  | 
 | 	start_pfn   = PAGE_ALIGN(__pa(_end)) >> PAGE_SHIFT; | 
 | 	bootmap_pfn = 0; | 
 |  | 
 | 	for_each_nodebank(i, mi, node) { | 
 | 		struct membank *bank = &mi->bank[i]; | 
 | 		unsigned int start, end; | 
 |  | 
 | 		start = bank_pfn_start(bank); | 
 | 		end   = bank_pfn_end(bank); | 
 |  | 
 | 		if (end < start_pfn) | 
 | 			continue; | 
 |  | 
 | 		if (start < start_pfn) | 
 | 			start = start_pfn; | 
 |  | 
 | 		if (end <= start) | 
 | 			continue; | 
 |  | 
 | 		if (end - start >= bootmap_pages) { | 
 | 			bootmap_pfn = start; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (bootmap_pfn == 0) | 
 | 		BUG(); | 
 |  | 
 | 	return bootmap_pfn; | 
 | } | 
 |  | 
 | static int __init check_initrd(struct meminfo *mi) | 
 | { | 
 | 	int initrd_node = -2; | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	unsigned long end = phys_initrd_start + phys_initrd_size; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that the initrd is within a valid area of | 
 | 	 * memory. | 
 | 	 */ | 
 | 	if (phys_initrd_size) { | 
 | 		unsigned int i; | 
 |  | 
 | 		initrd_node = -1; | 
 |  | 
 | 		for (i = 0; i < mi->nr_banks; i++) { | 
 | 			struct membank *bank = &mi->bank[i]; | 
 | 			if (bank_phys_start(bank) <= phys_initrd_start && | 
 | 			    end <= bank_phys_end(bank)) | 
 | 				initrd_node = bank->node; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (initrd_node == -1) { | 
 | 		printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx extends beyond " | 
 | 		       "physical memory - disabling initrd\n", | 
 | 		       phys_initrd_start, phys_initrd_size); | 
 | 		phys_initrd_start = phys_initrd_size = 0; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return initrd_node; | 
 | } | 
 |  | 
 | static inline void map_memory_bank(struct membank *bank) | 
 | { | 
 | #ifdef CONFIG_MMU | 
 | 	struct map_desc map; | 
 |  | 
 | 	map.pfn = bank_pfn_start(bank); | 
 | 	map.virtual = __phys_to_virt(bank_phys_start(bank)); | 
 | 	map.length = bank_phys_size(bank); | 
 | 	map.type = MT_MEMORY; | 
 |  | 
 | 	create_mapping(&map); | 
 | #endif | 
 | } | 
 |  | 
 | static unsigned long __init bootmem_init_node(int node, struct meminfo *mi) | 
 | { | 
 | 	unsigned long start_pfn, end_pfn, boot_pfn; | 
 | 	unsigned int boot_pages; | 
 | 	pg_data_t *pgdat; | 
 | 	int i; | 
 |  | 
 | 	start_pfn = -1UL; | 
 | 	end_pfn = 0; | 
 |  | 
 | 	/* | 
 | 	 * Calculate the pfn range, and map the memory banks for this node. | 
 | 	 */ | 
 | 	for_each_nodebank(i, mi, node) { | 
 | 		struct membank *bank = &mi->bank[i]; | 
 | 		unsigned long start, end; | 
 |  | 
 | 		start = bank_pfn_start(bank); | 
 | 		end = bank_pfn_end(bank); | 
 |  | 
 | 		if (start_pfn > start) | 
 | 			start_pfn = start; | 
 | 		if (end_pfn < end) | 
 | 			end_pfn = end; | 
 |  | 
 | 		map_memory_bank(bank); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there is no memory in this node, ignore it. | 
 | 	 */ | 
 | 	if (end_pfn == 0) | 
 | 		return end_pfn; | 
 |  | 
 | 	/* | 
 | 	 * Allocate the bootmem bitmap page. | 
 | 	 */ | 
 | 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); | 
 | 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages); | 
 |  | 
 | 	/* | 
 | 	 * Initialise the bootmem allocator for this node, handing the | 
 | 	 * memory banks over to bootmem. | 
 | 	 */ | 
 | 	node_set_online(node); | 
 | 	pgdat = NODE_DATA(node); | 
 | 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn); | 
 |  | 
 | 	for_each_nodebank(i, mi, node) { | 
 | 		struct membank *bank = &mi->bank[i]; | 
 | 		free_bootmem_node(pgdat, bank_phys_start(bank), bank_phys_size(bank)); | 
 | 		memory_present(node, bank_pfn_start(bank), bank_pfn_end(bank)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Reserve the bootmem bitmap for this node. | 
 | 	 */ | 
 | 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT, | 
 | 			     boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT); | 
 |  | 
 | 	return end_pfn; | 
 | } | 
 |  | 
 | static void __init bootmem_reserve_initrd(int node) | 
 | { | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	pg_data_t *pgdat = NODE_DATA(node); | 
 | 	int res; | 
 |  | 
 | 	res = reserve_bootmem_node(pgdat, phys_initrd_start, | 
 | 			     phys_initrd_size, BOOTMEM_EXCLUSIVE); | 
 |  | 
 | 	if (res == 0) { | 
 | 		initrd_start = __phys_to_virt(phys_initrd_start); | 
 | 		initrd_end = initrd_start + phys_initrd_size; | 
 | 	} else { | 
 | 		printk(KERN_ERR | 
 | 			"INITRD: 0x%08lx+0x%08lx overlaps in-use " | 
 | 			"memory region - disabling initrd\n", | 
 | 			phys_initrd_start, phys_initrd_size); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | static void __init bootmem_free_node(int node, struct meminfo *mi) | 
 | { | 
 | 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	pg_data_t *pgdat = NODE_DATA(node); | 
 | 	int i; | 
 |  | 
 | 	start_pfn = pgdat->bdata->node_min_pfn; | 
 | 	end_pfn = pgdat->bdata->node_low_pfn; | 
 |  | 
 | 	/* | 
 | 	 * initialise the zones within this node. | 
 | 	 */ | 
 | 	memset(zone_size, 0, sizeof(zone_size)); | 
 | 	memset(zhole_size, 0, sizeof(zhole_size)); | 
 |  | 
 | 	/* | 
 | 	 * The size of this node has already been determined.  If we need | 
 | 	 * to do anything fancy with the allocation of this memory to the | 
 | 	 * zones, now is the time to do it. | 
 | 	 */ | 
 | 	zone_size[0] = end_pfn - start_pfn; | 
 |  | 
 | 	/* | 
 | 	 * For each bank in this node, calculate the size of the holes. | 
 | 	 *  holes = node_size - sum(bank_sizes_in_node) | 
 | 	 */ | 
 | 	zhole_size[0] = zone_size[0]; | 
 | 	for_each_nodebank(i, mi, node) | 
 | 		zhole_size[0] -= bank_pfn_size(&mi->bank[i]); | 
 |  | 
 | 	/* | 
 | 	 * Adjust the sizes according to any special requirements for | 
 | 	 * this machine type. | 
 | 	 */ | 
 | 	arch_adjust_zones(node, zone_size, zhole_size); | 
 |  | 
 | 	free_area_init_node(node, zone_size, start_pfn, zhole_size); | 
 | } | 
 |  | 
 | void __init bootmem_init(void) | 
 | { | 
 | 	struct meminfo *mi = &meminfo; | 
 | 	unsigned long memend_pfn = 0; | 
 | 	int node, initrd_node; | 
 |  | 
 | 	/* | 
 | 	 * Locate which node contains the ramdisk image, if any. | 
 | 	 */ | 
 | 	initrd_node = check_initrd(mi); | 
 |  | 
 | 	/* | 
 | 	 * Run through each node initialising the bootmem allocator. | 
 | 	 */ | 
 | 	for_each_node(node) { | 
 | 		unsigned long end_pfn = bootmem_init_node(node, mi); | 
 |  | 
 | 		/* | 
 | 		 * Reserve any special node zero regions. | 
 | 		 */ | 
 | 		if (node == 0) | 
 | 			reserve_node_zero(NODE_DATA(node)); | 
 |  | 
 | 		/* | 
 | 		 * If the initrd is in this node, reserve its memory. | 
 | 		 */ | 
 | 		if (node == initrd_node) | 
 | 			bootmem_reserve_initrd(node); | 
 |  | 
 | 		/* | 
 | 		 * Remember the highest memory PFN. | 
 | 		 */ | 
 | 		if (end_pfn > memend_pfn) | 
 | 			memend_pfn = end_pfn; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * sparse_init() needs the bootmem allocator up and running. | 
 | 	 */ | 
 | 	sparse_init(); | 
 |  | 
 | 	/* | 
 | 	 * Now free memory in each node - free_area_init_node needs | 
 | 	 * the sparse mem_map arrays initialized by sparse_init() | 
 | 	 * for memmap_init_zone(), otherwise all PFNs are invalid. | 
 | 	 */ | 
 | 	for_each_node(node) | 
 | 		bootmem_free_node(node, mi); | 
 |  | 
 | 	high_memory = __va((memend_pfn << PAGE_SHIFT) - 1) + 1; | 
 |  | 
 | 	/* | 
 | 	 * This doesn't seem to be used by the Linux memory manager any | 
 | 	 * more, but is used by ll_rw_block.  If we can get rid of it, we | 
 | 	 * also get rid of some of the stuff above as well. | 
 | 	 * | 
 | 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in | 
 | 	 * the system, not the maximum PFN. | 
 | 	 */ | 
 | 	max_pfn = max_low_pfn = memend_pfn - PHYS_PFN_OFFSET; | 
 | } | 
 |  | 
 | static inline int free_area(unsigned long pfn, unsigned long end, char *s) | 
 | { | 
 | 	unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10); | 
 |  | 
 | 	for (; pfn < end; pfn++) { | 
 | 		struct page *page = pfn_to_page(pfn); | 
 | 		ClearPageReserved(page); | 
 | 		init_page_count(page); | 
 | 		__free_page(page); | 
 | 		pages++; | 
 | 	} | 
 |  | 
 | 	if (size && s) | 
 | 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); | 
 |  | 
 | 	return pages; | 
 | } | 
 |  | 
 | static inline void | 
 | free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	struct page *start_pg, *end_pg; | 
 | 	unsigned long pg, pgend; | 
 |  | 
 | 	/* | 
 | 	 * Convert start_pfn/end_pfn to a struct page pointer. | 
 | 	 */ | 
 | 	start_pg = pfn_to_page(start_pfn); | 
 | 	end_pg = pfn_to_page(end_pfn); | 
 |  | 
 | 	/* | 
 | 	 * Convert to physical addresses, and | 
 | 	 * round start upwards and end downwards. | 
 | 	 */ | 
 | 	pg = PAGE_ALIGN(__pa(start_pg)); | 
 | 	pgend = __pa(end_pg) & PAGE_MASK; | 
 |  | 
 | 	/* | 
 | 	 * If there are free pages between these, | 
 | 	 * free the section of the memmap array. | 
 | 	 */ | 
 | 	if (pg < pgend) | 
 | 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg); | 
 | } | 
 |  | 
 | /* | 
 |  * The mem_map array can get very big.  Free the unused area of the memory map. | 
 |  */ | 
 | static void __init free_unused_memmap_node(int node, struct meminfo *mi) | 
 | { | 
 | 	unsigned long bank_start, prev_bank_end = 0; | 
 | 	unsigned int i; | 
 |  | 
 | 	/* | 
 | 	 * [FIXME] This relies on each bank being in address order.  This | 
 | 	 * may not be the case, especially if the user has provided the | 
 | 	 * information on the command line. | 
 | 	 */ | 
 | 	for_each_nodebank(i, mi, node) { | 
 | 		struct membank *bank = &mi->bank[i]; | 
 |  | 
 | 		bank_start = bank_pfn_start(bank); | 
 | 		if (bank_start < prev_bank_end) { | 
 | 			printk(KERN_ERR "MEM: unordered memory banks.  " | 
 | 				"Not freeing memmap.\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we had a previous bank, and there is a space | 
 | 		 * between the current bank and the previous, free it. | 
 | 		 */ | 
 | 		if (prev_bank_end && prev_bank_end != bank_start) | 
 | 			free_memmap(node, prev_bank_end, bank_start); | 
 |  | 
 | 		prev_bank_end = bank_pfn_end(bank); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * mem_init() marks the free areas in the mem_map and tells us how much | 
 |  * memory is free.  This is done after various parts of the system have | 
 |  * claimed their memory after the kernel image. | 
 |  */ | 
 | void __init mem_init(void) | 
 | { | 
 | 	unsigned int codesize, datasize, initsize; | 
 | 	int i, node; | 
 |  | 
 | #ifndef CONFIG_DISCONTIGMEM | 
 | 	max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map; | 
 | #endif | 
 |  | 
 | 	/* this will put all unused low memory onto the freelists */ | 
 | 	for_each_online_node(node) { | 
 | 		pg_data_t *pgdat = NODE_DATA(node); | 
 |  | 
 | 		free_unused_memmap_node(node, &meminfo); | 
 |  | 
 | 		if (pgdat->node_spanned_pages != 0) | 
 | 			totalram_pages += free_all_bootmem_node(pgdat); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SA1111 | 
 | 	/* now that our DMA memory is actually so designated, we can free it */ | 
 | 	totalram_pages += free_area(PHYS_PFN_OFFSET, | 
 | 				    __phys_to_pfn(__pa(swapper_pg_dir)), NULL); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	/* set highmem page free */ | 
 | 	for_each_online_node(node) { | 
 | 		for_each_nodebank (i, &meminfo, node) { | 
 | 			unsigned long start = bank_pfn_start(&meminfo.bank[i]); | 
 | 			unsigned long end = bank_pfn_end(&meminfo.bank[i]); | 
 | 			if (start >= max_low_pfn + PHYS_PFN_OFFSET) | 
 | 				totalhigh_pages += free_area(start, end, NULL); | 
 | 		} | 
 | 	} | 
 | 	totalram_pages += totalhigh_pages; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Since our memory may not be contiguous, calculate the | 
 | 	 * real number of pages we have in this system | 
 | 	 */ | 
 | 	printk(KERN_INFO "Memory:"); | 
 | 	num_physpages = 0; | 
 | 	for (i = 0; i < meminfo.nr_banks; i++) { | 
 | 		num_physpages += bank_pfn_size(&meminfo.bank[i]); | 
 | 		printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20); | 
 | 	} | 
 | 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); | 
 |  | 
 | 	codesize = _etext - _text; | 
 | 	datasize = _end - _data; | 
 | 	initsize = __init_end - __init_begin; | 
 |  | 
 | 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, " | 
 | 		"%dK data, %dK init, %luK highmem)\n", | 
 | 		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10), | 
 | 		codesize >> 10, datasize >> 10, initsize >> 10, | 
 | 		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))); | 
 |  | 
 | 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) { | 
 | 		extern int sysctl_overcommit_memory; | 
 | 		/* | 
 | 		 * On a machine this small we won't get | 
 | 		 * anywhere without overcommit, so turn | 
 | 		 * it on by default. | 
 | 		 */ | 
 | 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; | 
 | 	} | 
 | } | 
 |  | 
 | void free_initmem(void) | 
 | { | 
 | 	if (!machine_is_integrator() && !machine_is_cintegrator()) | 
 | 		totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)), | 
 | 					    __phys_to_pfn(__pa(__init_end)), | 
 | 					    "init"); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 |  | 
 | static int keep_initrd; | 
 |  | 
 | void free_initrd_mem(unsigned long start, unsigned long end) | 
 | { | 
 | 	if (!keep_initrd) | 
 | 		totalram_pages += free_area(__phys_to_pfn(__pa(start)), | 
 | 					    __phys_to_pfn(__pa(end)), | 
 | 					    "initrd"); | 
 | } | 
 |  | 
 | static int __init keepinitrd_setup(char *__unused) | 
 | { | 
 | 	keep_initrd = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("keepinitrd", keepinitrd_setup); | 
 | #endif |