| /* | 
 |  * Cryptographic API. | 
 |  * | 
 |  * Support for VIA PadLock hardware crypto engine. | 
 |  * | 
 |  * Copyright (c) 2006  Michal Ludvig <michal@logix.cz> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <crypto/internal/hash.h> | 
 | #include <crypto/padlock.h> | 
 | #include <crypto/sha.h> | 
 | #include <linux/err.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <asm/i387.h> | 
 |  | 
 | struct padlock_sha_desc { | 
 | 	struct shash_desc fallback; | 
 | }; | 
 |  | 
 | struct padlock_sha_ctx { | 
 | 	struct crypto_shash *fallback; | 
 | }; | 
 |  | 
 | static int padlock_sha_init(struct shash_desc *desc) | 
 | { | 
 | 	struct padlock_sha_desc *dctx = shash_desc_ctx(desc); | 
 | 	struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm); | 
 |  | 
 | 	dctx->fallback.tfm = ctx->fallback; | 
 | 	dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 	return crypto_shash_init(&dctx->fallback); | 
 | } | 
 |  | 
 | static int padlock_sha_update(struct shash_desc *desc, | 
 | 			      const u8 *data, unsigned int length) | 
 | { | 
 | 	struct padlock_sha_desc *dctx = shash_desc_ctx(desc); | 
 |  | 
 | 	dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 	return crypto_shash_update(&dctx->fallback, data, length); | 
 | } | 
 |  | 
 | static int padlock_sha_export(struct shash_desc *desc, void *out) | 
 | { | 
 | 	struct padlock_sha_desc *dctx = shash_desc_ctx(desc); | 
 |  | 
 | 	return crypto_shash_export(&dctx->fallback, out); | 
 | } | 
 |  | 
 | static int padlock_sha_import(struct shash_desc *desc, const void *in) | 
 | { | 
 | 	struct padlock_sha_desc *dctx = shash_desc_ctx(desc); | 
 | 	struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm); | 
 |  | 
 | 	dctx->fallback.tfm = ctx->fallback; | 
 | 	dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 	return crypto_shash_import(&dctx->fallback, in); | 
 | } | 
 |  | 
 | static inline void padlock_output_block(uint32_t *src, | 
 | 		 	uint32_t *dst, size_t count) | 
 | { | 
 | 	while (count--) | 
 | 		*dst++ = swab32(*src++); | 
 | } | 
 |  | 
 | static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in, | 
 | 			      unsigned int count, u8 *out) | 
 | { | 
 | 	/* We can't store directly to *out as it may be unaligned. */ | 
 | 	/* BTW Don't reduce the buffer size below 128 Bytes! | 
 | 	 *     PadLock microcode needs it that big. */ | 
 | 	char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ | 
 | 		((aligned(STACK_ALIGN))); | 
 | 	char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); | 
 | 	struct padlock_sha_desc *dctx = shash_desc_ctx(desc); | 
 | 	struct sha1_state state; | 
 | 	unsigned int space; | 
 | 	unsigned int leftover; | 
 | 	int ts_state; | 
 | 	int err; | 
 |  | 
 | 	dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 	err = crypto_shash_export(&dctx->fallback, &state); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (state.count + count > ULONG_MAX) | 
 | 		return crypto_shash_finup(&dctx->fallback, in, count, out); | 
 |  | 
 | 	leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1; | 
 | 	space =  SHA1_BLOCK_SIZE - leftover; | 
 | 	if (space) { | 
 | 		if (count > space) { | 
 | 			err = crypto_shash_update(&dctx->fallback, in, space) ?: | 
 | 			      crypto_shash_export(&dctx->fallback, &state); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			count -= space; | 
 | 			in += space; | 
 | 		} else { | 
 | 			memcpy(state.buffer + leftover, in, count); | 
 | 			in = state.buffer; | 
 | 			count += leftover; | 
 | 			state.count &= ~(SHA1_BLOCK_SIZE - 1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	memcpy(result, &state.state, SHA1_DIGEST_SIZE); | 
 |  | 
 | 	/* prevent taking the spurious DNA fault with padlock. */ | 
 | 	ts_state = irq_ts_save(); | 
 | 	asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */ | 
 | 		      : \ | 
 | 		      : "c"((unsigned long)state.count + count), \ | 
 | 			"a"((unsigned long)state.count), \ | 
 | 			"S"(in), "D"(result)); | 
 | 	irq_ts_restore(ts_state); | 
 |  | 
 | 	padlock_output_block((uint32_t *)result, (uint32_t *)out, 5); | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static int padlock_sha1_final(struct shash_desc *desc, u8 *out) | 
 | { | 
 | 	u8 buf[4]; | 
 |  | 
 | 	return padlock_sha1_finup(desc, buf, 0, out); | 
 | } | 
 |  | 
 | static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in, | 
 | 				unsigned int count, u8 *out) | 
 | { | 
 | 	/* We can't store directly to *out as it may be unaligned. */ | 
 | 	/* BTW Don't reduce the buffer size below 128 Bytes! | 
 | 	 *     PadLock microcode needs it that big. */ | 
 | 	char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ | 
 | 		((aligned(STACK_ALIGN))); | 
 | 	char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); | 
 | 	struct padlock_sha_desc *dctx = shash_desc_ctx(desc); | 
 | 	struct sha256_state state; | 
 | 	unsigned int space; | 
 | 	unsigned int leftover; | 
 | 	int ts_state; | 
 | 	int err; | 
 |  | 
 | 	dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP; | 
 | 	err = crypto_shash_export(&dctx->fallback, &state); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	if (state.count + count > ULONG_MAX) | 
 | 		return crypto_shash_finup(&dctx->fallback, in, count, out); | 
 |  | 
 | 	leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1; | 
 | 	space =  SHA256_BLOCK_SIZE - leftover; | 
 | 	if (space) { | 
 | 		if (count > space) { | 
 | 			err = crypto_shash_update(&dctx->fallback, in, space) ?: | 
 | 			      crypto_shash_export(&dctx->fallback, &state); | 
 | 			if (err) | 
 | 				goto out; | 
 | 			count -= space; | 
 | 			in += space; | 
 | 		} else { | 
 | 			memcpy(state.buf + leftover, in, count); | 
 | 			in = state.buf; | 
 | 			count += leftover; | 
 | 			state.count &= ~(SHA1_BLOCK_SIZE - 1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	memcpy(result, &state.state, SHA256_DIGEST_SIZE); | 
 |  | 
 | 	/* prevent taking the spurious DNA fault with padlock. */ | 
 | 	ts_state = irq_ts_save(); | 
 | 	asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */ | 
 | 		      : \ | 
 | 		      : "c"((unsigned long)state.count + count), \ | 
 | 			"a"((unsigned long)state.count), \ | 
 | 			"S"(in), "D"(result)); | 
 | 	irq_ts_restore(ts_state); | 
 |  | 
 | 	padlock_output_block((uint32_t *)result, (uint32_t *)out, 8); | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static int padlock_sha256_final(struct shash_desc *desc, u8 *out) | 
 | { | 
 | 	u8 buf[4]; | 
 |  | 
 | 	return padlock_sha256_finup(desc, buf, 0, out); | 
 | } | 
 |  | 
 | static int padlock_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_shash *hash = __crypto_shash_cast(tfm); | 
 | 	const char *fallback_driver_name = tfm->__crt_alg->cra_name; | 
 | 	struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct crypto_shash *fallback_tfm; | 
 | 	int err = -ENOMEM; | 
 |  | 
 | 	/* Allocate a fallback and abort if it failed. */ | 
 | 	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0, | 
 | 					  CRYPTO_ALG_NEED_FALLBACK); | 
 | 	if (IS_ERR(fallback_tfm)) { | 
 | 		printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n", | 
 | 		       fallback_driver_name); | 
 | 		err = PTR_ERR(fallback_tfm); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ctx->fallback = fallback_tfm; | 
 | 	hash->descsize += crypto_shash_descsize(fallback_tfm); | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return err; | 
 | } | 
 |  | 
 | static void padlock_cra_exit(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm); | 
 |  | 
 | 	crypto_free_shash(ctx->fallback); | 
 | } | 
 |  | 
 | static struct shash_alg sha1_alg = { | 
 | 	.digestsize	=	SHA1_DIGEST_SIZE, | 
 | 	.init   	= 	padlock_sha_init, | 
 | 	.update 	=	padlock_sha_update, | 
 | 	.finup  	=	padlock_sha1_finup, | 
 | 	.final  	=	padlock_sha1_final, | 
 | 	.export		=	padlock_sha_export, | 
 | 	.import		=	padlock_sha_import, | 
 | 	.descsize	=	sizeof(struct padlock_sha_desc), | 
 | 	.statesize	=	sizeof(struct sha1_state), | 
 | 	.base		=	{ | 
 | 		.cra_name		=	"sha1", | 
 | 		.cra_driver_name	=	"sha1-padlock", | 
 | 		.cra_priority		=	PADLOCK_CRA_PRIORITY, | 
 | 		.cra_flags		=	CRYPTO_ALG_TYPE_SHASH | | 
 | 						CRYPTO_ALG_NEED_FALLBACK, | 
 | 		.cra_blocksize		=	SHA1_BLOCK_SIZE, | 
 | 		.cra_ctxsize		=	sizeof(struct padlock_sha_ctx), | 
 | 		.cra_module		=	THIS_MODULE, | 
 | 		.cra_init		=	padlock_cra_init, | 
 | 		.cra_exit		=	padlock_cra_exit, | 
 | 	} | 
 | }; | 
 |  | 
 | static struct shash_alg sha256_alg = { | 
 | 	.digestsize	=	SHA256_DIGEST_SIZE, | 
 | 	.init   	= 	padlock_sha_init, | 
 | 	.update 	=	padlock_sha_update, | 
 | 	.finup  	=	padlock_sha256_finup, | 
 | 	.final  	=	padlock_sha256_final, | 
 | 	.export		=	padlock_sha_export, | 
 | 	.import		=	padlock_sha_import, | 
 | 	.descsize	=	sizeof(struct padlock_sha_desc), | 
 | 	.statesize	=	sizeof(struct sha256_state), | 
 | 	.base		=	{ | 
 | 		.cra_name		=	"sha256", | 
 | 		.cra_driver_name	=	"sha256-padlock", | 
 | 		.cra_priority		=	PADLOCK_CRA_PRIORITY, | 
 | 		.cra_flags		=	CRYPTO_ALG_TYPE_SHASH | | 
 | 						CRYPTO_ALG_NEED_FALLBACK, | 
 | 		.cra_blocksize		=	SHA256_BLOCK_SIZE, | 
 | 		.cra_ctxsize		=	sizeof(struct padlock_sha_ctx), | 
 | 		.cra_module		=	THIS_MODULE, | 
 | 		.cra_init		=	padlock_cra_init, | 
 | 		.cra_exit		=	padlock_cra_exit, | 
 | 	} | 
 | }; | 
 |  | 
 | /* Add two shash_alg instance for hardware-implemented * | 
 | * multiple-parts hash supported by VIA Nano Processor.*/ | 
 | static int padlock_sha1_init_nano(struct shash_desc *desc) | 
 | { | 
 | 	struct sha1_state *sctx = shash_desc_ctx(desc); | 
 |  | 
 | 	*sctx = (struct sha1_state){ | 
 | 		.state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 }, | 
 | 	}; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int padlock_sha1_update_nano(struct shash_desc *desc, | 
 | 			const u8 *data,	unsigned int len) | 
 | { | 
 | 	struct sha1_state *sctx = shash_desc_ctx(desc); | 
 | 	unsigned int partial, done; | 
 | 	const u8 *src; | 
 | 	/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/ | 
 | 	u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ | 
 | 		((aligned(STACK_ALIGN))); | 
 | 	u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); | 
 | 	int ts_state; | 
 |  | 
 | 	partial = sctx->count & 0x3f; | 
 | 	sctx->count += len; | 
 | 	done = 0; | 
 | 	src = data; | 
 | 	memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE); | 
 |  | 
 | 	if ((partial + len) >= SHA1_BLOCK_SIZE) { | 
 |  | 
 | 		/* Append the bytes in state's buffer to a block to handle */ | 
 | 		if (partial) { | 
 | 			done = -partial; | 
 | 			memcpy(sctx->buffer + partial, data, | 
 | 				done + SHA1_BLOCK_SIZE); | 
 | 			src = sctx->buffer; | 
 | 			ts_state = irq_ts_save(); | 
 | 			asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" | 
 | 			: "+S"(src), "+D"(dst) \ | 
 | 			: "a"((long)-1), "c"((unsigned long)1)); | 
 | 			irq_ts_restore(ts_state); | 
 | 			done += SHA1_BLOCK_SIZE; | 
 | 			src = data + done; | 
 | 		} | 
 |  | 
 | 		/* Process the left bytes from the input data */ | 
 | 		if (len - done >= SHA1_BLOCK_SIZE) { | 
 | 			ts_state = irq_ts_save(); | 
 | 			asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" | 
 | 			: "+S"(src), "+D"(dst) | 
 | 			: "a"((long)-1), | 
 | 			"c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE))); | 
 | 			irq_ts_restore(ts_state); | 
 | 			done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE); | 
 | 			src = data + done; | 
 | 		} | 
 | 		partial = 0; | 
 | 	} | 
 | 	memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE); | 
 | 	memcpy(sctx->buffer + partial, src, len - done); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out) | 
 | { | 
 | 	struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc); | 
 | 	unsigned int partial, padlen; | 
 | 	__be64 bits; | 
 | 	static const u8 padding[64] = { 0x80, }; | 
 |  | 
 | 	bits = cpu_to_be64(state->count << 3); | 
 |  | 
 | 	/* Pad out to 56 mod 64 */ | 
 | 	partial = state->count & 0x3f; | 
 | 	padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial); | 
 | 	padlock_sha1_update_nano(desc, padding, padlen); | 
 |  | 
 | 	/* Append length field bytes */ | 
 | 	padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits)); | 
 |  | 
 | 	/* Swap to output */ | 
 | 	padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int padlock_sha256_init_nano(struct shash_desc *desc) | 
 | { | 
 | 	struct sha256_state *sctx = shash_desc_ctx(desc); | 
 |  | 
 | 	*sctx = (struct sha256_state){ | 
 | 		.state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \ | 
 | 				SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7}, | 
 | 	}; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data, | 
 | 			  unsigned int len) | 
 | { | 
 | 	struct sha256_state *sctx = shash_desc_ctx(desc); | 
 | 	unsigned int partial, done; | 
 | 	const u8 *src; | 
 | 	/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/ | 
 | 	u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__ | 
 | 		((aligned(STACK_ALIGN))); | 
 | 	u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT); | 
 | 	int ts_state; | 
 |  | 
 | 	partial = sctx->count & 0x3f; | 
 | 	sctx->count += len; | 
 | 	done = 0; | 
 | 	src = data; | 
 | 	memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE); | 
 |  | 
 | 	if ((partial + len) >= SHA256_BLOCK_SIZE) { | 
 |  | 
 | 		/* Append the bytes in state's buffer to a block to handle */ | 
 | 		if (partial) { | 
 | 			done = -partial; | 
 | 			memcpy(sctx->buf + partial, data, | 
 | 				done + SHA256_BLOCK_SIZE); | 
 | 			src = sctx->buf; | 
 | 			ts_state = irq_ts_save(); | 
 | 			asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" | 
 | 			: "+S"(src), "+D"(dst) | 
 | 			: "a"((long)-1), "c"((unsigned long)1)); | 
 | 			irq_ts_restore(ts_state); | 
 | 			done += SHA256_BLOCK_SIZE; | 
 | 			src = data + done; | 
 | 		} | 
 |  | 
 | 		/* Process the left bytes from input data*/ | 
 | 		if (len - done >= SHA256_BLOCK_SIZE) { | 
 | 			ts_state = irq_ts_save(); | 
 | 			asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" | 
 | 			: "+S"(src), "+D"(dst) | 
 | 			: "a"((long)-1), | 
 | 			"c"((unsigned long)((len - done) / 64))); | 
 | 			irq_ts_restore(ts_state); | 
 | 			done += ((len - done) - (len - done) % 64); | 
 | 			src = data + done; | 
 | 		} | 
 | 		partial = 0; | 
 | 	} | 
 | 	memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE); | 
 | 	memcpy(sctx->buf + partial, src, len - done); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out) | 
 | { | 
 | 	struct sha256_state *state = | 
 | 		(struct sha256_state *)shash_desc_ctx(desc); | 
 | 	unsigned int partial, padlen; | 
 | 	__be64 bits; | 
 | 	static const u8 padding[64] = { 0x80, }; | 
 |  | 
 | 	bits = cpu_to_be64(state->count << 3); | 
 |  | 
 | 	/* Pad out to 56 mod 64 */ | 
 | 	partial = state->count & 0x3f; | 
 | 	padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial); | 
 | 	padlock_sha256_update_nano(desc, padding, padlen); | 
 |  | 
 | 	/* Append length field bytes */ | 
 | 	padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits)); | 
 |  | 
 | 	/* Swap to output */ | 
 | 	padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int padlock_sha_export_nano(struct shash_desc *desc, | 
 | 				void *out) | 
 | { | 
 | 	int statesize = crypto_shash_statesize(desc->tfm); | 
 | 	void *sctx = shash_desc_ctx(desc); | 
 |  | 
 | 	memcpy(out, sctx, statesize); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int padlock_sha_import_nano(struct shash_desc *desc, | 
 | 				const void *in) | 
 | { | 
 | 	int statesize = crypto_shash_statesize(desc->tfm); | 
 | 	void *sctx = shash_desc_ctx(desc); | 
 |  | 
 | 	memcpy(sctx, in, statesize); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct shash_alg sha1_alg_nano = { | 
 | 	.digestsize	=	SHA1_DIGEST_SIZE, | 
 | 	.init		=	padlock_sha1_init_nano, | 
 | 	.update		=	padlock_sha1_update_nano, | 
 | 	.final		=	padlock_sha1_final_nano, | 
 | 	.export		=	padlock_sha_export_nano, | 
 | 	.import		=	padlock_sha_import_nano, | 
 | 	.descsize	=	sizeof(struct sha1_state), | 
 | 	.statesize	=	sizeof(struct sha1_state), | 
 | 	.base		=	{ | 
 | 		.cra_name		=	"sha1", | 
 | 		.cra_driver_name	=	"sha1-padlock-nano", | 
 | 		.cra_priority		=	PADLOCK_CRA_PRIORITY, | 
 | 		.cra_flags		=	CRYPTO_ALG_TYPE_SHASH, | 
 | 		.cra_blocksize		=	SHA1_BLOCK_SIZE, | 
 | 		.cra_module		=	THIS_MODULE, | 
 | 	} | 
 | }; | 
 |  | 
 | static struct shash_alg sha256_alg_nano = { | 
 | 	.digestsize	=	SHA256_DIGEST_SIZE, | 
 | 	.init		=	padlock_sha256_init_nano, | 
 | 	.update		=	padlock_sha256_update_nano, | 
 | 	.final		=	padlock_sha256_final_nano, | 
 | 	.export		=	padlock_sha_export_nano, | 
 | 	.import		=	padlock_sha_import_nano, | 
 | 	.descsize	=	sizeof(struct sha256_state), | 
 | 	.statesize	=	sizeof(struct sha256_state), | 
 | 	.base		=	{ | 
 | 		.cra_name		=	"sha256", | 
 | 		.cra_driver_name	=	"sha256-padlock-nano", | 
 | 		.cra_priority		=	PADLOCK_CRA_PRIORITY, | 
 | 		.cra_flags		=	CRYPTO_ALG_TYPE_SHASH, | 
 | 		.cra_blocksize		=	SHA256_BLOCK_SIZE, | 
 | 		.cra_module		=	THIS_MODULE, | 
 | 	} | 
 | }; | 
 |  | 
 | static int __init padlock_init(void) | 
 | { | 
 | 	int rc = -ENODEV; | 
 | 	struct cpuinfo_x86 *c = &cpu_data(0); | 
 | 	struct shash_alg *sha1; | 
 | 	struct shash_alg *sha256; | 
 |  | 
 | 	if (!cpu_has_phe) { | 
 | 		printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (!cpu_has_phe_enabled) { | 
 | 		printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* Register the newly added algorithm module if on * | 
 | 	* VIA Nano processor, or else just do as before */ | 
 | 	if (c->x86_model < 0x0f) { | 
 | 		sha1 = &sha1_alg; | 
 | 		sha256 = &sha256_alg; | 
 | 	} else { | 
 | 		sha1 = &sha1_alg_nano; | 
 | 		sha256 = &sha256_alg_nano; | 
 | 	} | 
 |  | 
 | 	rc = crypto_register_shash(sha1); | 
 | 	if (rc) | 
 | 		goto out; | 
 |  | 
 | 	rc = crypto_register_shash(sha256); | 
 | 	if (rc) | 
 | 		goto out_unreg1; | 
 |  | 
 | 	printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unreg1: | 
 | 	crypto_unregister_shash(sha1); | 
 |  | 
 | out: | 
 | 	printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n"); | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __exit padlock_fini(void) | 
 | { | 
 | 	struct cpuinfo_x86 *c = &cpu_data(0); | 
 |  | 
 | 	if (c->x86_model >= 0x0f) { | 
 | 		crypto_unregister_shash(&sha1_alg_nano); | 
 | 		crypto_unregister_shash(&sha256_alg_nano); | 
 | 	} else { | 
 | 		crypto_unregister_shash(&sha1_alg); | 
 | 		crypto_unregister_shash(&sha256_alg); | 
 | 	} | 
 | } | 
 |  | 
 | module_init(padlock_init); | 
 | module_exit(padlock_fini); | 
 |  | 
 | MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support."); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Michal Ludvig"); | 
 |  | 
 | MODULE_ALIAS("sha1-all"); | 
 | MODULE_ALIAS("sha256-all"); | 
 | MODULE_ALIAS("sha1-padlock"); | 
 | MODULE_ALIAS("sha256-padlock"); |