|  | /* | 
|  | * Copyright(c) 2007 Atheros Corporation. All rights reserved. | 
|  | * | 
|  | * Derived from Intel e1000 driver | 
|  | * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 59 | 
|  | * Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
|  | */ | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/mii.h> | 
|  | #include <linux/crc32.h> | 
|  |  | 
|  | #include "atl1e.h" | 
|  |  | 
|  | /* | 
|  | * check_eeprom_exist | 
|  | * return 0 if eeprom exist | 
|  | */ | 
|  | int atl1e_check_eeprom_exist(struct atl1e_hw *hw) | 
|  | { | 
|  | u32 value; | 
|  |  | 
|  | value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL); | 
|  | if (value & SPI_FLASH_CTRL_EN_VPD) { | 
|  | value &= ~SPI_FLASH_CTRL_EN_VPD; | 
|  | AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); | 
|  | } | 
|  | value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST); | 
|  | return ((value & 0xFF00) == 0x6C00) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | void atl1e_hw_set_mac_addr(struct atl1e_hw *hw) | 
|  | { | 
|  | u32 value; | 
|  | /* | 
|  | * 00-0B-6A-F6-00-DC | 
|  | * 0:  6AF600DC 1: 000B | 
|  | * low dword | 
|  | */ | 
|  | value = (((u32)hw->mac_addr[2]) << 24) | | 
|  | (((u32)hw->mac_addr[3]) << 16) | | 
|  | (((u32)hw->mac_addr[4]) << 8)  | | 
|  | (((u32)hw->mac_addr[5])) ; | 
|  | AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); | 
|  | /* hight dword */ | 
|  | value = (((u32)hw->mac_addr[0]) << 8) | | 
|  | (((u32)hw->mac_addr[1])) ; | 
|  | AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * atl1e_get_permanent_address | 
|  | * return 0 if get valid mac address, | 
|  | */ | 
|  | static int atl1e_get_permanent_address(struct atl1e_hw *hw) | 
|  | { | 
|  | u32 addr[2]; | 
|  | u32 i; | 
|  | u32 twsi_ctrl_data; | 
|  | u8  eth_addr[ETH_ALEN]; | 
|  |  | 
|  | if (is_valid_ether_addr(hw->perm_mac_addr)) | 
|  | return 0; | 
|  |  | 
|  | /* init */ | 
|  | addr[0] = addr[1] = 0; | 
|  |  | 
|  | if (!atl1e_check_eeprom_exist(hw)) { | 
|  | /* eeprom exist */ | 
|  | twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); | 
|  | twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; | 
|  | AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); | 
|  | for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { | 
|  | msleep(10); | 
|  | twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL); | 
|  | if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) | 
|  | break; | 
|  | } | 
|  | if (i >= AT_TWSI_EEPROM_TIMEOUT) | 
|  | return AT_ERR_TIMEOUT; | 
|  | } | 
|  |  | 
|  | /* maybe MAC-address is from BIOS */ | 
|  | addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR); | 
|  | addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4); | 
|  | *(u32 *) ð_addr[2] = swab32(addr[0]); | 
|  | *(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]); | 
|  |  | 
|  | if (is_valid_ether_addr(eth_addr)) { | 
|  | memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return AT_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value) | 
|  | { | 
|  | int i; | 
|  | u32 control; | 
|  |  | 
|  | if (offset & 3) | 
|  | return false; /* address do not align */ | 
|  |  | 
|  | AT_WRITE_REG(hw, REG_VPD_DATA, 0); | 
|  | control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; | 
|  | AT_WRITE_REG(hw, REG_VPD_CAP, control); | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  | msleep(2); | 
|  | control = AT_READ_REG(hw, REG_VPD_CAP); | 
|  | if (control & VPD_CAP_VPD_FLAG) | 
|  | break; | 
|  | } | 
|  | if (control & VPD_CAP_VPD_FLAG) { | 
|  | *p_value = AT_READ_REG(hw, REG_VPD_DATA); | 
|  | return true; | 
|  | } | 
|  | return false; /* timeout */ | 
|  | } | 
|  |  | 
|  | void atl1e_force_ps(struct atl1e_hw *hw) | 
|  | { | 
|  | AT_WRITE_REGW(hw, REG_GPHY_CTRL, | 
|  | GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads the adapter's MAC address from the EEPROM | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | */ | 
|  | int atl1e_read_mac_addr(struct atl1e_hw *hw) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | err = atl1e_get_permanent_address(hw); | 
|  | if (err) | 
|  | return AT_ERR_EEPROM; | 
|  | memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * atl1e_hash_mc_addr | 
|  | *  purpose | 
|  | *      set hash value for a multicast address | 
|  | */ | 
|  | u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 crc32; | 
|  | u32 value = 0; | 
|  | int i; | 
|  |  | 
|  | crc32 = ether_crc_le(6, mc_addr); | 
|  | for (i = 0; i < 32; i++) | 
|  | value |= (((crc32 >> i) & 1) << (31 - i)); | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets the bit in the multicast table corresponding to the hash value. | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * hash_value - Multicast address hash value | 
|  | */ | 
|  | void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value) | 
|  | { | 
|  | u32 hash_bit, hash_reg; | 
|  | u32 mta; | 
|  |  | 
|  | /* | 
|  | * The HASH Table  is a register array of 2 32-bit registers. | 
|  | * It is treated like an array of 64 bits.  We want to set | 
|  | * bit BitArray[hash_value]. So we figure out what register | 
|  | * the bit is in, read it, OR in the new bit, then write | 
|  | * back the new value.  The register is determined by the | 
|  | * upper 7 bits of the hash value and the bit within that | 
|  | * register are determined by the lower 5 bits of the value. | 
|  | */ | 
|  | hash_reg = (hash_value >> 31) & 0x1; | 
|  | hash_bit = (hash_value >> 26) & 0x1F; | 
|  |  | 
|  | mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); | 
|  |  | 
|  | mta |= (1 << hash_bit); | 
|  |  | 
|  | AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); | 
|  | } | 
|  | /* | 
|  | * Reads the value from a PHY register | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * reg_addr - address of the PHY register to read | 
|  | */ | 
|  | int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data) | 
|  | { | 
|  | u32 val; | 
|  | int i; | 
|  |  | 
|  | val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | | 
|  | MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | | 
|  | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; | 
|  |  | 
|  | AT_WRITE_REG(hw, REG_MDIO_CTRL, val); | 
|  |  | 
|  | wmb(); | 
|  |  | 
|  | for (i = 0; i < MDIO_WAIT_TIMES; i++) { | 
|  | udelay(2); | 
|  | val = AT_READ_REG(hw, REG_MDIO_CTRL); | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) | 
|  | break; | 
|  | wmb(); | 
|  | } | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) { | 
|  | *phy_data = (u16)val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return AT_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes a value to a PHY register | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * reg_addr - address of the PHY register to write | 
|  | * data - data to write to the PHY | 
|  | */ | 
|  | int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data) | 
|  | { | 
|  | int i; | 
|  | u32 val; | 
|  |  | 
|  | val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | | 
|  | (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | | 
|  | MDIO_SUP_PREAMBLE | | 
|  | MDIO_START | | 
|  | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; | 
|  |  | 
|  | AT_WRITE_REG(hw, REG_MDIO_CTRL, val); | 
|  | wmb(); | 
|  |  | 
|  | for (i = 0; i < MDIO_WAIT_TIMES; i++) { | 
|  | udelay(2); | 
|  | val = AT_READ_REG(hw, REG_MDIO_CTRL); | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) | 
|  | break; | 
|  | wmb(); | 
|  | } | 
|  |  | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) | 
|  | return 0; | 
|  |  | 
|  | return AT_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * atl1e_init_pcie - init PCIE module | 
|  | */ | 
|  | static void atl1e_init_pcie(struct atl1e_hw *hw) | 
|  | { | 
|  | u32 value; | 
|  | /* comment 2lines below to save more power when sususpend | 
|  | value = LTSSM_TEST_MODE_DEF; | 
|  | AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value); | 
|  | */ | 
|  |  | 
|  | /* pcie flow control mode change */ | 
|  | value = AT_READ_REG(hw, 0x1008); | 
|  | value |= 0x8000; | 
|  | AT_WRITE_REG(hw, 0x1008, value); | 
|  | } | 
|  | /* | 
|  | * Configures PHY autoneg and flow control advertisement settings | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | */ | 
|  | static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 mii_autoneg_adv_reg; | 
|  | u16 mii_1000t_ctrl_reg; | 
|  |  | 
|  | if (0 != hw->mii_autoneg_adv_reg) | 
|  | return 0; | 
|  | /* Read the MII Auto-Neg Advertisement Register (Address 4/9). */ | 
|  | mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; | 
|  | mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK; | 
|  |  | 
|  | /* | 
|  | * Need to parse autoneg_advertised  and set up | 
|  | * the appropriate PHY registers.  First we will parse for | 
|  | * autoneg_advertised software override.  Since we can advertise | 
|  | * a plethora of combinations, we need to check each bit | 
|  | * individually. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * First we clear all the 10/100 mb speed bits in the Auto-Neg | 
|  | * Advertisement Register (Address 4) and the 1000 mb speed bits in | 
|  | * the  1000Base-T control Register (Address 9). | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; | 
|  | mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK; | 
|  |  | 
|  | /* | 
|  | * Need to parse MediaType and setup the | 
|  | * appropriate PHY registers. | 
|  | */ | 
|  | switch (hw->media_type) { | 
|  | case MEDIA_TYPE_AUTO_SENSOR: | 
|  | mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS   | | 
|  | MII_AR_10T_FD_CAPS   | | 
|  | MII_AR_100TX_HD_CAPS | | 
|  | MII_AR_100TX_FD_CAPS); | 
|  | hw->autoneg_advertised = ADVERTISE_10_HALF  | | 
|  | ADVERTISE_10_FULL  | | 
|  | ADVERTISE_100_HALF | | 
|  | ADVERTISE_100_FULL; | 
|  | if (hw->nic_type == athr_l1e) { | 
|  | mii_1000t_ctrl_reg |= | 
|  | MII_AT001_CR_1000T_FD_CAPS; | 
|  | hw->autoneg_advertised |= ADVERTISE_1000_FULL; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case MEDIA_TYPE_100M_FULL: | 
|  | mii_autoneg_adv_reg   |= MII_AR_100TX_FD_CAPS; | 
|  | hw->autoneg_advertised = ADVERTISE_100_FULL; | 
|  | break; | 
|  |  | 
|  | case MEDIA_TYPE_100M_HALF: | 
|  | mii_autoneg_adv_reg   |= MII_AR_100TX_HD_CAPS; | 
|  | hw->autoneg_advertised = ADVERTISE_100_HALF; | 
|  | break; | 
|  |  | 
|  | case MEDIA_TYPE_10M_FULL: | 
|  | mii_autoneg_adv_reg   |= MII_AR_10T_FD_CAPS; | 
|  | hw->autoneg_advertised = ADVERTISE_10_FULL; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | mii_autoneg_adv_reg   |= MII_AR_10T_HD_CAPS; | 
|  | hw->autoneg_advertised = ADVERTISE_10_HALF; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* flow control fixed to enable all */ | 
|  | mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); | 
|  |  | 
|  | hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; | 
|  | hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg; | 
|  |  | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_AT001_CR, | 
|  | mii_1000t_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Resets the PHY and make all config validate | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sets bit 15 and 12 of the MII control regiser (for F001 bug) | 
|  | */ | 
|  | int atl1e_phy_commit(struct atl1e_hw *hw) | 
|  | { | 
|  | struct atl1e_adapter *adapter = hw->adapter; | 
|  | int ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG; | 
|  |  | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data); | 
|  | if (ret_val) { | 
|  | u32 val; | 
|  | int i; | 
|  | /************************************** | 
|  | * pcie serdes link may be down ! | 
|  | **************************************/ | 
|  | for (i = 0; i < 25; i++) { | 
|  | msleep(1); | 
|  | val = AT_READ_REG(hw, REG_MDIO_CTRL); | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (0 != (val & (MDIO_START | MDIO_BUSY))) { | 
|  | netdev_err(adapter->netdev, | 
|  | "pcie linkdown at least for 25ms\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int atl1e_phy_init(struct atl1e_hw *hw) | 
|  | { | 
|  | struct atl1e_adapter *adapter = hw->adapter; | 
|  | s32 ret_val; | 
|  | u16 phy_val; | 
|  |  | 
|  | if (hw->phy_configured) { | 
|  | if (hw->re_autoneg) { | 
|  | hw->re_autoneg = false; | 
|  | return atl1e_restart_autoneg(hw); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* RESET GPHY Core */ | 
|  | AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT); | 
|  | msleep(2); | 
|  | AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT | | 
|  | GPHY_CTRL_EXT_RESET); | 
|  | msleep(2); | 
|  |  | 
|  | /* patches */ | 
|  | /* p1. eable hibernation mode */ | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* p2. set Class A/B for all modes */ | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_val = 0x02ef; | 
|  | /* remove Class AB */ | 
|  | /* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */ | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* p3. 10B ??? */ | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* p4. 1000T power */ | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | msleep(1); | 
|  |  | 
|  | /*Enable PHY LinkChange Interrupt */ | 
|  | ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00); | 
|  | if (ret_val) { | 
|  | netdev_err(adapter->netdev, | 
|  | "Error enable PHY linkChange Interrupt\n"); | 
|  | return ret_val; | 
|  | } | 
|  | /* setup AutoNeg parameters */ | 
|  | ret_val = atl1e_phy_setup_autoneg_adv(hw); | 
|  | if (ret_val) { | 
|  | netdev_err(adapter->netdev, | 
|  | "Error Setting up Auto-Negotiation\n"); | 
|  | return ret_val; | 
|  | } | 
|  | /* SW.Reset & En-Auto-Neg to restart Auto-Neg*/ | 
|  | netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n"); | 
|  | ret_val = atl1e_phy_commit(hw); | 
|  | if (ret_val) { | 
|  | netdev_err(adapter->netdev, "Error resetting the phy\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | hw->phy_configured = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset the transmit and receive units; mask and clear all interrupts. | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * return : 0  or  idle status (if error) | 
|  | */ | 
|  | int atl1e_reset_hw(struct atl1e_hw *hw) | 
|  | { | 
|  | struct atl1e_adapter *adapter = hw->adapter; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | u32 idle_status_data = 0; | 
|  | u16 pci_cfg_cmd_word = 0; | 
|  | int timeout = 0; | 
|  |  | 
|  | /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */ | 
|  | pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word); | 
|  | if ((pci_cfg_cmd_word & (CMD_IO_SPACE | | 
|  | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) | 
|  | != (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) { | 
|  | pci_cfg_cmd_word |= (CMD_IO_SPACE | | 
|  | CMD_MEMORY_SPACE | CMD_BUS_MASTER); | 
|  | pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Issue Soft Reset to the MAC.  This will reset the chip's | 
|  | * transmit, receive, DMA.  It will not effect | 
|  | * the current PCI configuration.  The global reset bit is self- | 
|  | * clearing, and should clear within a microsecond. | 
|  | */ | 
|  | AT_WRITE_REG(hw, REG_MASTER_CTRL, | 
|  | MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST); | 
|  | wmb(); | 
|  | msleep(1); | 
|  |  | 
|  | /* Wait at least 10ms for All module to be Idle */ | 
|  | for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) { | 
|  | idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS); | 
|  | if (idle_status_data == 0) | 
|  | break; | 
|  | msleep(1); | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | if (timeout >= AT_HW_MAX_IDLE_DELAY) { | 
|  | netdev_err(adapter->netdev, | 
|  | "MAC state machine can't be idle since disabled for 10ms second\n"); | 
|  | return AT_ERR_TIMEOUT; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Performs basic configuration of the adapter. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * Assumes that the controller has previously been reset and is in a | 
|  | * post-reset uninitialized state. Initializes multicast table, | 
|  | * and  Calls routines to setup link | 
|  | * Leaves the transmit and receive units disabled and uninitialized. | 
|  | */ | 
|  | int atl1e_init_hw(struct atl1e_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | atl1e_init_pcie(hw); | 
|  |  | 
|  | /* Zero out the Multicast HASH table */ | 
|  | /* clear the old settings from the multicast hash table */ | 
|  | AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); | 
|  | AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); | 
|  |  | 
|  | ret_val = atl1e_phy_init(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detects the current speed and duplex settings of the hardware. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * speed - Speed of the connection | 
|  | * duplex - Duplex setting of the connection | 
|  | */ | 
|  | int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex) | 
|  | { | 
|  | int err; | 
|  | u16 phy_data; | 
|  |  | 
|  | /* Read   PHY Specific Status Register (17) */ | 
|  | err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED)) | 
|  | return AT_ERR_PHY_RES; | 
|  |  | 
|  | switch (phy_data & MII_AT001_PSSR_SPEED) { | 
|  | case MII_AT001_PSSR_1000MBS: | 
|  | *speed = SPEED_1000; | 
|  | break; | 
|  | case MII_AT001_PSSR_100MBS: | 
|  | *speed = SPEED_100; | 
|  | break; | 
|  | case MII_AT001_PSSR_10MBS: | 
|  | *speed = SPEED_10; | 
|  | break; | 
|  | default: | 
|  | return AT_ERR_PHY_SPEED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (phy_data & MII_AT001_PSSR_DPLX) | 
|  | *duplex = FULL_DUPLEX; | 
|  | else | 
|  | *duplex = HALF_DUPLEX; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int atl1e_restart_autoneg(struct atl1e_hw *hw) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) { | 
|  | err = atl1e_write_phy_reg(hw, MII_AT001_CR, | 
|  | hw->mii_1000t_ctrl_reg); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = atl1e_write_phy_reg(hw, MII_BMCR, | 
|  | MII_CR_RESET | MII_CR_AUTO_NEG_EN | | 
|  | MII_CR_RESTART_AUTO_NEG); | 
|  | return err; | 
|  | } | 
|  |  |