|  | /* bnx2x_init_ops.h: Broadcom Everest network driver. | 
|  | *               Static functions needed during the initialization. | 
|  | *               This file is "included" in bnx2x_main.c. | 
|  | * | 
|  | * Copyright (c) 2007-2010 Broadcom Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * Maintained by: Eilon Greenstein <eilong@broadcom.com> | 
|  | * Written by: Vladislav Zolotarov <vladz@broadcom.com> | 
|  | */ | 
|  |  | 
|  | #ifndef BNX2X_INIT_OPS_H | 
|  | #define BNX2X_INIT_OPS_H | 
|  |  | 
|  | static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len); | 
|  |  | 
|  |  | 
|  | static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, | 
|  | u32 len) | 
|  | { | 
|  | u32 i; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | REG_WR(bp, addr + i*4, data[i]); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, | 
|  | u32 len) | 
|  | { | 
|  | u32 i; | 
|  |  | 
|  | for (i = 0; i < len; i++) | 
|  | REG_WR_IND(bp, addr + i*4, data[i]); | 
|  | } | 
|  |  | 
|  | static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len) | 
|  | { | 
|  | if (bp->dmae_ready) | 
|  | bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); | 
|  | else | 
|  | bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) | 
|  | { | 
|  | u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4)); | 
|  | u32 buf_len32 = buf_len/4; | 
|  | u32 i; | 
|  |  | 
|  | memset(GUNZIP_BUF(bp), (u8)fill, buf_len); | 
|  |  | 
|  | for (i = 0; i < len; i += buf_len32) { | 
|  | u32 cur_len = min(buf_len32, len - i); | 
|  |  | 
|  | bnx2x_write_big_buf(bp, addr + i*4, cur_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, | 
|  | u32 len64) | 
|  | { | 
|  | u32 buf_len32 = FW_BUF_SIZE/4; | 
|  | u32 len = len64*2; | 
|  | u64 data64 = 0; | 
|  | u32 i; | 
|  |  | 
|  | /* 64 bit value is in a blob: first low DWORD, then high DWORD */ | 
|  | data64 = HILO_U64((*(data + 1)), (*data)); | 
|  |  | 
|  | len64 = min((u32)(FW_BUF_SIZE/8), len64); | 
|  | for (i = 0; i < len64; i++) { | 
|  | u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i; | 
|  |  | 
|  | *pdata = data64; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < len; i += buf_len32) { | 
|  | u32 cur_len = min(buf_len32, len - i); | 
|  |  | 
|  | bnx2x_write_big_buf(bp, addr + i*4, cur_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /********************************************************* | 
|  | There are different blobs for each PRAM section. | 
|  | In addition, each blob write operation is divided into a few operations | 
|  | in order to decrease the amount of phys. contiguous buffer needed. | 
|  | Thus, when we select a blob the address may be with some offset | 
|  | from the beginning of PRAM section. | 
|  | The same holds for the INT_TABLE sections. | 
|  | **********************************************************/ | 
|  | #define IF_IS_INT_TABLE_ADDR(base, addr) \ | 
|  | if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) | 
|  |  | 
|  | #define IF_IS_PRAM_ADDR(base, addr) \ | 
|  | if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) | 
|  |  | 
|  | static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data) | 
|  | { | 
|  | IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) | 
|  | data = INIT_TSEM_INT_TABLE_DATA(bp); | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) | 
|  | data = INIT_CSEM_INT_TABLE_DATA(bp); | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) | 
|  | data = INIT_USEM_INT_TABLE_DATA(bp); | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) | 
|  | data = INIT_XSEM_INT_TABLE_DATA(bp); | 
|  | else | 
|  | IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) | 
|  | data = INIT_TSEM_PRAM_DATA(bp); | 
|  | else | 
|  | IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) | 
|  | data = INIT_CSEM_PRAM_DATA(bp); | 
|  | else | 
|  | IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) | 
|  | data = INIT_USEM_PRAM_DATA(bp); | 
|  | else | 
|  | IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) | 
|  | data = INIT_XSEM_PRAM_DATA(bp); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len) | 
|  | { | 
|  | if (bp->dmae_ready) | 
|  | bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len); | 
|  | else | 
|  | bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, | 
|  | u32 len) | 
|  | { | 
|  | const u32 *old_data = data; | 
|  |  | 
|  | data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data); | 
|  |  | 
|  | if (bp->dmae_ready) { | 
|  | if (old_data != data) | 
|  | VIRT_WR_DMAE_LEN(bp, data, addr, len, 1); | 
|  | else | 
|  | VIRT_WR_DMAE_LEN(bp, data, addr, len, 0); | 
|  | } else | 
|  | bnx2x_init_ind_wr(bp, addr, data, len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off) | 
|  | { | 
|  | const u8 *data = NULL; | 
|  | int rc; | 
|  | u32 i; | 
|  |  | 
|  | data = bnx2x_sel_blob(bp, addr, data) + blob_off*4; | 
|  |  | 
|  | rc = bnx2x_gunzip(bp, data, len); | 
|  | if (rc) | 
|  | return; | 
|  |  | 
|  | /* gunzip_outlen is in dwords */ | 
|  | len = GUNZIP_OUTLEN(bp); | 
|  | for (i = 0; i < len; i++) | 
|  | ((u32 *)GUNZIP_BUF(bp))[i] = | 
|  | cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]); | 
|  |  | 
|  | bnx2x_write_big_buf_wb(bp, addr, len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage) | 
|  | { | 
|  | u16 op_start = | 
|  | INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)]; | 
|  | u16 op_end = | 
|  | INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)]; | 
|  | union init_op *op; | 
|  | int hw_wr; | 
|  | u32 i, op_type, addr, len; | 
|  | const u32 *data, *data_base; | 
|  |  | 
|  | /* If empty block */ | 
|  | if (op_start == op_end) | 
|  | return; | 
|  |  | 
|  | if (CHIP_REV_IS_FPGA(bp)) | 
|  | hw_wr = OP_WR_FPGA; | 
|  | else if (CHIP_REV_IS_EMUL(bp)) | 
|  | hw_wr = OP_WR_EMUL; | 
|  | else | 
|  | hw_wr = OP_WR_ASIC; | 
|  |  | 
|  | data_base = INIT_DATA(bp); | 
|  |  | 
|  | for (i = op_start; i < op_end; i++) { | 
|  |  | 
|  | op = (union init_op *)&(INIT_OPS(bp)[i]); | 
|  |  | 
|  | op_type = op->str_wr.op; | 
|  | addr = op->str_wr.offset; | 
|  | len = op->str_wr.data_len; | 
|  | data = data_base + op->str_wr.data_off; | 
|  |  | 
|  | /* HW/EMUL specific */ | 
|  | if ((op_type > OP_WB) && (op_type == hw_wr)) | 
|  | op_type = OP_WR; | 
|  |  | 
|  | switch (op_type) { | 
|  | case OP_RD: | 
|  | REG_RD(bp, addr); | 
|  | break; | 
|  | case OP_WR: | 
|  | REG_WR(bp, addr, op->write.val); | 
|  | break; | 
|  | case OP_SW: | 
|  | bnx2x_init_str_wr(bp, addr, data, len); | 
|  | break; | 
|  | case OP_WB: | 
|  | bnx2x_init_wr_wb(bp, addr, data, len); | 
|  | break; | 
|  | case OP_SI: | 
|  | bnx2x_init_ind_wr(bp, addr, data, len); | 
|  | break; | 
|  | case OP_ZR: | 
|  | bnx2x_init_fill(bp, addr, 0, op->zero.len); | 
|  | break; | 
|  | case OP_ZP: | 
|  | bnx2x_init_wr_zp(bp, addr, len, | 
|  | op->str_wr.data_off); | 
|  | break; | 
|  | case OP_WR_64: | 
|  | bnx2x_init_wr_64(bp, addr, data, len); | 
|  | break; | 
|  | default: | 
|  | /* happens whenever an op is of a diff HW */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /**************************************************************************** | 
|  | * PXP Arbiter | 
|  | ****************************************************************************/ | 
|  | /* | 
|  | * This code configures the PCI read/write arbiter | 
|  | * which implements a weighted round robin | 
|  | * between the virtual queues in the chip. | 
|  | * | 
|  | * The values were derived for each PCI max payload and max request size. | 
|  | * since max payload and max request size are only known at run time, | 
|  | * this is done as a separate init stage. | 
|  | */ | 
|  |  | 
|  | #define NUM_WR_Q			13 | 
|  | #define NUM_RD_Q			29 | 
|  | #define MAX_RD_ORD			3 | 
|  | #define MAX_WR_ORD			2 | 
|  |  | 
|  | /* configuration for one arbiter queue */ | 
|  | struct arb_line { | 
|  | int l; | 
|  | int add; | 
|  | int ubound; | 
|  | }; | 
|  |  | 
|  | /* derived configuration for each read queue for each max request size */ | 
|  | static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { | 
|  | /* 1 */	{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, | 
|  | { {4, 8,  4},  {4,  8,  4},  {4,  8,  4},  {4,  8,  4}  }, | 
|  | { {4, 3,  3},  {4,  3,  3},  {4,  3,  3},  {4,  3,  3}  }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {16, 3,  11}, {16, 3,  11} }, | 
|  | { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {64, 3,  41} }, | 
|  | /* 10 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 64, 6},  {16, 64, 11}, {32, 64, 21}, {32, 64, 21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | /* 20 */{ {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 3,  6},  {16, 3,  11}, {32, 3,  21}, {32, 3,  21} }, | 
|  | { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} } | 
|  | }; | 
|  |  | 
|  | /* derived configuration for each write queue for each max request size */ | 
|  | static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { | 
|  | /* 1 */	{ {4, 6,  3},  {4,  6,  3},  {4,  6,  3} }, | 
|  | { {4, 2,  3},  {4,  2,  3},  {4,  2,  3} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {32, 2,  21} }, | 
|  | { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} }, | 
|  | { {8, 2,  6},  {16, 2,  11}, {16, 2,  11} }, | 
|  | /* 10 */{ {8, 9,  6},  {16, 9,  11}, {32, 9,  21} }, | 
|  | { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} }, | 
|  | { {8, 9,  6},  {16, 9,  11}, {16, 9,  11} }, | 
|  | { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} } | 
|  | }; | 
|  |  | 
|  | /* register addresses for read queues */ | 
|  | static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { | 
|  | /* 1 */	{PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND0}, | 
|  | {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, | 
|  | PXP2_REG_PSWRQ_BW_UB1}, | 
|  | {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, | 
|  | PXP2_REG_PSWRQ_BW_UB2}, | 
|  | {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, | 
|  | PXP2_REG_PSWRQ_BW_UB3}, | 
|  | {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND4}, | 
|  | {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND5}, | 
|  | {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, | 
|  | PXP2_REG_PSWRQ_BW_UB6}, | 
|  | {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, | 
|  | PXP2_REG_PSWRQ_BW_UB7}, | 
|  | {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, | 
|  | PXP2_REG_PSWRQ_BW_UB8}, | 
|  | /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, | 
|  | PXP2_REG_PSWRQ_BW_UB9}, | 
|  | {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, | 
|  | PXP2_REG_PSWRQ_BW_UB10}, | 
|  | {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, | 
|  | PXP2_REG_PSWRQ_BW_UB11}, | 
|  | {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND12}, | 
|  | {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND13}, | 
|  | {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND14}, | 
|  | {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND15}, | 
|  | {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND16}, | 
|  | {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND17}, | 
|  | {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND18}, | 
|  | /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND19}, | 
|  | {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND20}, | 
|  | {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND22}, | 
|  | {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND23}, | 
|  | {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND24}, | 
|  | {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND25}, | 
|  | {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND26}, | 
|  | {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND27}, | 
|  | {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, | 
|  | PXP2_REG_PSWRQ_BW_UB28} | 
|  | }; | 
|  |  | 
|  | /* register addresses for write queues */ | 
|  | static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { | 
|  | /* 1 */	{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, | 
|  | PXP2_REG_PSWRQ_BW_UB1}, | 
|  | {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, | 
|  | PXP2_REG_PSWRQ_BW_UB2}, | 
|  | {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, | 
|  | PXP2_REG_PSWRQ_BW_UB3}, | 
|  | {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, | 
|  | PXP2_REG_PSWRQ_BW_UB6}, | 
|  | {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, | 
|  | PXP2_REG_PSWRQ_BW_UB7}, | 
|  | {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, | 
|  | PXP2_REG_PSWRQ_BW_UB8}, | 
|  | {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, | 
|  | PXP2_REG_PSWRQ_BW_UB9}, | 
|  | {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, | 
|  | PXP2_REG_PSWRQ_BW_UB10}, | 
|  | {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, | 
|  | PXP2_REG_PSWRQ_BW_UB11}, | 
|  | /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, | 
|  | PXP2_REG_PSWRQ_BW_UB28}, | 
|  | {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, | 
|  | PXP2_REG_RQ_BW_WR_UBOUND29}, | 
|  | {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, | 
|  | PXP2_REG_RQ_BW_WR_UBOUND30} | 
|  | }; | 
|  |  | 
|  | static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order) | 
|  | { | 
|  | u32 val, i; | 
|  |  | 
|  | if (r_order > MAX_RD_ORD) { | 
|  | DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n", | 
|  | r_order, MAX_RD_ORD); | 
|  | r_order = MAX_RD_ORD; | 
|  | } | 
|  | if (w_order > MAX_WR_ORD) { | 
|  | DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n", | 
|  | w_order, MAX_WR_ORD); | 
|  | w_order = MAX_WR_ORD; | 
|  | } | 
|  | if (CHIP_REV_IS_FPGA(bp)) { | 
|  | DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); | 
|  | w_order = 0; | 
|  | } | 
|  | DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order); | 
|  |  | 
|  | for (i = 0; i < NUM_RD_Q-1; i++) { | 
|  | REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); | 
|  | REG_WR(bp, read_arb_addr[i].add, | 
|  | read_arb_data[i][r_order].add); | 
|  | REG_WR(bp, read_arb_addr[i].ubound, | 
|  | read_arb_data[i][r_order].ubound); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NUM_WR_Q-1; i++) { | 
|  | if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || | 
|  | (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].l, | 
|  | write_arb_data[i][w_order].l); | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].add, | 
|  | write_arb_data[i][w_order].add); | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].ubound, | 
|  | write_arb_data[i][w_order].ubound); | 
|  | } else { | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].l); | 
|  | REG_WR(bp, write_arb_addr[i].l, | 
|  | val | (write_arb_data[i][w_order].l << 10)); | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].add); | 
|  | REG_WR(bp, write_arb_addr[i].add, | 
|  | val | (write_arb_data[i][w_order].add << 10)); | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].ubound); | 
|  | REG_WR(bp, write_arb_addr[i].ubound, | 
|  | val | (write_arb_data[i][w_order].ubound << 7)); | 
|  | } | 
|  | } | 
|  |  | 
|  | val =  write_arb_data[NUM_WR_Q-1][w_order].add; | 
|  | val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; | 
|  | val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; | 
|  | REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); | 
|  |  | 
|  | val =  read_arb_data[NUM_RD_Q-1][r_order].add; | 
|  | val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; | 
|  | val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; | 
|  | REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); | 
|  |  | 
|  | if (r_order == MAX_RD_ORD) | 
|  | REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); | 
|  |  | 
|  | if (CHIP_IS_E1H(bp)) { | 
|  | /*    MPS      w_order     optimal TH      presently TH | 
|  | *    128         0             0               2 | 
|  | *    256         1             1               3 | 
|  | *    >=512       2             2               3 | 
|  | */ | 
|  | val = ((w_order == 0) ? 2 : 3); | 
|  | REG_WR(bp, PXP2_REG_WR_HC_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_USDM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_QM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_TM_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_SRC_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_DBG_MPS, val); | 
|  | REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */ | 
|  | REG_WR(bp, PXP2_REG_WR_CDU_MPS, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* BNX2X_INIT_OPS_H */ |