|  | /* | 
|  | *  libata-bmdma.c - helper library for PCI IDE BMDMA | 
|  | * | 
|  | *  Maintained by:  Jeff Garzik <jgarzik@pobox.com> | 
|  | *    		    Please ALWAYS copy linux-ide@vger.kernel.org | 
|  | *		    on emails. | 
|  | * | 
|  | *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved. | 
|  | *  Copyright 2003-2006 Jeff Garzik | 
|  | * | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2, or (at your option) | 
|  | *  any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; see the file COPYING.  If not, write to | 
|  | *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * | 
|  | *  libata documentation is available via 'make {ps|pdf}docs', | 
|  | *  as Documentation/DocBook/libata.* | 
|  | * | 
|  | *  Hardware documentation available from http://www.t13.org/ and | 
|  | *  http://www.sata-io.org/ | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/libata.h> | 
|  |  | 
|  | #include "libata.h" | 
|  |  | 
|  | /** | 
|  | *	ata_irq_on - Enable interrupts on a port. | 
|  | *	@ap: Port on which interrupts are enabled. | 
|  | * | 
|  | *	Enable interrupts on a legacy IDE device using MMIO or PIO, | 
|  | *	wait for idle, clear any pending interrupts. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | u8 ata_irq_on(struct ata_port *ap) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  | u8 tmp; | 
|  |  | 
|  | ap->ctl &= ~ATA_NIEN; | 
|  | ap->last_ctl = ap->ctl; | 
|  |  | 
|  | iowrite8(ap->ctl, ioaddr->ctl_addr); | 
|  | tmp = ata_wait_idle(ap); | 
|  |  | 
|  | ap->ops->irq_clear(ap); | 
|  |  | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | u8 ata_dummy_irq_on (struct ata_port *ap) 	{ return 0; } | 
|  |  | 
|  | /** | 
|  | *	ata_irq_ack - Acknowledge a device interrupt. | 
|  | *	@ap: Port on which interrupts are enabled. | 
|  | * | 
|  | *	Wait up to 10 ms for legacy IDE device to become idle (BUSY | 
|  | *	or BUSY+DRQ clear).  Obtain dma status and port status from | 
|  | *	device.  Clear the interrupt.  Return port status. | 
|  | * | 
|  | *	LOCKING: | 
|  | */ | 
|  |  | 
|  | u8 ata_irq_ack(struct ata_port *ap, unsigned int chk_drq) | 
|  | { | 
|  | unsigned int bits = chk_drq ? ATA_BUSY | ATA_DRQ : ATA_BUSY; | 
|  | u8 host_stat, post_stat, status; | 
|  |  | 
|  | status = ata_busy_wait(ap, bits, 1000); | 
|  | if (status & bits) | 
|  | if (ata_msg_err(ap)) | 
|  | printk(KERN_ERR "abnormal status 0x%X\n", status); | 
|  |  | 
|  | /* get controller status; clear intr, err bits */ | 
|  | host_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); | 
|  | iowrite8(host_stat | ATA_DMA_INTR | ATA_DMA_ERR, | 
|  | ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); | 
|  |  | 
|  | post_stat = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); | 
|  |  | 
|  | if (ata_msg_intr(ap)) | 
|  | printk(KERN_INFO "%s: irq ack: host_stat 0x%X, new host_stat 0x%X, drv_stat 0x%X\n", | 
|  | __FUNCTION__, | 
|  | host_stat, post_stat, status); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | u8 ata_dummy_irq_ack(struct ata_port *ap, unsigned int chk_drq) { return 0; } | 
|  |  | 
|  | /** | 
|  | *	ata_tf_load - send taskfile registers to host controller | 
|  | *	@ap: Port to which output is sent | 
|  | *	@tf: ATA taskfile register set | 
|  | * | 
|  | *	Outputs ATA taskfile to standard ATA host controller. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  |  | 
|  | void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  | unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; | 
|  |  | 
|  | if (tf->ctl != ap->last_ctl) { | 
|  | iowrite8(tf->ctl, ioaddr->ctl_addr); | 
|  | ap->last_ctl = tf->ctl; | 
|  | ata_wait_idle(ap); | 
|  | } | 
|  |  | 
|  | if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { | 
|  | iowrite8(tf->hob_feature, ioaddr->feature_addr); | 
|  | iowrite8(tf->hob_nsect, ioaddr->nsect_addr); | 
|  | iowrite8(tf->hob_lbal, ioaddr->lbal_addr); | 
|  | iowrite8(tf->hob_lbam, ioaddr->lbam_addr); | 
|  | iowrite8(tf->hob_lbah, ioaddr->lbah_addr); | 
|  | VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", | 
|  | tf->hob_feature, | 
|  | tf->hob_nsect, | 
|  | tf->hob_lbal, | 
|  | tf->hob_lbam, | 
|  | tf->hob_lbah); | 
|  | } | 
|  |  | 
|  | if (is_addr) { | 
|  | iowrite8(tf->feature, ioaddr->feature_addr); | 
|  | iowrite8(tf->nsect, ioaddr->nsect_addr); | 
|  | iowrite8(tf->lbal, ioaddr->lbal_addr); | 
|  | iowrite8(tf->lbam, ioaddr->lbam_addr); | 
|  | iowrite8(tf->lbah, ioaddr->lbah_addr); | 
|  | VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", | 
|  | tf->feature, | 
|  | tf->nsect, | 
|  | tf->lbal, | 
|  | tf->lbam, | 
|  | tf->lbah); | 
|  | } | 
|  |  | 
|  | if (tf->flags & ATA_TFLAG_DEVICE) { | 
|  | iowrite8(tf->device, ioaddr->device_addr); | 
|  | VPRINTK("device 0x%X\n", tf->device); | 
|  | } | 
|  |  | 
|  | ata_wait_idle(ap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_exec_command - issue ATA command to host controller | 
|  | *	@ap: port to which command is being issued | 
|  | *	@tf: ATA taskfile register set | 
|  | * | 
|  | *	Issues ATA command, with proper synchronization with interrupt | 
|  | *	handler / other threads. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) | 
|  | { | 
|  | DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); | 
|  |  | 
|  | iowrite8(tf->command, ap->ioaddr.command_addr); | 
|  | ata_pause(ap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_tf_read - input device's ATA taskfile shadow registers | 
|  | *	@ap: Port from which input is read | 
|  | *	@tf: ATA taskfile register set for storing input | 
|  | * | 
|  | *	Reads ATA taskfile registers for currently-selected device | 
|  | *	into @tf. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  |  | 
|  | tf->command = ata_check_status(ap); | 
|  | tf->feature = ioread8(ioaddr->error_addr); | 
|  | tf->nsect = ioread8(ioaddr->nsect_addr); | 
|  | tf->lbal = ioread8(ioaddr->lbal_addr); | 
|  | tf->lbam = ioread8(ioaddr->lbam_addr); | 
|  | tf->lbah = ioread8(ioaddr->lbah_addr); | 
|  | tf->device = ioread8(ioaddr->device_addr); | 
|  |  | 
|  | if (tf->flags & ATA_TFLAG_LBA48) { | 
|  | iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); | 
|  | tf->hob_feature = ioread8(ioaddr->error_addr); | 
|  | tf->hob_nsect = ioread8(ioaddr->nsect_addr); | 
|  | tf->hob_lbal = ioread8(ioaddr->lbal_addr); | 
|  | tf->hob_lbam = ioread8(ioaddr->lbam_addr); | 
|  | tf->hob_lbah = ioread8(ioaddr->lbah_addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_check_status - Read device status reg & clear interrupt | 
|  | *	@ap: port where the device is | 
|  | * | 
|  | *	Reads ATA taskfile status register for currently-selected device | 
|  | *	and return its value. This also clears pending interrupts | 
|  | *      from this device | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | u8 ata_check_status(struct ata_port *ap) | 
|  | { | 
|  | return ioread8(ap->ioaddr.status_addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_altstatus - Read device alternate status reg | 
|  | *	@ap: port where the device is | 
|  | * | 
|  | *	Reads ATA taskfile alternate status register for | 
|  | *	currently-selected device and return its value. | 
|  | * | 
|  | *	Note: may NOT be used as the check_altstatus() entry in | 
|  | *	ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | u8 ata_altstatus(struct ata_port *ap) | 
|  | { | 
|  | if (ap->ops->check_altstatus) | 
|  | return ap->ops->check_altstatus(ap); | 
|  |  | 
|  | return ioread8(ap->ioaddr.altstatus_addr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction | 
|  | *	@qc: Info associated with this ATA transaction. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_setup(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); | 
|  | u8 dmactl; | 
|  |  | 
|  | /* load PRD table addr. */ | 
|  | mb();	/* make sure PRD table writes are visible to controller */ | 
|  | iowrite32(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); | 
|  |  | 
|  | /* specify data direction, triple-check start bit is clear */ | 
|  | dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
|  | dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); | 
|  | if (!rw) | 
|  | dmactl |= ATA_DMA_WR; | 
|  | iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
|  |  | 
|  | /* issue r/w command */ | 
|  | ap->ops->exec_command(ap, &qc->tf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_start - Start a PCI IDE BMDMA transaction | 
|  | *	@qc: Info associated with this ATA transaction. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_start (struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | u8 dmactl; | 
|  |  | 
|  | /* start host DMA transaction */ | 
|  | dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
|  | iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); | 
|  |  | 
|  | /* Strictly, one may wish to issue a readb() here, to | 
|  | * flush the mmio write.  However, control also passes | 
|  | * to the hardware at this point, and it will interrupt | 
|  | * us when we are to resume control.  So, in effect, | 
|  | * we don't care when the mmio write flushes. | 
|  | * Further, a read of the DMA status register _immediately_ | 
|  | * following the write may not be what certain flaky hardware | 
|  | * is expected, so I think it is best to not add a readb() | 
|  | * without first all the MMIO ATA cards/mobos. | 
|  | * Or maybe I'm just being paranoid. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. | 
|  | *	@ap: Port associated with this ATA transaction. | 
|  | * | 
|  | *	Clear interrupt and error flags in DMA status register. | 
|  | * | 
|  | *	May be used as the irq_clear() entry in ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_irq_clear(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *mmio = ap->ioaddr.bmdma_addr; | 
|  |  | 
|  | if (!mmio) | 
|  | return; | 
|  |  | 
|  | iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_status - Read PCI IDE BMDMA status | 
|  | *	@ap: Port associated with this ATA transaction. | 
|  | * | 
|  | *	Read and return BMDMA status register. | 
|  | * | 
|  | *	May be used as the bmdma_status() entry in ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | u8 ata_bmdma_status(struct ata_port *ap) | 
|  | { | 
|  | return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer | 
|  | *	@qc: Command we are ending DMA for | 
|  | * | 
|  | *	Clears the ATA_DMA_START flag in the dma control register | 
|  | * | 
|  | *	May be used as the bmdma_stop() entry in ata_port_operations. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	spin_lock_irqsave(host lock) | 
|  | */ | 
|  | void ata_bmdma_stop(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | void __iomem *mmio = ap->ioaddr.bmdma_addr; | 
|  |  | 
|  | /* clear start/stop bit */ | 
|  | iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, | 
|  | mmio + ATA_DMA_CMD); | 
|  |  | 
|  | /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ | 
|  | ata_altstatus(ap);        /* dummy read */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_freeze - Freeze BMDMA controller port | 
|  | *	@ap: port to freeze | 
|  | * | 
|  | *	Freeze BMDMA controller port. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | void ata_bmdma_freeze(struct ata_port *ap) | 
|  | { | 
|  | struct ata_ioports *ioaddr = &ap->ioaddr; | 
|  |  | 
|  | ap->ctl |= ATA_NIEN; | 
|  | ap->last_ctl = ap->ctl; | 
|  |  | 
|  | iowrite8(ap->ctl, ioaddr->ctl_addr); | 
|  |  | 
|  | /* Under certain circumstances, some controllers raise IRQ on | 
|  | * ATA_NIEN manipulation.  Also, many controllers fail to mask | 
|  | * previously pending IRQ on ATA_NIEN assertion.  Clear it. | 
|  | */ | 
|  | ata_chk_status(ap); | 
|  |  | 
|  | ap->ops->irq_clear(ap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_thaw - Thaw BMDMA controller port | 
|  | *	@ap: port to thaw | 
|  | * | 
|  | *	Thaw BMDMA controller port. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | void ata_bmdma_thaw(struct ata_port *ap) | 
|  | { | 
|  | /* clear & re-enable interrupts */ | 
|  | ata_chk_status(ap); | 
|  | ap->ops->irq_clear(ap); | 
|  | ap->ops->irq_on(ap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_drive_eh - Perform EH with given methods for BMDMA controller | 
|  | *	@ap: port to handle error for | 
|  | *	@prereset: prereset method (can be NULL) | 
|  | *	@softreset: softreset method (can be NULL) | 
|  | *	@hardreset: hardreset method (can be NULL) | 
|  | *	@postreset: postreset method (can be NULL) | 
|  | * | 
|  | *	Handle error for ATA BMDMA controller.  It can handle both | 
|  | *	PATA and SATA controllers.  Many controllers should be able to | 
|  | *	use this EH as-is or with some added handling before and | 
|  | *	after. | 
|  | * | 
|  | *	This function is intended to be used for constructing | 
|  | *	->error_handler callback by low level drivers. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | */ | 
|  | void ata_bmdma_drive_eh(struct ata_port *ap, ata_prereset_fn_t prereset, | 
|  | ata_reset_fn_t softreset, ata_reset_fn_t hardreset, | 
|  | ata_postreset_fn_t postreset) | 
|  | { | 
|  | struct ata_queued_cmd *qc; | 
|  | unsigned long flags; | 
|  | int thaw = 0; | 
|  |  | 
|  | qc = __ata_qc_from_tag(ap, ap->active_tag); | 
|  | if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) | 
|  | qc = NULL; | 
|  |  | 
|  | /* reset PIO HSM and stop DMA engine */ | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  |  | 
|  | ap->hsm_task_state = HSM_ST_IDLE; | 
|  |  | 
|  | if (qc && (qc->tf.protocol == ATA_PROT_DMA || | 
|  | qc->tf.protocol == ATA_PROT_ATAPI_DMA)) { | 
|  | u8 host_stat; | 
|  |  | 
|  | host_stat = ap->ops->bmdma_status(ap); | 
|  |  | 
|  | /* BMDMA controllers indicate host bus error by | 
|  | * setting DMA_ERR bit and timing out.  As it wasn't | 
|  | * really a timeout event, adjust error mask and | 
|  | * cancel frozen state. | 
|  | */ | 
|  | if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { | 
|  | qc->err_mask = AC_ERR_HOST_BUS; | 
|  | thaw = 1; | 
|  | } | 
|  |  | 
|  | ap->ops->bmdma_stop(qc); | 
|  | } | 
|  |  | 
|  | ata_altstatus(ap); | 
|  | ata_chk_status(ap); | 
|  | ap->ops->irq_clear(ap); | 
|  |  | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  |  | 
|  | if (thaw) | 
|  | ata_eh_thaw_port(ap); | 
|  |  | 
|  | /* PIO and DMA engines have been stopped, perform recovery */ | 
|  | ata_do_eh(ap, prereset, softreset, hardreset, postreset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_error_handler - Stock error handler for BMDMA controller | 
|  | *	@ap: port to handle error for | 
|  | * | 
|  | *	Stock error handler for BMDMA controller. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | */ | 
|  | void ata_bmdma_error_handler(struct ata_port *ap) | 
|  | { | 
|  | ata_reset_fn_t hardreset; | 
|  |  | 
|  | hardreset = NULL; | 
|  | if (sata_scr_valid(ap)) | 
|  | hardreset = sata_std_hardreset; | 
|  |  | 
|  | ata_bmdma_drive_eh(ap, ata_std_prereset, ata_std_softreset, hardreset, | 
|  | ata_std_postreset); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for | 
|  | *				      BMDMA controller | 
|  | *	@qc: internal command to clean up | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Kernel thread context (may sleep) | 
|  | */ | 
|  | void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) | 
|  | { | 
|  | if (qc->ap->ioaddr.bmdma_addr) | 
|  | ata_bmdma_stop(qc); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  |  | 
|  | static int ata_resources_present(struct pci_dev *pdev, int port) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Check the PCI resources for this channel are enabled */ | 
|  | port = port * 2; | 
|  | for (i = 0; i < 2; i ++) { | 
|  | if (pci_resource_start(pdev, port + i) == 0 || | 
|  | pci_resource_len(pdev, port + i) == 0) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_pci_init_native_mode - Initialize native-mode driver | 
|  | *	@pdev:  pci device to be initialized | 
|  | *	@port:  array[2] of pointers to port info structures. | 
|  | *	@ports: bitmap of ports present | 
|  | * | 
|  | *	Utility function which allocates and initializes an | 
|  | *	ata_probe_ent structure for a standard dual-port | 
|  | *	PIO-based IDE controller.  The returned ata_probe_ent | 
|  | *	structure can be passed to ata_device_add().  The returned | 
|  | *	ata_probe_ent structure should then be freed with kfree(). | 
|  | * | 
|  | *	The caller need only pass the address of the primary port, the | 
|  | *	secondary will be deduced automatically. If the device has non | 
|  | *	standard secondary port mappings this function can be called twice, | 
|  | *	once for each interface. | 
|  | */ | 
|  |  | 
|  | struct ata_probe_ent * | 
|  | ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports) | 
|  | { | 
|  | struct ata_probe_ent *probe_ent; | 
|  | int i, p = 0; | 
|  | void __iomem * const *iomap; | 
|  |  | 
|  | /* iomap BARs */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (pcim_iomap(pdev, i, 0) == NULL) { | 
|  | dev_printk(KERN_ERR, &pdev->dev, | 
|  | "failed to iomap PCI BAR %d\n", i); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | pcim_iomap(pdev, 4, 0); /* may fail */ | 
|  | iomap = pcim_iomap_table(pdev); | 
|  |  | 
|  | /* alloc and init probe_ent */ | 
|  | probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); | 
|  | if (!probe_ent) | 
|  | return NULL; | 
|  |  | 
|  | probe_ent->irq = pdev->irq; | 
|  | probe_ent->irq_flags = IRQF_SHARED; | 
|  |  | 
|  | /* Discard disabled ports. Some controllers show their | 
|  | unused channels this way */ | 
|  | if (ata_resources_present(pdev, 0) == 0) | 
|  | ports &= ~ATA_PORT_PRIMARY; | 
|  | if (ata_resources_present(pdev, 1) == 0) | 
|  | ports &= ~ATA_PORT_SECONDARY; | 
|  |  | 
|  | if (ports & ATA_PORT_PRIMARY) { | 
|  | probe_ent->port[p].cmd_addr = iomap[0]; | 
|  | probe_ent->port[p].altstatus_addr = | 
|  | probe_ent->port[p].ctl_addr = (void __iomem *) | 
|  | ((unsigned long)iomap[1] | ATA_PCI_CTL_OFS); | 
|  | if (iomap[4]) { | 
|  | if ((!(port[p]->flags & ATA_FLAG_IGN_SIMPLEX)) && | 
|  | (ioread8(iomap[4] + 2) & 0x80)) | 
|  | probe_ent->_host_flags |= ATA_HOST_SIMPLEX; | 
|  | probe_ent->port[p].bmdma_addr = iomap[4]; | 
|  | } | 
|  | ata_std_ports(&probe_ent->port[p]); | 
|  | p++; | 
|  | } | 
|  |  | 
|  | if (ports & ATA_PORT_SECONDARY) { | 
|  | probe_ent->port[p].cmd_addr = iomap[2]; | 
|  | probe_ent->port[p].altstatus_addr = | 
|  | probe_ent->port[p].ctl_addr = (void __iomem *) | 
|  | ((unsigned long)iomap[3] | ATA_PCI_CTL_OFS); | 
|  | if (iomap[4]) { | 
|  | if ((!(port[p]->flags & ATA_FLAG_IGN_SIMPLEX)) && | 
|  | (ioread8(iomap[4] + 10) & 0x80)) | 
|  | probe_ent->_host_flags |= ATA_HOST_SIMPLEX; | 
|  | probe_ent->port[p].bmdma_addr = iomap[4] + 8; | 
|  | } | 
|  | ata_std_ports(&probe_ent->port[p]); | 
|  | probe_ent->pinfo2 = port[1]; | 
|  | p++; | 
|  | } | 
|  |  | 
|  | probe_ent->n_ports = p; | 
|  | return probe_ent; | 
|  | } | 
|  |  | 
|  | static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, | 
|  | struct ata_port_info **port, int port_mask) | 
|  | { | 
|  | struct ata_probe_ent *probe_ent; | 
|  | void __iomem *iomap[5] = { }, *bmdma; | 
|  |  | 
|  | if (port_mask & ATA_PORT_PRIMARY) { | 
|  | iomap[0] = devm_ioport_map(&pdev->dev, ATA_PRIMARY_CMD, 8); | 
|  | iomap[1] = devm_ioport_map(&pdev->dev, ATA_PRIMARY_CTL, 1); | 
|  | if (!iomap[0] || !iomap[1]) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (port_mask & ATA_PORT_SECONDARY) { | 
|  | iomap[2] = devm_ioport_map(&pdev->dev, ATA_SECONDARY_CMD, 8); | 
|  | iomap[3] = devm_ioport_map(&pdev->dev, ATA_SECONDARY_CTL, 1); | 
|  | if (!iomap[2] || !iomap[3]) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bmdma = pcim_iomap(pdev, 4, 16); /* may fail */ | 
|  |  | 
|  | /* alloc and init probe_ent */ | 
|  | probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]); | 
|  | if (!probe_ent) | 
|  | return NULL; | 
|  |  | 
|  | probe_ent->n_ports = 2; | 
|  | probe_ent->irq_flags = IRQF_SHARED; | 
|  |  | 
|  | if (port_mask & ATA_PORT_PRIMARY) { | 
|  | probe_ent->irq = ATA_PRIMARY_IRQ(pdev); | 
|  | probe_ent->port[0].cmd_addr = iomap[0]; | 
|  | probe_ent->port[0].altstatus_addr = | 
|  | probe_ent->port[0].ctl_addr = iomap[1]; | 
|  | if (bmdma) { | 
|  | probe_ent->port[0].bmdma_addr = bmdma; | 
|  | if ((!(port[0]->flags & ATA_FLAG_IGN_SIMPLEX)) && | 
|  | (ioread8(bmdma + 2) & 0x80)) | 
|  | probe_ent->_host_flags |= ATA_HOST_SIMPLEX; | 
|  | } | 
|  | ata_std_ports(&probe_ent->port[0]); | 
|  | } else | 
|  | probe_ent->dummy_port_mask |= ATA_PORT_PRIMARY; | 
|  |  | 
|  | if (port_mask & ATA_PORT_SECONDARY) { | 
|  | if (probe_ent->irq) | 
|  | probe_ent->irq2 = ATA_SECONDARY_IRQ(pdev); | 
|  | else | 
|  | probe_ent->irq = ATA_SECONDARY_IRQ(pdev); | 
|  | probe_ent->port[1].cmd_addr = iomap[2]; | 
|  | probe_ent->port[1].altstatus_addr = | 
|  | probe_ent->port[1].ctl_addr = iomap[3]; | 
|  | if (bmdma) { | 
|  | probe_ent->port[1].bmdma_addr = bmdma + 8; | 
|  | if ((!(port[1]->flags & ATA_FLAG_IGN_SIMPLEX)) && | 
|  | (ioread8(bmdma + 10) & 0x80)) | 
|  | probe_ent->_host_flags |= ATA_HOST_SIMPLEX; | 
|  | } | 
|  | ata_std_ports(&probe_ent->port[1]); | 
|  |  | 
|  | /* FIXME: could be pointing to stack area; must copy */ | 
|  | probe_ent->pinfo2 = port[1]; | 
|  | } else | 
|  | probe_ent->dummy_port_mask |= ATA_PORT_SECONDARY; | 
|  |  | 
|  | return probe_ent; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	ata_pci_init_one - Initialize/register PCI IDE host controller | 
|  | *	@pdev: Controller to be initialized | 
|  | *	@port_info: Information from low-level host driver | 
|  | *	@n_ports: Number of ports attached to host controller | 
|  | * | 
|  | *	This is a helper function which can be called from a driver's | 
|  | *	xxx_init_one() probe function if the hardware uses traditional | 
|  | *	IDE taskfile registers. | 
|  | * | 
|  | *	This function calls pci_enable_device(), reserves its register | 
|  | *	regions, sets the dma mask, enables bus master mode, and calls | 
|  | *	ata_device_add() | 
|  | * | 
|  | *	ASSUMPTION: | 
|  | *	Nobody makes a single channel controller that appears solely as | 
|  | *	the secondary legacy port on PCI. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from PCI layer (may sleep). | 
|  | * | 
|  | *	RETURNS: | 
|  | *	Zero on success, negative on errno-based value on error. | 
|  | */ | 
|  |  | 
|  | int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info, | 
|  | unsigned int n_ports) | 
|  | { | 
|  | struct device *dev = &pdev->dev; | 
|  | struct ata_probe_ent *probe_ent = NULL; | 
|  | struct ata_port_info *port[2]; | 
|  | u8 mask; | 
|  | unsigned int legacy_mode = 0; | 
|  | int rc; | 
|  |  | 
|  | DPRINTK("ENTER\n"); | 
|  |  | 
|  | if (!devres_open_group(dev, NULL, GFP_KERNEL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | BUG_ON(n_ports < 1 || n_ports > 2); | 
|  |  | 
|  | port[0] = port_info[0]; | 
|  | if (n_ports > 1) | 
|  | port[1] = port_info[1]; | 
|  | else | 
|  | port[1] = port[0]; | 
|  |  | 
|  | /* FIXME: Really for ATA it isn't safe because the device may be | 
|  | multi-purpose and we want to leave it alone if it was already | 
|  | enabled. Secondly for shared use as Arjan says we want refcounting | 
|  |  | 
|  | Checking dev->is_enabled is insufficient as this is not set at | 
|  | boot for the primary video which is BIOS enabled | 
|  | */ | 
|  |  | 
|  | rc = pcim_enable_device(pdev); | 
|  | if (rc) | 
|  | goto err_out; | 
|  |  | 
|  | if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { | 
|  | u8 tmp8; | 
|  |  | 
|  | /* TODO: What if one channel is in native mode ... */ | 
|  | pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); | 
|  | mask = (1 << 2) | (1 << 0); | 
|  | if ((tmp8 & mask) != mask) | 
|  | legacy_mode = (1 << 3); | 
|  | #if defined(CONFIG_NO_ATA_LEGACY) | 
|  | /* Some platforms with PCI limits cannot address compat | 
|  | port space. In that case we punt if their firmware has | 
|  | left a device in compatibility mode */ | 
|  | if (legacy_mode) { | 
|  | printk(KERN_ERR "ata: Compatibility mode ATA is not supported on this platform, skipping.\n"); | 
|  | rc = -EOPNOTSUPP; | 
|  | goto err_out; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (!legacy_mode) { | 
|  | rc = pci_request_regions(pdev, DRV_NAME); | 
|  | if (rc) { | 
|  | pcim_pin_device(pdev); | 
|  | goto err_out; | 
|  | } | 
|  | } else { | 
|  | /* Deal with combined mode hack. This side of the logic all | 
|  | goes away once the combined mode hack is killed in 2.6.21 */ | 
|  | if (!devm_request_region(dev, ATA_PRIMARY_CMD, 8, "libata")) { | 
|  | struct resource *conflict, res; | 
|  | res.start = ATA_PRIMARY_CMD; | 
|  | res.end = ATA_PRIMARY_CMD + 8 - 1; | 
|  | conflict = ____request_resource(&ioport_resource, &res); | 
|  | while (conflict->child) | 
|  | conflict = ____request_resource(conflict, &res); | 
|  | if (!strcmp(conflict->name, "libata")) | 
|  | legacy_mode |= ATA_PORT_PRIMARY; | 
|  | else { | 
|  | pcim_pin_device(pdev); | 
|  | printk(KERN_WARNING "ata: 0x%0X IDE port busy\n" \ | 
|  | "ata: conflict with %s\n", | 
|  | ATA_PRIMARY_CMD, | 
|  | conflict->name); | 
|  | } | 
|  | } else | 
|  | legacy_mode |= ATA_PORT_PRIMARY; | 
|  |  | 
|  | if (!devm_request_region(dev, ATA_SECONDARY_CMD, 8, "libata")) { | 
|  | struct resource *conflict, res; | 
|  | res.start = ATA_SECONDARY_CMD; | 
|  | res.end = ATA_SECONDARY_CMD + 8 - 1; | 
|  | conflict = ____request_resource(&ioport_resource, &res); | 
|  | while (conflict->child) | 
|  | conflict = ____request_resource(conflict, &res); | 
|  | if (!strcmp(conflict->name, "libata")) | 
|  | legacy_mode |= ATA_PORT_SECONDARY; | 
|  | else { | 
|  | pcim_pin_device(pdev); | 
|  | printk(KERN_WARNING "ata: 0x%X IDE port busy\n" \ | 
|  | "ata: conflict with %s\n", | 
|  | ATA_SECONDARY_CMD, | 
|  | conflict->name); | 
|  | } | 
|  | } else | 
|  | legacy_mode |= ATA_PORT_SECONDARY; | 
|  |  | 
|  | if (legacy_mode & ATA_PORT_PRIMARY) | 
|  | pci_request_region(pdev, 1, DRV_NAME); | 
|  | if (legacy_mode & ATA_PORT_SECONDARY) | 
|  | pci_request_region(pdev, 3, DRV_NAME); | 
|  | /* If there is a DMA resource, allocate it */ | 
|  | pci_request_region(pdev, 4, DRV_NAME); | 
|  | } | 
|  |  | 
|  | /* we have legacy mode, but all ports are unavailable */ | 
|  | if (legacy_mode == (1 << 3)) { | 
|  | rc = -EBUSY; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | /* TODO: If we get no DMA mask we should fall back to PIO */ | 
|  | rc = pci_set_dma_mask(pdev, ATA_DMA_MASK); | 
|  | if (rc) | 
|  | goto err_out; | 
|  | rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK); | 
|  | if (rc) | 
|  | goto err_out; | 
|  |  | 
|  | if (legacy_mode) { | 
|  | probe_ent = ata_pci_init_legacy_port(pdev, port, legacy_mode); | 
|  | } else { | 
|  | if (n_ports == 2) | 
|  | probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY); | 
|  | else | 
|  | probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY); | 
|  | } | 
|  | if (!probe_ent) { | 
|  | rc = -ENOMEM; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | if (!ata_device_add(probe_ent)) { | 
|  | rc = -ENODEV; | 
|  | goto err_out; | 
|  | } | 
|  |  | 
|  | devm_kfree(dev, probe_ent); | 
|  | devres_remove_group(dev, NULL); | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | devres_release_group(dev, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ata_pci_clear_simplex	-	attempt to kick device out of simplex | 
|  | *	@pdev: PCI device | 
|  | * | 
|  | *	Some PCI ATA devices report simplex mode but in fact can be told to | 
|  | *	enter non simplex mode. This implements the neccessary logic to | 
|  | *	perform the task on such devices. Calling it on other devices will | 
|  | *	have -undefined- behaviour. | 
|  | */ | 
|  |  | 
|  | int ata_pci_clear_simplex(struct pci_dev *pdev) | 
|  | { | 
|  | unsigned long bmdma = pci_resource_start(pdev, 4); | 
|  | u8 simplex; | 
|  |  | 
|  | if (bmdma == 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | simplex = inb(bmdma + 0x02); | 
|  | outb(simplex & 0x60, bmdma + 0x02); | 
|  | simplex = inb(bmdma + 0x02); | 
|  | if (simplex & 0x80) | 
|  | return -EOPNOTSUPP; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long ata_pci_default_filter(const struct ata_port *ap, struct ata_device *adev, unsigned long xfer_mask) | 
|  | { | 
|  | /* Filter out DMA modes if the device has been configured by | 
|  | the BIOS as PIO only */ | 
|  |  | 
|  | if (ap->ioaddr.bmdma_addr == 0) | 
|  | xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA); | 
|  | return xfer_mask; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PCI */ | 
|  |  |