| /* | 
 |  * Copyright (C) 2008 Red Hat.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include "ctree.h" | 
 | #include "free-space-cache.h" | 
 | #include "transaction.h" | 
 |  | 
 | struct btrfs_free_space { | 
 | 	struct rb_node bytes_index; | 
 | 	struct rb_node offset_index; | 
 | 	u64 offset; | 
 | 	u64 bytes; | 
 | }; | 
 |  | 
 | static int tree_insert_offset(struct rb_root *root, u64 offset, | 
 | 			      struct rb_node *node) | 
 | { | 
 | 	struct rb_node **p = &root->rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct btrfs_free_space *info; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		info = rb_entry(parent, struct btrfs_free_space, offset_index); | 
 |  | 
 | 		if (offset < info->offset) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (offset > info->offset) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return -EEXIST; | 
 | 	} | 
 |  | 
 | 	rb_link_node(node, parent, p); | 
 | 	rb_insert_color(node, root); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int tree_insert_bytes(struct rb_root *root, u64 bytes, | 
 | 			     struct rb_node *node) | 
 | { | 
 | 	struct rb_node **p = &root->rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct btrfs_free_space *info; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		info = rb_entry(parent, struct btrfs_free_space, bytes_index); | 
 |  | 
 | 		if (bytes < info->bytes) | 
 | 			p = &(*p)->rb_left; | 
 | 		else | 
 | 			p = &(*p)->rb_right; | 
 | 	} | 
 |  | 
 | 	rb_link_node(node, parent, p); | 
 | 	rb_insert_color(node, root); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * searches the tree for the given offset. | 
 |  * | 
 |  * fuzzy == 1: this is used for allocations where we are given a hint of where | 
 |  * to look for free space.  Because the hint may not be completely on an offset | 
 |  * mark, or the hint may no longer point to free space we need to fudge our | 
 |  * results a bit.  So we look for free space starting at or after offset with at | 
 |  * least bytes size.  We prefer to find as close to the given offset as we can. | 
 |  * Also if the offset is within a free space range, then we will return the free | 
 |  * space that contains the given offset, which means we can return a free space | 
 |  * chunk with an offset before the provided offset. | 
 |  * | 
 |  * fuzzy == 0: this is just a normal tree search.  Give us the free space that | 
 |  * starts at the given offset which is at least bytes size, and if its not there | 
 |  * return NULL. | 
 |  */ | 
 | static struct btrfs_free_space *tree_search_offset(struct rb_root *root, | 
 | 						   u64 offset, u64 bytes, | 
 | 						   int fuzzy) | 
 | { | 
 | 	struct rb_node *n = root->rb_node; | 
 | 	struct btrfs_free_space *entry, *ret = NULL; | 
 |  | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct btrfs_free_space, offset_index); | 
 |  | 
 | 		if (offset < entry->offset) { | 
 | 			if (fuzzy && | 
 | 			    (!ret || entry->offset < ret->offset) && | 
 | 			    (bytes <= entry->bytes)) | 
 | 				ret = entry; | 
 | 			n = n->rb_left; | 
 | 		} else if (offset > entry->offset) { | 
 | 			if (fuzzy && | 
 | 			    (entry->offset + entry->bytes - 1) >= offset && | 
 | 			    bytes <= entry->bytes) { | 
 | 				ret = entry; | 
 | 				break; | 
 | 			} | 
 | 			n = n->rb_right; | 
 | 		} else { | 
 | 			if (bytes > entry->bytes) { | 
 | 				n = n->rb_right; | 
 | 				continue; | 
 | 			} | 
 | 			ret = entry; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * return a chunk at least bytes size, as close to offset that we can get. | 
 |  */ | 
 | static struct btrfs_free_space *tree_search_bytes(struct rb_root *root, | 
 | 						  u64 offset, u64 bytes) | 
 | { | 
 | 	struct rb_node *n = root->rb_node; | 
 | 	struct btrfs_free_space *entry, *ret = NULL; | 
 |  | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct btrfs_free_space, bytes_index); | 
 |  | 
 | 		if (bytes < entry->bytes) { | 
 | 			/* | 
 | 			 * We prefer to get a hole size as close to the size we | 
 | 			 * are asking for so we don't take small slivers out of | 
 | 			 * huge holes, but we also want to get as close to the | 
 | 			 * offset as possible so we don't have a whole lot of | 
 | 			 * fragmentation. | 
 | 			 */ | 
 | 			if (offset <= entry->offset) { | 
 | 				if (!ret) | 
 | 					ret = entry; | 
 | 				else if (entry->bytes < ret->bytes) | 
 | 					ret = entry; | 
 | 				else if (entry->offset < ret->offset) | 
 | 					ret = entry; | 
 | 			} | 
 | 			n = n->rb_left; | 
 | 		} else if (bytes > entry->bytes) { | 
 | 			n = n->rb_right; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Ok we may have multiple chunks of the wanted size, | 
 | 			 * so we don't want to take the first one we find, we | 
 | 			 * want to take the one closest to our given offset, so | 
 | 			 * keep searching just in case theres a better match. | 
 | 			 */ | 
 | 			n = n->rb_right; | 
 | 			if (offset > entry->offset) | 
 | 				continue; | 
 | 			else if (!ret || entry->offset < ret->offset) | 
 | 				ret = entry; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void unlink_free_space(struct btrfs_block_group_cache *block_group, | 
 | 			      struct btrfs_free_space *info) | 
 | { | 
 | 	rb_erase(&info->offset_index, &block_group->free_space_offset); | 
 | 	rb_erase(&info->bytes_index, &block_group->free_space_bytes); | 
 | } | 
 |  | 
 | static int link_free_space(struct btrfs_block_group_cache *block_group, | 
 | 			   struct btrfs_free_space *info) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 |  | 
 | 	BUG_ON(!info->bytes); | 
 | 	ret = tree_insert_offset(&block_group->free_space_offset, info->offset, | 
 | 				 &info->offset_index); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = tree_insert_bytes(&block_group->free_space_bytes, info->bytes, | 
 | 				&info->bytes_index); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_add_free_space(struct btrfs_block_group_cache *block_group, | 
 | 			 u64 offset, u64 bytes) | 
 | { | 
 | 	struct btrfs_free_space *right_info; | 
 | 	struct btrfs_free_space *left_info; | 
 | 	struct btrfs_free_space *info = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	info = kzalloc(sizeof(struct btrfs_free_space), GFP_NOFS); | 
 | 	if (!info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	info->offset = offset; | 
 | 	info->bytes = bytes; | 
 |  | 
 | 	spin_lock(&block_group->tree_lock); | 
 |  | 
 | 	/* | 
 | 	 * first we want to see if there is free space adjacent to the range we | 
 | 	 * are adding, if there is remove that struct and add a new one to | 
 | 	 * cover the entire range | 
 | 	 */ | 
 | 	right_info = tree_search_offset(&block_group->free_space_offset, | 
 | 					offset+bytes, 0, 0); | 
 | 	left_info = tree_search_offset(&block_group->free_space_offset, | 
 | 				       offset-1, 0, 1); | 
 |  | 
 | 	if (right_info) { | 
 | 		unlink_free_space(block_group, right_info); | 
 | 		info->bytes += right_info->bytes; | 
 | 		kfree(right_info); | 
 | 	} | 
 |  | 
 | 	if (left_info && left_info->offset + left_info->bytes == offset) { | 
 | 		unlink_free_space(block_group, left_info); | 
 | 		info->offset = left_info->offset; | 
 | 		info->bytes += left_info->bytes; | 
 | 		kfree(left_info); | 
 | 	} | 
 |  | 
 | 	ret = link_free_space(block_group, info); | 
 | 	if (ret) | 
 | 		kfree(info); | 
 |  | 
 | 	spin_unlock(&block_group->tree_lock); | 
 |  | 
 | 	if (ret) { | 
 | 		printk(KERN_ERR "btrfs: unable to add free space :%d\n", ret); | 
 | 		BUG_ON(ret == -EEXIST); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group, | 
 | 			    u64 offset, u64 bytes) | 
 | { | 
 | 	struct btrfs_free_space *info; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock(&block_group->tree_lock); | 
 |  | 
 | 	info = tree_search_offset(&block_group->free_space_offset, offset, 0, | 
 | 				  1); | 
 | 	if (info && info->offset == offset) { | 
 | 		if (info->bytes < bytes) { | 
 | 			printk(KERN_ERR "Found free space at %llu, size %llu," | 
 | 			       "trying to use %llu\n", | 
 | 			       (unsigned long long)info->offset, | 
 | 			       (unsigned long long)info->bytes, | 
 | 			       (unsigned long long)bytes); | 
 | 			WARN_ON(1); | 
 | 			ret = -EINVAL; | 
 | 			spin_unlock(&block_group->tree_lock); | 
 | 			goto out; | 
 | 		} | 
 | 		unlink_free_space(block_group, info); | 
 |  | 
 | 		if (info->bytes == bytes) { | 
 | 			kfree(info); | 
 | 			spin_unlock(&block_group->tree_lock); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		info->offset += bytes; | 
 | 		info->bytes -= bytes; | 
 |  | 
 | 		ret = link_free_space(block_group, info); | 
 | 		spin_unlock(&block_group->tree_lock); | 
 | 		BUG_ON(ret); | 
 | 	} else if (info && info->offset < offset && | 
 | 		   info->offset + info->bytes >= offset + bytes) { | 
 | 		u64 old_start = info->offset; | 
 | 		/* | 
 | 		 * we're freeing space in the middle of the info, | 
 | 		 * this can happen during tree log replay | 
 | 		 * | 
 | 		 * first unlink the old info and then | 
 | 		 * insert it again after the hole we're creating | 
 | 		 */ | 
 | 		unlink_free_space(block_group, info); | 
 | 		if (offset + bytes < info->offset + info->bytes) { | 
 | 			u64 old_end = info->offset + info->bytes; | 
 |  | 
 | 			info->offset = offset + bytes; | 
 | 			info->bytes = old_end - info->offset; | 
 | 			ret = link_free_space(block_group, info); | 
 | 			BUG_ON(ret); | 
 | 		} else { | 
 | 			/* the hole we're creating ends at the end | 
 | 			 * of the info struct, just free the info | 
 | 			 */ | 
 | 			kfree(info); | 
 | 		} | 
 | 		spin_unlock(&block_group->tree_lock); | 
 | 		/* step two, insert a new info struct to cover anything | 
 | 		 * before the hole | 
 | 		 */ | 
 | 		ret = btrfs_add_free_space(block_group, old_start, | 
 | 					   offset - old_start); | 
 | 		BUG_ON(ret); | 
 | 	} else { | 
 | 		spin_unlock(&block_group->tree_lock); | 
 | 		if (!info) { | 
 | 			printk(KERN_ERR "couldn't find space %llu to free\n", | 
 | 			       (unsigned long long)offset); | 
 | 			printk(KERN_ERR "cached is %d, offset %llu bytes %llu\n", | 
 | 			       block_group->cached, block_group->key.objectid, | 
 | 			       block_group->key.offset); | 
 | 			btrfs_dump_free_space(block_group, bytes); | 
 | 		} else if (info) { | 
 | 			printk(KERN_ERR "hmm, found offset=%llu bytes=%llu, " | 
 | 			       "but wanted offset=%llu bytes=%llu\n", | 
 | 			       info->offset, info->bytes, offset, bytes); | 
 | 		} | 
 | 		WARN_ON(1); | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group, | 
 | 			   u64 bytes) | 
 | { | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *n; | 
 | 	int count = 0; | 
 |  | 
 | 	for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) { | 
 | 		info = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		if (info->bytes >= bytes) | 
 | 			count++; | 
 | 		printk(KERN_ERR "entry offset %llu, bytes %llu\n", info->offset, | 
 | 		       info->bytes); | 
 | 	} | 
 | 	printk(KERN_INFO "%d blocks of free space at or bigger than bytes is" | 
 | 	       "\n", count); | 
 | } | 
 |  | 
 | u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group) | 
 | { | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *n; | 
 | 	u64 ret = 0; | 
 |  | 
 | 	for (n = rb_first(&block_group->free_space_offset); n; | 
 | 	     n = rb_next(n)) { | 
 | 		info = rb_entry(n, struct btrfs_free_space, offset_index); | 
 | 		ret += info->bytes; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * for a given cluster, put all of its extents back into the free | 
 |  * space cache.  If the block group passed doesn't match the block group | 
 |  * pointed to by the cluster, someone else raced in and freed the | 
 |  * cluster already.  In that case, we just return without changing anything | 
 |  */ | 
 | static int | 
 | __btrfs_return_cluster_to_free_space( | 
 | 			     struct btrfs_block_group_cache *block_group, | 
 | 			     struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	struct btrfs_free_space *entry; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (cluster->block_group != block_group) | 
 | 		goto out; | 
 |  | 
 | 	cluster->window_start = 0; | 
 | 	node = rb_first(&cluster->root); | 
 | 	while(node) { | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		rb_erase(&entry->offset_index, &cluster->root); | 
 | 		link_free_space(block_group, entry); | 
 | 	} | 
 | 	list_del_init(&cluster->block_group_list); | 
 |  | 
 | 	btrfs_put_block_group(cluster->block_group); | 
 | 	cluster->block_group = NULL; | 
 | 	cluster->root.rb_node = NULL; | 
 | out: | 
 | 	spin_unlock(&cluster->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group) | 
 | { | 
 | 	struct btrfs_free_space *info; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_free_cluster *cluster; | 
 | 	struct btrfs_free_cluster *safe; | 
 |  | 
 | 	spin_lock(&block_group->tree_lock); | 
 |  | 
 | 	list_for_each_entry_safe(cluster, safe, &block_group->cluster_list, | 
 | 				 block_group_list) { | 
 |  | 
 | 		WARN_ON(cluster->block_group != block_group); | 
 | 		__btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 	} | 
 |  | 
 | 	while ((node = rb_last(&block_group->free_space_bytes)) != NULL) { | 
 | 		info = rb_entry(node, struct btrfs_free_space, bytes_index); | 
 | 		unlink_free_space(block_group, info); | 
 | 		kfree(info); | 
 | 		if (need_resched()) { | 
 | 			spin_unlock(&block_group->tree_lock); | 
 | 			cond_resched(); | 
 | 			spin_lock(&block_group->tree_lock); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&block_group->tree_lock); | 
 | } | 
 |  | 
 | u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group, | 
 | 			       u64 offset, u64 bytes, u64 empty_size) | 
 | { | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	u64 ret = 0; | 
 |  | 
 | 	spin_lock(&block_group->tree_lock); | 
 | 	entry = tree_search_offset(&block_group->free_space_offset, offset, | 
 | 				   bytes + empty_size, 1); | 
 | 	if (!entry) | 
 | 		entry = tree_search_bytes(&block_group->free_space_bytes, | 
 | 					  offset, bytes + empty_size); | 
 | 	if (entry) { | 
 | 		unlink_free_space(block_group, entry); | 
 | 		ret = entry->offset; | 
 | 		entry->offset += bytes; | 
 | 		entry->bytes -= bytes; | 
 |  | 
 | 		if (!entry->bytes) | 
 | 			kfree(entry); | 
 | 		else | 
 | 			link_free_space(block_group, entry); | 
 | 	} | 
 | 	spin_unlock(&block_group->tree_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * given a cluster, put all of its extents back into the free space | 
 |  * cache.  If a block group is passed, this function will only free | 
 |  * a cluster that belongs to the passed block group. | 
 |  * | 
 |  * Otherwise, it'll get a reference on the block group pointed to by the | 
 |  * cluster and remove the cluster from it. | 
 |  */ | 
 | int btrfs_return_cluster_to_free_space( | 
 | 			       struct btrfs_block_group_cache *block_group, | 
 | 			       struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* first, get a safe pointer to the block group */ | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (!block_group) { | 
 | 		block_group = cluster->block_group; | 
 | 		if (!block_group) { | 
 | 			spin_unlock(&cluster->lock); | 
 | 			return 0; | 
 | 		} | 
 | 	} else if (cluster->block_group != block_group) { | 
 | 		/* someone else has already freed it don't redo their work */ | 
 | 		spin_unlock(&cluster->lock); | 
 | 		return 0; | 
 | 	} | 
 | 	atomic_inc(&block_group->count); | 
 | 	spin_unlock(&cluster->lock); | 
 |  | 
 | 	/* now return any extents the cluster had on it */ | 
 | 	spin_lock(&block_group->tree_lock); | 
 | 	ret = __btrfs_return_cluster_to_free_space(block_group, cluster); | 
 | 	spin_unlock(&block_group->tree_lock); | 
 |  | 
 | 	/* finally drop our ref */ | 
 | 	btrfs_put_block_group(block_group); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * given a cluster, try to allocate 'bytes' from it, returns 0 | 
 |  * if it couldn't find anything suitably large, or a logical disk offset | 
 |  * if things worked out | 
 |  */ | 
 | u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group, | 
 | 			     struct btrfs_free_cluster *cluster, u64 bytes, | 
 | 			     u64 min_start) | 
 | { | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	struct rb_node *node; | 
 | 	u64 ret = 0; | 
 |  | 
 | 	spin_lock(&cluster->lock); | 
 | 	if (bytes > cluster->max_size) | 
 | 		goto out; | 
 |  | 
 | 	if (cluster->block_group != block_group) | 
 | 		goto out; | 
 |  | 
 | 	node = rb_first(&cluster->root); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 |  | 
 | 	while(1) { | 
 | 		if (entry->bytes < bytes || entry->offset < min_start) { | 
 | 			struct rb_node *node; | 
 |  | 
 | 			node = rb_next(&entry->offset_index); | 
 | 			if (!node) | 
 | 				break; | 
 | 			entry = rb_entry(node, struct btrfs_free_space, | 
 | 					 offset_index); | 
 | 			continue; | 
 | 		} | 
 | 		ret = entry->offset; | 
 |  | 
 | 		entry->offset += bytes; | 
 | 		entry->bytes -= bytes; | 
 |  | 
 | 		if (entry->bytes == 0) { | 
 | 			rb_erase(&entry->offset_index, &cluster->root); | 
 | 			kfree(entry); | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&cluster->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * here we try to find a cluster of blocks in a block group.  The goal | 
 |  * is to find at least bytes free and up to empty_size + bytes free. | 
 |  * We might not find them all in one contiguous area. | 
 |  * | 
 |  * returns zero and sets up cluster if things worked out, otherwise | 
 |  * it returns -enospc | 
 |  */ | 
 | int btrfs_find_space_cluster(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_block_group_cache *block_group, | 
 | 			     struct btrfs_free_cluster *cluster, | 
 | 			     u64 offset, u64 bytes, u64 empty_size) | 
 | { | 
 | 	struct btrfs_free_space *entry = NULL; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_free_space *next; | 
 | 	struct btrfs_free_space *last; | 
 | 	u64 min_bytes; | 
 | 	u64 window_start; | 
 | 	u64 window_free; | 
 | 	u64 max_extent = 0; | 
 | 	int total_retries = 0; | 
 | 	int ret; | 
 |  | 
 | 	/* for metadata, allow allocates with more holes */ | 
 | 	if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
 | 		/* | 
 | 		 * we want to do larger allocations when we are | 
 | 		 * flushing out the delayed refs, it helps prevent | 
 | 		 * making more work as we go along. | 
 | 		 */ | 
 | 		if (trans->transaction->delayed_refs.flushing) | 
 | 			min_bytes = max(bytes, (bytes + empty_size) >> 1); | 
 | 		else | 
 | 			min_bytes = max(bytes, (bytes + empty_size) >> 4); | 
 | 	} else | 
 | 		min_bytes = max(bytes, (bytes + empty_size) >> 2); | 
 |  | 
 | 	spin_lock(&block_group->tree_lock); | 
 | 	spin_lock(&cluster->lock); | 
 |  | 
 | 	/* someone already found a cluster, hooray */ | 
 | 	if (cluster->block_group) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | again: | 
 | 	min_bytes = min(min_bytes, bytes + empty_size); | 
 | 	entry = tree_search_bytes(&block_group->free_space_bytes, | 
 | 				  offset, min_bytes); | 
 | 	if (!entry) { | 
 | 		ret = -ENOSPC; | 
 | 		goto out; | 
 | 	} | 
 | 	window_start = entry->offset; | 
 | 	window_free = entry->bytes; | 
 | 	last = entry; | 
 | 	max_extent = entry->bytes; | 
 |  | 
 | 	while(1) { | 
 | 		/* out window is just right, lets fill it */ | 
 | 		if (window_free >= bytes + empty_size) | 
 | 			break; | 
 |  | 
 | 		node = rb_next(&last->offset_index); | 
 | 		if (!node) { | 
 | 			ret = -ENOSPC; | 
 | 			goto out; | 
 | 		} | 
 | 		next = rb_entry(node, struct btrfs_free_space, offset_index); | 
 |  | 
 | 		/* | 
 | 		 * we haven't filled the empty size and the window is | 
 | 		 * very large.  reset and try again | 
 | 		 */ | 
 | 		if (next->offset - window_start > (bytes + empty_size) * 2) { | 
 | 			entry = next; | 
 | 			window_start = entry->offset; | 
 | 			window_free = entry->bytes; | 
 | 			last = entry; | 
 | 			max_extent = 0; | 
 | 			total_retries++; | 
 | 			if (total_retries % 256 == 0) { | 
 | 				if (min_bytes >= (bytes + empty_size)) { | 
 | 					ret = -ENOSPC; | 
 | 					goto out; | 
 | 				} | 
 | 				/* | 
 | 				 * grow our allocation a bit, we're not having | 
 | 				 * much luck | 
 | 				 */ | 
 | 				min_bytes *= 2; | 
 | 				goto again; | 
 | 			} | 
 | 		} else { | 
 | 			last = next; | 
 | 			window_free += next->bytes; | 
 | 			if (entry->bytes > max_extent) | 
 | 				max_extent = entry->bytes; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cluster->window_start = entry->offset; | 
 |  | 
 | 	/* | 
 | 	 * now we've found our entries, pull them out of the free space | 
 | 	 * cache and put them into the cluster rbtree | 
 | 	 * | 
 | 	 * The cluster includes an rbtree, but only uses the offset index | 
 | 	 * of each free space cache entry. | 
 | 	 */ | 
 | 	while(1) { | 
 | 		node = rb_next(&entry->offset_index); | 
 | 		unlink_free_space(block_group, entry); | 
 | 		ret = tree_insert_offset(&cluster->root, entry->offset, | 
 | 					 &entry->offset_index); | 
 | 		BUG_ON(ret); | 
 |  | 
 | 		if (!node || entry == last) | 
 | 			break; | 
 |  | 
 | 		entry = rb_entry(node, struct btrfs_free_space, offset_index); | 
 | 	} | 
 | 	ret = 0; | 
 | 	cluster->max_size = max_extent; | 
 | 	atomic_inc(&block_group->count); | 
 | 	list_add_tail(&cluster->block_group_list, &block_group->cluster_list); | 
 | 	cluster->block_group = block_group; | 
 | out: | 
 | 	spin_unlock(&cluster->lock); | 
 | 	spin_unlock(&block_group->tree_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * simple code to zero out a cluster | 
 |  */ | 
 | void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster) | 
 | { | 
 | 	spin_lock_init(&cluster->lock); | 
 | 	spin_lock_init(&cluster->refill_lock); | 
 | 	cluster->root.rb_node = NULL; | 
 | 	cluster->max_size = 0; | 
 | 	INIT_LIST_HEAD(&cluster->block_group_list); | 
 | 	cluster->block_group = NULL; | 
 | } | 
 |  |