|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2008 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/pci.h> | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | enum e1000_mng_mode { | 
|  | e1000_mng_mode_none = 0, | 
|  | e1000_mng_mode_asf, | 
|  | e1000_mng_mode_pt, | 
|  | e1000_mng_mode_ipmi, | 
|  | e1000_mng_mode_host_if_only | 
|  | }; | 
|  |  | 
|  | #define E1000_FACTPS_MNGCG		0x20000000 | 
|  |  | 
|  | /* Intel(R) Active Management Technology signature */ | 
|  | #define E1000_IAMT_SIGNATURE		0x544D4149 | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_bus_info_pcie - Get PCIe bus information | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Determines and stores the system bus information for a particular | 
|  | *  network interface.  The following bus information is determined and stored: | 
|  | *  bus speed, bus width, type (PCIe), and PCIe function. | 
|  | **/ | 
|  | s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_bus_info *bus = &hw->bus; | 
|  | struct e1000_adapter *adapter = hw->adapter; | 
|  | u32 status; | 
|  | u16 pcie_link_status, pci_header_type, cap_offset; | 
|  |  | 
|  | cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); | 
|  | if (!cap_offset) { | 
|  | bus->width = e1000_bus_width_unknown; | 
|  | } else { | 
|  | pci_read_config_word(adapter->pdev, | 
|  | cap_offset + PCIE_LINK_STATUS, | 
|  | &pcie_link_status); | 
|  | bus->width = (enum e1000_bus_width)((pcie_link_status & | 
|  | PCIE_LINK_WIDTH_MASK) >> | 
|  | PCIE_LINK_WIDTH_SHIFT); | 
|  | } | 
|  |  | 
|  | pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER, | 
|  | &pci_header_type); | 
|  | if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { | 
|  | status = er32(STATUS); | 
|  | bus->func = (status & E1000_STATUS_FUNC_MASK) | 
|  | >> E1000_STATUS_FUNC_SHIFT; | 
|  | } else { | 
|  | bus->func = 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_vfta - Write value to VLAN filter table | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset in VLAN filter table | 
|  | *  @value: register value written to VLAN filter table | 
|  | * | 
|  | *  Writes value at the given offset in the register array which stores | 
|  | *  the VLAN filter table. | 
|  | **/ | 
|  | void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | 
|  | { | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_init_rx_addrs - Initialize receive address's | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @rar_count: receive address registers | 
|  | * | 
|  | *  Setups the receive address registers by setting the base receive address | 
|  | *  register to the devices MAC address and clearing all the other receive | 
|  | *  address registers to 0. | 
|  | **/ | 
|  | void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) | 
|  | { | 
|  | u32 i; | 
|  |  | 
|  | /* Setup the receive address */ | 
|  | hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); | 
|  |  | 
|  | e1000e_rar_set(hw, hw->mac.addr, 0); | 
|  |  | 
|  | /* Zero out the other (rar_entry_count - 1) receive addresses */ | 
|  | hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); | 
|  | for (i = 1; i < rar_count; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0); | 
|  | e1e_flush(); | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0); | 
|  | e1e_flush(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_rar_set - Set receive address register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @addr: pointer to the receive address | 
|  | *  @index: receive address array register | 
|  | * | 
|  | *  Sets the receive address array register at index to the address passed | 
|  | *  in by addr. | 
|  | **/ | 
|  | void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | 
|  | { | 
|  | u32 rar_low, rar_high; | 
|  |  | 
|  | /* | 
|  | * HW expects these in little endian so we reverse the byte order | 
|  | * from network order (big endian) to little endian | 
|  | */ | 
|  | rar_low = ((u32) addr[0] | | 
|  | ((u32) addr[1] << 8) | | 
|  | ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); | 
|  |  | 
|  | rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); | 
|  |  | 
|  | rar_high |= E1000_RAH_AV; | 
|  |  | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_hash_mc_addr - Generate a multicast hash value | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mc_addr: pointer to a multicast address | 
|  | * | 
|  | *  Generates a multicast address hash value which is used to determine | 
|  | *  the multicast filter table array address and new table value.  See | 
|  | *  e1000_mta_set_generic() | 
|  | **/ | 
|  | static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 hash_value, hash_mask; | 
|  | u8 bit_shift = 0; | 
|  |  | 
|  | /* Register count multiplied by bits per register */ | 
|  | hash_mask = (hw->mac.mta_reg_count * 32) - 1; | 
|  |  | 
|  | /* | 
|  | * For a mc_filter_type of 0, bit_shift is the number of left-shifts | 
|  | * where 0xFF would still fall within the hash mask. | 
|  | */ | 
|  | while (hash_mask >> bit_shift != 0xFF) | 
|  | bit_shift++; | 
|  |  | 
|  | /* | 
|  | * The portion of the address that is used for the hash table | 
|  | * is determined by the mc_filter_type setting. | 
|  | * The algorithm is such that there is a total of 8 bits of shifting. | 
|  | * The bit_shift for a mc_filter_type of 0 represents the number of | 
|  | * left-shifts where the MSB of mc_addr[5] would still fall within | 
|  | * the hash_mask.  Case 0 does this exactly.  Since there are a total | 
|  | * of 8 bits of shifting, then mc_addr[4] will shift right the | 
|  | * remaining number of bits. Thus 8 - bit_shift.  The rest of the | 
|  | * cases are a variation of this algorithm...essentially raising the | 
|  | * number of bits to shift mc_addr[5] left, while still keeping the | 
|  | * 8-bit shifting total. | 
|  | * | 
|  | * For example, given the following Destination MAC Address and an | 
|  | * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), | 
|  | * we can see that the bit_shift for case 0 is 4.  These are the hash | 
|  | * values resulting from each mc_filter_type... | 
|  | * [0] [1] [2] [3] [4] [5] | 
|  | * 01  AA  00  12  34  56 | 
|  | * LSB		 MSB | 
|  | * | 
|  | * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 | 
|  | * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 | 
|  | * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 | 
|  | * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 | 
|  | */ | 
|  | switch (hw->mac.mc_filter_type) { | 
|  | default: | 
|  | case 0: | 
|  | break; | 
|  | case 1: | 
|  | bit_shift += 1; | 
|  | break; | 
|  | case 2: | 
|  | bit_shift += 2; | 
|  | break; | 
|  | case 3: | 
|  | bit_shift += 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | | 
|  | (((u16) mc_addr[5]) << bit_shift))); | 
|  |  | 
|  | return hash_value; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_update_mc_addr_list_generic - Update Multicast addresses | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mc_addr_list: array of multicast addresses to program | 
|  | *  @mc_addr_count: number of multicast addresses to program | 
|  | *  @rar_used_count: the first RAR register free to program | 
|  | *  @rar_count: total number of supported Receive Address Registers | 
|  | * | 
|  | *  Updates the Receive Address Registers and Multicast Table Array. | 
|  | *  The caller must have a packed mc_addr_list of multicast addresses. | 
|  | *  The parameter rar_count will usually be hw->mac.rar_entry_count | 
|  | *  unless there are workarounds that change this. | 
|  | **/ | 
|  | void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, | 
|  | u8 *mc_addr_list, u32 mc_addr_count, | 
|  | u32 rar_used_count, u32 rar_count) | 
|  | { | 
|  | u32 i; | 
|  | u32 *mcarray = kzalloc(hw->mac.mta_reg_count * sizeof(u32), GFP_ATOMIC); | 
|  |  | 
|  | if (!mcarray) { | 
|  | printk(KERN_ERR "multicast array memory allocation failed\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load the first set of multicast addresses into the exact | 
|  | * filters (RAR).  If there are not enough to fill the RAR | 
|  | * array, clear the filters. | 
|  | */ | 
|  | for (i = rar_used_count; i < rar_count; i++) { | 
|  | if (mc_addr_count) { | 
|  | e1000e_rar_set(hw, mc_addr_list, i); | 
|  | mc_addr_count--; | 
|  | mc_addr_list += ETH_ALEN; | 
|  | } else { | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0); | 
|  | e1e_flush(); | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0); | 
|  | e1e_flush(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Load any remaining multicast addresses into the hash table. */ | 
|  | for (; mc_addr_count > 0; mc_addr_count--) { | 
|  | u32 hash_value, hash_reg, hash_bit, mta; | 
|  | hash_value = e1000_hash_mc_addr(hw, mc_addr_list); | 
|  | hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); | 
|  | hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); | 
|  | hash_bit = hash_value & 0x1F; | 
|  | mta = (1 << hash_bit); | 
|  | mcarray[hash_reg] |= mta; | 
|  | mc_addr_list += ETH_ALEN; | 
|  | } | 
|  |  | 
|  | /* write the hash table completely */ | 
|  | for (i = 0; i < hw->mac.mta_reg_count; i++) | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, mcarray[i]); | 
|  |  | 
|  | e1e_flush(); | 
|  | kfree(mcarray); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_clear_hw_cntrs_base - Clear base hardware counters | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the base hardware counters by reading the counter registers. | 
|  | **/ | 
|  | void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) | 
|  | { | 
|  | u32 temp; | 
|  |  | 
|  | temp = er32(CRCERRS); | 
|  | temp = er32(SYMERRS); | 
|  | temp = er32(MPC); | 
|  | temp = er32(SCC); | 
|  | temp = er32(ECOL); | 
|  | temp = er32(MCC); | 
|  | temp = er32(LATECOL); | 
|  | temp = er32(COLC); | 
|  | temp = er32(DC); | 
|  | temp = er32(SEC); | 
|  | temp = er32(RLEC); | 
|  | temp = er32(XONRXC); | 
|  | temp = er32(XONTXC); | 
|  | temp = er32(XOFFRXC); | 
|  | temp = er32(XOFFTXC); | 
|  | temp = er32(FCRUC); | 
|  | temp = er32(GPRC); | 
|  | temp = er32(BPRC); | 
|  | temp = er32(MPRC); | 
|  | temp = er32(GPTC); | 
|  | temp = er32(GORCL); | 
|  | temp = er32(GORCH); | 
|  | temp = er32(GOTCL); | 
|  | temp = er32(GOTCH); | 
|  | temp = er32(RNBC); | 
|  | temp = er32(RUC); | 
|  | temp = er32(RFC); | 
|  | temp = er32(ROC); | 
|  | temp = er32(RJC); | 
|  | temp = er32(TORL); | 
|  | temp = er32(TORH); | 
|  | temp = er32(TOTL); | 
|  | temp = er32(TOTH); | 
|  | temp = er32(TPR); | 
|  | temp = er32(TPT); | 
|  | temp = er32(MPTC); | 
|  | temp = er32(BPTC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_check_for_copper_link - Check for link (Copper) | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks to see of the link status of the hardware has changed.  If a | 
|  | *  change in link status has been detected, then we read the PHY registers | 
|  | *  to get the current speed/duplex if link exists. | 
|  | **/ | 
|  | s32 e1000e_check_for_copper_link(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  | bool link; | 
|  |  | 
|  | /* | 
|  | * We only want to go out to the PHY registers to see if Auto-Neg | 
|  | * has completed and/or if our link status has changed.  The | 
|  | * get_link_status flag is set upon receiving a Link Status | 
|  | * Change or Rx Sequence Error interrupt. | 
|  | */ | 
|  | if (!mac->get_link_status) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * First we want to see if the MII Status Register reports | 
|  | * link.  If so, then we want to get the current speed/duplex | 
|  | * of the PHY. | 
|  | */ | 
|  | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!link) | 
|  | return ret_val; /* No link detected */ | 
|  |  | 
|  | mac->get_link_status = 0; | 
|  |  | 
|  | /* | 
|  | * Check if there was DownShift, must be checked | 
|  | * immediately after link-up | 
|  | */ | 
|  | e1000e_check_downshift(hw); | 
|  |  | 
|  | /* | 
|  | * If we are forcing speed/duplex, then we simply return since | 
|  | * we have already determined whether we have link or not. | 
|  | */ | 
|  | if (!mac->autoneg) { | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Auto-Neg is enabled.  Auto Speed Detection takes care | 
|  | * of MAC speed/duplex configuration.  So we only need to | 
|  | * configure Collision Distance in the MAC. | 
|  | */ | 
|  | e1000e_config_collision_dist(hw); | 
|  |  | 
|  | /* | 
|  | * Configure Flow Control now that Auto-Neg has completed. | 
|  | * First, we need to restore the desired flow control | 
|  | * settings because we may have had to re-autoneg with a | 
|  | * different link partner. | 
|  | */ | 
|  | ret_val = e1000e_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error configuring flow control\n"); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_check_for_fiber_link - Check for link (Fiber) | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks for link up on the hardware.  If link is not up and we have | 
|  | *  a signal, then we need to force link up. | 
|  | **/ | 
|  | s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 rxcw; | 
|  | u32 ctrl; | 
|  | u32 status; | 
|  | s32 ret_val; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | status = er32(STATUS); | 
|  | rxcw = er32(RXCW); | 
|  |  | 
|  | /* | 
|  | * If we don't have link (auto-negotiation failed or link partner | 
|  | * cannot auto-negotiate), the cable is plugged in (we have signal), | 
|  | * and our link partner is not trying to auto-negotiate with us (we | 
|  | * are receiving idles or data), we need to force link up. We also | 
|  | * need to give auto-negotiation time to complete, in case the cable | 
|  | * was just plugged in. The autoneg_failed flag does this. | 
|  | */ | 
|  | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | 
|  | if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && | 
|  | (!(rxcw & E1000_RXCW_C))) { | 
|  | if (mac->autoneg_failed == 0) { | 
|  | mac->autoneg_failed = 1; | 
|  | return 0; | 
|  | } | 
|  | hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); | 
|  |  | 
|  | /* Disable auto-negotiation in the TXCW register */ | 
|  | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | 
|  |  | 
|  | /* Force link-up and also force full-duplex. */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | /* Configure Flow Control after forcing link up. */ | 
|  | ret_val = e1000e_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error configuring flow control\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|  | /* | 
|  | * If we are forcing link and we are receiving /C/ ordered | 
|  | * sets, re-enable auto-negotiation in the TXCW register | 
|  | * and disable forced link in the Device Control register | 
|  | * in an attempt to auto-negotiate with our link partner. | 
|  | */ | 
|  | hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); | 
|  | ew32(TXCW, mac->txcw); | 
|  | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|  |  | 
|  | mac->serdes_has_link = true; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_check_for_serdes_link - Check for link (Serdes) | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks for link up on the hardware.  If link is not up and we have | 
|  | *  a signal, then we need to force link up. | 
|  | **/ | 
|  | s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 rxcw; | 
|  | u32 ctrl; | 
|  | u32 status; | 
|  | s32 ret_val; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | status = er32(STATUS); | 
|  | rxcw = er32(RXCW); | 
|  |  | 
|  | /* | 
|  | * If we don't have link (auto-negotiation failed or link partner | 
|  | * cannot auto-negotiate), and our link partner is not trying to | 
|  | * auto-negotiate with us (we are receiving idles or data), | 
|  | * we need to force link up. We also need to give auto-negotiation | 
|  | * time to complete. | 
|  | */ | 
|  | /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ | 
|  | if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { | 
|  | if (mac->autoneg_failed == 0) { | 
|  | mac->autoneg_failed = 1; | 
|  | return 0; | 
|  | } | 
|  | hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); | 
|  |  | 
|  | /* Disable auto-negotiation in the TXCW register */ | 
|  | ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); | 
|  |  | 
|  | /* Force link-up and also force full-duplex. */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | /* Configure Flow Control after forcing link up. */ | 
|  | ret_val = e1000e_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error configuring flow control\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|  | /* | 
|  | * If we are forcing link and we are receiving /C/ ordered | 
|  | * sets, re-enable auto-negotiation in the TXCW register | 
|  | * and disable forced link in the Device Control register | 
|  | * in an attempt to auto-negotiate with our link partner. | 
|  | */ | 
|  | hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); | 
|  | ew32(TXCW, mac->txcw); | 
|  | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|  |  | 
|  | mac->serdes_has_link = true; | 
|  | } else if (!(E1000_TXCW_ANE & er32(TXCW))) { | 
|  | /* | 
|  | * If we force link for non-auto-negotiation switch, check | 
|  | * link status based on MAC synchronization for internal | 
|  | * serdes media type. | 
|  | */ | 
|  | /* SYNCH bit and IV bit are sticky. */ | 
|  | udelay(10); | 
|  | rxcw = er32(RXCW); | 
|  | if (rxcw & E1000_RXCW_SYNCH) { | 
|  | if (!(rxcw & E1000_RXCW_IV)) { | 
|  | mac->serdes_has_link = true; | 
|  | hw_dbg(hw, "SERDES: Link up - forced.\n"); | 
|  | } | 
|  | } else { | 
|  | mac->serdes_has_link = false; | 
|  | hw_dbg(hw, "SERDES: Link down - force failed.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (E1000_TXCW_ANE & er32(TXCW)) { | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_LU) { | 
|  | /* SYNCH bit and IV bit are sticky, so reread rxcw.  */ | 
|  | udelay(10); | 
|  | rxcw = er32(RXCW); | 
|  | if (rxcw & E1000_RXCW_SYNCH) { | 
|  | if (!(rxcw & E1000_RXCW_IV)) { | 
|  | mac->serdes_has_link = true; | 
|  | hw_dbg(hw, "SERDES: Link up - autoneg " | 
|  | "completed sucessfully.\n"); | 
|  | } else { | 
|  | mac->serdes_has_link = false; | 
|  | hw_dbg(hw, "SERDES: Link down - invalid" | 
|  | "codewords detected in autoneg.\n"); | 
|  | } | 
|  | } else { | 
|  | mac->serdes_has_link = false; | 
|  | hw_dbg(hw, "SERDES: Link down - no sync.\n"); | 
|  | } | 
|  | } else { | 
|  | mac->serdes_has_link = false; | 
|  | hw_dbg(hw, "SERDES: Link down - autoneg failed\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_default_fc_generic - Set flow control default values | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Read the EEPROM for the default values for flow control and store the | 
|  | *  values. | 
|  | **/ | 
|  | static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 nvm_data; | 
|  |  | 
|  | /* | 
|  | * Read and store word 0x0F of the EEPROM. This word contains bits | 
|  | * that determine the hardware's default PAUSE (flow control) mode, | 
|  | * a bit that determines whether the HW defaults to enabling or | 
|  | * disabling auto-negotiation, and the direction of the | 
|  | * SW defined pins. If there is no SW over-ride of the flow | 
|  | * control setting, then the variable hw->fc will | 
|  | * be initialized based on a value in the EEPROM. | 
|  | */ | 
|  | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); | 
|  |  | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) | 
|  | hw->fc.requested_mode = e1000_fc_none; | 
|  | else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == | 
|  | NVM_WORD0F_ASM_DIR) | 
|  | hw->fc.requested_mode = e1000_fc_tx_pause; | 
|  | else | 
|  | hw->fc.requested_mode = e1000_fc_full; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_setup_link - Setup flow control and link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Determines which flow control settings to use, then configures flow | 
|  | *  control.  Calls the appropriate media-specific link configuration | 
|  | *  function.  Assuming the adapter has a valid link partner, a valid link | 
|  | *  should be established.  Assumes the hardware has previously been reset | 
|  | *  and the transmitter and receiver are not enabled. | 
|  | **/ | 
|  | s32 e1000e_setup_link(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  |  | 
|  | /* | 
|  | * In the case of the phy reset being blocked, we already have a link. | 
|  | * We do not need to set it up again. | 
|  | */ | 
|  | if (e1000_check_reset_block(hw)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If requested flow control is set to default, set flow control | 
|  | * based on the EEPROM flow control settings. | 
|  | */ | 
|  | if (hw->fc.requested_mode == e1000_fc_default) { | 
|  | ret_val = e1000_set_default_fc_generic(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save off the requested flow control mode for use later.  Depending | 
|  | * on the link partner's capabilities, we may or may not use this mode. | 
|  | */ | 
|  | hw->fc.current_mode = hw->fc.requested_mode; | 
|  |  | 
|  | hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", | 
|  | hw->fc.current_mode); | 
|  |  | 
|  | /* Call the necessary media_type subroutine to configure the link. */ | 
|  | ret_val = mac->ops.setup_physical_interface(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * Initialize the flow control address, type, and PAUSE timer | 
|  | * registers to their default values.  This is done even if flow | 
|  | * control is disabled, because it does not hurt anything to | 
|  | * initialize these registers. | 
|  | */ | 
|  | hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n"); | 
|  | ew32(FCT, FLOW_CONTROL_TYPE); | 
|  | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|  | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|  |  | 
|  | ew32(FCTTV, hw->fc.pause_time); | 
|  |  | 
|  | return e1000e_set_fc_watermarks(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_commit_fc_settings_generic - Configure flow control | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Write the flow control settings to the Transmit Config Word Register (TXCW) | 
|  | *  base on the flow control settings in e1000_mac_info. | 
|  | **/ | 
|  | static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 txcw; | 
|  |  | 
|  | /* | 
|  | * Check for a software override of the flow control settings, and | 
|  | * setup the device accordingly.  If auto-negotiation is enabled, then | 
|  | * software will have to set the "PAUSE" bits to the correct value in | 
|  | * the Transmit Config Word Register (TXCW) and re-start auto- | 
|  | * negotiation.  However, if auto-negotiation is disabled, then | 
|  | * software will have to manually configure the two flow control enable | 
|  | * bits in the CTRL register. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause frames, | 
|  | *	  but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames but we | 
|  | *	  do not support receiving pause frames). | 
|  | *      3:  Both Rx and Tx flow control (symmetric) are enabled. | 
|  | */ | 
|  | switch (hw->fc.current_mode) { | 
|  | case e1000_fc_none: | 
|  | /* Flow control completely disabled by a software over-ride. */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
|  | break; | 
|  | case e1000_fc_rx_pause: | 
|  | /* | 
|  | * Rx Flow control is enabled and Tx Flow control is disabled | 
|  | * by a software over-ride. Since there really isn't a way to | 
|  | * advertise that we are capable of Rx Pause ONLY, we will | 
|  | * advertise that we support both symmetric and asymmetric Rx | 
|  | * PAUSE.  Later, we will disable the adapter's ability to send | 
|  | * PAUSE frames. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | break; | 
|  | case e1000_fc_tx_pause: | 
|  | /* | 
|  | * Tx Flow control is enabled, and Rx Flow control is disabled, | 
|  | * by a software over-ride. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
|  | break; | 
|  | case e1000_fc_full: | 
|  | /* | 
|  | * Flow control (both Rx and Tx) is enabled by a software | 
|  | * over-ride. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | break; | 
|  | default: | 
|  | hw_dbg(hw, "Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(TXCW, txcw); | 
|  | mac->txcw = txcw; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_poll_fiber_serdes_link_generic - Poll for link up | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Polls for link up by reading the status register, if link fails to come | 
|  | *  up with auto-negotiation, then the link is forced if a signal is detected. | 
|  | **/ | 
|  | static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 i, status; | 
|  | s32 ret_val; | 
|  |  | 
|  | /* | 
|  | * If we have a signal (the cable is plugged in, or assumed true for | 
|  | * serdes media) then poll for a "Link-Up" indication in the Device | 
|  | * Status Register.  Time-out if a link isn't seen in 500 milliseconds | 
|  | * seconds (Auto-negotiation should complete in less than 500 | 
|  | * milliseconds even if the other end is doing it in SW). | 
|  | */ | 
|  | for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { | 
|  | msleep(10); | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_LU) | 
|  | break; | 
|  | } | 
|  | if (i == FIBER_LINK_UP_LIMIT) { | 
|  | hw_dbg(hw, "Never got a valid link from auto-neg!!!\n"); | 
|  | mac->autoneg_failed = 1; | 
|  | /* | 
|  | * AutoNeg failed to achieve a link, so we'll call | 
|  | * mac->check_for_link. This routine will force the | 
|  | * link up if we detect a signal. This will allow us to | 
|  | * communicate with non-autonegotiating link partners. | 
|  | */ | 
|  | ret_val = mac->ops.check_for_link(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error while checking for link\n"); | 
|  | return ret_val; | 
|  | } | 
|  | mac->autoneg_failed = 0; | 
|  | } else { | 
|  | mac->autoneg_failed = 0; | 
|  | hw_dbg(hw, "Valid Link Found\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures collision distance and flow control for fiber and serdes | 
|  | *  links.  Upon successful setup, poll for link. | 
|  | **/ | 
|  | s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Take the link out of reset */ | 
|  | ctrl &= ~E1000_CTRL_LRST; | 
|  |  | 
|  | e1000e_config_collision_dist(hw); | 
|  |  | 
|  | ret_val = e1000_commit_fc_settings_generic(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * Since auto-negotiation is enabled, take the link out of reset (the | 
|  | * link will be in reset, because we previously reset the chip). This | 
|  | * will restart auto-negotiation.  If auto-negotiation is successful | 
|  | * then the link-up status bit will be set and the flow control enable | 
|  | * bits (RFCE and TFCE) will be set according to their negotiated value. | 
|  | */ | 
|  | hw_dbg(hw, "Auto-negotiation enabled\n"); | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | e1e_flush(); | 
|  | msleep(1); | 
|  |  | 
|  | /* | 
|  | * For these adapters, the SW definable pin 1 is set when the optics | 
|  | * detect a signal.  If we have a signal, then poll for a "Link-Up" | 
|  | * indication. | 
|  | */ | 
|  | if (hw->phy.media_type == e1000_media_type_internal_serdes || | 
|  | (er32(CTRL) & E1000_CTRL_SWDPIN1)) { | 
|  | ret_val = e1000_poll_fiber_serdes_link_generic(hw); | 
|  | } else { | 
|  | hw_dbg(hw, "No signal detected\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_config_collision_dist - Configure collision distance | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures the collision distance to the default value and is used | 
|  | *  during link setup. Currently no func pointer exists and all | 
|  | *  implementations are handled in the generic version of this function. | 
|  | **/ | 
|  | void e1000e_config_collision_dist(struct e1000_hw *hw) | 
|  | { | 
|  | u32 tctl; | 
|  |  | 
|  | tctl = er32(TCTL); | 
|  |  | 
|  | tctl &= ~E1000_TCTL_COLD; | 
|  | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | 
|  |  | 
|  | ew32(TCTL, tctl); | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_set_fc_watermarks - Set flow control high/low watermarks | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Sets the flow control high/low threshold (watermark) registers.  If | 
|  | *  flow control XON frame transmission is enabled, then set XON frame | 
|  | *  transmission as well. | 
|  | **/ | 
|  | s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) | 
|  | { | 
|  | u32 fcrtl = 0, fcrth = 0; | 
|  |  | 
|  | /* | 
|  | * Set the flow control receive threshold registers.  Normally, | 
|  | * these registers will be set to a default threshold that may be | 
|  | * adjusted later by the driver's runtime code.  However, if the | 
|  | * ability to transmit pause frames is not enabled, then these | 
|  | * registers will be set to 0. | 
|  | */ | 
|  | if (hw->fc.current_mode & e1000_fc_tx_pause) { | 
|  | /* | 
|  | * We need to set up the Receive Threshold high and low water | 
|  | * marks as well as (optionally) enabling the transmission of | 
|  | * XON frames. | 
|  | */ | 
|  | fcrtl = hw->fc.low_water; | 
|  | fcrtl |= E1000_FCRTL_XONE; | 
|  | fcrth = hw->fc.high_water; | 
|  | } | 
|  | ew32(FCRTL, fcrtl); | 
|  | ew32(FCRTH, fcrth); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_force_mac_fc - Force the MAC's flow control settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the | 
|  | *  device control register to reflect the adapter settings.  TFCE and RFCE | 
|  | *  need to be explicitly set by software when a copper PHY is used because | 
|  | *  autonegotiation is managed by the PHY rather than the MAC.  Software must | 
|  | *  also configure these bits when link is forced on a fiber connection. | 
|  | **/ | 
|  | s32 e1000e_force_mac_fc(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* | 
|  | * Because we didn't get link via the internal auto-negotiation | 
|  | * mechanism (we either forced link or we got link via PHY | 
|  | * auto-neg), we have to manually enable/disable transmit an | 
|  | * receive flow control. | 
|  | * | 
|  | * The "Case" statement below enables/disable flow control | 
|  | * according to the "hw->fc.current_mode" parameter. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause | 
|  | *	  frames but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *	  frames but we do not receive pause frames). | 
|  | *      3:  Both Rx and Tx flow control (symmetric) is enabled. | 
|  | *  other:  No other values should be possible at this point. | 
|  | */ | 
|  | hw_dbg(hw, "hw->fc.current_mode = %u\n", hw->fc.current_mode); | 
|  |  | 
|  | switch (hw->fc.current_mode) { | 
|  | case e1000_fc_none: | 
|  | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|  | break; | 
|  | case e1000_fc_rx_pause: | 
|  | ctrl &= (~E1000_CTRL_TFCE); | 
|  | ctrl |= E1000_CTRL_RFCE; | 
|  | break; | 
|  | case e1000_fc_tx_pause: | 
|  | ctrl &= (~E1000_CTRL_RFCE); | 
|  | ctrl |= E1000_CTRL_TFCE; | 
|  | break; | 
|  | case e1000_fc_full: | 
|  | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|  | break; | 
|  | default: | 
|  | hw_dbg(hw, "Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_config_fc_after_link_up - Configures flow control after link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Checks the status of auto-negotiation after link up to ensure that the | 
|  | *  speed and duplex were not forced.  If the link needed to be forced, then | 
|  | *  flow control needs to be forced also.  If auto-negotiation is enabled | 
|  | *  and did not fail, then we configure flow control based on our link | 
|  | *  partner. | 
|  | **/ | 
|  | s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val = 0; | 
|  | u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; | 
|  | u16 speed, duplex; | 
|  |  | 
|  | /* | 
|  | * Check for the case where we have fiber media and auto-neg failed | 
|  | * so we had to force link.  In this case, we need to force the | 
|  | * configuration of the MAC to match the "fc" parameter. | 
|  | */ | 
|  | if (mac->autoneg_failed) { | 
|  | if (hw->phy.media_type == e1000_media_type_fiber || | 
|  | hw->phy.media_type == e1000_media_type_internal_serdes) | 
|  | ret_val = e1000e_force_mac_fc(hw); | 
|  | } else { | 
|  | if (hw->phy.media_type == e1000_media_type_copper) | 
|  | ret_val = e1000e_force_mac_fc(hw); | 
|  | } | 
|  |  | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error forcing flow control settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for the case where we have copper media and auto-neg is | 
|  | * enabled.  In this case, we need to check and see if Auto-Neg | 
|  | * has completed, and if so, how the PHY and link partner has | 
|  | * flow control configured. | 
|  | */ | 
|  | if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { | 
|  | /* | 
|  | * Read the MII Status Register and check to see if AutoNeg | 
|  | * has completed.  We read this twice because this reg has | 
|  | * some "sticky" (latched) bits. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { | 
|  | hw_dbg(hw, "Copper PHY and Auto Neg " | 
|  | "has not completed.\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The AutoNeg process has completed, so we now need to | 
|  | * read both the Auto Negotiation Advertisement | 
|  | * Register (Address 4) and the Auto_Negotiation Base | 
|  | * Page Ability Register (Address 5) to determine how | 
|  | * flow control was negotiated. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * Two bits in the Auto Negotiation Advertisement Register | 
|  | * (Address 4) and two bits in the Auto Negotiation Base | 
|  | * Page Ability Register (Address 5) determine flow control | 
|  | * for both the PHY and the link partner.  The following | 
|  | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|  | * 1999, describes these PAUSE resolution bits and how flow | 
|  | * control is determined based upon these settings. | 
|  | * NOTE:  DC = Don't Care | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
|  | *   0   |    1    |   0   |   DC    | e1000_fc_none | 
|  | *   0   |    1    |   1   |    0    | e1000_fc_none | 
|  | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | *   1   |    0    |   0   |   DC    | e1000_fc_none | 
|  | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|  | *   1   |    1    |   0   |    0    | e1000_fc_none | 
|  | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | * | 
|  | * | 
|  | * Are both PAUSE bits set to 1?  If so, this implies | 
|  | * Symmetric Flow Control is enabled at both ends.  The | 
|  | * ASM_DIR bits are irrelevant per the spec. | 
|  | * | 
|  | * For Symmetric Flow Control: | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |   DC    |   1   |   DC    | E1000_fc_full | 
|  | * | 
|  | */ | 
|  | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
|  | /* | 
|  | * Now we need to check if the user selected Rx ONLY | 
|  | * of pause frames.  In this case, we had to advertise | 
|  | * FULL flow control because we could not advertise Rx | 
|  | * ONLY. Hence, we must now check to see if we need to | 
|  | * turn OFF  the TRANSMISSION of PAUSE frames. | 
|  | */ | 
|  | if (hw->fc.requested_mode == e1000_fc_full) { | 
|  | hw->fc.current_mode = e1000_fc_full; | 
|  | hw_dbg(hw, "Flow Control = FULL.\r\n"); | 
|  | } else { | 
|  | hw->fc.current_mode = e1000_fc_rx_pause; | 
|  | hw_dbg(hw, "Flow Control = " | 
|  | "RX PAUSE frames only.\r\n"); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * For receiving PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | * | 
|  | */ | 
|  | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | hw->fc.current_mode = e1000_fc_tx_pause; | 
|  | hw_dbg(hw, "Flow Control = Tx PAUSE frames only.\r\n"); | 
|  | } | 
|  | /* | 
|  | * For transmitting PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | * | 
|  | */ | 
|  | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | hw->fc.current_mode = e1000_fc_rx_pause; | 
|  | hw_dbg(hw, "Flow Control = Rx PAUSE frames only.\r\n"); | 
|  | } else { | 
|  | /* | 
|  | * Per the IEEE spec, at this point flow control | 
|  | * should be disabled. | 
|  | */ | 
|  | hw->fc.current_mode = e1000_fc_none; | 
|  | hw_dbg(hw, "Flow Control = NONE.\r\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we need to do one last check...  If we auto- | 
|  | * negotiated to HALF DUPLEX, flow control should not be | 
|  | * enabled per IEEE 802.3 spec. | 
|  | */ | 
|  | ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error getting link speed and duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (duplex == HALF_DUPLEX) | 
|  | hw->fc.current_mode = e1000_fc_none; | 
|  |  | 
|  | /* | 
|  | * Now we call a subroutine to actually force the MAC | 
|  | * controller to use the correct flow control settings. | 
|  | */ | 
|  | ret_val = e1000e_force_mac_fc(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error forcing flow control settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @speed: stores the current speed | 
|  | *  @duplex: stores the current duplex | 
|  | * | 
|  | *  Read the status register for the current speed/duplex and store the current | 
|  | *  speed and duplex for copper connections. | 
|  | **/ | 
|  | s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) | 
|  | { | 
|  | u32 status; | 
|  |  | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_SPEED_1000) { | 
|  | *speed = SPEED_1000; | 
|  | hw_dbg(hw, "1000 Mbs, "); | 
|  | } else if (status & E1000_STATUS_SPEED_100) { | 
|  | *speed = SPEED_100; | 
|  | hw_dbg(hw, "100 Mbs, "); | 
|  | } else { | 
|  | *speed = SPEED_10; | 
|  | hw_dbg(hw, "10 Mbs, "); | 
|  | } | 
|  |  | 
|  | if (status & E1000_STATUS_FD) { | 
|  | *duplex = FULL_DUPLEX; | 
|  | hw_dbg(hw, "Full Duplex\n"); | 
|  | } else { | 
|  | *duplex = HALF_DUPLEX; | 
|  | hw_dbg(hw, "Half Duplex\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @speed: stores the current speed | 
|  | *  @duplex: stores the current duplex | 
|  | * | 
|  | *  Sets the speed and duplex to gigabit full duplex (the only possible option) | 
|  | *  for fiber/serdes links. | 
|  | **/ | 
|  | s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) | 
|  | { | 
|  | *speed = SPEED_1000; | 
|  | *duplex = FULL_DUPLEX; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_hw_semaphore - Acquire hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the HW semaphore to access the PHY or NVM | 
|  | **/ | 
|  | s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  | s32 timeout = hw->nvm.word_size + 1; | 
|  | s32 i = 0; | 
|  |  | 
|  | /* Get the SW semaphore */ | 
|  | while (i < timeout) { | 
|  | swsm = er32(SWSM); | 
|  | if (!(swsm & E1000_SWSM_SMBI)) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | /* Get the FW semaphore. */ | 
|  | for (i = 0; i < timeout; i++) { | 
|  | swsm = er32(SWSM); | 
|  | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | 
|  |  | 
|  | /* Semaphore acquired if bit latched */ | 
|  | if (er32(SWSM) & E1000_SWSM_SWESMBI) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | /* Release semaphores */ | 
|  | e1000e_put_hw_semaphore(hw); | 
|  | hw_dbg(hw, "Driver can't access the NVM\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_put_hw_semaphore - Release hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Release hardware semaphore used to access the PHY or NVM | 
|  | **/ | 
|  | void e1000e_put_hw_semaphore(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  |  | 
|  | swsm = er32(SWSM); | 
|  | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | 
|  | ew32(SWSM, swsm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_auto_rd_done - Check for auto read completion | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Check EEPROM for Auto Read done bit. | 
|  | **/ | 
|  | s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) | 
|  | { | 
|  | s32 i = 0; | 
|  |  | 
|  | while (i < AUTO_READ_DONE_TIMEOUT) { | 
|  | if (er32(EECD) & E1000_EECD_AUTO_RD) | 
|  | break; | 
|  | msleep(1); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == AUTO_READ_DONE_TIMEOUT) { | 
|  | hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); | 
|  | return -E1000_ERR_RESET; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_valid_led_default - Verify a valid default LED config | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: pointer to the NVM (EEPROM) | 
|  | * | 
|  | *  Read the EEPROM for the current default LED configuration.  If the | 
|  | *  LED configuration is not valid, set to a valid LED configuration. | 
|  | **/ | 
|  | s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) | 
|  | *data = ID_LED_DEFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_id_led_init - | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | **/ | 
|  | s32 e1000e_id_led_init(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  | const u32 ledctl_mask = 0x000000FF; | 
|  | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
|  | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
|  | u16 data, i, temp; | 
|  | const u16 led_mask = 0x0F; | 
|  |  | 
|  | ret_val = hw->nvm.ops.valid_led_default(hw, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mac->ledctl_default = er32(LEDCTL); | 
|  | mac->ledctl_mode1 = mac->ledctl_default; | 
|  | mac->ledctl_mode2 = mac->ledctl_default; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | temp = (data >> (i << 2)) & led_mask; | 
|  | switch (temp) { | 
|  | case ID_LED_ON1_DEF2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | mac->ledctl_mode1 |= ledctl_on << (i << 3); | 
|  | break; | 
|  | case ID_LED_OFF1_DEF2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | mac->ledctl_mode1 |= ledctl_off << (i << 3); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | switch (temp) { | 
|  | case ID_LED_DEF1_ON2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | mac->ledctl_mode2 |= ledctl_on << (i << 3); | 
|  | break; | 
|  | case ID_LED_DEF1_OFF2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | mac->ledctl_mode2 |= ledctl_off << (i << 3); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_cleanup_led_generic - Set LED config to default operation | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Remove the current LED configuration and set the LED configuration | 
|  | *  to the default value, saved from the EEPROM. | 
|  | **/ | 
|  | s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) | 
|  | { | 
|  | ew32(LEDCTL, hw->mac.ledctl_default); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_blink_led - Blink LED | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Blink the LEDs which are set to be on. | 
|  | **/ | 
|  | s32 e1000e_blink_led(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ledctl_blink = 0; | 
|  | u32 i; | 
|  |  | 
|  | if (hw->phy.media_type == e1000_media_type_fiber) { | 
|  | /* always blink LED0 for PCI-E fiber */ | 
|  | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | 
|  | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | 
|  | } else { | 
|  | /* | 
|  | * set the blink bit for each LED that's "on" (0x0E) | 
|  | * in ledctl_mode2 | 
|  | */ | 
|  | ledctl_blink = hw->mac.ledctl_mode2; | 
|  | for (i = 0; i < 4; i++) | 
|  | if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == | 
|  | E1000_LEDCTL_MODE_LED_ON) | 
|  | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << | 
|  | (i * 8)); | 
|  | } | 
|  |  | 
|  | ew32(LEDCTL, ledctl_blink); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_led_on_generic - Turn LED on | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Turn LED on. | 
|  | **/ | 
|  | s32 e1000e_led_on_generic(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  |  | 
|  | switch (hw->phy.media_type) { | 
|  | case e1000_media_type_fiber: | 
|  | ctrl = er32(CTRL); | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | ew32(CTRL, ctrl); | 
|  | break; | 
|  | case e1000_media_type_copper: | 
|  | ew32(LEDCTL, hw->mac.ledctl_mode2); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_led_off_generic - Turn LED off | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Turn LED off. | 
|  | **/ | 
|  | s32 e1000e_led_off_generic(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  |  | 
|  | switch (hw->phy.media_type) { | 
|  | case e1000_media_type_fiber: | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | ew32(CTRL, ctrl); | 
|  | break; | 
|  | case e1000_media_type_copper: | 
|  | ew32(LEDCTL, hw->mac.ledctl_mode1); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @no_snoop: bitmap of snoop events | 
|  | * | 
|  | *  Set the PCI-express register to snoop for events enabled in 'no_snoop'. | 
|  | **/ | 
|  | void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) | 
|  | { | 
|  | u32 gcr; | 
|  |  | 
|  | if (no_snoop) { | 
|  | gcr = er32(GCR); | 
|  | gcr &= ~(PCIE_NO_SNOOP_ALL); | 
|  | gcr |= no_snoop; | 
|  | ew32(GCR, gcr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_disable_pcie_master - Disables PCI-express master access | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Returns 0 if successful, else returns -10 | 
|  | *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused | 
|  | *  the master requests to be disabled. | 
|  | * | 
|  | *  Disables PCI-Express master access and verifies there are no pending | 
|  | *  requests. | 
|  | **/ | 
|  | s32 e1000e_disable_pcie_master(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 timeout = MASTER_DISABLE_TIMEOUT; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | while (timeout) { | 
|  | if (!(er32(STATUS) & | 
|  | E1000_STATUS_GIO_MASTER_ENABLE)) | 
|  | break; | 
|  | udelay(100); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | hw_dbg(hw, "Master requests are pending.\n"); | 
|  | return -E1000_ERR_MASTER_REQUESTS_PENDING; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reset the Adaptive Interframe Spacing throttle to default values. | 
|  | **/ | 
|  | void e1000e_reset_adaptive(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  |  | 
|  | mac->current_ifs_val = 0; | 
|  | mac->ifs_min_val = IFS_MIN; | 
|  | mac->ifs_max_val = IFS_MAX; | 
|  | mac->ifs_step_size = IFS_STEP; | 
|  | mac->ifs_ratio = IFS_RATIO; | 
|  |  | 
|  | mac->in_ifs_mode = 0; | 
|  | ew32(AIT, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_update_adaptive - Update Adaptive Interframe Spacing | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Update the Adaptive Interframe Spacing Throttle value based on the | 
|  | *  time between transmitted packets and time between collisions. | 
|  | **/ | 
|  | void e1000e_update_adaptive(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  |  | 
|  | if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { | 
|  | if (mac->tx_packet_delta > MIN_NUM_XMITS) { | 
|  | mac->in_ifs_mode = 1; | 
|  | if (mac->current_ifs_val < mac->ifs_max_val) { | 
|  | if (!mac->current_ifs_val) | 
|  | mac->current_ifs_val = mac->ifs_min_val; | 
|  | else | 
|  | mac->current_ifs_val += | 
|  | mac->ifs_step_size; | 
|  | ew32(AIT, mac->current_ifs_val); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (mac->in_ifs_mode && | 
|  | (mac->tx_packet_delta <= MIN_NUM_XMITS)) { | 
|  | mac->current_ifs_val = 0; | 
|  | mac->in_ifs_mode = 0; | 
|  | ew32(AIT, 0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_raise_eec_clk - Raise EEPROM clock | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @eecd: pointer to the EEPROM | 
|  | * | 
|  | *  Enable/Raise the EEPROM clock bit. | 
|  | **/ | 
|  | static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) | 
|  | { | 
|  | *eecd = *eecd | E1000_EECD_SK; | 
|  | ew32(EECD, *eecd); | 
|  | e1e_flush(); | 
|  | udelay(hw->nvm.delay_usec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_lower_eec_clk - Lower EEPROM clock | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @eecd: pointer to the EEPROM | 
|  | * | 
|  | *  Clear/Lower the EEPROM clock bit. | 
|  | **/ | 
|  | static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) | 
|  | { | 
|  | *eecd = *eecd & ~E1000_EECD_SK; | 
|  | ew32(EECD, *eecd); | 
|  | e1e_flush(); | 
|  | udelay(hw->nvm.delay_usec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: data to send to the EEPROM | 
|  | *  @count: number of bits to shift out | 
|  | * | 
|  | *  We need to shift 'count' bits out to the EEPROM.  So, the value in the | 
|  | *  "data" parameter will be shifted out to the EEPROM one bit at a time. | 
|  | *  In order to do this, "data" must be broken down into bits. | 
|  | **/ | 
|  | static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = er32(EECD); | 
|  | u32 mask; | 
|  |  | 
|  | mask = 0x01 << (count - 1); | 
|  | if (nvm->type == e1000_nvm_eeprom_spi) | 
|  | eecd |= E1000_EECD_DO; | 
|  |  | 
|  | do { | 
|  | eecd &= ~E1000_EECD_DI; | 
|  |  | 
|  | if (data & mask) | 
|  | eecd |= E1000_EECD_DI; | 
|  |  | 
|  | ew32(EECD, eecd); | 
|  | e1e_flush(); | 
|  |  | 
|  | udelay(nvm->delay_usec); | 
|  |  | 
|  | e1000_raise_eec_clk(hw, &eecd); | 
|  | e1000_lower_eec_clk(hw, &eecd); | 
|  |  | 
|  | mask >>= 1; | 
|  | } while (mask); | 
|  |  | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | ew32(EECD, eecd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @count: number of bits to shift in | 
|  | * | 
|  | *  In order to read a register from the EEPROM, we need to shift 'count' bits | 
|  | *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to | 
|  | *  the EEPROM (setting the SK bit), and then reading the value of the data out | 
|  | *  "DO" bit.  During this "shifting in" process the data in "DI" bit should | 
|  | *  always be clear. | 
|  | **/ | 
|  | static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | 
|  | { | 
|  | u32 eecd; | 
|  | u32 i; | 
|  | u16 data; | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|  | data = 0; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | data <<= 1; | 
|  | e1000_raise_eec_clk(hw, &eecd); | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | if (eecd & E1000_EECD_DO) | 
|  | data |= 1; | 
|  |  | 
|  | e1000_lower_eec_clk(hw, &eecd); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @ee_reg: EEPROM flag for polling | 
|  | * | 
|  | *  Polls the EEPROM status bit for either read or write completion based | 
|  | *  upon the value of 'ee_reg'. | 
|  | **/ | 
|  | s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) | 
|  | { | 
|  | u32 attempts = 100000; | 
|  | u32 i, reg = 0; | 
|  |  | 
|  | for (i = 0; i < attempts; i++) { | 
|  | if (ee_reg == E1000_NVM_POLL_READ) | 
|  | reg = er32(EERD); | 
|  | else | 
|  | reg = er32(EEWR); | 
|  |  | 
|  | if (reg & E1000_NVM_RW_REG_DONE) | 
|  | return 0; | 
|  |  | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_acquire_nvm - Generic request for access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Set the EEPROM access request bit and wait for EEPROM access grant bit. | 
|  | *  Return successful if access grant bit set, else clear the request for | 
|  | *  EEPROM access and return -E1000_ERR_NVM (-1). | 
|  | **/ | 
|  | s32 e1000e_acquire_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd = er32(EECD); | 
|  | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | 
|  |  | 
|  | ew32(EECD, eecd | E1000_EECD_REQ); | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | while (timeout) { | 
|  | if (eecd & E1000_EECD_GNT) | 
|  | break; | 
|  | udelay(5); | 
|  | eecd = er32(EECD); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | ew32(EECD, eecd); | 
|  | hw_dbg(hw, "Could not acquire NVM grant\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_standby_nvm - Return EEPROM to standby state | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Return the EEPROM to a standby state. | 
|  | **/ | 
|  | static void e1000_standby_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = er32(EECD); | 
|  |  | 
|  | if (nvm->type == e1000_nvm_eeprom_spi) { | 
|  | /* Toggle CS to flush commands */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | e1e_flush(); | 
|  | udelay(nvm->delay_usec); | 
|  | eecd &= ~E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | e1e_flush(); | 
|  | udelay(nvm->delay_usec); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_stop_nvm - Terminate EEPROM command | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Terminates the current command by inverting the EEPROM's chip select pin. | 
|  | **/ | 
|  | static void e1000_stop_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  |  | 
|  | eecd = er32(EECD); | 
|  | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | 
|  | /* Pull CS high */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | e1000_lower_eec_clk(hw, &eecd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_release_nvm - Release exclusive access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Stop any current commands to the EEPROM and clear the EEPROM request bit. | 
|  | **/ | 
|  | void e1000e_release_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  |  | 
|  | e1000_stop_nvm(hw); | 
|  |  | 
|  | eecd = er32(EECD); | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | ew32(EECD, eecd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Setups the EEPROM for reading and writing. | 
|  | **/ | 
|  | static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = er32(EECD); | 
|  | u16 timeout = 0; | 
|  | u8 spi_stat_reg; | 
|  |  | 
|  | if (nvm->type == e1000_nvm_eeprom_spi) { | 
|  | /* Clear SK and CS */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | ew32(EECD, eecd); | 
|  | udelay(1); | 
|  | timeout = NVM_MAX_RETRY_SPI; | 
|  |  | 
|  | /* | 
|  | * Read "Status Register" repeatedly until the LSB is cleared. | 
|  | * The EEPROM will signal that the command has been completed | 
|  | * by clearing bit 0 of the internal status register.  If it's | 
|  | * not cleared within 'timeout', then error out. | 
|  | */ | 
|  | while (timeout) { | 
|  | e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | 
|  | hw->nvm.opcode_bits); | 
|  | spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); | 
|  | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | 
|  | break; | 
|  |  | 
|  | udelay(5); | 
|  | e1000_standby_nvm(hw); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | hw_dbg(hw, "SPI NVM Status error\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset of word in the EEPROM to read | 
|  | *  @words: number of words to read | 
|  | *  @data: word read from the EEPROM | 
|  | * | 
|  | *  Reads a 16 bit word from the EEPROM using the EERD register. | 
|  | **/ | 
|  | s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i, eerd = 0; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* | 
|  | * A check for invalid values:  offset too large, too many words, | 
|  | * too many words for the offset, and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + | 
|  | E1000_NVM_RW_REG_START; | 
|  |  | 
|  | ew32(EERD, eerd); | 
|  | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | 
|  | if (ret_val) | 
|  | break; | 
|  |  | 
|  | data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_nvm_spi - Write to EEPROM using SPI | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the EEPROM | 
|  | * | 
|  | *  Writes data to EEPROM at offset using SPI interface. | 
|  | * | 
|  | *  If e1000e_update_nvm_checksum is not called after this function , the | 
|  | *  EEPROM will most likely contain an invalid checksum. | 
|  | **/ | 
|  | s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | s32 ret_val; | 
|  | u16 widx = 0; | 
|  |  | 
|  | /* | 
|  | * A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | ret_val = nvm->ops.acquire_nvm(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | while (widx < words) { | 
|  | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | 
|  |  | 
|  | ret_val = e1000_ready_nvm_eeprom(hw); | 
|  | if (ret_val) { | 
|  | nvm->ops.release_nvm(hw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | e1000_standby_nvm(hw); | 
|  |  | 
|  | /* Send the WRITE ENABLE command (8 bit opcode) */ | 
|  | e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, | 
|  | nvm->opcode_bits); | 
|  |  | 
|  | e1000_standby_nvm(hw); | 
|  |  | 
|  | /* | 
|  | * Some SPI eeproms use the 8th address bit embedded in the | 
|  | * opcode | 
|  | */ | 
|  | if ((nvm->address_bits == 8) && (offset >= 128)) | 
|  | write_opcode |= NVM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the Write command (8-bit opcode + addr) */ | 
|  | e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | 
|  | e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), | 
|  | nvm->address_bits); | 
|  |  | 
|  | /* Loop to allow for up to whole page write of eeprom */ | 
|  | while (widx < words) { | 
|  | u16 word_out = data[widx]; | 
|  | word_out = (word_out >> 8) | (word_out << 8); | 
|  | e1000_shift_out_eec_bits(hw, word_out, 16); | 
|  | widx++; | 
|  |  | 
|  | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | 
|  | e1000_standby_nvm(hw); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | msleep(10); | 
|  | nvm->ops.release_nvm(hw); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_mac_addr - Read device MAC address | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the device MAC address from the EEPROM and stores the value. | 
|  | *  Since devices with two ports use the same EEPROM, we increment the | 
|  | *  last bit in the MAC address for the second port. | 
|  | **/ | 
|  | s32 e1000e_read_mac_addr(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 offset, nvm_data, i; | 
|  | u16 mac_addr_offset = 0; | 
|  |  | 
|  | if (hw->mac.type == e1000_82571) { | 
|  | /* Check for an alternate MAC address.  An alternate MAC | 
|  | * address can be setup by pre-boot software and must be | 
|  | * treated like a permanent address and must override the | 
|  | * actual permanent MAC address.*/ | 
|  | ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, | 
|  | &mac_addr_offset); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | if (mac_addr_offset == 0xFFFF) | 
|  | mac_addr_offset = 0; | 
|  |  | 
|  | if (mac_addr_offset) { | 
|  | if (hw->bus.func == E1000_FUNC_1) | 
|  | mac_addr_offset += ETH_ALEN/sizeof(u16); | 
|  |  | 
|  | /* make sure we have a valid mac address here | 
|  | * before using it */ | 
|  | ret_val = e1000_read_nvm(hw, mac_addr_offset, 1, | 
|  | &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | if (nvm_data & 0x0001) | 
|  | mac_addr_offset = 0; | 
|  | } | 
|  |  | 
|  | if (mac_addr_offset) | 
|  | hw->dev_spec.e82571.alt_mac_addr_is_present = 1; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ETH_ALEN; i += 2) { | 
|  | offset = mac_addr_offset + (i >> 1); | 
|  | ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); | 
|  | hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); | 
|  | } | 
|  |  | 
|  | /* Flip last bit of mac address if we're on second port */ | 
|  | if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1) | 
|  | hw->mac.perm_addr[5] ^= 1; | 
|  |  | 
|  | for (i = 0; i < ETH_ALEN; i++) | 
|  | hw->mac.addr[i] = hw->mac.perm_addr[i]; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  and then verifies that the sum of the EEPROM is equal to 0xBABA. | 
|  | **/ | 
|  | s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | 
|  | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  |  | 
|  | if (checksum != (u16) NVM_SUM) { | 
|  | hw_dbg(hw, "NVM Checksum Invalid\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Updates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  up to the checksum.  Then calculates the EEPROM checksum and writes the | 
|  | *  value to the EEPROM. | 
|  | **/ | 
|  | s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | 
|  | ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error while updating checksum.\n"); | 
|  | return ret_val; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  | checksum = (u16) NVM_SUM - checksum; | 
|  | ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); | 
|  | if (ret_val) | 
|  | hw_dbg(hw, "NVM Write Error while updating checksum.\n"); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_reload_nvm - Reloads EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the | 
|  | *  extended control register. | 
|  | **/ | 
|  | void e1000e_reload_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | udelay(10); | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_calculate_checksum - Calculate checksum for buffer | 
|  | *  @buffer: pointer to EEPROM | 
|  | *  @length: size of EEPROM to calculate a checksum for | 
|  | * | 
|  | *  Calculates the checksum for some buffer on a specified length.  The | 
|  | *  checksum calculated is returned. | 
|  | **/ | 
|  | static u8 e1000_calculate_checksum(u8 *buffer, u32 length) | 
|  | { | 
|  | u32 i; | 
|  | u8  sum = 0; | 
|  |  | 
|  | if (!buffer) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < length; i++) | 
|  | sum += buffer[i]; | 
|  |  | 
|  | return (u8) (0 - sum); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_mng_enable_host_if - Checks host interface is enabled | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND | 
|  | * | 
|  | *  This function checks whether the HOST IF is enabled for command operation | 
|  | *  and also checks whether the previous command is completed.  It busy waits | 
|  | *  in case of previous command is not completed. | 
|  | **/ | 
|  | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) | 
|  | { | 
|  | u32 hicr; | 
|  | u8 i; | 
|  |  | 
|  | /* Check that the host interface is enabled. */ | 
|  | hicr = er32(HICR); | 
|  | if ((hicr & E1000_HICR_EN) == 0) { | 
|  | hw_dbg(hw, "E1000_HOST_EN bit disabled.\n"); | 
|  | return -E1000_ERR_HOST_INTERFACE_COMMAND; | 
|  | } | 
|  | /* check the previous command is completed */ | 
|  | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | 
|  | hicr = er32(HICR); | 
|  | if (!(hicr & E1000_HICR_C)) | 
|  | break; | 
|  | mdelay(1); | 
|  | } | 
|  |  | 
|  | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | 
|  | hw_dbg(hw, "Previous command timeout failed .\n"); | 
|  | return -E1000_ERR_HOST_INTERFACE_COMMAND; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_check_mng_mode_generic - check management mode | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the firmware semaphore register and returns true (>0) if | 
|  | *  manageability is enabled, else false (0). | 
|  | **/ | 
|  | bool e1000e_check_mng_mode_generic(struct e1000_hw *hw) | 
|  | { | 
|  | u32 fwsm = er32(FWSM); | 
|  |  | 
|  | return (fwsm & E1000_FWSM_MODE_MASK) == | 
|  | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Enables packet filtering on transmit packets if manageability is enabled | 
|  | *  and host interface is enabled. | 
|  | **/ | 
|  | bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; | 
|  | u32 *buffer = (u32 *)&hw->mng_cookie; | 
|  | u32 offset; | 
|  | s32 ret_val, hdr_csum, csum; | 
|  | u8 i, len; | 
|  |  | 
|  | /* No manageability, no filtering */ | 
|  | if (!e1000e_check_mng_mode(hw)) { | 
|  | hw->mac.tx_pkt_filtering = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we can't read from the host interface for whatever | 
|  | * reason, disable filtering. | 
|  | */ | 
|  | ret_val = e1000_mng_enable_host_if(hw); | 
|  | if (ret_val != 0) { | 
|  | hw->mac.tx_pkt_filtering = 0; | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Read in the header.  Length and offset are in dwords. */ | 
|  | len    = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; | 
|  | offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; | 
|  | for (i = 0; i < len; i++) | 
|  | *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); | 
|  | hdr_csum = hdr->checksum; | 
|  | hdr->checksum = 0; | 
|  | csum = e1000_calculate_checksum((u8 *)hdr, | 
|  | E1000_MNG_DHCP_COOKIE_LENGTH); | 
|  | /* | 
|  | * If either the checksums or signature don't match, then | 
|  | * the cookie area isn't considered valid, in which case we | 
|  | * take the safe route of assuming Tx filtering is enabled. | 
|  | */ | 
|  | if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { | 
|  | hw->mac.tx_pkt_filtering = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Cookie area is valid, make the final check for filtering. */ | 
|  | if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { | 
|  | hw->mac.tx_pkt_filtering = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | hw->mac.tx_pkt_filtering = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_mng_write_cmd_header - Writes manageability command header | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @hdr: pointer to the host interface command header | 
|  | * | 
|  | *  Writes the command header after does the checksum calculation. | 
|  | **/ | 
|  | static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, | 
|  | struct e1000_host_mng_command_header *hdr) | 
|  | { | 
|  | u16 i, length = sizeof(struct e1000_host_mng_command_header); | 
|  |  | 
|  | /* Write the whole command header structure with new checksum. */ | 
|  |  | 
|  | hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); | 
|  |  | 
|  | length >>= 2; | 
|  | /* Write the relevant command block into the ram area. */ | 
|  | for (i = 0; i < length; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, | 
|  | *((u32 *) hdr + i)); | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_mng_host_if_write - Writes to the manageability host interface | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @buffer: pointer to the host interface buffer | 
|  | *  @length: size of the buffer | 
|  | *  @offset: location in the buffer to write to | 
|  | *  @sum: sum of the data (not checksum) | 
|  | * | 
|  | *  This function writes the buffer content at the offset given on the host if. | 
|  | *  It also does alignment considerations to do the writes in most efficient | 
|  | *  way.  Also fills up the sum of the buffer in *buffer parameter. | 
|  | **/ | 
|  | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, | 
|  | u16 length, u16 offset, u8 *sum) | 
|  | { | 
|  | u8 *tmp; | 
|  | u8 *bufptr = buffer; | 
|  | u32 data = 0; | 
|  | u16 remaining, i, j, prev_bytes; | 
|  |  | 
|  | /* sum = only sum of the data and it is not checksum */ | 
|  |  | 
|  | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) | 
|  | return -E1000_ERR_PARAM; | 
|  |  | 
|  | tmp = (u8 *)&data; | 
|  | prev_bytes = offset & 0x3; | 
|  | offset >>= 2; | 
|  |  | 
|  | if (prev_bytes) { | 
|  | data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); | 
|  | for (j = prev_bytes; j < sizeof(u32); j++) { | 
|  | *(tmp + j) = *bufptr++; | 
|  | *sum += *(tmp + j); | 
|  | } | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); | 
|  | length -= j - prev_bytes; | 
|  | offset++; | 
|  | } | 
|  |  | 
|  | remaining = length & 0x3; | 
|  | length -= remaining; | 
|  |  | 
|  | /* Calculate length in DWORDs */ | 
|  | length >>= 2; | 
|  |  | 
|  | /* | 
|  | * The device driver writes the relevant command block into the | 
|  | * ram area. | 
|  | */ | 
|  | for (i = 0; i < length; i++) { | 
|  | for (j = 0; j < sizeof(u32); j++) { | 
|  | *(tmp + j) = *bufptr++; | 
|  | *sum += *(tmp + j); | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | 
|  | } | 
|  | if (remaining) { | 
|  | for (j = 0; j < sizeof(u32); j++) { | 
|  | if (j < remaining) | 
|  | *(tmp + j) = *bufptr++; | 
|  | else | 
|  | *(tmp + j) = 0; | 
|  |  | 
|  | *sum += *(tmp + j); | 
|  | } | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_mng_write_dhcp_info - Writes DHCP info to host interface | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @buffer: pointer to the host interface | 
|  | *  @length: size of the buffer | 
|  | * | 
|  | *  Writes the DHCP information to the host interface. | 
|  | **/ | 
|  | s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) | 
|  | { | 
|  | struct e1000_host_mng_command_header hdr; | 
|  | s32 ret_val; | 
|  | u32 hicr; | 
|  |  | 
|  | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | 
|  | hdr.command_length = length; | 
|  | hdr.reserved1 = 0; | 
|  | hdr.reserved2 = 0; | 
|  | hdr.checksum = 0; | 
|  |  | 
|  | /* Enable the host interface */ | 
|  | ret_val = e1000_mng_enable_host_if(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Populate the host interface with the contents of "buffer". */ | 
|  | ret_val = e1000_mng_host_if_write(hw, buffer, length, | 
|  | sizeof(hdr), &(hdr.checksum)); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Write the manageability command header */ | 
|  | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Tell the ARC a new command is pending. */ | 
|  | hicr = er32(HICR); | 
|  | ew32(HICR, hicr | E1000_HICR_C); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_enable_mng_pass_thru - Enable processing of ARP's | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Verifies the hardware needs to allow ARPs to be processed by the host. | 
|  | **/ | 
|  | bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) | 
|  | { | 
|  | u32 manc; | 
|  | u32 fwsm, factps; | 
|  | bool ret_val = 0; | 
|  |  | 
|  | manc = er32(MANC); | 
|  |  | 
|  | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 
|  | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 
|  | return ret_val; | 
|  |  | 
|  | if (hw->mac.arc_subsystem_valid) { | 
|  | fwsm = er32(FWSM); | 
|  | factps = er32(FACTPS); | 
|  |  | 
|  | if (!(factps & E1000_FACTPS_MNGCG) && | 
|  | ((fwsm & E1000_FWSM_MODE_MASK) == | 
|  | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { | 
|  | ret_val = 1; | 
|  | return ret_val; | 
|  | } | 
|  | } else { | 
|  | if ((manc & E1000_MANC_SMBUS_EN) && | 
|  | !(manc & E1000_MANC_ASF_EN)) { | 
|  | ret_val = 1; | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 nvm_data; | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | *pba_num = (u32)(nvm_data << 16); | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  | *pba_num |= nvm_data; | 
|  |  | 
|  | return 0; | 
|  | } |