|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2008 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <net/checksum.h> | 
|  | #include <net/ip6_checksum.h> | 
|  | #include <linux/mii.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/pm_qos_params.h> | 
|  | #include <linux/aer.h> | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | #define DRV_VERSION "0.3.3.4-k4" | 
|  | char e1000e_driver_name[] = "e1000e"; | 
|  | const char e1000e_driver_version[] = DRV_VERSION; | 
|  |  | 
|  | static const struct e1000_info *e1000_info_tbl[] = { | 
|  | [board_82571]		= &e1000_82571_info, | 
|  | [board_82572]		= &e1000_82572_info, | 
|  | [board_82573]		= &e1000_82573_info, | 
|  | [board_82574]		= &e1000_82574_info, | 
|  | [board_82583]		= &e1000_82583_info, | 
|  | [board_80003es2lan]	= &e1000_es2_info, | 
|  | [board_ich8lan]		= &e1000_ich8_info, | 
|  | [board_ich9lan]		= &e1000_ich9_info, | 
|  | [board_ich10lan]	= &e1000_ich10_info, | 
|  | }; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /** | 
|  | * e1000_get_hw_dev_name - return device name string | 
|  | * used by hardware layer to print debugging information | 
|  | **/ | 
|  | char *e1000e_get_hw_dev_name(struct e1000_hw *hw) | 
|  | { | 
|  | return hw->adapter->netdev->name; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * e1000_desc_unused - calculate if we have unused descriptors | 
|  | **/ | 
|  | static int e1000_desc_unused(struct e1000_ring *ring) | 
|  | { | 
|  | if (ring->next_to_clean > ring->next_to_use) | 
|  | return ring->next_to_clean - ring->next_to_use - 1; | 
|  |  | 
|  | return ring->count + ring->next_to_clean - ring->next_to_use - 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_receive_skb - helper function to handle Rx indications | 
|  | * @adapter: board private structure | 
|  | * @status: descriptor status field as written by hardware | 
|  | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | 
|  | * @skb: pointer to sk_buff to be indicated to stack | 
|  | **/ | 
|  | static void e1000_receive_skb(struct e1000_adapter *adapter, | 
|  | struct net_device *netdev, | 
|  | struct sk_buff *skb, | 
|  | u8 status, __le16 vlan) | 
|  | { | 
|  | skb->protocol = eth_type_trans(skb, netdev); | 
|  |  | 
|  | if (adapter->vlgrp && (status & E1000_RXD_STAT_VP)) | 
|  | vlan_gro_receive(&adapter->napi, adapter->vlgrp, | 
|  | le16_to_cpu(vlan), skb); | 
|  | else | 
|  | napi_gro_receive(&adapter->napi, skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_rx_checksum - Receive Checksum Offload for 82543 | 
|  | * @adapter:     board private structure | 
|  | * @status_err:  receive descriptor status and error fields | 
|  | * @csum:	receive descriptor csum field | 
|  | * @sk_buff:     socket buffer with received data | 
|  | **/ | 
|  | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | 
|  | u32 csum, struct sk_buff *skb) | 
|  | { | 
|  | u16 status = (u16)status_err; | 
|  | u8 errors = (u8)(status_err >> 24); | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  |  | 
|  | /* Ignore Checksum bit is set */ | 
|  | if (status & E1000_RXD_STAT_IXSM) | 
|  | return; | 
|  | /* TCP/UDP checksum error bit is set */ | 
|  | if (errors & E1000_RXD_ERR_TCPE) { | 
|  | /* let the stack verify checksum errors */ | 
|  | adapter->hw_csum_err++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* TCP/UDP Checksum has not been calculated */ | 
|  | if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | 
|  | return; | 
|  |  | 
|  | /* It must be a TCP or UDP packet with a valid checksum */ | 
|  | if (status & E1000_RXD_STAT_TCPCS) { | 
|  | /* TCP checksum is good */ | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | } else { | 
|  | /* | 
|  | * IP fragment with UDP payload | 
|  | * Hardware complements the payload checksum, so we undo it | 
|  | * and then put the value in host order for further stack use. | 
|  | */ | 
|  | __sum16 sum = (__force __sum16)htons(csum); | 
|  | skb->csum = csum_unfold(~sum); | 
|  | skb->ip_summed = CHECKSUM_COMPLETE; | 
|  | } | 
|  | adapter->hw_csum_good++; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | 
|  | * @adapter: address of board private structure | 
|  | **/ | 
|  | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
|  | int cleaned_count) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_rx_desc *rx_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i; | 
|  | unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | skb = buffer_info->skb; | 
|  | if (skb) { | 
|  | skb_trim(skb, 0); | 
|  | goto map_skb; | 
|  | } | 
|  |  | 
|  | skb = netdev_alloc_skb(netdev, bufsz); | 
|  | if (!skb) { | 
|  | /* Better luck next round */ | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make buffer alignment 2 beyond a 16 byte boundary | 
|  | * this will result in a 16 byte aligned IP header after | 
|  | * the 14 byte MAC header is removed | 
|  | */ | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | map_skb: | 
|  | buffer_info->dma = pci_map_single(pdev, skb->data, | 
|  | adapter->rx_buffer_len, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if (pci_dma_mapping_error(pdev, buffer_info->dma)) { | 
|  | dev_err(&pdev->dev, "RX DMA map failed\n"); | 
|  | adapter->rx_dma_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | if (rx_ring->next_to_use != i) { | 
|  | rx_ring->next_to_use = i; | 
|  | if (i-- == 0) | 
|  | i = (rx_ring->count - 1); | 
|  |  | 
|  | /* | 
|  | * Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  | writel(i, adapter->hw.hw_addr + rx_ring->tail); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | 
|  | * @adapter: address of board private structure | 
|  | **/ | 
|  | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter, | 
|  | int cleaned_count) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | union e1000_rx_desc_packet_split *rx_desc; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i, j; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
|  |  | 
|  | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
|  | ps_page = &buffer_info->ps_pages[j]; | 
|  | if (j >= adapter->rx_ps_pages) { | 
|  | /* all unused desc entries get hw null ptr */ | 
|  | rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0); | 
|  | continue; | 
|  | } | 
|  | if (!ps_page->page) { | 
|  | ps_page->page = alloc_page(GFP_ATOMIC); | 
|  | if (!ps_page->page) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | goto no_buffers; | 
|  | } | 
|  | ps_page->dma = pci_map_page(pdev, | 
|  | ps_page->page, | 
|  | 0, PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if (pci_dma_mapping_error(pdev, ps_page->dma)) { | 
|  | dev_err(&adapter->pdev->dev, | 
|  | "RX DMA page map failed\n"); | 
|  | adapter->rx_dma_failed++; | 
|  | goto no_buffers; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Refresh the desc even if buffer_addrs | 
|  | * didn't change because each write-back | 
|  | * erases this info. | 
|  | */ | 
|  | rx_desc->read.buffer_addr[j+1] = | 
|  | cpu_to_le64(ps_page->dma); | 
|  | } | 
|  |  | 
|  | skb = netdev_alloc_skb(netdev, | 
|  | adapter->rx_ps_bsize0 + NET_IP_ALIGN); | 
|  |  | 
|  | if (!skb) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make buffer alignment 2 beyond a 16 byte boundary | 
|  | * this will result in a 16 byte aligned IP header after | 
|  | * the 14 byte MAC header is removed | 
|  | */ | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | buffer_info->dma = pci_map_single(pdev, skb->data, | 
|  | adapter->rx_ps_bsize0, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if (pci_dma_mapping_error(pdev, buffer_info->dma)) { | 
|  | dev_err(&pdev->dev, "RX DMA map failed\n"); | 
|  | adapter->rx_dma_failed++; | 
|  | /* cleanup skb */ | 
|  | dev_kfree_skb_any(skb); | 
|  | buffer_info->skb = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | no_buffers: | 
|  | if (rx_ring->next_to_use != i) { | 
|  | rx_ring->next_to_use = i; | 
|  |  | 
|  | if (!(i--)) | 
|  | i = (rx_ring->count - 1); | 
|  |  | 
|  | /* | 
|  | * Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  | /* | 
|  | * Hardware increments by 16 bytes, but packet split | 
|  | * descriptors are 32 bytes...so we increment tail | 
|  | * twice as much. | 
|  | */ | 
|  | writel(i<<1, adapter->hw.hw_addr + rx_ring->tail); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers | 
|  | * @adapter: address of board private structure | 
|  | * @cleaned_count: number of buffers to allocate this pass | 
|  | **/ | 
|  |  | 
|  | static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | 
|  | int cleaned_count) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_rx_desc *rx_desc; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i; | 
|  | unsigned int bufsz = 256 - | 
|  | 16 /* for skb_reserve */ - | 
|  | NET_IP_ALIGN; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | skb = buffer_info->skb; | 
|  | if (skb) { | 
|  | skb_trim(skb, 0); | 
|  | goto check_page; | 
|  | } | 
|  |  | 
|  | skb = netdev_alloc_skb(netdev, bufsz); | 
|  | if (unlikely(!skb)) { | 
|  | /* Better luck next round */ | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Make buffer alignment 2 beyond a 16 byte boundary | 
|  | * this will result in a 16 byte aligned IP header after | 
|  | * the 14 byte MAC header is removed | 
|  | */ | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  |  | 
|  | buffer_info->skb = skb; | 
|  | check_page: | 
|  | /* allocate a new page if necessary */ | 
|  | if (!buffer_info->page) { | 
|  | buffer_info->page = alloc_page(GFP_ATOMIC); | 
|  | if (unlikely(!buffer_info->page)) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!buffer_info->dma) | 
|  | buffer_info->dma = pci_map_page(pdev, | 
|  | buffer_info->page, 0, | 
|  | PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | if (unlikely(++i == rx_ring->count)) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | if (likely(rx_ring->next_to_use != i)) { | 
|  | rx_ring->next_to_use = i; | 
|  | if (unlikely(i-- == 0)) | 
|  | i = (rx_ring->count - 1); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). */ | 
|  | wmb(); | 
|  | writel(i, adapter->hw.hw_addr + rx_ring->tail); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_irq - Send received data up the network stack; legacy | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | **/ | 
|  | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
|  | int *work_done, int work_to_do) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_rx_desc *rx_desc, *next_rxd; | 
|  | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | u32 length; | 
|  | unsigned int i; | 
|  | int cleaned_count = 0; | 
|  | bool cleaned = 0; | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (rx_desc->status & E1000_RXD_STAT_DD) { | 
|  | struct sk_buff *skb; | 
|  | u8 status; | 
|  |  | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  |  | 
|  | status = rx_desc->status; | 
|  | skb = buffer_info->skb; | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | prefetch(skb->data - NET_IP_ALIGN); | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | next_rxd = E1000_RX_DESC(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = 1; | 
|  | cleaned_count++; | 
|  | pci_unmap_single(pdev, | 
|  | buffer_info->dma, | 
|  | adapter->rx_buffer_len, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->length); | 
|  |  | 
|  | /* !EOP means multiple descriptors were used to store a single | 
|  | * packet, also make sure the frame isn't just CRC only */ | 
|  | if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) { | 
|  | /* All receives must fit into a single buffer */ | 
|  | e_dbg("%s: Receive packet consumed multiple buffers\n", | 
|  | netdev->name); | 
|  | /* recycle */ | 
|  | buffer_info->skb = skb; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { | 
|  | /* recycle */ | 
|  | buffer_info->skb = skb; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | /* adjust length to remove Ethernet CRC */ | 
|  | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | 
|  | length -= 4; | 
|  |  | 
|  | total_rx_bytes += length; | 
|  | total_rx_packets++; | 
|  |  | 
|  | /* | 
|  | * code added for copybreak, this should improve | 
|  | * performance for small packets with large amounts | 
|  | * of reassembly being done in the stack | 
|  | */ | 
|  | if (length < copybreak) { | 
|  | struct sk_buff *new_skb = | 
|  | netdev_alloc_skb(netdev, length + NET_IP_ALIGN); | 
|  | if (new_skb) { | 
|  | skb_reserve(new_skb, NET_IP_ALIGN); | 
|  | skb_copy_to_linear_data_offset(new_skb, | 
|  | -NET_IP_ALIGN, | 
|  | (skb->data - | 
|  | NET_IP_ALIGN), | 
|  | (length + | 
|  | NET_IP_ALIGN)); | 
|  | /* save the skb in buffer_info as good */ | 
|  | buffer_info->skb = skb; | 
|  | skb = new_skb; | 
|  | } | 
|  | /* else just continue with the old one */ | 
|  | } | 
|  | /* end copybreak code */ | 
|  | skb_put(skb, length); | 
|  |  | 
|  | /* Receive Checksum Offload */ | 
|  | e1000_rx_checksum(adapter, | 
|  | (u32)(status) | | 
|  | ((u32)(rx_desc->errors) << 24), | 
|  | le16_to_cpu(rx_desc->csum), skb); | 
|  |  | 
|  | e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->status = 0; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | 
|  | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = e1000_desc_unused(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  |  | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | adapter->net_stats.rx_bytes += total_rx_bytes; | 
|  | adapter->net_stats.rx_packets += total_rx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | static void e1000_put_txbuf(struct e1000_adapter *adapter, | 
|  | struct e1000_buffer *buffer_info) | 
|  | { | 
|  | buffer_info->dma = 0; | 
|  | if (buffer_info->skb) { | 
|  | skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb, | 
|  | DMA_TO_DEVICE); | 
|  | dev_kfree_skb_any(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  | buffer_info->time_stamp = 0; | 
|  | } | 
|  |  | 
|  | static void e1000_print_tx_hang(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | unsigned int i = tx_ring->next_to_clean; | 
|  | unsigned int eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  |  | 
|  | /* detected Tx unit hang */ | 
|  | e_err("Detected Tx Unit Hang:\n" | 
|  | "  TDH                  <%x>\n" | 
|  | "  TDT                  <%x>\n" | 
|  | "  next_to_use          <%x>\n" | 
|  | "  next_to_clean        <%x>\n" | 
|  | "buffer_info[next_to_clean]:\n" | 
|  | "  time_stamp           <%lx>\n" | 
|  | "  next_to_watch        <%x>\n" | 
|  | "  jiffies              <%lx>\n" | 
|  | "  next_to_watch.status <%x>\n", | 
|  | readl(adapter->hw.hw_addr + tx_ring->head), | 
|  | readl(adapter->hw.hw_addr + tx_ring->tail), | 
|  | tx_ring->next_to_use, | 
|  | tx_ring->next_to_clean, | 
|  | tx_ring->buffer_info[eop].time_stamp, | 
|  | eop, | 
|  | jiffies, | 
|  | eop_desc->upper.fields.status); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_tx_irq - Reclaim resources after transmit completes | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | **/ | 
|  | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_tx_desc *tx_desc, *eop_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i, eop; | 
|  | unsigned int count = 0; | 
|  | bool cleaned; | 
|  | unsigned int total_tx_bytes = 0, total_tx_packets = 0; | 
|  |  | 
|  | i = tx_ring->next_to_clean; | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  |  | 
|  | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && | 
|  | (count < tx_ring->count)) { | 
|  | for (cleaned = 0; !cleaned; count++) { | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | cleaned = (i == eop); | 
|  |  | 
|  | if (cleaned) { | 
|  | struct sk_buff *skb = buffer_info->skb; | 
|  | unsigned int segs, bytecount; | 
|  | segs = skb_shinfo(skb)->gso_segs ?: 1; | 
|  | /* multiply data chunks by size of headers */ | 
|  | bytecount = ((segs - 1) * skb_headlen(skb)) + | 
|  | skb->len; | 
|  | total_tx_packets += segs; | 
|  | total_tx_bytes += bytecount; | 
|  | } | 
|  |  | 
|  | e1000_put_txbuf(adapter, buffer_info); | 
|  | tx_desc->upper.data = 0; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  | } | 
|  |  | 
|  | tx_ring->next_to_clean = i; | 
|  |  | 
|  | #define TX_WAKE_THRESHOLD 32 | 
|  | if (cleaned && netif_carrier_ok(netdev) && | 
|  | e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { | 
|  | /* Make sure that anybody stopping the queue after this | 
|  | * sees the new next_to_clean. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (netif_queue_stopped(netdev) && | 
|  | !(test_bit(__E1000_DOWN, &adapter->state))) { | 
|  | netif_wake_queue(netdev); | 
|  | ++adapter->restart_queue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (adapter->detect_tx_hung) { | 
|  | /* Detect a transmit hang in hardware, this serializes the | 
|  | * check with the clearing of time_stamp and movement of i */ | 
|  | adapter->detect_tx_hung = 0; | 
|  | if (tx_ring->buffer_info[i].time_stamp && | 
|  | time_after(jiffies, tx_ring->buffer_info[i].time_stamp | 
|  | + (adapter->tx_timeout_factor * HZ)) | 
|  | && !(er32(STATUS) & E1000_STATUS_TXOFF)) { | 
|  | e1000_print_tx_hang(adapter); | 
|  | netif_stop_queue(netdev); | 
|  | } | 
|  | } | 
|  | adapter->total_tx_bytes += total_tx_bytes; | 
|  | adapter->total_tx_packets += total_tx_packets; | 
|  | adapter->net_stats.tx_bytes += total_tx_bytes; | 
|  | adapter->net_stats.tx_packets += total_tx_packets; | 
|  | return (count < tx_ring->count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | **/ | 
|  | static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | 
|  | int *work_done, int work_to_do) | 
|  | { | 
|  | union e1000_rx_desc_packet_split *rx_desc, *next_rxd; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct sk_buff *skb; | 
|  | unsigned int i, j; | 
|  | u32 length, staterr; | 
|  | int cleaned_count = 0; | 
|  | bool cleaned = 0; | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (staterr & E1000_RXD_STAT_DD) { | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  | skb = buffer_info->skb; | 
|  |  | 
|  | /* in the packet split case this is header only */ | 
|  | prefetch(skb->data - NET_IP_ALIGN); | 
|  |  | 
|  | i++; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | next_rxd = E1000_RX_DESC_PS(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = 1; | 
|  | cleaned_count++; | 
|  | pci_unmap_single(pdev, buffer_info->dma, | 
|  | adapter->rx_ps_bsize0, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | if (!(staterr & E1000_RXD_STAT_EOP)) { | 
|  | e_dbg("%s: Packet Split buffers didn't pick up the " | 
|  | "full packet\n", netdev->name); | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) { | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->wb.middle.length0); | 
|  |  | 
|  | if (!length) { | 
|  | e_dbg("%s: Last part of the packet spanning multiple " | 
|  | "descriptors\n", netdev->name); | 
|  | dev_kfree_skb_irq(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | /* Good Receive */ | 
|  | skb_put(skb, length); | 
|  |  | 
|  | { | 
|  | /* | 
|  | * this looks ugly, but it seems compiler issues make it | 
|  | * more efficient than reusing j | 
|  | */ | 
|  | int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); | 
|  |  | 
|  | /* | 
|  | * page alloc/put takes too long and effects small packet | 
|  | * throughput, so unsplit small packets and save the alloc/put | 
|  | * only valid in softirq (napi) context to call kmap_* | 
|  | */ | 
|  | if (l1 && (l1 <= copybreak) && | 
|  | ((length + l1) <= adapter->rx_ps_bsize0)) { | 
|  | u8 *vaddr; | 
|  |  | 
|  | ps_page = &buffer_info->ps_pages[0]; | 
|  |  | 
|  | /* | 
|  | * there is no documentation about how to call | 
|  | * kmap_atomic, so we can't hold the mapping | 
|  | * very long | 
|  | */ | 
|  | pci_dma_sync_single_for_cpu(pdev, ps_page->dma, | 
|  | PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
|  | vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ); | 
|  | memcpy(skb_tail_pointer(skb), vaddr, l1); | 
|  | kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); | 
|  | pci_dma_sync_single_for_device(pdev, ps_page->dma, | 
|  | PAGE_SIZE, PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | /* remove the CRC */ | 
|  | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | 
|  | l1 -= 4; | 
|  |  | 
|  | skb_put(skb, l1); | 
|  | goto copydone; | 
|  | } /* if */ | 
|  | } | 
|  |  | 
|  | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
|  | length = le16_to_cpu(rx_desc->wb.upper.length[j]); | 
|  | if (!length) | 
|  | break; | 
|  |  | 
|  | ps_page = &buffer_info->ps_pages[j]; | 
|  | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | ps_page->dma = 0; | 
|  | skb_fill_page_desc(skb, j, ps_page->page, 0, length); | 
|  | ps_page->page = NULL; | 
|  | skb->len += length; | 
|  | skb->data_len += length; | 
|  | skb->truesize += length; | 
|  | } | 
|  |  | 
|  | /* strip the ethernet crc, problem is we're using pages now so | 
|  | * this whole operation can get a little cpu intensive | 
|  | */ | 
|  | if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) | 
|  | pskb_trim(skb, skb->len - 4); | 
|  |  | 
|  | copydone: | 
|  | total_rx_bytes += skb->len; | 
|  | total_rx_packets++; | 
|  |  | 
|  | e1000_rx_checksum(adapter, staterr, le16_to_cpu( | 
|  | rx_desc->wb.lower.hi_dword.csum_ip.csum), skb); | 
|  |  | 
|  | if (rx_desc->wb.upper.header_status & | 
|  | cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) | 
|  | adapter->rx_hdr_split++; | 
|  |  | 
|  | e1000_receive_skb(adapter, netdev, skb, | 
|  | staterr, rx_desc->wb.middle.vlan); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (cleaned_count >= E1000_RX_BUFFER_WRITE) { | 
|  | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  |  | 
|  | staterr = le32_to_cpu(rx_desc->wb.middle.status_error); | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = e1000_desc_unused(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  |  | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | adapter->net_stats.rx_bytes += total_rx_bytes; | 
|  | adapter->net_stats.rx_packets += total_rx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_consume_page - helper function | 
|  | **/ | 
|  | static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, | 
|  | u16 length) | 
|  | { | 
|  | bi->page = NULL; | 
|  | skb->len += length; | 
|  | skb->data_len += length; | 
|  | skb->truesize += length; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | **/ | 
|  |  | 
|  | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | 
|  | int *work_done, int work_to_do) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_rx_desc *rx_desc, *next_rxd; | 
|  | struct e1000_buffer *buffer_info, *next_buffer; | 
|  | u32 length; | 
|  | unsigned int i; | 
|  | int cleaned_count = 0; | 
|  | bool cleaned = false; | 
|  | unsigned int total_rx_bytes=0, total_rx_packets=0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (rx_desc->status & E1000_RXD_STAT_DD) { | 
|  | struct sk_buff *skb; | 
|  | u8 status; | 
|  |  | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  |  | 
|  | status = rx_desc->status; | 
|  | skb = buffer_info->skb; | 
|  | buffer_info->skb = NULL; | 
|  |  | 
|  | ++i; | 
|  | if (i == rx_ring->count) | 
|  | i = 0; | 
|  | next_rxd = E1000_RX_DESC(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = true; | 
|  | cleaned_count++; | 
|  | pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->length); | 
|  |  | 
|  | /* errors is only valid for DD + EOP descriptors */ | 
|  | if (unlikely((status & E1000_RXD_STAT_EOP) && | 
|  | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { | 
|  | /* recycle both page and skb */ | 
|  | buffer_info->skb = skb; | 
|  | /* an error means any chain goes out the window | 
|  | * too */ | 
|  | if (rx_ring->rx_skb_top) | 
|  | dev_kfree_skb(rx_ring->rx_skb_top); | 
|  | rx_ring->rx_skb_top = NULL; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | #define rxtop rx_ring->rx_skb_top | 
|  | if (!(status & E1000_RXD_STAT_EOP)) { | 
|  | /* this descriptor is only the beginning (or middle) */ | 
|  | if (!rxtop) { | 
|  | /* this is the beginning of a chain */ | 
|  | rxtop = skb; | 
|  | skb_fill_page_desc(rxtop, 0, buffer_info->page, | 
|  | 0, length); | 
|  | } else { | 
|  | /* this is the middle of a chain */ | 
|  | skb_fill_page_desc(rxtop, | 
|  | skb_shinfo(rxtop)->nr_frags, | 
|  | buffer_info->page, 0, length); | 
|  | /* re-use the skb, only consumed the page */ | 
|  | buffer_info->skb = skb; | 
|  | } | 
|  | e1000_consume_page(buffer_info, rxtop, length); | 
|  | goto next_desc; | 
|  | } else { | 
|  | if (rxtop) { | 
|  | /* end of the chain */ | 
|  | skb_fill_page_desc(rxtop, | 
|  | skb_shinfo(rxtop)->nr_frags, | 
|  | buffer_info->page, 0, length); | 
|  | /* re-use the current skb, we only consumed the | 
|  | * page */ | 
|  | buffer_info->skb = skb; | 
|  | skb = rxtop; | 
|  | rxtop = NULL; | 
|  | e1000_consume_page(buffer_info, skb, length); | 
|  | } else { | 
|  | /* no chain, got EOP, this buf is the packet | 
|  | * copybreak to save the put_page/alloc_page */ | 
|  | if (length <= copybreak && | 
|  | skb_tailroom(skb) >= length) { | 
|  | u8 *vaddr; | 
|  | vaddr = kmap_atomic(buffer_info->page, | 
|  | KM_SKB_DATA_SOFTIRQ); | 
|  | memcpy(skb_tail_pointer(skb), vaddr, | 
|  | length); | 
|  | kunmap_atomic(vaddr, | 
|  | KM_SKB_DATA_SOFTIRQ); | 
|  | /* re-use the page, so don't erase | 
|  | * buffer_info->page */ | 
|  | skb_put(skb, length); | 
|  | } else { | 
|  | skb_fill_page_desc(skb, 0, | 
|  | buffer_info->page, 0, | 
|  | length); | 
|  | e1000_consume_page(buffer_info, skb, | 
|  | length); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | 
|  | e1000_rx_checksum(adapter, | 
|  | (u32)(status) | | 
|  | ((u32)(rx_desc->errors) << 24), | 
|  | le16_to_cpu(rx_desc->csum), skb); | 
|  |  | 
|  | /* probably a little skewed due to removing CRC */ | 
|  | total_rx_bytes += skb->len; | 
|  | total_rx_packets++; | 
|  |  | 
|  | /* eth type trans needs skb->data to point to something */ | 
|  | if (!pskb_may_pull(skb, ETH_HLEN)) { | 
|  | e_err("pskb_may_pull failed.\n"); | 
|  | dev_kfree_skb(skb); | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | e1000_receive_skb(adapter, netdev, skb, status, | 
|  | rx_desc->special); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->status = 0; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | 
|  | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = e1000_desc_unused(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(adapter, cleaned_count); | 
|  |  | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | adapter->net_stats.rx_bytes += total_rx_bytes; | 
|  | adapter->net_stats.rx_packets += total_rx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_ring - Free Rx Buffers per Queue | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000_clean_rx_ring(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_buffer *buffer_info; | 
|  | struct e1000_ps_page *ps_page; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | unsigned int i, j; | 
|  |  | 
|  | /* Free all the Rx ring sk_buffs */ | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | if (buffer_info->dma) { | 
|  | if (adapter->clean_rx == e1000_clean_rx_irq) | 
|  | pci_unmap_single(pdev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) | 
|  | pci_unmap_page(pdev, buffer_info->dma, | 
|  | PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | else if (adapter->clean_rx == e1000_clean_rx_irq_ps) | 
|  | pci_unmap_single(pdev, buffer_info->dma, | 
|  | adapter->rx_ps_bsize0, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | buffer_info->dma = 0; | 
|  | } | 
|  |  | 
|  | if (buffer_info->page) { | 
|  | put_page(buffer_info->page); | 
|  | buffer_info->page = NULL; | 
|  | } | 
|  |  | 
|  | if (buffer_info->skb) { | 
|  | dev_kfree_skb(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < PS_PAGE_BUFFERS; j++) { | 
|  | ps_page = &buffer_info->ps_pages[j]; | 
|  | if (!ps_page->page) | 
|  | break; | 
|  | pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | ps_page->dma = 0; | 
|  | put_page(ps_page->page); | 
|  | ps_page->page = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* there also may be some cached data from a chained receive */ | 
|  | if (rx_ring->rx_skb_top) { | 
|  | dev_kfree_skb(rx_ring->rx_skb_top); | 
|  | rx_ring->rx_skb_top = NULL; | 
|  | } | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  | memset(rx_ring->desc, 0, rx_ring->size); | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  |  | 
|  | writel(0, adapter->hw.hw_addr + rx_ring->head); | 
|  | writel(0, adapter->hw.hw_addr + rx_ring->tail); | 
|  | } | 
|  |  | 
|  | static void e1000e_downshift_workaround(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, downshift_task); | 
|  |  | 
|  | e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_intr_msi - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t e1000_intr_msi(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 icr = er32(ICR); | 
|  |  | 
|  | /* | 
|  | * read ICR disables interrupts using IAM | 
|  | */ | 
|  |  | 
|  | if (icr & E1000_ICR_LSC) { | 
|  | hw->mac.get_link_status = 1; | 
|  | /* | 
|  | * ICH8 workaround-- Call gig speed drop workaround on cable | 
|  | * disconnect (LSC) before accessing any PHY registers | 
|  | */ | 
|  | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | 
|  | (!(er32(STATUS) & E1000_STATUS_LU))) | 
|  | schedule_work(&adapter->downshift_task); | 
|  |  | 
|  | /* | 
|  | * 80003ES2LAN workaround-- For packet buffer work-around on | 
|  | * link down event; disable receives here in the ISR and reset | 
|  | * adapter in watchdog | 
|  | */ | 
|  | if (netif_carrier_ok(netdev) && | 
|  | adapter->flags & FLAG_RX_NEEDS_RESTART) { | 
|  | /* disable receives */ | 
|  | u32 rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | adapter->flags |= FLAG_RX_RESTART_NOW; | 
|  | } | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | if (napi_schedule_prep(&adapter->napi)) { | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __napi_schedule(&adapter->napi); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_intr - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t e1000_intr(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl, icr = er32(ICR); | 
|  |  | 
|  | if (!icr) | 
|  | return IRQ_NONE;  /* Not our interrupt */ | 
|  |  | 
|  | /* | 
|  | * IMS will not auto-mask if INT_ASSERTED is not set, and if it is | 
|  | * not set, then the adapter didn't send an interrupt | 
|  | */ | 
|  | if (!(icr & E1000_ICR_INT_ASSERTED)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | /* | 
|  | * Interrupt Auto-Mask...upon reading ICR, | 
|  | * interrupts are masked.  No need for the | 
|  | * IMC write | 
|  | */ | 
|  |  | 
|  | if (icr & E1000_ICR_LSC) { | 
|  | hw->mac.get_link_status = 1; | 
|  | /* | 
|  | * ICH8 workaround-- Call gig speed drop workaround on cable | 
|  | * disconnect (LSC) before accessing any PHY registers | 
|  | */ | 
|  | if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && | 
|  | (!(er32(STATUS) & E1000_STATUS_LU))) | 
|  | schedule_work(&adapter->downshift_task); | 
|  |  | 
|  | /* | 
|  | * 80003ES2LAN workaround-- | 
|  | * For packet buffer work-around on link down event; | 
|  | * disable receives here in the ISR and | 
|  | * reset adapter in watchdog | 
|  | */ | 
|  | if (netif_carrier_ok(netdev) && | 
|  | (adapter->flags & FLAG_RX_NEEDS_RESTART)) { | 
|  | /* disable receives */ | 
|  | rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | adapter->flags |= FLAG_RX_RESTART_NOW; | 
|  | } | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | if (napi_schedule_prep(&adapter->napi)) { | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __napi_schedule(&adapter->napi); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t e1000_msix_other(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 icr = er32(ICR); | 
|  |  | 
|  | if (!(icr & E1000_ICR_INT_ASSERTED)) { | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | ew32(IMS, E1000_IMS_OTHER); | 
|  | return IRQ_NONE; | 
|  | } | 
|  |  | 
|  | if (icr & adapter->eiac_mask) | 
|  | ew32(ICS, (icr & adapter->eiac_mask)); | 
|  |  | 
|  | if (icr & E1000_ICR_OTHER) { | 
|  | if (!(icr & E1000_ICR_LSC)) | 
|  | goto no_link_interrupt; | 
|  | hw->mac.get_link_status = 1; | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, jiffies + 1); | 
|  | } | 
|  |  | 
|  | no_link_interrupt: | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  |  | 
|  | static irqreturn_t e1000_intr_msix_tx(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  |  | 
|  |  | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  |  | 
|  | if (!e1000_clean_tx_irq(adapter)) | 
|  | /* Ring was not completely cleaned, so fire another interrupt */ | 
|  | ew32(ICS, tx_ring->ims_val); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t e1000_intr_msix_rx(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | /* Write the ITR value calculated at the end of the | 
|  | * previous interrupt. | 
|  | */ | 
|  | if (adapter->rx_ring->set_itr) { | 
|  | writel(1000000000 / (adapter->rx_ring->itr_val * 256), | 
|  | adapter->hw.hw_addr + adapter->rx_ring->itr_register); | 
|  | adapter->rx_ring->set_itr = 0; | 
|  | } | 
|  |  | 
|  | if (napi_schedule_prep(&adapter->napi)) { | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __napi_schedule(&adapter->napi); | 
|  | } | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_msix - Configure MSI-X hardware | 
|  | * | 
|  | * e1000_configure_msix sets up the hardware to properly | 
|  | * generate MSI-X interrupts. | 
|  | **/ | 
|  | static void e1000_configure_msix(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | int vector = 0; | 
|  | u32 ctrl_ext, ivar = 0; | 
|  |  | 
|  | adapter->eiac_mask = 0; | 
|  |  | 
|  | /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ | 
|  | if (hw->mac.type == e1000_82574) { | 
|  | u32 rfctl = er32(RFCTL); | 
|  | rfctl |= E1000_RFCTL_ACK_DIS; | 
|  | ew32(RFCTL, rfctl); | 
|  | } | 
|  |  | 
|  | #define E1000_IVAR_INT_ALLOC_VALID	0x8 | 
|  | /* Configure Rx vector */ | 
|  | rx_ring->ims_val = E1000_IMS_RXQ0; | 
|  | adapter->eiac_mask |= rx_ring->ims_val; | 
|  | if (rx_ring->itr_val) | 
|  | writel(1000000000 / (rx_ring->itr_val * 256), | 
|  | hw->hw_addr + rx_ring->itr_register); | 
|  | else | 
|  | writel(1, hw->hw_addr + rx_ring->itr_register); | 
|  | ivar = E1000_IVAR_INT_ALLOC_VALID | vector; | 
|  |  | 
|  | /* Configure Tx vector */ | 
|  | tx_ring->ims_val = E1000_IMS_TXQ0; | 
|  | vector++; | 
|  | if (tx_ring->itr_val) | 
|  | writel(1000000000 / (tx_ring->itr_val * 256), | 
|  | hw->hw_addr + tx_ring->itr_register); | 
|  | else | 
|  | writel(1, hw->hw_addr + tx_ring->itr_register); | 
|  | adapter->eiac_mask |= tx_ring->ims_val; | 
|  | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); | 
|  |  | 
|  | /* set vector for Other Causes, e.g. link changes */ | 
|  | vector++; | 
|  | ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); | 
|  | if (rx_ring->itr_val) | 
|  | writel(1000000000 / (rx_ring->itr_val * 256), | 
|  | hw->hw_addr + E1000_EITR_82574(vector)); | 
|  | else | 
|  | writel(1, hw->hw_addr + E1000_EITR_82574(vector)); | 
|  |  | 
|  | /* Cause Tx interrupts on every write back */ | 
|  | ivar |= (1 << 31); | 
|  |  | 
|  | ew32(IVAR, ivar); | 
|  |  | 
|  | /* enable MSI-X PBA support */ | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; | 
|  |  | 
|  | /* Auto-Mask Other interrupts upon ICR read */ | 
|  | #define E1000_EIAC_MASK_82574   0x01F00000 | 
|  | ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EIAME; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) | 
|  | { | 
|  | if (adapter->msix_entries) { | 
|  | pci_disable_msix(adapter->pdev); | 
|  | kfree(adapter->msix_entries); | 
|  | adapter->msix_entries = NULL; | 
|  | } else if (adapter->flags & FLAG_MSI_ENABLED) { | 
|  | pci_disable_msi(adapter->pdev); | 
|  | adapter->flags &= ~FLAG_MSI_ENABLED; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_set_interrupt_capability - set MSI or MSI-X if supported | 
|  | * | 
|  | * Attempt to configure interrupts using the best available | 
|  | * capabilities of the hardware and kernel. | 
|  | **/ | 
|  | void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) | 
|  | { | 
|  | int err; | 
|  | int numvecs, i; | 
|  |  | 
|  |  | 
|  | switch (adapter->int_mode) { | 
|  | case E1000E_INT_MODE_MSIX: | 
|  | if (adapter->flags & FLAG_HAS_MSIX) { | 
|  | numvecs = 3; /* RxQ0, TxQ0 and other */ | 
|  | adapter->msix_entries = kcalloc(numvecs, | 
|  | sizeof(struct msix_entry), | 
|  | GFP_KERNEL); | 
|  | if (adapter->msix_entries) { | 
|  | for (i = 0; i < numvecs; i++) | 
|  | adapter->msix_entries[i].entry = i; | 
|  |  | 
|  | err = pci_enable_msix(adapter->pdev, | 
|  | adapter->msix_entries, | 
|  | numvecs); | 
|  | if (err == 0) | 
|  | return; | 
|  | } | 
|  | /* MSI-X failed, so fall through and try MSI */ | 
|  | e_err("Failed to initialize MSI-X interrupts.  " | 
|  | "Falling back to MSI interrupts.\n"); | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | } | 
|  | adapter->int_mode = E1000E_INT_MODE_MSI; | 
|  | /* Fall through */ | 
|  | case E1000E_INT_MODE_MSI: | 
|  | if (!pci_enable_msi(adapter->pdev)) { | 
|  | adapter->flags |= FLAG_MSI_ENABLED; | 
|  | } else { | 
|  | adapter->int_mode = E1000E_INT_MODE_LEGACY; | 
|  | e_err("Failed to initialize MSI interrupts.  Falling " | 
|  | "back to legacy interrupts.\n"); | 
|  | } | 
|  | /* Fall through */ | 
|  | case E1000E_INT_MODE_LEGACY: | 
|  | /* Don't do anything; this is the system default */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_request_msix - Initialize MSI-X interrupts | 
|  | * | 
|  | * e1000_request_msix allocates MSI-X vectors and requests interrupts from the | 
|  | * kernel. | 
|  | **/ | 
|  | static int e1000_request_msix(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | int err = 0, vector = 0; | 
|  |  | 
|  | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | 
|  | sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name); | 
|  | else | 
|  | memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); | 
|  | err = request_irq(adapter->msix_entries[vector].vector, | 
|  | &e1000_intr_msix_rx, 0, adapter->rx_ring->name, | 
|  | netdev); | 
|  | if (err) | 
|  | goto out; | 
|  | adapter->rx_ring->itr_register = E1000_EITR_82574(vector); | 
|  | adapter->rx_ring->itr_val = adapter->itr; | 
|  | vector++; | 
|  |  | 
|  | if (strlen(netdev->name) < (IFNAMSIZ - 5)) | 
|  | sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name); | 
|  | else | 
|  | memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); | 
|  | err = request_irq(adapter->msix_entries[vector].vector, | 
|  | &e1000_intr_msix_tx, 0, adapter->tx_ring->name, | 
|  | netdev); | 
|  | if (err) | 
|  | goto out; | 
|  | adapter->tx_ring->itr_register = E1000_EITR_82574(vector); | 
|  | adapter->tx_ring->itr_val = adapter->itr; | 
|  | vector++; | 
|  |  | 
|  | err = request_irq(adapter->msix_entries[vector].vector, | 
|  | &e1000_msix_other, 0, netdev->name, netdev); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | e1000_configure_msix(adapter); | 
|  | return 0; | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_request_irq - initialize interrupts | 
|  | * | 
|  | * Attempts to configure interrupts using the best available | 
|  | * capabilities of the hardware and kernel. | 
|  | **/ | 
|  | static int e1000_request_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | int err; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | err = e1000_request_msix(adapter); | 
|  | if (!err) | 
|  | return err; | 
|  | /* fall back to MSI */ | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | adapter->int_mode = E1000E_INT_MODE_MSI; | 
|  | e1000e_set_interrupt_capability(adapter); | 
|  | } | 
|  | if (adapter->flags & FLAG_MSI_ENABLED) { | 
|  | err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0, | 
|  | netdev->name, netdev); | 
|  | if (!err) | 
|  | return err; | 
|  |  | 
|  | /* fall back to legacy interrupt */ | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | adapter->int_mode = E1000E_INT_MODE_LEGACY; | 
|  | } | 
|  |  | 
|  | err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED, | 
|  | netdev->name, netdev); | 
|  | if (err) | 
|  | e_err("Unable to allocate interrupt, Error: %d\n", err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void e1000_free_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | int vector = 0; | 
|  |  | 
|  | free_irq(adapter->msix_entries[vector].vector, netdev); | 
|  | vector++; | 
|  |  | 
|  | free_irq(adapter->msix_entries[vector].vector, netdev); | 
|  | vector++; | 
|  |  | 
|  | /* Other Causes interrupt vector */ | 
|  | free_irq(adapter->msix_entries[vector].vector, netdev); | 
|  | return; | 
|  | } | 
|  |  | 
|  | free_irq(adapter->pdev->irq, netdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_irq_disable - Mask off interrupt generation on the NIC | 
|  | **/ | 
|  | static void e1000_irq_disable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | ew32(IMC, ~0); | 
|  | if (adapter->msix_entries) | 
|  | ew32(EIAC_82574, 0); | 
|  | e1e_flush(); | 
|  | synchronize_irq(adapter->pdev->irq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_irq_enable - Enable default interrupt generation settings | 
|  | **/ | 
|  | static void e1000_irq_enable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (adapter->msix_entries) { | 
|  | ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); | 
|  | ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); | 
|  | } else { | 
|  | ew32(IMS, IMS_ENABLE_MASK); | 
|  | } | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_hw_control - get control of the h/w from f/w | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. | 
|  | * For ASF and Pass Through versions of f/w this means that | 
|  | * the driver is loaded. For AMT version (only with 82573) | 
|  | * of the f/w this means that the network i/f is open. | 
|  | **/ | 
|  | static void e1000_get_hw_control(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl_ext; | 
|  | u32 swsm; | 
|  |  | 
|  | /* Let firmware know the driver has taken over */ | 
|  | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | 
|  | swsm = er32(SWSM); | 
|  | ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); | 
|  | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_release_hw_control - release control of the h/w to f/w | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. | 
|  | * For ASF and Pass Through versions of f/w this means that the | 
|  | * driver is no longer loaded. For AMT version (only with 82573) i | 
|  | * of the f/w this means that the network i/f is closed. | 
|  | * | 
|  | **/ | 
|  | static void e1000_release_hw_control(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl_ext; | 
|  | u32 swsm; | 
|  |  | 
|  | /* Let firmware taken over control of h/w */ | 
|  | if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { | 
|  | swsm = er32(SWSM); | 
|  | ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); | 
|  | } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @e1000_alloc_ring - allocate memory for a ring structure | 
|  | **/ | 
|  | static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, | 
|  | struct e1000_ring *ring) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, | 
|  | GFP_KERNEL); | 
|  | if (!ring->desc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  | int e1000e_setup_tx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | int err = -ENOMEM, size; | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * tx_ring->count; | 
|  | tx_ring->buffer_info = vmalloc(size); | 
|  | if (!tx_ring->buffer_info) | 
|  | goto err; | 
|  | memset(tx_ring->buffer_info, 0, size); | 
|  |  | 
|  | /* round up to nearest 4K */ | 
|  | tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); | 
|  | tx_ring->size = ALIGN(tx_ring->size, 4096); | 
|  |  | 
|  | err = e1000_alloc_ring_dma(adapter, tx_ring); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | vfree(tx_ring->buffer_info); | 
|  | e_err("Unable to allocate memory for the transmit descriptor ring\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | int e1000e_setup_rx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | struct e1000_buffer *buffer_info; | 
|  | int i, size, desc_len, err = -ENOMEM; | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * rx_ring->count; | 
|  | rx_ring->buffer_info = vmalloc(size); | 
|  | if (!rx_ring->buffer_info) | 
|  | goto err; | 
|  | memset(rx_ring->buffer_info, 0, size); | 
|  |  | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, | 
|  | sizeof(struct e1000_ps_page), | 
|  | GFP_KERNEL); | 
|  | if (!buffer_info->ps_pages) | 
|  | goto err_pages; | 
|  | } | 
|  |  | 
|  | desc_len = sizeof(union e1000_rx_desc_packet_split); | 
|  |  | 
|  | /* Round up to nearest 4K */ | 
|  | rx_ring->size = rx_ring->count * desc_len; | 
|  | rx_ring->size = ALIGN(rx_ring->size, 4096); | 
|  |  | 
|  | err = e1000_alloc_ring_dma(adapter, rx_ring); | 
|  | if (err) | 
|  | goto err_pages; | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  | rx_ring->rx_skb_top = NULL; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_pages: | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | kfree(buffer_info->ps_pages); | 
|  | } | 
|  | err: | 
|  | vfree(rx_ring->buffer_info); | 
|  | e_err("Unable to allocate memory for the transmit descriptor ring\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_tx_ring - Free Tx Buffers | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000_clean_tx_ring(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned long size; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < tx_ring->count; i++) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | e1000_put_txbuf(adapter, buffer_info); | 
|  | } | 
|  |  | 
|  | size = sizeof(struct e1000_buffer) * tx_ring->count; | 
|  | memset(tx_ring->buffer_info, 0, size); | 
|  |  | 
|  | memset(tx_ring->desc, 0, tx_ring->size); | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  |  | 
|  | writel(0, adapter->hw.hw_addr + tx_ring->head); | 
|  | writel(0, adapter->hw.hw_addr + tx_ring->tail); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_free_tx_resources - Free Tx Resources per Queue | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  | void e1000e_free_tx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  |  | 
|  | e1000_clean_tx_ring(adapter); | 
|  |  | 
|  | vfree(tx_ring->buffer_info); | 
|  | tx_ring->buffer_info = NULL; | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | 
|  | tx_ring->dma); | 
|  | tx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_free_rx_resources - Free Rx Resources | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  |  | 
|  | void e1000e_free_rx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | int i; | 
|  |  | 
|  | e1000_clean_rx_ring(adapter); | 
|  |  | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | kfree(rx_ring->buffer_info[i].ps_pages); | 
|  | } | 
|  |  | 
|  | vfree(rx_ring->buffer_info); | 
|  | rx_ring->buffer_info = NULL; | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | 
|  | rx_ring->dma); | 
|  | rx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_update_itr - update the dynamic ITR value based on statistics | 
|  | * @adapter: pointer to adapter | 
|  | * @itr_setting: current adapter->itr | 
|  | * @packets: the number of packets during this measurement interval | 
|  | * @bytes: the number of bytes during this measurement interval | 
|  | * | 
|  | *      Stores a new ITR value based on packets and byte | 
|  | *      counts during the last interrupt.  The advantage of per interrupt | 
|  | *      computation is faster updates and more accurate ITR for the current | 
|  | *      traffic pattern.  Constants in this function were computed | 
|  | *      based on theoretical maximum wire speed and thresholds were set based | 
|  | *      on testing data as well as attempting to minimize response time | 
|  | *      while increasing bulk throughput.  This functionality is controlled | 
|  | *      by the InterruptThrottleRate module parameter. | 
|  | **/ | 
|  | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | 
|  | u16 itr_setting, int packets, | 
|  | int bytes) | 
|  | { | 
|  | unsigned int retval = itr_setting; | 
|  |  | 
|  | if (packets == 0) | 
|  | goto update_itr_done; | 
|  |  | 
|  | switch (itr_setting) { | 
|  | case lowest_latency: | 
|  | /* handle TSO and jumbo frames */ | 
|  | if (bytes/packets > 8000) | 
|  | retval = bulk_latency; | 
|  | else if ((packets < 5) && (bytes > 512)) { | 
|  | retval = low_latency; | 
|  | } | 
|  | break; | 
|  | case low_latency:  /* 50 usec aka 20000 ints/s */ | 
|  | if (bytes > 10000) { | 
|  | /* this if handles the TSO accounting */ | 
|  | if (bytes/packets > 8000) { | 
|  | retval = bulk_latency; | 
|  | } else if ((packets < 10) || ((bytes/packets) > 1200)) { | 
|  | retval = bulk_latency; | 
|  | } else if ((packets > 35)) { | 
|  | retval = lowest_latency; | 
|  | } | 
|  | } else if (bytes/packets > 2000) { | 
|  | retval = bulk_latency; | 
|  | } else if (packets <= 2 && bytes < 512) { | 
|  | retval = lowest_latency; | 
|  | } | 
|  | break; | 
|  | case bulk_latency: /* 250 usec aka 4000 ints/s */ | 
|  | if (bytes > 25000) { | 
|  | if (packets > 35) { | 
|  | retval = low_latency; | 
|  | } | 
|  | } else if (bytes < 6000) { | 
|  | retval = low_latency; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | update_itr_done: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void e1000_set_itr(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 current_itr; | 
|  | u32 new_itr = adapter->itr; | 
|  |  | 
|  | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | 
|  | if (adapter->link_speed != SPEED_1000) { | 
|  | current_itr = 0; | 
|  | new_itr = 4000; | 
|  | goto set_itr_now; | 
|  | } | 
|  |  | 
|  | adapter->tx_itr = e1000_update_itr(adapter, | 
|  | adapter->tx_itr, | 
|  | adapter->total_tx_packets, | 
|  | adapter->total_tx_bytes); | 
|  | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | 
|  | adapter->tx_itr = low_latency; | 
|  |  | 
|  | adapter->rx_itr = e1000_update_itr(adapter, | 
|  | adapter->rx_itr, | 
|  | adapter->total_rx_packets, | 
|  | adapter->total_rx_bytes); | 
|  | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | 
|  | adapter->rx_itr = low_latency; | 
|  |  | 
|  | current_itr = max(adapter->rx_itr, adapter->tx_itr); | 
|  |  | 
|  | switch (current_itr) { | 
|  | /* counts and packets in update_itr are dependent on these numbers */ | 
|  | case lowest_latency: | 
|  | new_itr = 70000; | 
|  | break; | 
|  | case low_latency: | 
|  | new_itr = 20000; /* aka hwitr = ~200 */ | 
|  | break; | 
|  | case bulk_latency: | 
|  | new_itr = 4000; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_itr_now: | 
|  | if (new_itr != adapter->itr) { | 
|  | /* | 
|  | * this attempts to bias the interrupt rate towards Bulk | 
|  | * by adding intermediate steps when interrupt rate is | 
|  | * increasing | 
|  | */ | 
|  | new_itr = new_itr > adapter->itr ? | 
|  | min(adapter->itr + (new_itr >> 2), new_itr) : | 
|  | new_itr; | 
|  | adapter->itr = new_itr; | 
|  | adapter->rx_ring->itr_val = new_itr; | 
|  | if (adapter->msix_entries) | 
|  | adapter->rx_ring->set_itr = 1; | 
|  | else | 
|  | ew32(ITR, 1000000000 / (new_itr * 256)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_queues - Allocate memory for all rings | 
|  | * @adapter: board private structure to initialize | 
|  | **/ | 
|  | static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter) | 
|  | { | 
|  | adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | 
|  | if (!adapter->tx_ring) | 
|  | goto err; | 
|  |  | 
|  | adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL); | 
|  | if (!adapter->rx_ring) | 
|  | goto err; | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | e_err("Unable to allocate memory for queues\n"); | 
|  | kfree(adapter->rx_ring); | 
|  | kfree(adapter->tx_ring); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean - NAPI Rx polling callback | 
|  | * @napi: struct associated with this polling callback | 
|  | * @budget: amount of packets driver is allowed to process this poll | 
|  | **/ | 
|  | static int e1000_clean(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *poll_dev = adapter->netdev; | 
|  | int tx_cleaned = 0, work_done = 0; | 
|  |  | 
|  | adapter = netdev_priv(poll_dev); | 
|  |  | 
|  | if (adapter->msix_entries && | 
|  | !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) | 
|  | goto clean_rx; | 
|  |  | 
|  | tx_cleaned = e1000_clean_tx_irq(adapter); | 
|  |  | 
|  | clean_rx: | 
|  | adapter->clean_rx(adapter, &work_done, budget); | 
|  |  | 
|  | if (!tx_cleaned) | 
|  | work_done = budget; | 
|  |  | 
|  | /* If budget not fully consumed, exit the polling mode */ | 
|  | if (work_done < budget) { | 
|  | if (adapter->itr_setting & 3) | 
|  | e1000_set_itr(adapter); | 
|  | napi_complete(napi); | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) { | 
|  | if (adapter->msix_entries) | 
|  | ew32(IMS, adapter->rx_ring->ims_val); | 
|  | else | 
|  | e1000_irq_enable(adapter); | 
|  | } | 
|  | } | 
|  |  | 
|  | return work_done; | 
|  | } | 
|  |  | 
|  | static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vfta, index; | 
|  |  | 
|  | /* don't update vlan cookie if already programmed */ | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
|  | (vid == adapter->mng_vlan_id)) | 
|  | return; | 
|  | /* add VID to filter table */ | 
|  | index = (vid >> 5) & 0x7F; | 
|  | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | 
|  | vfta |= (1 << (vid & 0x1F)); | 
|  | e1000e_write_vfta(hw, index, vfta); | 
|  | } | 
|  |  | 
|  | static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vfta, index; | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | e1000_irq_disable(adapter); | 
|  | vlan_group_set_device(adapter->vlgrp, vid, NULL); | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
|  | (vid == adapter->mng_vlan_id)) { | 
|  | /* release control to f/w */ | 
|  | e1000_release_hw_control(adapter); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* remove VID from filter table */ | 
|  | index = (vid >> 5) & 0x7F; | 
|  | vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); | 
|  | vfta &= ~(1 << (vid & 0x1F)); | 
|  | e1000e_write_vfta(hw, index, vfta); | 
|  | } | 
|  |  | 
|  | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u16 vid = adapter->hw.mng_cookie.vlan_id; | 
|  | u16 old_vid = adapter->mng_vlan_id; | 
|  |  | 
|  | if (!adapter->vlgrp) | 
|  | return; | 
|  |  | 
|  | if (!vlan_group_get_device(adapter->vlgrp, vid)) { | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | if (adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { | 
|  | e1000_vlan_rx_add_vid(netdev, vid); | 
|  | adapter->mng_vlan_id = vid; | 
|  | } | 
|  |  | 
|  | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | 
|  | (vid != old_vid) && | 
|  | !vlan_group_get_device(adapter->vlgrp, old_vid)) | 
|  | e1000_vlan_rx_kill_vid(netdev, old_vid); | 
|  | } else { | 
|  | adapter->mng_vlan_id = vid; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void e1000_vlan_rx_register(struct net_device *netdev, | 
|  | struct vlan_group *grp) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl, rctl; | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | e1000_irq_disable(adapter); | 
|  | adapter->vlgrp = grp; | 
|  |  | 
|  | if (grp) { | 
|  | /* enable VLAN tag insert/strip */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_VME; | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
|  | /* enable VLAN receive filtering */ | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~E1000_RCTL_CFIEN; | 
|  | ew32(RCTL, rctl); | 
|  | e1000_update_mng_vlan(adapter); | 
|  | } | 
|  | } else { | 
|  | /* disable VLAN tag insert/strip */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl &= ~E1000_CTRL_VME; | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { | 
|  | if (adapter->mng_vlan_id != | 
|  | (u16)E1000_MNG_VLAN_NONE) { | 
|  | e1000_vlan_rx_kill_vid(netdev, | 
|  | adapter->mng_vlan_id); | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | e1000_irq_enable(adapter); | 
|  | } | 
|  |  | 
|  | static void e1000_restore_vlan(struct e1000_adapter *adapter) | 
|  | { | 
|  | u16 vid; | 
|  |  | 
|  | e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp); | 
|  |  | 
|  | if (!adapter->vlgrp) | 
|  | return; | 
|  |  | 
|  | for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) { | 
|  | if (!vlan_group_get_device(adapter->vlgrp, vid)) | 
|  | continue; | 
|  | e1000_vlan_rx_add_vid(adapter->netdev, vid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_init_manageability(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 manc, manc2h; | 
|  |  | 
|  | if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) | 
|  | return; | 
|  |  | 
|  | manc = er32(MANC); | 
|  |  | 
|  | /* | 
|  | * enable receiving management packets to the host. this will probably | 
|  | * generate destination unreachable messages from the host OS, but | 
|  | * the packets will be handled on SMBUS | 
|  | */ | 
|  | manc |= E1000_MANC_EN_MNG2HOST; | 
|  | manc2h = er32(MANC2H); | 
|  | #define E1000_MNG2HOST_PORT_623 (1 << 5) | 
|  | #define E1000_MNG2HOST_PORT_664 (1 << 6) | 
|  | manc2h |= E1000_MNG2HOST_PORT_623; | 
|  | manc2h |= E1000_MNG2HOST_PORT_664; | 
|  | ew32(MANC2H, manc2h); | 
|  | ew32(MANC, manc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Tx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void e1000_configure_tx(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | u64 tdba; | 
|  | u32 tdlen, tctl, tipg, tarc; | 
|  | u32 ipgr1, ipgr2; | 
|  |  | 
|  | /* Setup the HW Tx Head and Tail descriptor pointers */ | 
|  | tdba = tx_ring->dma; | 
|  | tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); | 
|  | ew32(TDBAL, (tdba & DMA_32BIT_MASK)); | 
|  | ew32(TDBAH, (tdba >> 32)); | 
|  | ew32(TDLEN, tdlen); | 
|  | ew32(TDH, 0); | 
|  | ew32(TDT, 0); | 
|  | tx_ring->head = E1000_TDH; | 
|  | tx_ring->tail = E1000_TDT; | 
|  |  | 
|  | /* Set the default values for the Tx Inter Packet Gap timer */ | 
|  | tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */ | 
|  | ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */ | 
|  | ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */ | 
|  |  | 
|  | if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN) | 
|  | ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */ | 
|  |  | 
|  | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | 
|  | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | 
|  | ew32(TIPG, tipg); | 
|  |  | 
|  | /* Set the Tx Interrupt Delay register */ | 
|  | ew32(TIDV, adapter->tx_int_delay); | 
|  | /* Tx irq moderation */ | 
|  | ew32(TADV, adapter->tx_abs_int_delay); | 
|  |  | 
|  | /* Program the Transmit Control Register */ | 
|  | tctl = er32(TCTL); | 
|  | tctl &= ~E1000_TCTL_CT; | 
|  | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | 
|  | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
|  |  | 
|  | if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { | 
|  | tarc = er32(TARC(0)); | 
|  | /* | 
|  | * set the speed mode bit, we'll clear it if we're not at | 
|  | * gigabit link later | 
|  | */ | 
|  | #define SPEED_MODE_BIT (1 << 21) | 
|  | tarc |= SPEED_MODE_BIT; | 
|  | ew32(TARC(0), tarc); | 
|  | } | 
|  |  | 
|  | /* errata: program both queues to unweighted RR */ | 
|  | if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { | 
|  | tarc = er32(TARC(0)); | 
|  | tarc |= 1; | 
|  | ew32(TARC(0), tarc); | 
|  | tarc = er32(TARC(1)); | 
|  | tarc |= 1; | 
|  | ew32(TARC(1), tarc); | 
|  | } | 
|  |  | 
|  | e1000e_config_collision_dist(hw); | 
|  |  | 
|  | /* Setup Transmit Descriptor Settings for eop descriptor */ | 
|  | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | 
|  |  | 
|  | /* only set IDE if we are delaying interrupts using the timers */ | 
|  | if (adapter->tx_int_delay) | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | 
|  |  | 
|  | /* enable Report Status bit */ | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_RS; | 
|  |  | 
|  | ew32(TCTL, tctl); | 
|  |  | 
|  | adapter->tx_queue_len = adapter->netdev->tx_queue_len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_rctl - configure the receive control registers | 
|  | * @adapter: Board private structure | 
|  | **/ | 
|  | #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ | 
|  | (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) | 
|  | static void e1000_setup_rctl(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl, rfctl; | 
|  | u32 psrctl = 0; | 
|  | u32 pages = 0; | 
|  |  | 
|  | /* Program MC offset vector base */ | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
|  | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | | 
|  | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 
|  | (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); | 
|  |  | 
|  | /* Do not Store bad packets */ | 
|  | rctl &= ~E1000_RCTL_SBP; | 
|  |  | 
|  | /* Enable Long Packet receive */ | 
|  | if (adapter->netdev->mtu <= ETH_DATA_LEN) | 
|  | rctl &= ~E1000_RCTL_LPE; | 
|  | else | 
|  | rctl |= E1000_RCTL_LPE; | 
|  |  | 
|  | /* Some systems expect that the CRC is included in SMBUS traffic. The | 
|  | * hardware strips the CRC before sending to both SMBUS (BMC) and to | 
|  | * host memory when this is enabled | 
|  | */ | 
|  | if (adapter->flags2 & FLAG2_CRC_STRIPPING) | 
|  | rctl |= E1000_RCTL_SECRC; | 
|  |  | 
|  | /* Setup buffer sizes */ | 
|  | rctl &= ~E1000_RCTL_SZ_4096; | 
|  | rctl |= E1000_RCTL_BSEX; | 
|  | switch (adapter->rx_buffer_len) { | 
|  | case 256: | 
|  | rctl |= E1000_RCTL_SZ_256; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case 512: | 
|  | rctl |= E1000_RCTL_SZ_512; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case 1024: | 
|  | rctl |= E1000_RCTL_SZ_1024; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case 2048: | 
|  | default: | 
|  | rctl |= E1000_RCTL_SZ_2048; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case 4096: | 
|  | rctl |= E1000_RCTL_SZ_4096; | 
|  | break; | 
|  | case 8192: | 
|  | rctl |= E1000_RCTL_SZ_8192; | 
|  | break; | 
|  | case 16384: | 
|  | rctl |= E1000_RCTL_SZ_16384; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 82571 and greater support packet-split where the protocol | 
|  | * header is placed in skb->data and the packet data is | 
|  | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | 
|  | * In the case of a non-split, skb->data is linearly filled, | 
|  | * followed by the page buffers.  Therefore, skb->data is | 
|  | * sized to hold the largest protocol header. | 
|  | * | 
|  | * allocations using alloc_page take too long for regular MTU | 
|  | * so only enable packet split for jumbo frames | 
|  | * | 
|  | * Using pages when the page size is greater than 16k wastes | 
|  | * a lot of memory, since we allocate 3 pages at all times | 
|  | * per packet. | 
|  | */ | 
|  | pages = PAGE_USE_COUNT(adapter->netdev->mtu); | 
|  | if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) && | 
|  | (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) | 
|  | adapter->rx_ps_pages = pages; | 
|  | else | 
|  | adapter->rx_ps_pages = 0; | 
|  |  | 
|  | if (adapter->rx_ps_pages) { | 
|  | /* Configure extra packet-split registers */ | 
|  | rfctl = er32(RFCTL); | 
|  | rfctl |= E1000_RFCTL_EXTEN; | 
|  | /* | 
|  | * disable packet split support for IPv6 extension headers, | 
|  | * because some malformed IPv6 headers can hang the Rx | 
|  | */ | 
|  | rfctl |= (E1000_RFCTL_IPV6_EX_DIS | | 
|  | E1000_RFCTL_NEW_IPV6_EXT_DIS); | 
|  |  | 
|  | ew32(RFCTL, rfctl); | 
|  |  | 
|  | /* Enable Packet split descriptors */ | 
|  | rctl |= E1000_RCTL_DTYP_PS; | 
|  |  | 
|  | psrctl |= adapter->rx_ps_bsize0 >> | 
|  | E1000_PSRCTL_BSIZE0_SHIFT; | 
|  |  | 
|  | switch (adapter->rx_ps_pages) { | 
|  | case 3: | 
|  | psrctl |= PAGE_SIZE << | 
|  | E1000_PSRCTL_BSIZE3_SHIFT; | 
|  | case 2: | 
|  | psrctl |= PAGE_SIZE << | 
|  | E1000_PSRCTL_BSIZE2_SHIFT; | 
|  | case 1: | 
|  | psrctl |= PAGE_SIZE >> | 
|  | E1000_PSRCTL_BSIZE1_SHIFT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(PSRCTL, psrctl); | 
|  | } | 
|  |  | 
|  | ew32(RCTL, rctl); | 
|  | /* just started the receive unit, no need to restart */ | 
|  | adapter->flags &= ~FLAG_RX_RESTART_NOW; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_rx - Configure Receive Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Rx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void e1000_configure_rx(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_ring *rx_ring = adapter->rx_ring; | 
|  | u64 rdba; | 
|  | u32 rdlen, rctl, rxcsum, ctrl_ext; | 
|  |  | 
|  | if (adapter->rx_ps_pages) { | 
|  | /* this is a 32 byte descriptor */ | 
|  | rdlen = rx_ring->count * | 
|  | sizeof(union e1000_rx_desc_packet_split); | 
|  | adapter->clean_rx = e1000_clean_rx_irq_ps; | 
|  | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | 
|  | } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { | 
|  | rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); | 
|  | adapter->clean_rx = e1000_clean_jumbo_rx_irq; | 
|  | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; | 
|  | } else { | 
|  | rdlen = rx_ring->count * sizeof(struct e1000_rx_desc); | 
|  | adapter->clean_rx = e1000_clean_rx_irq; | 
|  | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | 
|  | } | 
|  |  | 
|  | /* disable receives while setting up the descriptors */ | 
|  | rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | e1e_flush(); | 
|  | msleep(10); | 
|  |  | 
|  | /* set the Receive Delay Timer Register */ | 
|  | ew32(RDTR, adapter->rx_int_delay); | 
|  |  | 
|  | /* irq moderation */ | 
|  | ew32(RADV, adapter->rx_abs_int_delay); | 
|  | if (adapter->itr_setting != 0) | 
|  | ew32(ITR, 1000000000 / (adapter->itr * 256)); | 
|  |  | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | /* Reset delay timers after every interrupt */ | 
|  | ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR; | 
|  | /* Auto-Mask interrupts upon ICR access */ | 
|  | ctrl_ext |= E1000_CTRL_EXT_IAME; | 
|  | ew32(IAM, 0xffffffff); | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | e1e_flush(); | 
|  |  | 
|  | /* | 
|  | * Setup the HW Rx Head and Tail Descriptor Pointers and | 
|  | * the Base and Length of the Rx Descriptor Ring | 
|  | */ | 
|  | rdba = rx_ring->dma; | 
|  | ew32(RDBAL, (rdba & DMA_32BIT_MASK)); | 
|  | ew32(RDBAH, (rdba >> 32)); | 
|  | ew32(RDLEN, rdlen); | 
|  | ew32(RDH, 0); | 
|  | ew32(RDT, 0); | 
|  | rx_ring->head = E1000_RDH; | 
|  | rx_ring->tail = E1000_RDT; | 
|  |  | 
|  | /* Enable Receive Checksum Offload for TCP and UDP */ | 
|  | rxcsum = er32(RXCSUM); | 
|  | if (adapter->flags & FLAG_RX_CSUM_ENABLED) { | 
|  | rxcsum |= E1000_RXCSUM_TUOFL; | 
|  |  | 
|  | /* | 
|  | * IPv4 payload checksum for UDP fragments must be | 
|  | * used in conjunction with packet-split. | 
|  | */ | 
|  | if (adapter->rx_ps_pages) | 
|  | rxcsum |= E1000_RXCSUM_IPPCSE; | 
|  | } else { | 
|  | rxcsum &= ~E1000_RXCSUM_TUOFL; | 
|  | /* no need to clear IPPCSE as it defaults to 0 */ | 
|  | } | 
|  | ew32(RXCSUM, rxcsum); | 
|  |  | 
|  | /* | 
|  | * Enable early receives on supported devices, only takes effect when | 
|  | * packet size is equal or larger than the specified value (in 8 byte | 
|  | * units), e.g. using jumbo frames when setting to E1000_ERT_2048 | 
|  | */ | 
|  | if ((adapter->flags & FLAG_HAS_ERT) && | 
|  | (adapter->netdev->mtu > ETH_DATA_LEN)) { | 
|  | u32 rxdctl = er32(RXDCTL(0)); | 
|  | ew32(RXDCTL(0), rxdctl | 0x3); | 
|  | ew32(ERT, E1000_ERT_2048 | (1 << 13)); | 
|  | /* | 
|  | * With jumbo frames and early-receive enabled, excessive | 
|  | * C4->C2 latencies result in dropped transactions. | 
|  | */ | 
|  | pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, | 
|  | e1000e_driver_name, 55); | 
|  | } else { | 
|  | pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY, | 
|  | e1000e_driver_name, | 
|  | PM_QOS_DEFAULT_VALUE); | 
|  | } | 
|  |  | 
|  | /* Enable Receives */ | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_update_mc_addr_list - Update Multicast addresses | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mc_addr_list: array of multicast addresses to program | 
|  | *  @mc_addr_count: number of multicast addresses to program | 
|  | *  @rar_used_count: the first RAR register free to program | 
|  | *  @rar_count: total number of supported Receive Address Registers | 
|  | * | 
|  | *  Updates the Receive Address Registers and Multicast Table Array. | 
|  | *  The caller must have a packed mc_addr_list of multicast addresses. | 
|  | *  The parameter rar_count will usually be hw->mac.rar_entry_count | 
|  | *  unless there are workarounds that change this.  Currently no func pointer | 
|  | *  exists and all implementations are handled in the generic version of this | 
|  | *  function. | 
|  | **/ | 
|  | static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list, | 
|  | u32 mc_addr_count, u32 rar_used_count, | 
|  | u32 rar_count) | 
|  | { | 
|  | hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count, | 
|  | rar_used_count, rar_count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_multi - Multicast and Promiscuous mode set | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * The set_multi entry point is called whenever the multicast address | 
|  | * list or the network interface flags are updated.  This routine is | 
|  | * responsible for configuring the hardware for proper multicast, | 
|  | * promiscuous mode, and all-multi behavior. | 
|  | **/ | 
|  | static void e1000_set_multi(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | struct dev_mc_list *mc_ptr; | 
|  | u8  *mta_list; | 
|  | u32 rctl; | 
|  | int i; | 
|  |  | 
|  | /* Check for Promiscuous and All Multicast modes */ | 
|  |  | 
|  | rctl = er32(RCTL); | 
|  |  | 
|  | if (netdev->flags & IFF_PROMISC) { | 
|  | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | rctl &= ~E1000_RCTL_VFE; | 
|  | } else { | 
|  | if (netdev->flags & IFF_ALLMULTI) { | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | rctl &= ~E1000_RCTL_UPE; | 
|  | } else { | 
|  | rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | } | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | 
|  | rctl |= E1000_RCTL_VFE; | 
|  | } | 
|  |  | 
|  | ew32(RCTL, rctl); | 
|  |  | 
|  | if (netdev->mc_count) { | 
|  | mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC); | 
|  | if (!mta_list) | 
|  | return; | 
|  |  | 
|  | /* prepare a packed array of only addresses. */ | 
|  | mc_ptr = netdev->mc_list; | 
|  |  | 
|  | for (i = 0; i < netdev->mc_count; i++) { | 
|  | if (!mc_ptr) | 
|  | break; | 
|  | memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr, | 
|  | ETH_ALEN); | 
|  | mc_ptr = mc_ptr->next; | 
|  | } | 
|  |  | 
|  | e1000_update_mc_addr_list(hw, mta_list, i, 1, | 
|  | mac->rar_entry_count); | 
|  | kfree(mta_list); | 
|  | } else { | 
|  | /* | 
|  | * if we're called from probe, we might not have | 
|  | * anything to do here, so clear out the list | 
|  | */ | 
|  | e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure - configure the hardware for Rx and Tx | 
|  | * @adapter: private board structure | 
|  | **/ | 
|  | static void e1000_configure(struct e1000_adapter *adapter) | 
|  | { | 
|  | e1000_set_multi(adapter->netdev); | 
|  |  | 
|  | e1000_restore_vlan(adapter); | 
|  | e1000_init_manageability(adapter); | 
|  |  | 
|  | e1000_configure_tx(adapter); | 
|  | e1000_setup_rctl(adapter); | 
|  | e1000_configure_rx(adapter); | 
|  | adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_power_up_phy - restore link in case the phy was powered down | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * The phy may be powered down to save power and turn off link when the | 
|  | * driver is unloaded and wake on lan is not enabled (among others) | 
|  | * *** this routine MUST be followed by a call to e1000e_reset *** | 
|  | **/ | 
|  | void e1000e_power_up_phy(struct e1000_adapter *adapter) | 
|  | { | 
|  | u16 mii_reg = 0; | 
|  |  | 
|  | /* Just clear the power down bit to wake the phy back up */ | 
|  | if (adapter->hw.phy.media_type == e1000_media_type_copper) { | 
|  | /* | 
|  | * According to the manual, the phy will retain its | 
|  | * settings across a power-down/up cycle | 
|  | */ | 
|  | e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg); | 
|  | mii_reg &= ~MII_CR_POWER_DOWN; | 
|  | e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg); | 
|  | } | 
|  |  | 
|  | adapter->hw.mac.ops.setup_link(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_power_down_phy - Power down the PHY | 
|  | * | 
|  | * Power down the PHY so no link is implied when interface is down | 
|  | * The PHY cannot be powered down is management or WoL is active | 
|  | */ | 
|  | static void e1000_power_down_phy(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 mii_reg; | 
|  |  | 
|  | /* WoL is enabled */ | 
|  | if (adapter->wol) | 
|  | return; | 
|  |  | 
|  | /* non-copper PHY? */ | 
|  | if (adapter->hw.phy.media_type != e1000_media_type_copper) | 
|  | return; | 
|  |  | 
|  | /* reset is blocked because of a SoL/IDER session */ | 
|  | if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw)) | 
|  | return; | 
|  |  | 
|  | /* manageability (AMT) is enabled */ | 
|  | if (er32(MANC) & E1000_MANC_SMBUS_EN) | 
|  | return; | 
|  |  | 
|  | /* power down the PHY */ | 
|  | e1e_rphy(hw, PHY_CONTROL, &mii_reg); | 
|  | mii_reg |= MII_CR_POWER_DOWN; | 
|  | e1e_wphy(hw, PHY_CONTROL, mii_reg); | 
|  | mdelay(1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_reset - bring the hardware into a known good state | 
|  | * | 
|  | * This function boots the hardware and enables some settings that | 
|  | * require a configuration cycle of the hardware - those cannot be | 
|  | * set/changed during runtime. After reset the device needs to be | 
|  | * properly configured for Rx, Tx etc. | 
|  | */ | 
|  | void e1000e_reset(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_mac_info *mac = &adapter->hw.mac; | 
|  | struct e1000_fc_info *fc = &adapter->hw.fc; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tx_space, min_tx_space, min_rx_space; | 
|  | u32 pba = adapter->pba; | 
|  | u16 hwm; | 
|  |  | 
|  | /* reset Packet Buffer Allocation to default */ | 
|  | ew32(PBA, pba); | 
|  |  | 
|  | if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { | 
|  | /* | 
|  | * To maintain wire speed transmits, the Tx FIFO should be | 
|  | * large enough to accommodate two full transmit packets, | 
|  | * rounded up to the next 1KB and expressed in KB.  Likewise, | 
|  | * the Rx FIFO should be large enough to accommodate at least | 
|  | * one full receive packet and is similarly rounded up and | 
|  | * expressed in KB. | 
|  | */ | 
|  | pba = er32(PBA); | 
|  | /* upper 16 bits has Tx packet buffer allocation size in KB */ | 
|  | tx_space = pba >> 16; | 
|  | /* lower 16 bits has Rx packet buffer allocation size in KB */ | 
|  | pba &= 0xffff; | 
|  | /* | 
|  | * the Tx fifo also stores 16 bytes of information about the tx | 
|  | * but don't include ethernet FCS because hardware appends it | 
|  | */ | 
|  | min_tx_space = (adapter->max_frame_size + | 
|  | sizeof(struct e1000_tx_desc) - | 
|  | ETH_FCS_LEN) * 2; | 
|  | min_tx_space = ALIGN(min_tx_space, 1024); | 
|  | min_tx_space >>= 10; | 
|  | /* software strips receive CRC, so leave room for it */ | 
|  | min_rx_space = adapter->max_frame_size; | 
|  | min_rx_space = ALIGN(min_rx_space, 1024); | 
|  | min_rx_space >>= 10; | 
|  |  | 
|  | /* | 
|  | * If current Tx allocation is less than the min Tx FIFO size, | 
|  | * and the min Tx FIFO size is less than the current Rx FIFO | 
|  | * allocation, take space away from current Rx allocation | 
|  | */ | 
|  | if ((tx_space < min_tx_space) && | 
|  | ((min_tx_space - tx_space) < pba)) { | 
|  | pba -= min_tx_space - tx_space; | 
|  |  | 
|  | /* | 
|  | * if short on Rx space, Rx wins and must trump tx | 
|  | * adjustment or use Early Receive if available | 
|  | */ | 
|  | if ((pba < min_rx_space) && | 
|  | (!(adapter->flags & FLAG_HAS_ERT))) | 
|  | /* ERT enabled in e1000_configure_rx */ | 
|  | pba = min_rx_space; | 
|  | } | 
|  |  | 
|  | ew32(PBA, pba); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * flow control settings | 
|  | * | 
|  | * The high water mark must be low enough to fit one full frame | 
|  | * (or the size used for early receive) above it in the Rx FIFO. | 
|  | * Set it to the lower of: | 
|  | * - 90% of the Rx FIFO size, and | 
|  | * - the full Rx FIFO size minus the early receive size (for parts | 
|  | *   with ERT support assuming ERT set to E1000_ERT_2048), or | 
|  | * - the full Rx FIFO size minus one full frame | 
|  | */ | 
|  | if (adapter->flags & FLAG_HAS_ERT) | 
|  | hwm = min(((pba << 10) * 9 / 10), | 
|  | ((pba << 10) - (E1000_ERT_2048 << 3))); | 
|  | else | 
|  | hwm = min(((pba << 10) * 9 / 10), | 
|  | ((pba << 10) - adapter->max_frame_size)); | 
|  |  | 
|  | fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */ | 
|  | fc->low_water = fc->high_water - 8; | 
|  |  | 
|  | if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) | 
|  | fc->pause_time = 0xFFFF; | 
|  | else | 
|  | fc->pause_time = E1000_FC_PAUSE_TIME; | 
|  | fc->send_xon = 1; | 
|  | fc->current_mode = fc->requested_mode; | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | mac->ops.reset_hw(hw); | 
|  |  | 
|  | /* | 
|  | * For parts with AMT enabled, let the firmware know | 
|  | * that the network interface is in control | 
|  | */ | 
|  | if (adapter->flags & FLAG_HAS_AMT) | 
|  | e1000_get_hw_control(adapter); | 
|  |  | 
|  | ew32(WUC, 0); | 
|  |  | 
|  | if (mac->ops.init_hw(hw)) | 
|  | e_err("Hardware Error\n"); | 
|  |  | 
|  | e1000_update_mng_vlan(adapter); | 
|  |  | 
|  | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 
|  | ew32(VET, ETH_P_8021Q); | 
|  |  | 
|  | e1000e_reset_adaptive(hw); | 
|  | e1000_get_phy_info(hw); | 
|  |  | 
|  | if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) { | 
|  | u16 phy_data = 0; | 
|  | /* | 
|  | * speed up time to link by disabling smart power down, ignore | 
|  | * the return value of this function because there is nothing | 
|  | * different we would do if it failed | 
|  | */ | 
|  | e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
|  | phy_data &= ~IGP02E1000_PM_SPD; | 
|  | e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
|  | } | 
|  | } | 
|  |  | 
|  | int e1000e_up(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* hardware has been reset, we need to reload some things */ | 
|  | e1000_configure(adapter); | 
|  |  | 
|  | clear_bit(__E1000_DOWN, &adapter->state); | 
|  |  | 
|  | napi_enable(&adapter->napi); | 
|  | if (adapter->msix_entries) | 
|  | e1000_configure_msix(adapter); | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | /* fire a link change interrupt to start the watchdog */ | 
|  | ew32(ICS, E1000_ICS_LSC); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void e1000e_down(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tctl, rctl; | 
|  |  | 
|  | /* | 
|  | * signal that we're down so the interrupt handler does not | 
|  | * reschedule our watchdog timer | 
|  | */ | 
|  | set_bit(__E1000_DOWN, &adapter->state); | 
|  |  | 
|  | /* disable receives in the hardware */ | 
|  | rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | /* flush and sleep below */ | 
|  |  | 
|  | netif_tx_stop_all_queues(netdev); | 
|  |  | 
|  | /* disable transmits in the hardware */ | 
|  | tctl = er32(TCTL); | 
|  | tctl &= ~E1000_TCTL_EN; | 
|  | ew32(TCTL, tctl); | 
|  | /* flush both disables and wait for them to finish */ | 
|  | e1e_flush(); | 
|  | msleep(10); | 
|  |  | 
|  | napi_disable(&adapter->napi); | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | del_timer_sync(&adapter->watchdog_timer); | 
|  | del_timer_sync(&adapter->phy_info_timer); | 
|  |  | 
|  | netdev->tx_queue_len = adapter->tx_queue_len; | 
|  | netif_carrier_off(netdev); | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  |  | 
|  | if (!pci_channel_offline(adapter->pdev)) | 
|  | e1000e_reset(adapter); | 
|  | e1000_clean_tx_ring(adapter); | 
|  | e1000_clean_rx_ring(adapter); | 
|  |  | 
|  | /* | 
|  | * TODO: for power management, we could drop the link and | 
|  | * pci_disable_device here. | 
|  | */ | 
|  | } | 
|  |  | 
|  | void e1000e_reinit_locked(struct e1000_adapter *adapter) | 
|  | { | 
|  | might_sleep(); | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | 
|  | msleep(1); | 
|  | e1000e_down(adapter); | 
|  | e1000e_up(adapter); | 
|  | clear_bit(__E1000_RESETTING, &adapter->state); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * e1000_sw_init initializes the Adapter private data structure. | 
|  | * Fields are initialized based on PCI device information and | 
|  | * OS network device settings (MTU size). | 
|  | **/ | 
|  | static int __devinit e1000_sw_init(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  |  | 
|  | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; | 
|  | adapter->rx_ps_bsize0 = 128; | 
|  | adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; | 
|  | adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; | 
|  |  | 
|  | e1000e_set_interrupt_capability(adapter); | 
|  |  | 
|  | if (e1000_alloc_queues(adapter)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Explicitly disable IRQ since the NIC can be in any state. */ | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | set_bit(__E1000_DOWN, &adapter->state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_intr_msi_test - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t e1000_intr_msi_test(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 icr = er32(ICR); | 
|  |  | 
|  | e_dbg("%s: icr is %08X\n", netdev->name, icr); | 
|  | if (icr & E1000_ICR_RXSEQ) { | 
|  | adapter->flags &= ~FLAG_MSI_TEST_FAILED; | 
|  | wmb(); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_test_msi_interrupt - Returns 0 for successful test | 
|  | * @adapter: board private struct | 
|  | * | 
|  | * code flow taken from tg3.c | 
|  | **/ | 
|  | static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int err; | 
|  |  | 
|  | /* poll_enable hasn't been called yet, so don't need disable */ | 
|  | /* clear any pending events */ | 
|  | er32(ICR); | 
|  |  | 
|  | /* free the real vector and request a test handler */ | 
|  | e1000_free_irq(adapter); | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  |  | 
|  | /* Assume that the test fails, if it succeeds then the test | 
|  | * MSI irq handler will unset this flag */ | 
|  | adapter->flags |= FLAG_MSI_TEST_FAILED; | 
|  |  | 
|  | err = pci_enable_msi(adapter->pdev); | 
|  | if (err) | 
|  | goto msi_test_failed; | 
|  |  | 
|  | err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0, | 
|  | netdev->name, netdev); | 
|  | if (err) { | 
|  | pci_disable_msi(adapter->pdev); | 
|  | goto msi_test_failed; | 
|  | } | 
|  |  | 
|  | wmb(); | 
|  |  | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | /* fire an unusual interrupt on the test handler */ | 
|  | ew32(ICS, E1000_ICS_RXSEQ); | 
|  | e1e_flush(); | 
|  | msleep(50); | 
|  |  | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | rmb(); | 
|  |  | 
|  | if (adapter->flags & FLAG_MSI_TEST_FAILED) { | 
|  | adapter->int_mode = E1000E_INT_MODE_LEGACY; | 
|  | err = -EIO; | 
|  | e_info("MSI interrupt test failed!\n"); | 
|  | } | 
|  |  | 
|  | free_irq(adapter->pdev->irq, netdev); | 
|  | pci_disable_msi(adapter->pdev); | 
|  |  | 
|  | if (err == -EIO) | 
|  | goto msi_test_failed; | 
|  |  | 
|  | /* okay so the test worked, restore settings */ | 
|  | e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name); | 
|  | msi_test_failed: | 
|  | e1000e_set_interrupt_capability(adapter); | 
|  | e1000_request_irq(adapter); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored | 
|  | * @adapter: board private struct | 
|  | * | 
|  | * code flow taken from tg3.c, called with e1000 interrupts disabled. | 
|  | **/ | 
|  | static int e1000_test_msi(struct e1000_adapter *adapter) | 
|  | { | 
|  | int err; | 
|  | u16 pci_cmd; | 
|  |  | 
|  | if (!(adapter->flags & FLAG_MSI_ENABLED)) | 
|  | return 0; | 
|  |  | 
|  | /* disable SERR in case the MSI write causes a master abort */ | 
|  | pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); | 
|  | pci_write_config_word(adapter->pdev, PCI_COMMAND, | 
|  | pci_cmd & ~PCI_COMMAND_SERR); | 
|  |  | 
|  | err = e1000_test_msi_interrupt(adapter); | 
|  |  | 
|  | /* restore previous setting of command word */ | 
|  | pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); | 
|  |  | 
|  | /* success ! */ | 
|  | if (!err) | 
|  | return 0; | 
|  |  | 
|  | /* EIO means MSI test failed */ | 
|  | if (err != -EIO) | 
|  | return err; | 
|  |  | 
|  | /* back to INTx mode */ | 
|  | e_warn("MSI interrupt test failed, using legacy interrupt.\n"); | 
|  |  | 
|  | e1000_free_irq(adapter); | 
|  |  | 
|  | err = e1000_request_irq(adapter); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_open - Called when a network interface is made active | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0 on success, negative value on failure | 
|  | * | 
|  | * The open entry point is called when a network interface is made | 
|  | * active by the system (IFF_UP).  At this point all resources needed | 
|  | * for transmit and receive operations are allocated, the interrupt | 
|  | * handler is registered with the OS, the watchdog timer is started, | 
|  | * and the stack is notified that the interface is ready. | 
|  | **/ | 
|  | static int e1000_open(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int err; | 
|  |  | 
|  | /* disallow open during test */ | 
|  | if (test_bit(__E1000_TESTING, &adapter->state)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* allocate transmit descriptors */ | 
|  | err = e1000e_setup_tx_resources(adapter); | 
|  | if (err) | 
|  | goto err_setup_tx; | 
|  |  | 
|  | /* allocate receive descriptors */ | 
|  | err = e1000e_setup_rx_resources(adapter); | 
|  | if (err) | 
|  | goto err_setup_rx; | 
|  |  | 
|  | e1000e_power_up_phy(adapter); | 
|  |  | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) | 
|  | e1000_update_mng_vlan(adapter); | 
|  |  | 
|  | /* | 
|  | * If AMT is enabled, let the firmware know that the network | 
|  | * interface is now open | 
|  | */ | 
|  | if (adapter->flags & FLAG_HAS_AMT) | 
|  | e1000_get_hw_control(adapter); | 
|  |  | 
|  | /* | 
|  | * before we allocate an interrupt, we must be ready to handle it. | 
|  | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | 
|  | * as soon as we call pci_request_irq, so we have to setup our | 
|  | * clean_rx handler before we do so. | 
|  | */ | 
|  | e1000_configure(adapter); | 
|  |  | 
|  | err = e1000_request_irq(adapter); | 
|  | if (err) | 
|  | goto err_req_irq; | 
|  |  | 
|  | /* | 
|  | * Work around PCIe errata with MSI interrupts causing some chipsets to | 
|  | * ignore e1000e MSI messages, which means we need to test our MSI | 
|  | * interrupt now | 
|  | */ | 
|  | if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { | 
|  | err = e1000_test_msi(adapter); | 
|  | if (err) { | 
|  | e_err("Interrupt allocation failed\n"); | 
|  | goto err_req_irq; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* From here on the code is the same as e1000e_up() */ | 
|  | clear_bit(__E1000_DOWN, &adapter->state); | 
|  |  | 
|  | napi_enable(&adapter->napi); | 
|  |  | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | netif_tx_start_all_queues(netdev); | 
|  |  | 
|  | /* fire a link status change interrupt to start the watchdog */ | 
|  | ew32(ICS, E1000_ICS_LSC); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_req_irq: | 
|  | e1000_release_hw_control(adapter); | 
|  | e1000_power_down_phy(adapter); | 
|  | e1000e_free_rx_resources(adapter); | 
|  | err_setup_rx: | 
|  | e1000e_free_tx_resources(adapter); | 
|  | err_setup_tx: | 
|  | e1000e_reset(adapter); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_close - Disables a network interface | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0, this is not allowed to fail | 
|  | * | 
|  | * The close entry point is called when an interface is de-activated | 
|  | * by the OS.  The hardware is still under the drivers control, but | 
|  | * needs to be disabled.  A global MAC reset is issued to stop the | 
|  | * hardware, and all transmit and receive resources are freed. | 
|  | **/ | 
|  | static int e1000_close(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
|  | e1000e_down(adapter); | 
|  | e1000_power_down_phy(adapter); | 
|  | e1000_free_irq(adapter); | 
|  |  | 
|  | e1000e_free_tx_resources(adapter); | 
|  | e1000e_free_rx_resources(adapter); | 
|  |  | 
|  | /* | 
|  | * kill manageability vlan ID if supported, but not if a vlan with | 
|  | * the same ID is registered on the host OS (let 8021q kill it) | 
|  | */ | 
|  | if ((adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && | 
|  | !(adapter->vlgrp && | 
|  | vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) | 
|  | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | 
|  |  | 
|  | /* | 
|  | * If AMT is enabled, let the firmware know that the network | 
|  | * interface is now closed | 
|  | */ | 
|  | if (adapter->flags & FLAG_HAS_AMT) | 
|  | e1000_release_hw_control(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /** | 
|  | * e1000_set_mac - Change the Ethernet Address of the NIC | 
|  | * @netdev: network interface device structure | 
|  | * @p: pointer to an address structure | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int e1000_set_mac(struct net_device *netdev, void *p) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
|  | memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); | 
|  |  | 
|  | e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0); | 
|  |  | 
|  | if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { | 
|  | /* activate the work around */ | 
|  | e1000e_set_laa_state_82571(&adapter->hw, 1); | 
|  |  | 
|  | /* | 
|  | * Hold a copy of the LAA in RAR[14] This is done so that | 
|  | * between the time RAR[0] gets clobbered  and the time it | 
|  | * gets fixed (in e1000_watchdog), the actual LAA is in one | 
|  | * of the RARs and no incoming packets directed to this port | 
|  | * are dropped. Eventually the LAA will be in RAR[0] and | 
|  | * RAR[14] | 
|  | */ | 
|  | e1000e_rar_set(&adapter->hw, | 
|  | adapter->hw.mac.addr, | 
|  | adapter->hw.mac.rar_entry_count - 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_update_phy_task - work thread to update phy | 
|  | * @work: pointer to our work struct | 
|  | * | 
|  | * this worker thread exists because we must acquire a | 
|  | * semaphore to read the phy, which we could msleep while | 
|  | * waiting for it, and we can't msleep in a timer. | 
|  | **/ | 
|  | static void e1000e_update_phy_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, update_phy_task); | 
|  | e1000_get_phy_info(&adapter->hw); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to wait a few seconds after link up to get diagnostic information from | 
|  | * the phy | 
|  | */ | 
|  | static void e1000_update_phy_info(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  | schedule_work(&adapter->update_phy_task); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000e_update_stats - Update the board statistics counters | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | void e1000e_update_stats(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | /* | 
|  | * Prevent stats update while adapter is being reset, or if the pci | 
|  | * connection is down. | 
|  | */ | 
|  | if (adapter->link_speed == 0) | 
|  | return; | 
|  | if (pci_channel_offline(pdev)) | 
|  | return; | 
|  |  | 
|  | adapter->stats.crcerrs += er32(CRCERRS); | 
|  | adapter->stats.gprc += er32(GPRC); | 
|  | adapter->stats.gorc += er32(GORCL); | 
|  | er32(GORCH); /* Clear gorc */ | 
|  | adapter->stats.bprc += er32(BPRC); | 
|  | adapter->stats.mprc += er32(MPRC); | 
|  | adapter->stats.roc += er32(ROC); | 
|  |  | 
|  | adapter->stats.mpc += er32(MPC); | 
|  | adapter->stats.scc += er32(SCC); | 
|  | adapter->stats.ecol += er32(ECOL); | 
|  | adapter->stats.mcc += er32(MCC); | 
|  | adapter->stats.latecol += er32(LATECOL); | 
|  | adapter->stats.dc += er32(DC); | 
|  | adapter->stats.xonrxc += er32(XONRXC); | 
|  | adapter->stats.xontxc += er32(XONTXC); | 
|  | adapter->stats.xoffrxc += er32(XOFFRXC); | 
|  | adapter->stats.xofftxc += er32(XOFFTXC); | 
|  | adapter->stats.gptc += er32(GPTC); | 
|  | adapter->stats.gotc += er32(GOTCL); | 
|  | er32(GOTCH); /* Clear gotc */ | 
|  | adapter->stats.rnbc += er32(RNBC); | 
|  | adapter->stats.ruc += er32(RUC); | 
|  |  | 
|  | adapter->stats.mptc += er32(MPTC); | 
|  | adapter->stats.bptc += er32(BPTC); | 
|  |  | 
|  | /* used for adaptive IFS */ | 
|  |  | 
|  | hw->mac.tx_packet_delta = er32(TPT); | 
|  | adapter->stats.tpt += hw->mac.tx_packet_delta; | 
|  | hw->mac.collision_delta = er32(COLC); | 
|  | adapter->stats.colc += hw->mac.collision_delta; | 
|  |  | 
|  | adapter->stats.algnerrc += er32(ALGNERRC); | 
|  | adapter->stats.rxerrc += er32(RXERRC); | 
|  | if ((hw->mac.type != e1000_82574) && (hw->mac.type != e1000_82583)) | 
|  | adapter->stats.tncrs += er32(TNCRS); | 
|  | adapter->stats.cexterr += er32(CEXTERR); | 
|  | adapter->stats.tsctc += er32(TSCTC); | 
|  | adapter->stats.tsctfc += er32(TSCTFC); | 
|  |  | 
|  | /* Fill out the OS statistics structure */ | 
|  | adapter->net_stats.multicast = adapter->stats.mprc; | 
|  | adapter->net_stats.collisions = adapter->stats.colc; | 
|  |  | 
|  | /* Rx Errors */ | 
|  |  | 
|  | /* | 
|  | * RLEC on some newer hardware can be incorrect so build | 
|  | * our own version based on RUC and ROC | 
|  | */ | 
|  | adapter->net_stats.rx_errors = adapter->stats.rxerrc + | 
|  | adapter->stats.crcerrs + adapter->stats.algnerrc + | 
|  | adapter->stats.ruc + adapter->stats.roc + | 
|  | adapter->stats.cexterr; | 
|  | adapter->net_stats.rx_length_errors = adapter->stats.ruc + | 
|  | adapter->stats.roc; | 
|  | adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs; | 
|  | adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc; | 
|  | adapter->net_stats.rx_missed_errors = adapter->stats.mpc; | 
|  |  | 
|  | /* Tx Errors */ | 
|  | adapter->net_stats.tx_errors = adapter->stats.ecol + | 
|  | adapter->stats.latecol; | 
|  | adapter->net_stats.tx_aborted_errors = adapter->stats.ecol; | 
|  | adapter->net_stats.tx_window_errors = adapter->stats.latecol; | 
|  | adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs; | 
|  |  | 
|  | /* Tx Dropped needs to be maintained elsewhere */ | 
|  |  | 
|  | /* Management Stats */ | 
|  | adapter->stats.mgptc += er32(MGTPTC); | 
|  | adapter->stats.mgprc += er32(MGTPRC); | 
|  | adapter->stats.mgpdc += er32(MGTPDC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_phy_read_status - Update the PHY register status snapshot | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000_phy_read_status(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_phy_regs *phy = &adapter->phy_regs; | 
|  | int ret_val; | 
|  |  | 
|  | if ((er32(STATUS) & E1000_STATUS_LU) && | 
|  | (adapter->hw.phy.media_type == e1000_media_type_copper)) { | 
|  | ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr); | 
|  | ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr); | 
|  | ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise); | 
|  | ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa); | 
|  | ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion); | 
|  | ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000); | 
|  | ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000); | 
|  | ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus); | 
|  | if (ret_val) | 
|  | e_warn("Error reading PHY register\n"); | 
|  | } else { | 
|  | /* | 
|  | * Do not read PHY registers if link is not up | 
|  | * Set values to typical power-on defaults | 
|  | */ | 
|  | phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); | 
|  | phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | | 
|  | BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | | 
|  | BMSR_ERCAP); | 
|  | phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | | 
|  | ADVERTISE_ALL | ADVERTISE_CSMA); | 
|  | phy->lpa = 0; | 
|  | phy->expansion = EXPANSION_ENABLENPAGE; | 
|  | phy->ctrl1000 = ADVERTISE_1000FULL; | 
|  | phy->stat1000 = 0; | 
|  | phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_print_link_info(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl = er32(CTRL); | 
|  |  | 
|  | /* Link status message must follow this format for user tools */ | 
|  | printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, " | 
|  | "Flow Control: %s\n", | 
|  | adapter->netdev->name, | 
|  | adapter->link_speed, | 
|  | (adapter->link_duplex == FULL_DUPLEX) ? | 
|  | "Full Duplex" : "Half Duplex", | 
|  | ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ? | 
|  | "RX/TX" : | 
|  | ((ctrl & E1000_CTRL_RFCE) ? "RX" : | 
|  | ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" ))); | 
|  | } | 
|  |  | 
|  | bool e1000_has_link(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | bool link_active = 0; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* | 
|  | * get_link_status is set on LSC (link status) interrupt or | 
|  | * Rx sequence error interrupt.  get_link_status will stay | 
|  | * false until the check_for_link establishes link | 
|  | * for copper adapters ONLY | 
|  | */ | 
|  | switch (hw->phy.media_type) { | 
|  | case e1000_media_type_copper: | 
|  | if (hw->mac.get_link_status) { | 
|  | ret_val = hw->mac.ops.check_for_link(hw); | 
|  | link_active = !hw->mac.get_link_status; | 
|  | } else { | 
|  | link_active = 1; | 
|  | } | 
|  | break; | 
|  | case e1000_media_type_fiber: | 
|  | ret_val = hw->mac.ops.check_for_link(hw); | 
|  | link_active = !!(er32(STATUS) & E1000_STATUS_LU); | 
|  | break; | 
|  | case e1000_media_type_internal_serdes: | 
|  | ret_val = hw->mac.ops.check_for_link(hw); | 
|  | link_active = adapter->hw.mac.serdes_has_link; | 
|  | break; | 
|  | default: | 
|  | case e1000_media_type_unknown: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && | 
|  | (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { | 
|  | /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ | 
|  | e_info("Gigabit has been disabled, downgrading speed\n"); | 
|  | } | 
|  |  | 
|  | return link_active; | 
|  | } | 
|  |  | 
|  | static void e1000e_enable_receives(struct e1000_adapter *adapter) | 
|  | { | 
|  | /* make sure the receive unit is started */ | 
|  | if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && | 
|  | (adapter->flags & FLAG_RX_RESTART_NOW)) { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl | E1000_RCTL_EN); | 
|  | adapter->flags &= ~FLAG_RX_RESTART_NOW; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_watchdog - Timer Call-back | 
|  | * @data: pointer to adapter cast into an unsigned long | 
|  | **/ | 
|  | static void e1000_watchdog(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  |  | 
|  | /* Do the rest outside of interrupt context */ | 
|  | schedule_work(&adapter->watchdog_task); | 
|  |  | 
|  | /* TODO: make this use queue_delayed_work() */ | 
|  | } | 
|  |  | 
|  | static void e1000_watchdog_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, watchdog_task); | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_mac_info *mac = &adapter->hw.mac; | 
|  | struct e1000_phy_info *phy = &adapter->hw.phy; | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 link, tctl; | 
|  | int tx_pending = 0; | 
|  |  | 
|  | link = e1000_has_link(adapter); | 
|  | if ((netif_carrier_ok(netdev)) && link) { | 
|  | e1000e_enable_receives(adapter); | 
|  | goto link_up; | 
|  | } | 
|  |  | 
|  | if ((e1000e_enable_tx_pkt_filtering(hw)) && | 
|  | (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) | 
|  | e1000_update_mng_vlan(adapter); | 
|  |  | 
|  | if (link) { | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | bool txb2b = 1; | 
|  | /* update snapshot of PHY registers on LSC */ | 
|  | e1000_phy_read_status(adapter); | 
|  | mac->ops.get_link_up_info(&adapter->hw, | 
|  | &adapter->link_speed, | 
|  | &adapter->link_duplex); | 
|  | e1000_print_link_info(adapter); | 
|  | /* | 
|  | * On supported PHYs, check for duplex mismatch only | 
|  | * if link has autonegotiated at 10/100 half | 
|  | */ | 
|  | if ((hw->phy.type == e1000_phy_igp_3 || | 
|  | hw->phy.type == e1000_phy_bm) && | 
|  | (hw->mac.autoneg == true) && | 
|  | (adapter->link_speed == SPEED_10 || | 
|  | adapter->link_speed == SPEED_100) && | 
|  | (adapter->link_duplex == HALF_DUPLEX)) { | 
|  | u16 autoneg_exp; | 
|  |  | 
|  | e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp); | 
|  |  | 
|  | if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS)) | 
|  | e_info("Autonegotiated half duplex but" | 
|  | " link partner cannot autoneg. " | 
|  | " Try forcing full duplex if " | 
|  | "link gets many collisions.\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * tweak tx_queue_len according to speed/duplex | 
|  | * and adjust the timeout factor | 
|  | */ | 
|  | netdev->tx_queue_len = adapter->tx_queue_len; | 
|  | adapter->tx_timeout_factor = 1; | 
|  | switch (adapter->link_speed) { | 
|  | case SPEED_10: | 
|  | txb2b = 0; | 
|  | netdev->tx_queue_len = 10; | 
|  | adapter->tx_timeout_factor = 16; | 
|  | break; | 
|  | case SPEED_100: | 
|  | txb2b = 0; | 
|  | netdev->tx_queue_len = 100; | 
|  | /* maybe add some timeout factor ? */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * workaround: re-program speed mode bit after | 
|  | * link-up event | 
|  | */ | 
|  | if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && | 
|  | !txb2b) { | 
|  | u32 tarc0; | 
|  | tarc0 = er32(TARC(0)); | 
|  | tarc0 &= ~SPEED_MODE_BIT; | 
|  | ew32(TARC(0), tarc0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * disable TSO for pcie and 10/100 speeds, to avoid | 
|  | * some hardware issues | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_TSO_FORCE)) { | 
|  | switch (adapter->link_speed) { | 
|  | case SPEED_10: | 
|  | case SPEED_100: | 
|  | e_info("10/100 speed: disabling TSO\n"); | 
|  | netdev->features &= ~NETIF_F_TSO; | 
|  | netdev->features &= ~NETIF_F_TSO6; | 
|  | break; | 
|  | case SPEED_1000: | 
|  | netdev->features |= NETIF_F_TSO; | 
|  | netdev->features |= NETIF_F_TSO6; | 
|  | break; | 
|  | default: | 
|  | /* oops */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * enable transmits in the hardware, need to do this | 
|  | * after setting TARC(0) | 
|  | */ | 
|  | tctl = er32(TCTL); | 
|  | tctl |= E1000_TCTL_EN; | 
|  | ew32(TCTL, tctl); | 
|  |  | 
|  | /* | 
|  | * Perform any post-link-up configuration before | 
|  | * reporting link up. | 
|  | */ | 
|  | if (phy->ops.cfg_on_link_up) | 
|  | phy->ops.cfg_on_link_up(hw); | 
|  |  | 
|  | netif_carrier_on(netdev); | 
|  | netif_tx_wake_all_queues(netdev); | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->phy_info_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  | } | 
|  | } else { | 
|  | if (netif_carrier_ok(netdev)) { | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  | /* Link status message must follow this format */ | 
|  | printk(KERN_INFO "e1000e: %s NIC Link is Down\n", | 
|  | adapter->netdev->name); | 
|  | netif_carrier_off(netdev); | 
|  | netif_tx_stop_all_queues(netdev); | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->phy_info_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  |  | 
|  | if (adapter->flags & FLAG_RX_NEEDS_RESTART) | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  | } | 
|  |  | 
|  | link_up: | 
|  | e1000e_update_stats(adapter); | 
|  |  | 
|  | mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | 
|  | adapter->tpt_old = adapter->stats.tpt; | 
|  | mac->collision_delta = adapter->stats.colc - adapter->colc_old; | 
|  | adapter->colc_old = adapter->stats.colc; | 
|  |  | 
|  | adapter->gorc = adapter->stats.gorc - adapter->gorc_old; | 
|  | adapter->gorc_old = adapter->stats.gorc; | 
|  | adapter->gotc = adapter->stats.gotc - adapter->gotc_old; | 
|  | adapter->gotc_old = adapter->stats.gotc; | 
|  |  | 
|  | e1000e_update_adaptive(&adapter->hw); | 
|  |  | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | tx_pending = (e1000_desc_unused(tx_ring) + 1 < | 
|  | tx_ring->count); | 
|  | if (tx_pending) { | 
|  | /* | 
|  | * We've lost link, so the controller stops DMA, | 
|  | * but we've got queued Tx work that's never going | 
|  | * to get done, so reset controller to flush Tx. | 
|  | * (Do the reset outside of interrupt context). | 
|  | */ | 
|  | adapter->tx_timeout_count++; | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Cause software interrupt to ensure Rx ring is cleaned */ | 
|  | if (adapter->msix_entries) | 
|  | ew32(ICS, adapter->rx_ring->ims_val); | 
|  | else | 
|  | ew32(ICS, E1000_ICS_RXDMT0); | 
|  |  | 
|  | /* Force detection of hung controller every watchdog period */ | 
|  | adapter->detect_tx_hung = 1; | 
|  |  | 
|  | /* | 
|  | * With 82571 controllers, LAA may be overwritten due to controller | 
|  | * reset from the other port. Set the appropriate LAA in RAR[0] | 
|  | */ | 
|  | if (e1000e_get_laa_state_82571(hw)) | 
|  | e1000e_rar_set(hw, adapter->hw.mac.addr, 0); | 
|  |  | 
|  | /* Reset the timer */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->state)) | 
|  | mod_timer(&adapter->watchdog_timer, | 
|  | round_jiffies(jiffies + 2 * HZ)); | 
|  | } | 
|  |  | 
|  | #define E1000_TX_FLAGS_CSUM		0x00000001 | 
|  | #define E1000_TX_FLAGS_VLAN		0x00000002 | 
|  | #define E1000_TX_FLAGS_TSO		0x00000004 | 
|  | #define E1000_TX_FLAGS_IPV4		0x00000008 | 
|  | #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000 | 
|  | #define E1000_TX_FLAGS_VLAN_SHIFT	16 | 
|  |  | 
|  | static int e1000_tso(struct e1000_adapter *adapter, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_context_desc *context_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | u32 cmd_length = 0; | 
|  | u16 ipcse = 0, tucse, mss; | 
|  | u8 ipcss, ipcso, tucss, tucso, hdr_len; | 
|  | int err; | 
|  |  | 
|  | if (skb_is_gso(skb)) { | 
|  | if (skb_header_cloned(skb)) { | 
|  | err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | if (skb->protocol == htons(ETH_P_IP)) { | 
|  | struct iphdr *iph = ip_hdr(skb); | 
|  | iph->tot_len = 0; | 
|  | iph->check = 0; | 
|  | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | 
|  | iph->daddr, 0, | 
|  | IPPROTO_TCP, | 
|  | 0); | 
|  | cmd_length = E1000_TXD_CMD_IP; | 
|  | ipcse = skb_transport_offset(skb) - 1; | 
|  | } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) { | 
|  | ipv6_hdr(skb)->payload_len = 0; | 
|  | tcp_hdr(skb)->check = | 
|  | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
|  | &ipv6_hdr(skb)->daddr, | 
|  | 0, IPPROTO_TCP, 0); | 
|  | ipcse = 0; | 
|  | } | 
|  | ipcss = skb_network_offset(skb); | 
|  | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | 
|  | tucss = skb_transport_offset(skb); | 
|  | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | 
|  | tucse = 0; | 
|  |  | 
|  | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 
|  | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  |  | 
|  | context_desc->lower_setup.ip_fields.ipcss  = ipcss; | 
|  | context_desc->lower_setup.ip_fields.ipcso  = ipcso; | 
|  | context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse); | 
|  | context_desc->upper_setup.tcp_fields.tucss = tucss; | 
|  | context_desc->upper_setup.tcp_fields.tucso = tucso; | 
|  | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | 
|  | context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss); | 
|  | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | 
|  | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb) | 
|  | { | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_context_desc *context_desc; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | u8 css; | 
|  | u32 cmd_len = E1000_TXD_CMD_DEXT; | 
|  | __be16 protocol; | 
|  |  | 
|  | if (skb->ip_summed != CHECKSUM_PARTIAL) | 
|  | return 0; | 
|  |  | 
|  | if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) | 
|  | protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; | 
|  | else | 
|  | protocol = skb->protocol; | 
|  |  | 
|  | switch (protocol) { | 
|  | case cpu_to_be16(ETH_P_IP): | 
|  | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | 
|  | cmd_len |= E1000_TXD_CMD_TCP; | 
|  | break; | 
|  | case cpu_to_be16(ETH_P_IPV6): | 
|  | /* XXX not handling all IPV6 headers */ | 
|  | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | 
|  | cmd_len |= E1000_TXD_CMD_TCP; | 
|  | break; | 
|  | default: | 
|  | if (unlikely(net_ratelimit())) | 
|  | e_warn("checksum_partial proto=%x!\n", | 
|  | be16_to_cpu(protocol)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | css = skb_transport_offset(skb); | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  |  | 
|  | context_desc->lower_setup.ip_config = 0; | 
|  | context_desc->upper_setup.tcp_fields.tucss = css; | 
|  | context_desc->upper_setup.tcp_fields.tucso = | 
|  | css + skb->csum_offset; | 
|  | context_desc->upper_setup.tcp_fields.tucse = 0; | 
|  | context_desc->tcp_seg_setup.data = 0; | 
|  | context_desc->cmd_and_length = cpu_to_le32(cmd_len); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #define E1000_MAX_PER_TXD	8192 | 
|  | #define E1000_MAX_TXD_PWR	12 | 
|  |  | 
|  | static int e1000_tx_map(struct e1000_adapter *adapter, | 
|  | struct sk_buff *skb, unsigned int first, | 
|  | unsigned int max_per_txd, unsigned int nr_frags, | 
|  | unsigned int mss) | 
|  | { | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_buffer *buffer_info; | 
|  | unsigned int len = skb_headlen(skb); | 
|  | unsigned int offset, size, count = 0, i; | 
|  | unsigned int f; | 
|  | dma_addr_t *map; | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) { | 
|  | dev_err(&adapter->pdev->dev, "TX DMA map failed\n"); | 
|  | adapter->tx_dma_failed++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | map = skb_shinfo(skb)->dma_maps; | 
|  | offset = 0; | 
|  |  | 
|  | while (len) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | size = min(len, max_per_txd); | 
|  |  | 
|  | buffer_info->length = size; | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  | buffer_info->dma = map[0] + offset; | 
|  | count++; | 
|  |  | 
|  | len -= size; | 
|  | offset += size; | 
|  |  | 
|  | if (len) { | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (f = 0; f < nr_frags; f++) { | 
|  | struct skb_frag_struct *frag; | 
|  |  | 
|  | frag = &skb_shinfo(skb)->frags[f]; | 
|  | len = frag->size; | 
|  | offset = 0; | 
|  |  | 
|  | while (len) { | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | size = min(len, max_per_txd); | 
|  |  | 
|  | buffer_info->length = size; | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  | buffer_info->dma = map[f + 1] + offset; | 
|  |  | 
|  | len -= size; | 
|  | offset += size; | 
|  | count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | tx_ring->buffer_info[i].skb = skb; | 
|  | tx_ring->buffer_info[first].next_to_watch = i; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static void e1000_tx_queue(struct e1000_adapter *adapter, | 
|  | int tx_flags, int count) | 
|  | { | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_tx_desc *tx_desc = NULL; | 
|  | struct e1000_buffer *buffer_info; | 
|  | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | 
|  | unsigned int i; | 
|  |  | 
|  | if (tx_flags & E1000_TX_FLAGS_TSO) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 
|  | E1000_TXD_CMD_TSE; | 
|  | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  |  | 
|  | if (tx_flags & E1000_TX_FLAGS_IPV4) | 
|  | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | 
|  | } | 
|  |  | 
|  | if (tx_flags & E1000_TX_FLAGS_CSUM) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | 
|  | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  | } | 
|  |  | 
|  | if (tx_flags & E1000_TX_FLAGS_VLAN) { | 
|  | txd_lower |= E1000_TXD_CMD_VLE; | 
|  | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | 
|  | } | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | while (count--) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  | tx_desc->lower.data = | 
|  | cpu_to_le32(txd_lower | buffer_info->length); | 
|  | tx_desc->upper.data = cpu_to_le32(txd_upper); | 
|  |  | 
|  | i++; | 
|  | if (i == tx_ring->count) | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | 
|  |  | 
|  | /* | 
|  | * Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  | writel(i, adapter->hw.hw_addr + tx_ring->tail); | 
|  | /* | 
|  | * we need this if more than one processor can write to our tail | 
|  | * at a time, it synchronizes IO on IA64/Altix systems | 
|  | */ | 
|  | mmiowb(); | 
|  | } | 
|  |  | 
|  | #define MINIMUM_DHCP_PACKET_SIZE 282 | 
|  | static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct e1000_hw *hw =  &adapter->hw; | 
|  | u16 length, offset; | 
|  |  | 
|  | if (vlan_tx_tag_present(skb)) { | 
|  | if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) | 
|  | && (adapter->hw.mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) | 
|  | return 0; | 
|  |  | 
|  | if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP)) | 
|  | return 0; | 
|  |  | 
|  | { | 
|  | const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14); | 
|  | struct udphdr *udp; | 
|  |  | 
|  | if (ip->protocol != IPPROTO_UDP) | 
|  | return 0; | 
|  |  | 
|  | udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); | 
|  | if (ntohs(udp->dest) != 67) | 
|  | return 0; | 
|  |  | 
|  | offset = (u8 *)udp + 8 - skb->data; | 
|  | length = skb->len - offset; | 
|  | return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | netif_stop_queue(netdev); | 
|  | /* | 
|  | * Herbert's original patch had: | 
|  | *  smp_mb__after_netif_stop_queue(); | 
|  | * but since that doesn't exist yet, just open code it. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* | 
|  | * We need to check again in a case another CPU has just | 
|  | * made room available. | 
|  | */ | 
|  | if (e1000_desc_unused(adapter->tx_ring) < size) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* A reprieve! */ | 
|  | netif_start_queue(netdev); | 
|  | ++adapter->restart_queue; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (e1000_desc_unused(adapter->tx_ring) >= size) | 
|  | return 0; | 
|  | return __e1000_maybe_stop_tx(netdev, size); | 
|  | } | 
|  |  | 
|  | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | 
|  | static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_ring *tx_ring = adapter->tx_ring; | 
|  | unsigned int first; | 
|  | unsigned int max_per_txd = E1000_MAX_PER_TXD; | 
|  | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | 
|  | unsigned int tx_flags = 0; | 
|  | unsigned int len = skb->len - skb->data_len; | 
|  | unsigned int nr_frags; | 
|  | unsigned int mss; | 
|  | int count = 0; | 
|  | int tso; | 
|  | unsigned int f; | 
|  |  | 
|  | if (test_bit(__E1000_DOWN, &adapter->state)) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (skb->len <= 0) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | /* | 
|  | * The controller does a simple calculation to | 
|  | * make sure there is enough room in the FIFO before | 
|  | * initiating the DMA for each buffer.  The calc is: | 
|  | * 4 = ceil(buffer len/mss).  To make sure we don't | 
|  | * overrun the FIFO, adjust the max buffer len if mss | 
|  | * drops. | 
|  | */ | 
|  | if (mss) { | 
|  | u8 hdr_len; | 
|  | max_per_txd = min(mss << 2, max_per_txd); | 
|  | max_txd_pwr = fls(max_per_txd) - 1; | 
|  |  | 
|  | /* | 
|  | * TSO Workaround for 82571/2/3 Controllers -- if skb->data | 
|  | * points to just header, pull a few bytes of payload from | 
|  | * frags into skb->data | 
|  | */ | 
|  | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
|  | /* | 
|  | * we do this workaround for ES2LAN, but it is un-necessary, | 
|  | * avoiding it could save a lot of cycles | 
|  | */ | 
|  | if (skb->data_len && (hdr_len == len)) { | 
|  | unsigned int pull_size; | 
|  |  | 
|  | pull_size = min((unsigned int)4, skb->data_len); | 
|  | if (!__pskb_pull_tail(skb, pull_size)) { | 
|  | e_err("__pskb_pull_tail failed.\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  | len = skb->len - skb->data_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* reserve a descriptor for the offload context */ | 
|  | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | 
|  | count++; | 
|  | count++; | 
|  |  | 
|  | count += TXD_USE_COUNT(len, max_txd_pwr); | 
|  |  | 
|  | nr_frags = skb_shinfo(skb)->nr_frags; | 
|  | for (f = 0; f < nr_frags; f++) | 
|  | count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size, | 
|  | max_txd_pwr); | 
|  |  | 
|  | if (adapter->hw.mac.tx_pkt_filtering) | 
|  | e1000_transfer_dhcp_info(adapter, skb); | 
|  |  | 
|  | /* | 
|  | * need: count + 2 desc gap to keep tail from touching | 
|  | * head, otherwise try next time | 
|  | */ | 
|  | if (e1000_maybe_stop_tx(netdev, count + 2)) | 
|  | return NETDEV_TX_BUSY; | 
|  |  | 
|  | if (adapter->vlgrp && vlan_tx_tag_present(skb)) { | 
|  | tx_flags |= E1000_TX_FLAGS_VLAN; | 
|  | tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); | 
|  | } | 
|  |  | 
|  | first = tx_ring->next_to_use; | 
|  |  | 
|  | tso = e1000_tso(adapter, skb); | 
|  | if (tso < 0) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (tso) | 
|  | tx_flags |= E1000_TX_FLAGS_TSO; | 
|  | else if (e1000_tx_csum(adapter, skb)) | 
|  | tx_flags |= E1000_TX_FLAGS_CSUM; | 
|  |  | 
|  | /* | 
|  | * Old method was to assume IPv4 packet by default if TSO was enabled. | 
|  | * 82571 hardware supports TSO capabilities for IPv6 as well... | 
|  | * no longer assume, we must. | 
|  | */ | 
|  | if (skb->protocol == htons(ETH_P_IP)) | 
|  | tx_flags |= E1000_TX_FLAGS_IPV4; | 
|  |  | 
|  | /* if count is 0 then mapping error has occured */ | 
|  | count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss); | 
|  | if (count) { | 
|  | e1000_tx_queue(adapter, tx_flags, count); | 
|  | netdev->trans_start = jiffies; | 
|  | /* Make sure there is space in the ring for the next send. */ | 
|  | e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2); | 
|  |  | 
|  | } else { | 
|  | dev_kfree_skb_any(skb); | 
|  | tx_ring->buffer_info[first].time_stamp = 0; | 
|  | tx_ring->next_to_use = first; | 
|  | } | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_tx_timeout - Respond to a Tx Hang | 
|  | * @netdev: network interface device structure | 
|  | **/ | 
|  | static void e1000_tx_timeout(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | /* Do the reset outside of interrupt context */ | 
|  | adapter->tx_timeout_count++; | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  |  | 
|  | static void e1000_reset_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter; | 
|  | adapter = container_of(work, struct e1000_adapter, reset_task); | 
|  |  | 
|  | e1000e_reinit_locked(adapter); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_get_stats - Get System Network Statistics | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns the address of the device statistics structure. | 
|  | * The statistics are actually updated from the timer callback. | 
|  | **/ | 
|  | static struct net_device_stats *e1000_get_stats(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | /* only return the current stats */ | 
|  | return &adapter->net_stats; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_change_mtu - Change the Maximum Transfer Unit | 
|  | * @netdev: network interface device structure | 
|  | * @new_mtu: new value for maximum frame size | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | 
|  |  | 
|  | if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || | 
|  | (max_frame > MAX_JUMBO_FRAME_SIZE)) { | 
|  | e_err("Invalid MTU setting\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Jumbo frame size limits */ | 
|  | if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) { | 
|  | if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { | 
|  | e_err("Jumbo Frames not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (adapter->hw.phy.type == e1000_phy_ife) { | 
|  | e_err("Jumbo Frames not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define MAX_STD_JUMBO_FRAME_SIZE 9234 | 
|  | if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { | 
|  | e_err("MTU > 9216 not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) | 
|  | msleep(1); | 
|  | /* e1000e_down has a dependency on max_frame_size */ | 
|  | adapter->max_frame_size = max_frame; | 
|  | if (netif_running(netdev)) | 
|  | e1000e_down(adapter); | 
|  |  | 
|  | /* | 
|  | * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 
|  | * means we reserve 2 more, this pushes us to allocate from the next | 
|  | * larger slab size. | 
|  | * i.e. RXBUFFER_2048 --> size-4096 slab | 
|  | * However with the new *_jumbo_rx* routines, jumbo receives will use | 
|  | * fragmented skbs | 
|  | */ | 
|  |  | 
|  | if (max_frame <= 256) | 
|  | adapter->rx_buffer_len = 256; | 
|  | else if (max_frame <= 512) | 
|  | adapter->rx_buffer_len = 512; | 
|  | else if (max_frame <= 1024) | 
|  | adapter->rx_buffer_len = 1024; | 
|  | else if (max_frame <= 2048) | 
|  | adapter->rx_buffer_len = 2048; | 
|  | else | 
|  | adapter->rx_buffer_len = 4096; | 
|  |  | 
|  | /* adjust allocation if LPE protects us, and we aren't using SBP */ | 
|  | if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || | 
|  | (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) | 
|  | adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN | 
|  | + ETH_FCS_LEN; | 
|  |  | 
|  | e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); | 
|  | netdev->mtu = new_mtu; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000e_up(adapter); | 
|  | else | 
|  | e1000e_reset(adapter); | 
|  |  | 
|  | clear_bit(__E1000_RESETTING, &adapter->state); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
|  | int cmd) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct mii_ioctl_data *data = if_mii(ifr); | 
|  |  | 
|  | if (adapter->hw.phy.media_type != e1000_media_type_copper) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | data->phy_id = adapter->hw.phy.addr; | 
|  | break; | 
|  | case SIOCGMIIREG: | 
|  | if (!capable(CAP_NET_ADMIN)) | 
|  | return -EPERM; | 
|  | switch (data->reg_num & 0x1F) { | 
|  | case MII_BMCR: | 
|  | data->val_out = adapter->phy_regs.bmcr; | 
|  | break; | 
|  | case MII_BMSR: | 
|  | data->val_out = adapter->phy_regs.bmsr; | 
|  | break; | 
|  | case MII_PHYSID1: | 
|  | data->val_out = (adapter->hw.phy.id >> 16); | 
|  | break; | 
|  | case MII_PHYSID2: | 
|  | data->val_out = (adapter->hw.phy.id & 0xFFFF); | 
|  | break; | 
|  | case MII_ADVERTISE: | 
|  | data->val_out = adapter->phy_regs.advertise; | 
|  | break; | 
|  | case MII_LPA: | 
|  | data->val_out = adapter->phy_regs.lpa; | 
|  | break; | 
|  | case MII_EXPANSION: | 
|  | data->val_out = adapter->phy_regs.expansion; | 
|  | break; | 
|  | case MII_CTRL1000: | 
|  | data->val_out = adapter->phy_regs.ctrl1000; | 
|  | break; | 
|  | case MII_STAT1000: | 
|  | data->val_out = adapter->phy_regs.stat1000; | 
|  | break; | 
|  | case MII_ESTATUS: | 
|  | data->val_out = adapter->phy_regs.estatus; | 
|  | break; | 
|  | default: | 
|  | return -EIO; | 
|  | } | 
|  | break; | 
|  | case SIOCSMIIREG: | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | case SIOCGMIIREG: | 
|  | case SIOCSMIIREG: | 
|  | return e1000_mii_ioctl(netdev, ifr, cmd); | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl, ctrl_ext, rctl, status; | 
|  | u32 wufc = adapter->wol; | 
|  | int retval = 0; | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); | 
|  | e1000e_down(adapter); | 
|  | e1000_free_irq(adapter); | 
|  | } | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  |  | 
|  | retval = pci_save_state(pdev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_LU) | 
|  | wufc &= ~E1000_WUFC_LNKC; | 
|  |  | 
|  | if (wufc) { | 
|  | e1000_setup_rctl(adapter); | 
|  | e1000_set_multi(netdev); | 
|  |  | 
|  | /* turn on all-multi mode if wake on multicast is enabled */ | 
|  | if (wufc & E1000_WUFC_MC) { | 
|  | rctl = er32(RCTL); | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | /* advertise wake from D3Cold */ | 
|  | #define E1000_CTRL_ADVD3WUC 0x00100000 | 
|  | /* phy power management enable */ | 
|  | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | 
|  | ctrl |= E1000_CTRL_ADVD3WUC | | 
|  | E1000_CTRL_EN_PHY_PWR_MGMT; | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | if (adapter->hw.phy.media_type == e1000_media_type_fiber || | 
|  | adapter->hw.phy.media_type == | 
|  | e1000_media_type_internal_serdes) { | 
|  | /* keep the laser running in D3 */ | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | if (adapter->flags & FLAG_IS_ICH) | 
|  | e1000e_disable_gig_wol_ich8lan(&adapter->hw); | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | e1000e_disable_pcie_master(&adapter->hw); | 
|  |  | 
|  | ew32(WUC, E1000_WUC_PME_EN); | 
|  | ew32(WUFC, wufc); | 
|  | pci_enable_wake(pdev, PCI_D3hot, 1); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 1); | 
|  | } else { | 
|  | ew32(WUC, 0); | 
|  | ew32(WUFC, 0); | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  | } | 
|  |  | 
|  | /* make sure adapter isn't asleep if manageability is enabled */ | 
|  | if (adapter->flags & FLAG_MNG_PT_ENABLED) { | 
|  | pci_enable_wake(pdev, PCI_D3hot, 1); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 1); | 
|  | } | 
|  |  | 
|  | if (adapter->hw.phy.type == e1000_phy_igp_3) | 
|  | e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); | 
|  |  | 
|  | /* | 
|  | * Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | * would have already happened in close and is redundant. | 
|  | */ | 
|  | e1000_release_hw_control(adapter); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | /* | 
|  | * The pci-e switch on some quad port adapters will report a | 
|  | * correctable error when the MAC transitions from D0 to D3.  To | 
|  | * prevent this we need to mask off the correctable errors on the | 
|  | * downstream port of the pci-e switch. | 
|  | */ | 
|  | if (adapter->flags & FLAG_IS_QUAD_PORT) { | 
|  | struct pci_dev *us_dev = pdev->bus->self; | 
|  | int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP); | 
|  | u16 devctl; | 
|  |  | 
|  | pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl); | 
|  | pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, | 
|  | (devctl & ~PCI_EXP_DEVCTL_CERE)); | 
|  |  | 
|  | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
|  |  | 
|  | pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl); | 
|  | } else { | 
|  | pci_set_power_state(pdev, pci_choose_state(pdev, state)); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000e_disable_l1aspm(struct pci_dev *pdev) | 
|  | { | 
|  | int pos; | 
|  | u16 val; | 
|  |  | 
|  | /* | 
|  | * 82573 workaround - disable L1 ASPM on mobile chipsets | 
|  | * | 
|  | * L1 ASPM on various mobile (ich7) chipsets do not behave properly | 
|  | * resulting in lost data or garbage information on the pci-e link | 
|  | * level. This could result in (false) bad EEPROM checksum errors, | 
|  | * long ping times (up to 2s) or even a system freeze/hang. | 
|  | * | 
|  | * Unfortunately this feature saves about 1W power consumption when | 
|  | * active. | 
|  | */ | 
|  | pos = pci_find_capability(pdev, PCI_CAP_ID_EXP); | 
|  | pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val); | 
|  | if (val & 0x2) { | 
|  | dev_warn(&pdev->dev, "Disabling L1 ASPM\n"); | 
|  | val &= ~0x2; | 
|  | pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int e1000_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 err; | 
|  |  | 
|  | pci_set_power_state(pdev, PCI_D0); | 
|  | pci_restore_state(pdev); | 
|  | e1000e_disable_l1aspm(pdev); | 
|  |  | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "Cannot enable PCI device from suspend\n"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* AER (Advanced Error Reporting) hooks */ | 
|  | err = pci_enable_pcie_error_reporting(pdev); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "pci_enable_pcie_error_reporting failed " | 
|  | "0x%x\n", err); | 
|  | /* non-fatal, continue */ | 
|  | } | 
|  |  | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | e1000e_set_interrupt_capability(adapter); | 
|  | if (netif_running(netdev)) { | 
|  | err = e1000_request_irq(adapter); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | e1000e_power_up_phy(adapter); | 
|  | e1000e_reset(adapter); | 
|  | ew32(WUS, ~0); | 
|  |  | 
|  | e1000_init_manageability(adapter); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000e_up(adapter); | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | /* | 
|  | * If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | * under the control of the driver. | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_HAS_AMT)) | 
|  | e1000_get_hw_control(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void e1000_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | e1000_suspend(pdev, PMSG_SUSPEND); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* | 
|  | * Polling 'interrupt' - used by things like netconsole to send skbs | 
|  | * without having to re-enable interrupts. It's not called while | 
|  | * the interrupt routine is executing. | 
|  | */ | 
|  | static void e1000_netpoll(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | disable_irq(adapter->pdev->irq); | 
|  | e1000_intr(adapter->pdev->irq, netdev); | 
|  |  | 
|  | enable_irq(adapter->pdev->irq); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * e1000_io_error_detected - called when PCI error is detected | 
|  | * @pdev: Pointer to PCI device | 
|  | * @state: The current pci connection state | 
|  | * | 
|  | * This function is called after a PCI bus error affecting | 
|  | * this device has been detected. | 
|  | */ | 
|  | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
|  | pci_channel_state_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000e_down(adapter); | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | /* Request a slot slot reset. */ | 
|  | return PCI_ERS_RESULT_NEED_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_io_slot_reset - called after the pci bus has been reset. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Restart the card from scratch, as if from a cold-boot. Implementation | 
|  | * resembles the first-half of the e1000_resume routine. | 
|  | */ | 
|  | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int err; | 
|  | pci_ers_result_t result; | 
|  |  | 
|  | e1000e_disable_l1aspm(pdev); | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, | 
|  | "Cannot re-enable PCI device after reset.\n"); | 
|  | result = PCI_ERS_RESULT_DISCONNECT; | 
|  | } else { | 
|  | pci_set_master(pdev); | 
|  | pci_restore_state(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | e1000e_reset(adapter); | 
|  | ew32(WUS, ~0); | 
|  | result = PCI_ERS_RESULT_RECOVERED; | 
|  | } | 
|  |  | 
|  | pci_cleanup_aer_uncorrect_error_status(pdev); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_io_resume - called when traffic can start flowing again. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * This callback is called when the error recovery driver tells us that | 
|  | * its OK to resume normal operation. Implementation resembles the | 
|  | * second-half of the e1000_resume routine. | 
|  | */ | 
|  | static void e1000_io_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | e1000_init_manageability(adapter); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | if (e1000e_up(adapter)) { | 
|  | dev_err(&pdev->dev, | 
|  | "can't bring device back up after reset\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | /* | 
|  | * If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | * under the control of the driver. | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_HAS_AMT)) | 
|  | e1000_get_hw_control(adapter); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void e1000_print_device_info(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u32 pba_num; | 
|  |  | 
|  | /* print bus type/speed/width info */ | 
|  | e_info("(PCI Express:2.5GB/s:%s) %pM\n", | 
|  | /* bus width */ | 
|  | ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : | 
|  | "Width x1"), | 
|  | /* MAC address */ | 
|  | netdev->dev_addr); | 
|  | e_info("Intel(R) PRO/%s Network Connection\n", | 
|  | (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); | 
|  | e1000e_read_pba_num(hw, &pba_num); | 
|  | e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n", | 
|  | hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff)); | 
|  | } | 
|  |  | 
|  | static void e1000_eeprom_checks(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int ret_val; | 
|  | u16 buf = 0; | 
|  |  | 
|  | if (hw->mac.type != e1000_82573) | 
|  | return; | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); | 
|  | if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) { | 
|  | /* Deep Smart Power Down (DSPD) */ | 
|  | dev_warn(&adapter->pdev->dev, | 
|  | "Warning: detected DSPD enabled in EEPROM\n"); | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf); | 
|  | if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) { | 
|  | /* ASPM enable */ | 
|  | dev_warn(&adapter->pdev->dev, | 
|  | "Warning: detected ASPM enabled in EEPROM\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops e1000e_netdev_ops = { | 
|  | .ndo_open		= e1000_open, | 
|  | .ndo_stop		= e1000_close, | 
|  | .ndo_start_xmit		= e1000_xmit_frame, | 
|  | .ndo_get_stats		= e1000_get_stats, | 
|  | .ndo_set_multicast_list	= e1000_set_multi, | 
|  | .ndo_set_mac_address	= e1000_set_mac, | 
|  | .ndo_change_mtu		= e1000_change_mtu, | 
|  | .ndo_do_ioctl		= e1000_ioctl, | 
|  | .ndo_tx_timeout		= e1000_tx_timeout, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  |  | 
|  | .ndo_vlan_rx_register	= e1000_vlan_rx_register, | 
|  | .ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid, | 
|  | .ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller	= e1000_netpoll, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * e1000_probe - Device Initialization Routine | 
|  | * @pdev: PCI device information struct | 
|  | * @ent: entry in e1000_pci_tbl | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | * | 
|  | * e1000_probe initializes an adapter identified by a pci_dev structure. | 
|  | * The OS initialization, configuring of the adapter private structure, | 
|  | * and a hardware reset occur. | 
|  | **/ | 
|  | static int __devinit e1000_probe(struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent) | 
|  | { | 
|  | struct net_device *netdev; | 
|  | struct e1000_adapter *adapter; | 
|  | struct e1000_hw *hw; | 
|  | const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; | 
|  | resource_size_t mmio_start, mmio_len; | 
|  | resource_size_t flash_start, flash_len; | 
|  |  | 
|  | static int cards_found; | 
|  | int i, err, pci_using_dac; | 
|  | u16 eeprom_data = 0; | 
|  | u16 eeprom_apme_mask = E1000_EEPROM_APME; | 
|  |  | 
|  | e1000e_disable_l1aspm(pdev); | 
|  |  | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | pci_using_dac = 0; | 
|  | err = pci_set_dma_mask(pdev, DMA_64BIT_MASK); | 
|  | if (!err) { | 
|  | err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK); | 
|  | if (!err) | 
|  | pci_using_dac = 1; | 
|  | } else { | 
|  | err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); | 
|  | if (err) { | 
|  | err = pci_set_consistent_dma_mask(pdev, | 
|  | DMA_32BIT_MASK); | 
|  | if (err) { | 
|  | dev_err(&pdev->dev, "No usable DMA " | 
|  | "configuration, aborting\n"); | 
|  | goto err_dma; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | err = pci_request_selected_regions_exclusive(pdev, | 
|  | pci_select_bars(pdev, IORESOURCE_MEM), | 
|  | e1000e_driver_name); | 
|  | if (err) | 
|  | goto err_pci_reg; | 
|  |  | 
|  | pci_set_master(pdev); | 
|  | /* PCI config space info */ | 
|  | err = pci_save_state(pdev); | 
|  | if (err) | 
|  | goto err_alloc_etherdev; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | 
|  | if (!netdev) | 
|  | goto err_alloc_etherdev; | 
|  |  | 
|  | SET_NETDEV_DEV(netdev, &pdev->dev); | 
|  |  | 
|  | pci_set_drvdata(pdev, netdev); | 
|  | adapter = netdev_priv(netdev); | 
|  | hw = &adapter->hw; | 
|  | adapter->netdev = netdev; | 
|  | adapter->pdev = pdev; | 
|  | adapter->ei = ei; | 
|  | adapter->pba = ei->pba; | 
|  | adapter->flags = ei->flags; | 
|  | adapter->flags2 = ei->flags2; | 
|  | adapter->hw.adapter = adapter; | 
|  | adapter->hw.mac.type = ei->mac; | 
|  | adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1; | 
|  |  | 
|  | mmio_start = pci_resource_start(pdev, 0); | 
|  | mmio_len = pci_resource_len(pdev, 0); | 
|  |  | 
|  | err = -EIO; | 
|  | adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); | 
|  | if (!adapter->hw.hw_addr) | 
|  | goto err_ioremap; | 
|  |  | 
|  | if ((adapter->flags & FLAG_HAS_FLASH) && | 
|  | (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { | 
|  | flash_start = pci_resource_start(pdev, 1); | 
|  | flash_len = pci_resource_len(pdev, 1); | 
|  | adapter->hw.flash_address = ioremap(flash_start, flash_len); | 
|  | if (!adapter->hw.flash_address) | 
|  | goto err_flashmap; | 
|  | } | 
|  |  | 
|  | /* construct the net_device struct */ | 
|  | netdev->netdev_ops		= &e1000e_netdev_ops; | 
|  | e1000e_set_ethtool_ops(netdev); | 
|  | netdev->watchdog_timeo		= 5 * HZ; | 
|  | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | 
|  | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | 
|  |  | 
|  | netdev->mem_start = mmio_start; | 
|  | netdev->mem_end = mmio_start + mmio_len; | 
|  |  | 
|  | adapter->bd_number = cards_found++; | 
|  |  | 
|  | e1000e_check_options(adapter); | 
|  |  | 
|  | /* setup adapter struct */ | 
|  | err = e1000_sw_init(adapter); | 
|  | if (err) | 
|  | goto err_sw_init; | 
|  |  | 
|  | err = -EIO; | 
|  |  | 
|  | memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); | 
|  | memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); | 
|  | memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); | 
|  |  | 
|  | err = ei->get_variants(adapter); | 
|  | if (err) | 
|  | goto err_hw_init; | 
|  |  | 
|  | if ((adapter->flags & FLAG_IS_ICH) && | 
|  | (adapter->flags & FLAG_READ_ONLY_NVM)) | 
|  | e1000e_write_protect_nvm_ich8lan(&adapter->hw); | 
|  |  | 
|  | hw->mac.ops.get_bus_info(&adapter->hw); | 
|  |  | 
|  | adapter->hw.phy.autoneg_wait_to_complete = 0; | 
|  |  | 
|  | /* Copper options */ | 
|  | if (adapter->hw.phy.media_type == e1000_media_type_copper) { | 
|  | adapter->hw.phy.mdix = AUTO_ALL_MODES; | 
|  | adapter->hw.phy.disable_polarity_correction = 0; | 
|  | adapter->hw.phy.ms_type = e1000_ms_hw_default; | 
|  | } | 
|  |  | 
|  | if (e1000_check_reset_block(&adapter->hw)) | 
|  | e_info("PHY reset is blocked due to SOL/IDER session.\n"); | 
|  |  | 
|  | netdev->features = NETIF_F_SG | | 
|  | NETIF_F_HW_CSUM | | 
|  | NETIF_F_HW_VLAN_TX | | 
|  | NETIF_F_HW_VLAN_RX; | 
|  |  | 
|  | if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) | 
|  | netdev->features |= NETIF_F_HW_VLAN_FILTER; | 
|  |  | 
|  | netdev->features |= NETIF_F_TSO; | 
|  | netdev->features |= NETIF_F_TSO6; | 
|  |  | 
|  | netdev->vlan_features |= NETIF_F_TSO; | 
|  | netdev->vlan_features |= NETIF_F_TSO6; | 
|  | netdev->vlan_features |= NETIF_F_HW_CSUM; | 
|  | netdev->vlan_features |= NETIF_F_SG; | 
|  |  | 
|  | if (pci_using_dac) | 
|  | netdev->features |= NETIF_F_HIGHDMA; | 
|  |  | 
|  | if (e1000e_enable_mng_pass_thru(&adapter->hw)) | 
|  | adapter->flags |= FLAG_MNG_PT_ENABLED; | 
|  |  | 
|  | /* | 
|  | * before reading the NVM, reset the controller to | 
|  | * put the device in a known good starting state | 
|  | */ | 
|  | adapter->hw.mac.ops.reset_hw(&adapter->hw); | 
|  |  | 
|  | /* | 
|  | * systems with ASPM and others may see the checksum fail on the first | 
|  | * attempt. Let's give it a few tries | 
|  | */ | 
|  | for (i = 0;; i++) { | 
|  | if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) | 
|  | break; | 
|  | if (i == 2) { | 
|  | e_err("The NVM Checksum Is Not Valid\n"); | 
|  | err = -EIO; | 
|  | goto err_eeprom; | 
|  | } | 
|  | } | 
|  |  | 
|  | e1000_eeprom_checks(adapter); | 
|  |  | 
|  | /* copy the MAC address out of the NVM */ | 
|  | if (e1000e_read_mac_addr(&adapter->hw)) | 
|  | e_err("NVM Read Error while reading MAC address\n"); | 
|  |  | 
|  | memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); | 
|  | memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len); | 
|  |  | 
|  | if (!is_valid_ether_addr(netdev->perm_addr)) { | 
|  | e_err("Invalid MAC Address: %pM\n", netdev->perm_addr); | 
|  | err = -EIO; | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | init_timer(&adapter->watchdog_timer); | 
|  | adapter->watchdog_timer.function = &e1000_watchdog; | 
|  | adapter->watchdog_timer.data = (unsigned long) adapter; | 
|  |  | 
|  | init_timer(&adapter->phy_info_timer); | 
|  | adapter->phy_info_timer.function = &e1000_update_phy_info; | 
|  | adapter->phy_info_timer.data = (unsigned long) adapter; | 
|  |  | 
|  | INIT_WORK(&adapter->reset_task, e1000_reset_task); | 
|  | INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); | 
|  | INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); | 
|  | INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); | 
|  |  | 
|  | /* Initialize link parameters. User can change them with ethtool */ | 
|  | adapter->hw.mac.autoneg = 1; | 
|  | adapter->fc_autoneg = 1; | 
|  | adapter->hw.fc.requested_mode = e1000_fc_default; | 
|  | adapter->hw.fc.current_mode = e1000_fc_default; | 
|  | adapter->hw.phy.autoneg_advertised = 0x2f; | 
|  |  | 
|  | /* ring size defaults */ | 
|  | adapter->rx_ring->count = 256; | 
|  | adapter->tx_ring->count = 256; | 
|  |  | 
|  | /* | 
|  | * Initial Wake on LAN setting - If APM wake is enabled in | 
|  | * the EEPROM, enable the ACPI Magic Packet filter | 
|  | */ | 
|  | if (adapter->flags & FLAG_APME_IN_WUC) { | 
|  | /* APME bit in EEPROM is mapped to WUC.APME */ | 
|  | eeprom_data = er32(WUC); | 
|  | eeprom_apme_mask = E1000_WUC_APME; | 
|  | } else if (adapter->flags & FLAG_APME_IN_CTRL3) { | 
|  | if (adapter->flags & FLAG_APME_CHECK_PORT_B && | 
|  | (adapter->hw.bus.func == 1)) | 
|  | e1000_read_nvm(&adapter->hw, | 
|  | NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | 
|  | else | 
|  | e1000_read_nvm(&adapter->hw, | 
|  | NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | 
|  | } | 
|  |  | 
|  | /* fetch WoL from EEPROM */ | 
|  | if (eeprom_data & eeprom_apme_mask) | 
|  | adapter->eeprom_wol |= E1000_WUFC_MAG; | 
|  |  | 
|  | /* | 
|  | * now that we have the eeprom settings, apply the special cases | 
|  | * where the eeprom may be wrong or the board simply won't support | 
|  | * wake on lan on a particular port | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_HAS_WOL)) | 
|  | adapter->eeprom_wol = 0; | 
|  |  | 
|  | /* initialize the wol settings based on the eeprom settings */ | 
|  | adapter->wol = adapter->eeprom_wol; | 
|  | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | 
|  |  | 
|  | /* save off EEPROM version number */ | 
|  | e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); | 
|  |  | 
|  | /* reset the hardware with the new settings */ | 
|  | e1000e_reset(adapter); | 
|  |  | 
|  | /* | 
|  | * If the controller has AMT, do not set DRV_LOAD until the interface | 
|  | * is up.  For all other cases, let the f/w know that the h/w is now | 
|  | * under the control of the driver. | 
|  | */ | 
|  | if (!(adapter->flags & FLAG_HAS_AMT)) | 
|  | e1000_get_hw_control(adapter); | 
|  |  | 
|  | /* tell the stack to leave us alone until e1000_open() is called */ | 
|  | netif_carrier_off(netdev); | 
|  | netif_tx_stop_all_queues(netdev); | 
|  |  | 
|  | strcpy(netdev->name, "eth%d"); | 
|  | err = register_netdev(netdev); | 
|  | if (err) | 
|  | goto err_register; | 
|  |  | 
|  | e1000_print_device_info(adapter); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_register: | 
|  | if (!(adapter->flags & FLAG_HAS_AMT)) | 
|  | e1000_release_hw_control(adapter); | 
|  | err_eeprom: | 
|  | if (!e1000_check_reset_block(&adapter->hw)) | 
|  | e1000_phy_hw_reset(&adapter->hw); | 
|  | err_hw_init: | 
|  |  | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  | err_sw_init: | 
|  | if (adapter->hw.flash_address) | 
|  | iounmap(adapter->hw.flash_address); | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | err_flashmap: | 
|  | iounmap(adapter->hw.hw_addr); | 
|  | err_ioremap: | 
|  | free_netdev(netdev); | 
|  | err_alloc_etherdev: | 
|  | pci_release_selected_regions(pdev, | 
|  | pci_select_bars(pdev, IORESOURCE_MEM)); | 
|  | err_pci_reg: | 
|  | err_dma: | 
|  | pci_disable_device(pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_remove - Device Removal Routine | 
|  | * @pdev: PCI device information struct | 
|  | * | 
|  | * e1000_remove is called by the PCI subsystem to alert the driver | 
|  | * that it should release a PCI device.  The could be caused by a | 
|  | * Hot-Plug event, or because the driver is going to be removed from | 
|  | * memory. | 
|  | **/ | 
|  | static void __devexit e1000_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * flush_scheduled work may reschedule our watchdog task, so | 
|  | * explicitly disable watchdog tasks from being rescheduled | 
|  | */ | 
|  | set_bit(__E1000_DOWN, &adapter->state); | 
|  | del_timer_sync(&adapter->watchdog_timer); | 
|  | del_timer_sync(&adapter->phy_info_timer); | 
|  |  | 
|  | flush_scheduled_work(); | 
|  |  | 
|  | /* | 
|  | * Release control of h/w to f/w.  If f/w is AMT enabled, this | 
|  | * would have already happened in close and is redundant. | 
|  | */ | 
|  | e1000_release_hw_control(adapter); | 
|  |  | 
|  | unregister_netdev(netdev); | 
|  |  | 
|  | if (!e1000_check_reset_block(&adapter->hw)) | 
|  | e1000_phy_hw_reset(&adapter->hw); | 
|  |  | 
|  | e1000e_reset_interrupt_capability(adapter); | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  |  | 
|  | iounmap(adapter->hw.hw_addr); | 
|  | if (adapter->hw.flash_address) | 
|  | iounmap(adapter->hw.flash_address); | 
|  | pci_release_selected_regions(pdev, | 
|  | pci_select_bars(pdev, IORESOURCE_MEM)); | 
|  |  | 
|  | free_netdev(netdev); | 
|  |  | 
|  | /* AER disable */ | 
|  | err = pci_disable_pcie_error_reporting(pdev); | 
|  | if (err) | 
|  | dev_err(&pdev->dev, | 
|  | "pci_disable_pcie_error_reporting failed 0x%x\n", err); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  |  | 
|  | /* PCI Error Recovery (ERS) */ | 
|  | static struct pci_error_handlers e1000_err_handler = { | 
|  | .error_detected = e1000_io_error_detected, | 
|  | .slot_reset = e1000_io_slot_reset, | 
|  | .resume = e1000_io_resume, | 
|  | }; | 
|  |  | 
|  | static struct pci_device_id e1000_pci_tbl[] = { | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), | 
|  | board_80003es2lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), | 
|  | board_80003es2lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), | 
|  | board_80003es2lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), | 
|  | board_80003es2lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, | 
|  |  | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, | 
|  | { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, | 
|  |  | 
|  | { }	/* terminate list */ | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | 
|  |  | 
|  | /* PCI Device API Driver */ | 
|  | static struct pci_driver e1000_driver = { | 
|  | .name     = e1000e_driver_name, | 
|  | .id_table = e1000_pci_tbl, | 
|  | .probe    = e1000_probe, | 
|  | .remove   = __devexit_p(e1000_remove), | 
|  | #ifdef CONFIG_PM | 
|  | /* Power Management Hooks */ | 
|  | .suspend  = e1000_suspend, | 
|  | .resume   = e1000_resume, | 
|  | #endif | 
|  | .shutdown = e1000_shutdown, | 
|  | .err_handler = &e1000_err_handler | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * e1000_init_module - Driver Registration Routine | 
|  | * | 
|  | * e1000_init_module is the first routine called when the driver is | 
|  | * loaded. All it does is register with the PCI subsystem. | 
|  | **/ | 
|  | static int __init e1000_init_module(void) | 
|  | { | 
|  | int ret; | 
|  | printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n", | 
|  | e1000e_driver_name, e1000e_driver_version); | 
|  | printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n", | 
|  | e1000e_driver_name); | 
|  | ret = pci_register_driver(&e1000_driver); | 
|  | pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name, | 
|  | PM_QOS_DEFAULT_VALUE); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | module_init(e1000_init_module); | 
|  |  | 
|  | /** | 
|  | * e1000_exit_module - Driver Exit Cleanup Routine | 
|  | * | 
|  | * e1000_exit_module is called just before the driver is removed | 
|  | * from memory. | 
|  | **/ | 
|  | static void __exit e1000_exit_module(void) | 
|  | { | 
|  | pci_unregister_driver(&e1000_driver); | 
|  | pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name); | 
|  | } | 
|  | module_exit(e1000_exit_module); | 
|  |  | 
|  |  | 
|  | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 
|  | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  |  | 
|  | /* e1000_main.c */ |