| /******************************************************************************* | 
 |  | 
 |   Intel(R) Gigabit Ethernet Linux driver | 
 |   Copyright(c) 2007-2009 Intel Corporation. | 
 |  | 
 |   This program is free software; you can redistribute it and/or modify it | 
 |   under the terms and conditions of the GNU General Public License, | 
 |   version 2, as published by the Free Software Foundation. | 
 |  | 
 |   This program is distributed in the hope it will be useful, but WITHOUT | 
 |   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |   more details. | 
 |  | 
 |   You should have received a copy of the GNU General Public License along with | 
 |   this program; if not, write to the Free Software Foundation, Inc., | 
 |   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
 |  | 
 |   The full GNU General Public License is included in this distribution in | 
 |   the file called "COPYING". | 
 |  | 
 |   Contact Information: | 
 |   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
 |   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
 |  | 
 | *******************************************************************************/ | 
 |  | 
 | /* e1000_82575 | 
 |  * e1000_82576 | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/if_ether.h> | 
 |  | 
 | #include "e1000_mac.h" | 
 | #include "e1000_82575.h" | 
 |  | 
 | static s32  igb_get_invariants_82575(struct e1000_hw *); | 
 | static s32  igb_acquire_phy_82575(struct e1000_hw *); | 
 | static void igb_release_phy_82575(struct e1000_hw *); | 
 | static s32  igb_acquire_nvm_82575(struct e1000_hw *); | 
 | static void igb_release_nvm_82575(struct e1000_hw *); | 
 | static s32  igb_check_for_link_82575(struct e1000_hw *); | 
 | static s32  igb_get_cfg_done_82575(struct e1000_hw *); | 
 | static s32  igb_init_hw_82575(struct e1000_hw *); | 
 | static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); | 
 | static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); | 
 | static s32  igb_reset_hw_82575(struct e1000_hw *); | 
 | static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); | 
 | static s32  igb_setup_copper_link_82575(struct e1000_hw *); | 
 | static s32  igb_setup_fiber_serdes_link_82575(struct e1000_hw *); | 
 | static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); | 
 | static void igb_clear_hw_cntrs_82575(struct e1000_hw *); | 
 | static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); | 
 | static s32  igb_configure_pcs_link_82575(struct e1000_hw *); | 
 | static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, | 
 | 						 u16 *); | 
 | static s32  igb_get_phy_id_82575(struct e1000_hw *); | 
 | static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); | 
 | static bool igb_sgmii_active_82575(struct e1000_hw *); | 
 | static s32  igb_reset_init_script_82575(struct e1000_hw *); | 
 | static s32  igb_read_mac_addr_82575(struct e1000_hw *); | 
 |  | 
 | static s32 igb_get_invariants_82575(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	struct e1000_nvm_info *nvm = &hw->nvm; | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575; | 
 | 	u32 eecd; | 
 | 	s32 ret_val; | 
 | 	u16 size; | 
 | 	u32 ctrl_ext = 0; | 
 |  | 
 | 	switch (hw->device_id) { | 
 | 	case E1000_DEV_ID_82575EB_COPPER: | 
 | 	case E1000_DEV_ID_82575EB_FIBER_SERDES: | 
 | 	case E1000_DEV_ID_82575GB_QUAD_COPPER: | 
 | 		mac->type = e1000_82575; | 
 | 		break; | 
 | 	case E1000_DEV_ID_82576: | 
 | 	case E1000_DEV_ID_82576_NS: | 
 | 	case E1000_DEV_ID_82576_FIBER: | 
 | 	case E1000_DEV_ID_82576_SERDES: | 
 | 	case E1000_DEV_ID_82576_QUAD_COPPER: | 
 | 		mac->type = e1000_82576; | 
 | 		break; | 
 | 	default: | 
 | 		return -E1000_ERR_MAC_INIT; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* Set media type */ | 
 | 	/* | 
 | 	 * The 82575 uses bits 22:23 for link mode. The mode can be changed | 
 | 	 * based on the EEPROM. We cannot rely upon device ID. There | 
 | 	 * is no distinguishable difference between fiber and internal | 
 | 	 * SerDes mode on the 82575. There can be an external PHY attached | 
 | 	 * on the SGMII interface. For this, we'll set sgmii_active to true. | 
 | 	 */ | 
 | 	phy->media_type = e1000_media_type_copper; | 
 | 	dev_spec->sgmii_active = false; | 
 |  | 
 | 	ctrl_ext = rd32(E1000_CTRL_EXT); | 
 | 	if ((ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) == | 
 | 	    E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES) { | 
 | 		hw->phy.media_type = e1000_media_type_internal_serdes; | 
 | 		ctrl_ext |= E1000_CTRL_I2C_ENA; | 
 | 	} else if (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII) { | 
 | 		dev_spec->sgmii_active = true; | 
 | 		ctrl_ext |= E1000_CTRL_I2C_ENA; | 
 | 	} else { | 
 | 		ctrl_ext &= ~E1000_CTRL_I2C_ENA; | 
 | 	} | 
 | 	wr32(E1000_CTRL_EXT, ctrl_ext); | 
 |  | 
 | 	/* Set mta register count */ | 
 | 	mac->mta_reg_count = 128; | 
 | 	/* Set rar entry count */ | 
 | 	mac->rar_entry_count = E1000_RAR_ENTRIES_82575; | 
 | 	if (mac->type == e1000_82576) | 
 | 		mac->rar_entry_count = E1000_RAR_ENTRIES_82576; | 
 | 	/* Set if part includes ASF firmware */ | 
 | 	mac->asf_firmware_present = true; | 
 | 	/* Set if manageability features are enabled. */ | 
 | 	mac->arc_subsystem_valid = | 
 | 		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) | 
 | 			? true : false; | 
 |  | 
 | 	/* physical interface link setup */ | 
 | 	mac->ops.setup_physical_interface = | 
 | 		(hw->phy.media_type == e1000_media_type_copper) | 
 | 			? igb_setup_copper_link_82575 | 
 | 			: igb_setup_fiber_serdes_link_82575; | 
 |  | 
 | 	/* NVM initialization */ | 
 | 	eecd = rd32(E1000_EECD); | 
 |  | 
 | 	nvm->opcode_bits        = 8; | 
 | 	nvm->delay_usec         = 1; | 
 | 	switch (nvm->override) { | 
 | 	case e1000_nvm_override_spi_large: | 
 | 		nvm->page_size    = 32; | 
 | 		nvm->address_bits = 16; | 
 | 		break; | 
 | 	case e1000_nvm_override_spi_small: | 
 | 		nvm->page_size    = 8; | 
 | 		nvm->address_bits = 8; | 
 | 		break; | 
 | 	default: | 
 | 		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | 
 | 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	nvm->type = e1000_nvm_eeprom_spi; | 
 |  | 
 | 	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
 | 		     E1000_EECD_SIZE_EX_SHIFT); | 
 |  | 
 | 	/* | 
 | 	 * Added to a constant, "size" becomes the left-shift value | 
 | 	 * for setting word_size. | 
 | 	 */ | 
 | 	size += NVM_WORD_SIZE_BASE_SHIFT; | 
 |  | 
 | 	/* EEPROM access above 16k is unsupported */ | 
 | 	if (size > 14) | 
 | 		size = 14; | 
 | 	nvm->word_size = 1 << size; | 
 |  | 
 | 	/* setup PHY parameters */ | 
 | 	if (phy->media_type != e1000_media_type_copper) { | 
 | 		phy->type = e1000_phy_none; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
 | 	phy->reset_delay_us      = 100; | 
 |  | 
 | 	/* PHY function pointers */ | 
 | 	if (igb_sgmii_active_82575(hw)) { | 
 | 		phy->ops.reset              = igb_phy_hw_reset_sgmii_82575; | 
 | 		phy->ops.read_reg           = igb_read_phy_reg_sgmii_82575; | 
 | 		phy->ops.write_reg          = igb_write_phy_reg_sgmii_82575; | 
 | 	} else { | 
 | 		phy->ops.reset              = igb_phy_hw_reset; | 
 | 		phy->ops.read_reg           = igb_read_phy_reg_igp; | 
 | 		phy->ops.write_reg          = igb_write_phy_reg_igp; | 
 | 	} | 
 |  | 
 | 	/* Set phy->phy_addr and phy->id. */ | 
 | 	ret_val = igb_get_phy_id_82575(hw); | 
 | 	if (ret_val) | 
 | 		return ret_val; | 
 |  | 
 | 	/* Verify phy id and set remaining function pointers */ | 
 | 	switch (phy->id) { | 
 | 	case M88E1111_I_PHY_ID: | 
 | 		phy->type                   = e1000_phy_m88; | 
 | 		phy->ops.get_phy_info       = igb_get_phy_info_m88; | 
 | 		phy->ops.get_cable_length   = igb_get_cable_length_m88; | 
 | 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; | 
 | 		break; | 
 | 	case IGP03E1000_E_PHY_ID: | 
 | 		phy->type                   = e1000_phy_igp_3; | 
 | 		phy->ops.get_phy_info       = igb_get_phy_info_igp; | 
 | 		phy->ops.get_cable_length   = igb_get_cable_length_igp_2; | 
 | 		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; | 
 | 		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575; | 
 | 		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state; | 
 | 		break; | 
 | 	default: | 
 | 		return -E1000_ERR_PHY; | 
 | 	} | 
 |  | 
 | 	/* if 82576 then initialize mailbox parameters */ | 
 | 	if (mac->type == e1000_82576) | 
 | 		igb_init_mbx_params_pf(hw); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_acquire_phy_82575 - Acquire rights to access PHY | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Acquire access rights to the correct PHY.  This is a | 
 |  *  function pointer entry point called by the api module. | 
 |  **/ | 
 | static s32 igb_acquire_phy_82575(struct e1000_hw *hw) | 
 | { | 
 | 	u16 mask; | 
 |  | 
 | 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | 
 |  | 
 | 	return igb_acquire_swfw_sync_82575(hw, mask); | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_release_phy_82575 - Release rights to access PHY | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  A wrapper to release access rights to the correct PHY.  This is a | 
 |  *  function pointer entry point called by the api module. | 
 |  **/ | 
 | static void igb_release_phy_82575(struct e1000_hw *hw) | 
 | { | 
 | 	u16 mask; | 
 |  | 
 | 	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM; | 
 | 	igb_release_swfw_sync_82575(hw, mask); | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: register offset to be read | 
 |  *  @data: pointer to the read data | 
 |  * | 
 |  *  Reads the PHY register at offset using the serial gigabit media independent | 
 |  *  interface and stores the retrieved information in data. | 
 |  **/ | 
 | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | 
 | 					  u16 *data) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	u32 i, i2ccmd = 0; | 
 |  | 
 | 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | 
 | 		hw_dbg("PHY Address %u is out of range\n", offset); | 
 | 		return -E1000_ERR_PARAM; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set up Op-code, Phy Address, and register address in the I2CCMD | 
 | 	 * register.  The MAC will take care of interfacing with the | 
 | 	 * PHY to retrieve the desired data. | 
 | 	 */ | 
 | 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | 
 | 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | 
 | 		  (E1000_I2CCMD_OPCODE_READ)); | 
 |  | 
 | 	wr32(E1000_I2CCMD, i2ccmd); | 
 |  | 
 | 	/* Poll the ready bit to see if the I2C read completed */ | 
 | 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | 
 | 		udelay(50); | 
 | 		i2ccmd = rd32(E1000_I2CCMD); | 
 | 		if (i2ccmd & E1000_I2CCMD_READY) | 
 | 			break; | 
 | 	} | 
 | 	if (!(i2ccmd & E1000_I2CCMD_READY)) { | 
 | 		hw_dbg("I2CCMD Read did not complete\n"); | 
 | 		return -E1000_ERR_PHY; | 
 | 	} | 
 | 	if (i2ccmd & E1000_I2CCMD_ERROR) { | 
 | 		hw_dbg("I2CCMD Error bit set\n"); | 
 | 		return -E1000_ERR_PHY; | 
 | 	} | 
 |  | 
 | 	/* Need to byte-swap the 16-bit value. */ | 
 | 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @offset: register offset to write to | 
 |  *  @data: data to write at register offset | 
 |  * | 
 |  *  Writes the data to PHY register at the offset using the serial gigabit | 
 |  *  media independent interface. | 
 |  **/ | 
 | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | 
 | 					   u16 data) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	u32 i, i2ccmd = 0; | 
 | 	u16 phy_data_swapped; | 
 |  | 
 | 	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | 
 | 		hw_dbg("PHY Address %d is out of range\n", offset); | 
 | 		return -E1000_ERR_PARAM; | 
 | 	} | 
 |  | 
 | 	/* Swap the data bytes for the I2C interface */ | 
 | 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); | 
 |  | 
 | 	/* | 
 | 	 * Set up Op-code, Phy Address, and register address in the I2CCMD | 
 | 	 * register.  The MAC will take care of interfacing with the | 
 | 	 * PHY to retrieve the desired data. | 
 | 	 */ | 
 | 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | | 
 | 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | | 
 | 		  E1000_I2CCMD_OPCODE_WRITE | | 
 | 		  phy_data_swapped); | 
 |  | 
 | 	wr32(E1000_I2CCMD, i2ccmd); | 
 |  | 
 | 	/* Poll the ready bit to see if the I2C read completed */ | 
 | 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { | 
 | 		udelay(50); | 
 | 		i2ccmd = rd32(E1000_I2CCMD); | 
 | 		if (i2ccmd & E1000_I2CCMD_READY) | 
 | 			break; | 
 | 	} | 
 | 	if (!(i2ccmd & E1000_I2CCMD_READY)) { | 
 | 		hw_dbg("I2CCMD Write did not complete\n"); | 
 | 		return -E1000_ERR_PHY; | 
 | 	} | 
 | 	if (i2ccmd & E1000_I2CCMD_ERROR) { | 
 | 		hw_dbg("I2CCMD Error bit set\n"); | 
 | 		return -E1000_ERR_PHY; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_get_phy_id_82575 - Retrieve PHY addr and id | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Retrieves the PHY address and ID for both PHY's which do and do not use | 
 |  *  sgmi interface. | 
 |  **/ | 
 | static s32 igb_get_phy_id_82575(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	s32  ret_val = 0; | 
 | 	u16 phy_id; | 
 |  | 
 | 	/* | 
 | 	 * For SGMII PHYs, we try the list of possible addresses until | 
 | 	 * we find one that works.  For non-SGMII PHYs | 
 | 	 * (e.g. integrated copper PHYs), an address of 1 should | 
 | 	 * work.  The result of this function should mean phy->phy_addr | 
 | 	 * and phy->id are set correctly. | 
 | 	 */ | 
 | 	if (!(igb_sgmii_active_82575(hw))) { | 
 | 		phy->addr = 1; | 
 | 		ret_val = igb_get_phy_id(hw); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The address field in the I2CCMD register is 3 bits and 0 is invalid. | 
 | 	 * Therefore, we need to test 1-7 | 
 | 	 */ | 
 | 	for (phy->addr = 1; phy->addr < 8; phy->addr++) { | 
 | 		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); | 
 | 		if (ret_val == 0) { | 
 | 			hw_dbg("Vendor ID 0x%08X read at address %u\n", | 
 | 			       phy_id, phy->addr); | 
 | 			/* | 
 | 			 * At the time of this writing, The M88 part is | 
 | 			 * the only supported SGMII PHY product. | 
 | 			 */ | 
 | 			if (phy_id == M88_VENDOR) | 
 | 				break; | 
 | 		} else { | 
 | 			hw_dbg("PHY address %u was unreadable\n", phy->addr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* A valid PHY type couldn't be found. */ | 
 | 	if (phy->addr == 8) { | 
 | 		phy->addr = 0; | 
 | 		ret_val = -E1000_ERR_PHY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret_val = igb_get_phy_id(hw); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Resets the PHY using the serial gigabit media independent interface. | 
 |  **/ | 
 | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val; | 
 |  | 
 | 	/* | 
 | 	 * This isn't a true "hard" reset, but is the only reset | 
 | 	 * available to us at this time. | 
 | 	 */ | 
 |  | 
 | 	hw_dbg("Soft resetting SGMII attached PHY...\n"); | 
 |  | 
 | 	/* | 
 | 	 * SFP documentation requires the following to configure the SPF module | 
 | 	 * to work on SGMII.  No further documentation is given. | 
 | 	 */ | 
 | 	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	ret_val = igb_phy_sw_reset(hw); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @active: true to enable LPLU, false to disable | 
 |  * | 
 |  *  Sets the LPLU D0 state according to the active flag.  When | 
 |  *  activating LPLU this function also disables smart speed | 
 |  *  and vice versa.  LPLU will not be activated unless the | 
 |  *  device autonegotiation advertisement meets standards of | 
 |  *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
 |  *  This is a function pointer entry point only called by | 
 |  *  PHY setup routines. | 
 |  **/ | 
 | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) | 
 | { | 
 | 	struct e1000_phy_info *phy = &hw->phy; | 
 | 	s32 ret_val; | 
 | 	u16 data; | 
 |  | 
 | 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	if (active) { | 
 | 		data |= IGP02E1000_PM_D0_LPLU; | 
 | 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
 | 						 data); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 |  | 
 | 		/* When LPLU is enabled, we should disable SmartSpeed */ | 
 | 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 						&data); | 
 | 		data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
 | 						 data); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 | 	} else { | 
 | 		data &= ~IGP02E1000_PM_D0_LPLU; | 
 | 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
 | 						 data); | 
 | 		/* | 
 | 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
 | 		 * during Dx states where the power conservation is most | 
 | 		 * important.  During driver activity we should enable | 
 | 		 * SmartSpeed, so performance is maintained. | 
 | 		 */ | 
 | 		if (phy->smart_speed == e1000_smart_speed_on) { | 
 | 			ret_val = phy->ops.read_reg(hw, | 
 | 					IGP01E1000_PHY_PORT_CONFIG, &data); | 
 | 			if (ret_val) | 
 | 				goto out; | 
 |  | 
 | 			data |= IGP01E1000_PSCFR_SMART_SPEED; | 
 | 			ret_val = phy->ops.write_reg(hw, | 
 | 					IGP01E1000_PHY_PORT_CONFIG, data); | 
 | 			if (ret_val) | 
 | 				goto out; | 
 | 		} else if (phy->smart_speed == e1000_smart_speed_off) { | 
 | 			ret_val = phy->ops.read_reg(hw, | 
 | 					IGP01E1000_PHY_PORT_CONFIG, &data); | 
 | 			if (ret_val) | 
 | 				goto out; | 
 |  | 
 | 			data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
 | 			ret_val = phy->ops.write_reg(hw, | 
 | 					IGP01E1000_PHY_PORT_CONFIG, data); | 
 | 			if (ret_val) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_acquire_nvm_82575 - Request for access to EEPROM | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Acquire the necessary semaphores for exclusive access to the EEPROM. | 
 |  *  Set the EEPROM access request bit and wait for EEPROM access grant bit. | 
 |  *  Return successful if access grant bit set, else clear the request for | 
 |  *  EEPROM access and return -E1000_ERR_NVM (-1). | 
 |  **/ | 
 | static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val; | 
 |  | 
 | 	ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	ret_val = igb_acquire_nvm(hw); | 
 |  | 
 | 	if (ret_val) | 
 | 		igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_release_nvm_82575 - Release exclusive access to EEPROM | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Stop any current commands to the EEPROM and clear the EEPROM request bit, | 
 |  *  then release the semaphores acquired. | 
 |  **/ | 
 | static void igb_release_nvm_82575(struct e1000_hw *hw) | 
 | { | 
 | 	igb_release_nvm(hw); | 
 | 	igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM); | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @mask: specifies which semaphore to acquire | 
 |  * | 
 |  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask | 
 |  *  will also specify which port we're acquiring the lock for. | 
 |  **/ | 
 | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | 
 | { | 
 | 	u32 swfw_sync; | 
 | 	u32 swmask = mask; | 
 | 	u32 fwmask = mask << 16; | 
 | 	s32 ret_val = 0; | 
 | 	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ | 
 |  | 
 | 	while (i < timeout) { | 
 | 		if (igb_get_hw_semaphore(hw)) { | 
 | 			ret_val = -E1000_ERR_SWFW_SYNC; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		swfw_sync = rd32(E1000_SW_FW_SYNC); | 
 | 		if (!(swfw_sync & (fwmask | swmask))) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Firmware currently using resource (fwmask) | 
 | 		 * or other software thread using resource (swmask) | 
 | 		 */ | 
 | 		igb_put_hw_semaphore(hw); | 
 | 		mdelay(5); | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	if (i == timeout) { | 
 | 		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); | 
 | 		ret_val = -E1000_ERR_SWFW_SYNC; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	swfw_sync |= swmask; | 
 | 	wr32(E1000_SW_FW_SYNC, swfw_sync); | 
 |  | 
 | 	igb_put_hw_semaphore(hw); | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @mask: specifies which semaphore to acquire | 
 |  * | 
 |  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask | 
 |  *  will also specify which port we're releasing the lock for. | 
 |  **/ | 
 | static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | 
 | { | 
 | 	u32 swfw_sync; | 
 |  | 
 | 	while (igb_get_hw_semaphore(hw) != 0); | 
 | 	/* Empty */ | 
 |  | 
 | 	swfw_sync = rd32(E1000_SW_FW_SYNC); | 
 | 	swfw_sync &= ~mask; | 
 | 	wr32(E1000_SW_FW_SYNC, swfw_sync); | 
 |  | 
 | 	igb_put_hw_semaphore(hw); | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_get_cfg_done_82575 - Read config done bit | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Read the management control register for the config done bit for | 
 |  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying | 
 |  *  to read the config done bit, so an error is *ONLY* logged and returns | 
 |  *  0.  If we were to return with error, EEPROM-less silicon | 
 |  *  would not be able to be reset or change link. | 
 |  **/ | 
 | static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) | 
 | { | 
 | 	s32 timeout = PHY_CFG_TIMEOUT; | 
 | 	s32 ret_val = 0; | 
 | 	u32 mask = E1000_NVM_CFG_DONE_PORT_0; | 
 |  | 
 | 	if (hw->bus.func == 1) | 
 | 		mask = E1000_NVM_CFG_DONE_PORT_1; | 
 |  | 
 | 	while (timeout) { | 
 | 		if (rd32(E1000_EEMNGCTL) & mask) | 
 | 			break; | 
 | 		msleep(1); | 
 | 		timeout--; | 
 | 	} | 
 | 	if (!timeout) | 
 | 		hw_dbg("MNG configuration cycle has not completed.\n"); | 
 |  | 
 | 	/* If EEPROM is not marked present, init the PHY manually */ | 
 | 	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && | 
 | 	    (hw->phy.type == e1000_phy_igp_3)) | 
 | 		igb_phy_init_script_igp3(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_check_for_link_82575 - Check for link | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  If sgmii is enabled, then use the pcs register to determine link, otherwise | 
 |  *  use the generic interface for determining link. | 
 |  **/ | 
 | static s32 igb_check_for_link_82575(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val; | 
 | 	u16 speed, duplex; | 
 |  | 
 | 	/* SGMII link check is done through the PCS register. */ | 
 | 	if ((hw->phy.media_type != e1000_media_type_copper) || | 
 | 	    (igb_sgmii_active_82575(hw))) { | 
 | 		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, | 
 | 		                                             &duplex); | 
 | 		/* | 
 | 		 * Use this flag to determine if link needs to be checked or | 
 | 		 * not.  If  we have link clear the flag so that we do not | 
 | 		 * continue to check for link. | 
 | 		 */ | 
 | 		hw->mac.get_link_status = !hw->mac.serdes_has_link; | 
 | 	} else { | 
 | 		ret_val = igb_check_for_copper_link(hw); | 
 | 	} | 
 |  | 
 | 	return ret_val; | 
 | } | 
 | /** | 
 |  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @speed: stores the current speed | 
 |  *  @duplex: stores the current duplex | 
 |  * | 
 |  *  Using the physical coding sub-layer (PCS), retrieve the current speed and | 
 |  *  duplex, then store the values in the pointers provided. | 
 |  **/ | 
 | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, | 
 | 						u16 *duplex) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	u32 pcs; | 
 |  | 
 | 	/* Set up defaults for the return values of this function */ | 
 | 	mac->serdes_has_link = false; | 
 | 	*speed = 0; | 
 | 	*duplex = 0; | 
 |  | 
 | 	/* | 
 | 	 * Read the PCS Status register for link state. For non-copper mode, | 
 | 	 * the status register is not accurate. The PCS status register is | 
 | 	 * used instead. | 
 | 	 */ | 
 | 	pcs = rd32(E1000_PCS_LSTAT); | 
 |  | 
 | 	/* | 
 | 	 * The link up bit determines when link is up on autoneg. The sync ok | 
 | 	 * gets set once both sides sync up and agree upon link. Stable link | 
 | 	 * can be determined by checking for both link up and link sync ok | 
 | 	 */ | 
 | 	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { | 
 | 		mac->serdes_has_link = true; | 
 |  | 
 | 		/* Detect and store PCS speed */ | 
 | 		if (pcs & E1000_PCS_LSTS_SPEED_1000) { | 
 | 			*speed = SPEED_1000; | 
 | 		} else if (pcs & E1000_PCS_LSTS_SPEED_100) { | 
 | 			*speed = SPEED_100; | 
 | 		} else { | 
 | 			*speed = SPEED_10; | 
 | 		} | 
 |  | 
 | 		/* Detect and store PCS duplex */ | 
 | 		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { | 
 | 			*duplex = FULL_DUPLEX; | 
 | 		} else { | 
 | 			*duplex = HALF_DUPLEX; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_init_rx_addrs_82575 - Initialize receive address's | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @rar_count: receive address registers | 
 |  * | 
 |  *  Setups the receive address registers by setting the base receive address | 
 |  *  register to the devices MAC address and clearing all the other receive | 
 |  *  address registers to 0. | 
 |  **/ | 
 | static void igb_init_rx_addrs_82575(struct e1000_hw *hw, u16 rar_count) | 
 | { | 
 | 	u32 i; | 
 | 	u8 addr[6] = {0,0,0,0,0,0}; | 
 | 	/* | 
 | 	 * This function is essentially the same as that of | 
 | 	 * e1000_init_rx_addrs_generic. However it also takes care | 
 | 	 * of the special case where the register offset of the | 
 | 	 * second set of RARs begins elsewhere. This is implicitly taken care by | 
 | 	 * function e1000_rar_set_generic. | 
 | 	 */ | 
 |  | 
 | 	hw_dbg("e1000_init_rx_addrs_82575"); | 
 |  | 
 | 	/* Setup the receive address */ | 
 | 	hw_dbg("Programming MAC Address into RAR[0]\n"); | 
 | 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0); | 
 |  | 
 | 	/* Zero out the other (rar_entry_count - 1) receive addresses */ | 
 | 	hw_dbg("Clearing RAR[1-%u]\n", rar_count-1); | 
 | 	for (i = 1; i < rar_count; i++) | 
 | 	    hw->mac.ops.rar_set(hw, addr, i); | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_update_mc_addr_list - Update Multicast addresses | 
 |  *  @hw: pointer to the HW structure | 
 |  *  @mc_addr_list: array of multicast addresses to program | 
 |  *  @mc_addr_count: number of multicast addresses to program | 
 |  *  @rar_used_count: the first RAR register free to program | 
 |  *  @rar_count: total number of supported Receive Address Registers | 
 |  * | 
 |  *  Updates the Receive Address Registers and Multicast Table Array. | 
 |  *  The caller must have a packed mc_addr_list of multicast addresses. | 
 |  *  The parameter rar_count will usually be hw->mac.rar_entry_count | 
 |  *  unless there are workarounds that change this. | 
 |  **/ | 
 | void igb_update_mc_addr_list(struct e1000_hw *hw, | 
 |                              u8 *mc_addr_list, u32 mc_addr_count, | 
 |                              u32 rar_used_count, u32 rar_count) | 
 | { | 
 | 	u32 hash_value; | 
 | 	u32 i; | 
 | 	u8 addr[6] = {0,0,0,0,0,0}; | 
 | 	/* | 
 | 	 * This function is essentially the same as that of  | 
 | 	 * igb_update_mc_addr_list_generic. However it also takes care  | 
 | 	 * of the special case where the register offset of the  | 
 | 	 * second set of RARs begins elsewhere. This is implicitly taken care by  | 
 | 	 * function e1000_rar_set_generic. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Load the first set of multicast addresses into the exact | 
 | 	 * filters (RAR).  If there are not enough to fill the RAR | 
 | 	 * array, clear the filters. | 
 | 	 */ | 
 | 	for (i = rar_used_count; i < rar_count; i++) { | 
 | 		if (mc_addr_count) { | 
 | 			igb_rar_set(hw, mc_addr_list, i); | 
 | 			mc_addr_count--; | 
 | 			mc_addr_list += ETH_ALEN; | 
 | 		} else { | 
 | 			igb_rar_set(hw, addr, i); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Clear the old settings from the MTA */ | 
 | 	hw_dbg("Clearing MTA\n"); | 
 | 	for (i = 0; i < hw->mac.mta_reg_count; i++) { | 
 | 		array_wr32(E1000_MTA, i, 0); | 
 | 		wrfl(); | 
 | 	} | 
 |  | 
 | 	/* Load any remaining multicast addresses into the hash table. */ | 
 | 	for (; mc_addr_count > 0; mc_addr_count--) { | 
 | 		hash_value = igb_hash_mc_addr(hw, mc_addr_list); | 
 | 		hw_dbg("Hash value = 0x%03X\n", hash_value); | 
 | 		igb_mta_set(hw, hash_value); | 
 | 		mc_addr_list += ETH_ALEN; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_shutdown_fiber_serdes_link_82575 - Remove link during power down | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  In the case of fiber serdes, shut down optics and PCS on driver unload | 
 |  *  when management pass thru is not enabled. | 
 |  **/ | 
 | void igb_shutdown_fiber_serdes_link_82575(struct e1000_hw *hw) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	if (hw->mac.type != e1000_82576 || | 
 | 	    (hw->phy.media_type != e1000_media_type_fiber && | 
 | 	     hw->phy.media_type != e1000_media_type_internal_serdes)) | 
 | 		return; | 
 |  | 
 | 	/* if the management interface is not enabled, then power down */ | 
 | 	if (!igb_enable_mng_pass_thru(hw)) { | 
 | 		/* Disable PCS to turn off link */ | 
 | 		reg = rd32(E1000_PCS_CFG0); | 
 | 		reg &= ~E1000_PCS_CFG_PCS_EN; | 
 | 		wr32(E1000_PCS_CFG0, reg); | 
 |  | 
 | 		/* shutdown the laser */ | 
 | 		reg = rd32(E1000_CTRL_EXT); | 
 | 		reg |= E1000_CTRL_EXT_SDP7_DATA; | 
 | 		wr32(E1000_CTRL_EXT, reg); | 
 |  | 
 | 		/* flush the write to verify completion */ | 
 | 		wrfl(); | 
 | 		msleep(1); | 
 | 	} | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_reset_hw_82575 - Reset hardware | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  This resets the hardware into a known state.  This is a | 
 |  *  function pointer entry point called by the api module. | 
 |  **/ | 
 | static s32 igb_reset_hw_82575(struct e1000_hw *hw) | 
 | { | 
 | 	u32 ctrl, icr; | 
 | 	s32 ret_val; | 
 |  | 
 | 	/* | 
 | 	 * Prevent the PCI-E bus from sticking if there is no TLP connection | 
 | 	 * on the last TLP read/write transaction when MAC is reset. | 
 | 	 */ | 
 | 	ret_val = igb_disable_pcie_master(hw); | 
 | 	if (ret_val) | 
 | 		hw_dbg("PCI-E Master disable polling has failed.\n"); | 
 |  | 
 | 	hw_dbg("Masking off all interrupts\n"); | 
 | 	wr32(E1000_IMC, 0xffffffff); | 
 |  | 
 | 	wr32(E1000_RCTL, 0); | 
 | 	wr32(E1000_TCTL, E1000_TCTL_PSP); | 
 | 	wrfl(); | 
 |  | 
 | 	msleep(10); | 
 |  | 
 | 	ctrl = rd32(E1000_CTRL); | 
 |  | 
 | 	hw_dbg("Issuing a global reset to MAC\n"); | 
 | 	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); | 
 |  | 
 | 	ret_val = igb_get_auto_rd_done(hw); | 
 | 	if (ret_val) { | 
 | 		/* | 
 | 		 * When auto config read does not complete, do not | 
 | 		 * return with an error. This can happen in situations | 
 | 		 * where there is no eeprom and prevents getting link. | 
 | 		 */ | 
 | 		hw_dbg("Auto Read Done did not complete\n"); | 
 | 	} | 
 |  | 
 | 	/* If EEPROM is not present, run manual init scripts */ | 
 | 	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) | 
 | 		igb_reset_init_script_82575(hw); | 
 |  | 
 | 	/* Clear any pending interrupt events. */ | 
 | 	wr32(E1000_IMC, 0xffffffff); | 
 | 	icr = rd32(E1000_ICR); | 
 |  | 
 | 	igb_check_alt_mac_addr(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_init_hw_82575 - Initialize hardware | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  This inits the hardware readying it for operation. | 
 |  **/ | 
 | static s32 igb_init_hw_82575(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	s32 ret_val; | 
 | 	u16 i, rar_count = mac->rar_entry_count; | 
 |  | 
 | 	/* Initialize identification LED */ | 
 | 	ret_val = igb_id_led_init(hw); | 
 | 	if (ret_val) { | 
 | 		hw_dbg("Error initializing identification LED\n"); | 
 | 		/* This is not fatal and we should not stop init due to this */ | 
 | 	} | 
 |  | 
 | 	/* Disabling VLAN filtering */ | 
 | 	hw_dbg("Initializing the IEEE VLAN\n"); | 
 | 	igb_clear_vfta(hw); | 
 |  | 
 | 	/* Setup the receive address */ | 
 | 	igb_init_rx_addrs_82575(hw, rar_count); | 
 | 	/* Zero out the Multicast HASH table */ | 
 | 	hw_dbg("Zeroing the MTA\n"); | 
 | 	for (i = 0; i < mac->mta_reg_count; i++) | 
 | 		array_wr32(E1000_MTA, i, 0); | 
 |  | 
 | 	/* Setup link and flow control */ | 
 | 	ret_val = igb_setup_link(hw); | 
 |  | 
 | 	/* | 
 | 	 * Clear all of the statistics registers (clear on read).  It is | 
 | 	 * important that we do this after we have tried to establish link | 
 | 	 * because the symbol error count will increment wildly if there | 
 | 	 * is no link. | 
 | 	 */ | 
 | 	igb_clear_hw_cntrs_82575(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_setup_copper_link_82575 - Configure copper link settings | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Configures the link for auto-neg or forced speed and duplex.  Then we check | 
 |  *  for link, once link is established calls to configure collision distance | 
 |  *  and flow control are called. | 
 |  **/ | 
 | static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) | 
 | { | 
 | 	u32 ctrl, led_ctrl; | 
 | 	s32  ret_val; | 
 | 	bool link; | 
 |  | 
 | 	ctrl = rd32(E1000_CTRL); | 
 | 	ctrl |= E1000_CTRL_SLU; | 
 | 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
 | 	wr32(E1000_CTRL, ctrl); | 
 |  | 
 | 	switch (hw->phy.type) { | 
 | 	case e1000_phy_m88: | 
 | 		ret_val = igb_copper_link_setup_m88(hw); | 
 | 		break; | 
 | 	case e1000_phy_igp_3: | 
 | 		ret_val = igb_copper_link_setup_igp(hw); | 
 | 		/* Setup activity LED */ | 
 | 		led_ctrl = rd32(E1000_LEDCTL); | 
 | 		led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
 | 		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
 | 		wr32(E1000_LEDCTL, led_ctrl); | 
 | 		break; | 
 | 	default: | 
 | 		ret_val = -E1000_ERR_PHY; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	if (hw->mac.autoneg) { | 
 | 		/* | 
 | 		 * Setup autoneg and flow control advertisement | 
 | 		 * and perform autonegotiation. | 
 | 		 */ | 
 | 		ret_val = igb_copper_link_autoneg(hw); | 
 | 		if (ret_val) | 
 | 			goto out; | 
 | 	} else { | 
 | 		/* | 
 | 		 * PHY will be set to 10H, 10F, 100H or 100F | 
 | 		 * depending on user settings. | 
 | 		 */ | 
 | 		hw_dbg("Forcing Speed and Duplex\n"); | 
 | 		ret_val = hw->phy.ops.force_speed_duplex(hw); | 
 | 		if (ret_val) { | 
 | 			hw_dbg("Error Forcing Speed and Duplex\n"); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret_val = igb_configure_pcs_link_82575(hw); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Check link status. Wait up to 100 microseconds for link to become | 
 | 	 * valid. | 
 | 	 */ | 
 | 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); | 
 | 	if (ret_val) | 
 | 		goto out; | 
 |  | 
 | 	if (link) { | 
 | 		hw_dbg("Valid link established!!!\n"); | 
 | 		/* Config the MAC and PHY after link is up */ | 
 | 		igb_config_collision_dist(hw); | 
 | 		ret_val = igb_config_fc_after_link_up(hw); | 
 | 	} else { | 
 | 		hw_dbg("Unable to establish link!!!\n"); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_setup_fiber_serdes_link_82575 - Setup link for fiber/serdes | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Configures speed and duplex for fiber and serdes links. | 
 |  **/ | 
 | static s32 igb_setup_fiber_serdes_link_82575(struct e1000_hw *hw) | 
 | { | 
 | 	u32 reg; | 
 |  | 
 | 	/* | 
 | 	 * On the 82575, SerDes loopback mode persists until it is | 
 | 	 * explicitly turned off or a power cycle is performed.  A read to | 
 | 	 * the register does not indicate its status.  Therefore, we ensure | 
 | 	 * loopback mode is disabled during initialization. | 
 | 	 */ | 
 | 	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); | 
 |  | 
 | 	/* Force link up, set 1gb, set both sw defined pins */ | 
 | 	reg = rd32(E1000_CTRL); | 
 | 	reg |= E1000_CTRL_SLU | | 
 | 	       E1000_CTRL_SPD_1000 | | 
 | 	       E1000_CTRL_FRCSPD | | 
 | 	       E1000_CTRL_SWDPIN0 | | 
 | 	       E1000_CTRL_SWDPIN1; | 
 | 	wr32(E1000_CTRL, reg); | 
 |  | 
 | 	/* Power on phy for 82576 fiber adapters */ | 
 | 	if (hw->mac.type == e1000_82576) { | 
 | 		reg = rd32(E1000_CTRL_EXT); | 
 | 		reg &= ~E1000_CTRL_EXT_SDP7_DATA; | 
 | 		wr32(E1000_CTRL_EXT, reg); | 
 | 	} | 
 |  | 
 | 	/* Set switch control to serdes energy detect */ | 
 | 	reg = rd32(E1000_CONNSW); | 
 | 	reg |= E1000_CONNSW_ENRGSRC; | 
 | 	wr32(E1000_CONNSW, reg); | 
 |  | 
 | 	/* | 
 | 	 * New SerDes mode allows for forcing speed or autonegotiating speed | 
 | 	 * at 1gb. Autoneg should be default set by most drivers. This is the | 
 | 	 * mode that will be compatible with older link partners and switches. | 
 | 	 * However, both are supported by the hardware and some drivers/tools. | 
 | 	 */ | 
 | 	reg = rd32(E1000_PCS_LCTL); | 
 |  | 
 | 	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | | 
 | 		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); | 
 |  | 
 | 	if (hw->mac.autoneg) { | 
 | 		/* Set PCS register for autoneg */ | 
 | 		reg |= E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */ | 
 | 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */ | 
 | 		       E1000_PCS_LCTL_AN_ENABLE |     /* Enable Autoneg */ | 
 | 		       E1000_PCS_LCTL_AN_RESTART;     /* Restart autoneg */ | 
 | 		hw_dbg("Configuring Autoneg; PCS_LCTL = 0x%08X\n", reg); | 
 | 	} else { | 
 | 		/* Set PCS register for forced speed */ | 
 | 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */ | 
 | 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */ | 
 | 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */ | 
 | 		       E1000_PCS_LCTL_FSD |           /* Force Speed */ | 
 | 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */ | 
 | 		hw_dbg("Configuring Forced Link; PCS_LCTL = 0x%08X\n", reg); | 
 | 	} | 
 |  | 
 | 	if (hw->mac.type == e1000_82576) { | 
 | 		reg |= E1000_PCS_LCTL_FORCE_FCTRL; | 
 | 		igb_force_mac_fc(hw); | 
 | 	} | 
 |  | 
 | 	wr32(E1000_PCS_LCTL, reg); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_configure_pcs_link_82575 - Configure PCS link | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is | 
 |  *  only used on copper connections where the serialized gigabit media | 
 |  *  independent interface (sgmii) is being used.  Configures the link | 
 |  *  for auto-negotiation or forces speed/duplex. | 
 |  **/ | 
 | static s32 igb_configure_pcs_link_82575(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_mac_info *mac = &hw->mac; | 
 | 	u32 reg = 0; | 
 |  | 
 | 	if (hw->phy.media_type != e1000_media_type_copper || | 
 | 	    !(igb_sgmii_active_82575(hw))) | 
 | 		goto out; | 
 |  | 
 | 	/* For SGMII, we need to issue a PCS autoneg restart */ | 
 | 	reg = rd32(E1000_PCS_LCTL); | 
 |  | 
 | 	/* AN time out should be disabled for SGMII mode */ | 
 | 	reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); | 
 |  | 
 | 	if (mac->autoneg) { | 
 | 		/* Make sure forced speed and force link are not set */ | 
 | 		reg &= ~(E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); | 
 |  | 
 | 		/* | 
 | 		 * The PHY should be setup prior to calling this function. | 
 | 		 * All we need to do is restart autoneg and enable autoneg. | 
 | 		 */ | 
 | 		reg |= E1000_PCS_LCTL_AN_RESTART | E1000_PCS_LCTL_AN_ENABLE; | 
 | 	} else { | 
 | 		/* Set PCS register for forced speed */ | 
 |  | 
 | 		/* Turn off bits for full duplex, speed, and autoneg */ | 
 | 		reg &= ~(E1000_PCS_LCTL_FSV_1000 | | 
 | 			 E1000_PCS_LCTL_FSV_100 | | 
 | 			 E1000_PCS_LCTL_FDV_FULL | | 
 | 			 E1000_PCS_LCTL_AN_ENABLE); | 
 |  | 
 | 		/* Check for duplex first */ | 
 | 		if (mac->forced_speed_duplex & E1000_ALL_FULL_DUPLEX) | 
 | 			reg |= E1000_PCS_LCTL_FDV_FULL; | 
 |  | 
 | 		/* Now set speed */ | 
 | 		if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) | 
 | 			reg |= E1000_PCS_LCTL_FSV_100; | 
 |  | 
 | 		/* Force speed and force link */ | 
 | 		reg |= E1000_PCS_LCTL_FSD | | 
 | 		       E1000_PCS_LCTL_FORCE_LINK | | 
 | 		       E1000_PCS_LCTL_FLV_LINK_UP; | 
 |  | 
 | 		hw_dbg("Wrote 0x%08X to PCS_LCTL to configure forced link\n", | 
 | 		       reg); | 
 | 	} | 
 | 	wr32(E1000_PCS_LCTL, reg); | 
 |  | 
 | out: | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_sgmii_active_82575 - Return sgmii state | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  82575 silicon has a serialized gigabit media independent interface (sgmii) | 
 |  *  which can be enabled for use in the embedded applications.  Simply | 
 |  *  return the current state of the sgmii interface. | 
 |  **/ | 
 | static bool igb_sgmii_active_82575(struct e1000_hw *hw) | 
 | { | 
 | 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; | 
 |  | 
 | 	if (hw->mac.type != e1000_82575 && hw->mac.type != e1000_82576) | 
 | 		return false; | 
 |  | 
 | 	return dev_spec->sgmii_active; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_reset_init_script_82575 - Inits HW defaults after reset | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Inits recommended HW defaults after a reset when there is no EEPROM | 
 |  *  detected. This is only for the 82575. | 
 |  **/ | 
 | static s32 igb_reset_init_script_82575(struct e1000_hw *hw) | 
 | { | 
 | 	if (hw->mac.type == e1000_82575) { | 
 | 		hw_dbg("Running reset init script for 82575\n"); | 
 | 		/* SerDes configuration via SERDESCTRL */ | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); | 
 |  | 
 | 		/* CCM configuration via CCMCTL register */ | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); | 
 |  | 
 | 		/* PCIe lanes configuration */ | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); | 
 |  | 
 | 		/* PCIe PLL Configuration */ | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); | 
 | 		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_read_mac_addr_82575 - Read device MAC address | 
 |  *  @hw: pointer to the HW structure | 
 |  **/ | 
 | static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) | 
 | { | 
 | 	s32 ret_val = 0; | 
 |  | 
 | 	if (igb_check_alt_mac_addr(hw)) | 
 | 		ret_val = igb_read_mac_addr(hw); | 
 |  | 
 | 	return ret_val; | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  Clears the hardware counters by reading the counter registers. | 
 |  **/ | 
 | static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) | 
 | { | 
 | 	u32 temp; | 
 |  | 
 | 	igb_clear_hw_cntrs_base(hw); | 
 |  | 
 | 	temp = rd32(E1000_PRC64); | 
 | 	temp = rd32(E1000_PRC127); | 
 | 	temp = rd32(E1000_PRC255); | 
 | 	temp = rd32(E1000_PRC511); | 
 | 	temp = rd32(E1000_PRC1023); | 
 | 	temp = rd32(E1000_PRC1522); | 
 | 	temp = rd32(E1000_PTC64); | 
 | 	temp = rd32(E1000_PTC127); | 
 | 	temp = rd32(E1000_PTC255); | 
 | 	temp = rd32(E1000_PTC511); | 
 | 	temp = rd32(E1000_PTC1023); | 
 | 	temp = rd32(E1000_PTC1522); | 
 |  | 
 | 	temp = rd32(E1000_ALGNERRC); | 
 | 	temp = rd32(E1000_RXERRC); | 
 | 	temp = rd32(E1000_TNCRS); | 
 | 	temp = rd32(E1000_CEXTERR); | 
 | 	temp = rd32(E1000_TSCTC); | 
 | 	temp = rd32(E1000_TSCTFC); | 
 |  | 
 | 	temp = rd32(E1000_MGTPRC); | 
 | 	temp = rd32(E1000_MGTPDC); | 
 | 	temp = rd32(E1000_MGTPTC); | 
 |  | 
 | 	temp = rd32(E1000_IAC); | 
 | 	temp = rd32(E1000_ICRXOC); | 
 |  | 
 | 	temp = rd32(E1000_ICRXPTC); | 
 | 	temp = rd32(E1000_ICRXATC); | 
 | 	temp = rd32(E1000_ICTXPTC); | 
 | 	temp = rd32(E1000_ICTXATC); | 
 | 	temp = rd32(E1000_ICTXQEC); | 
 | 	temp = rd32(E1000_ICTXQMTC); | 
 | 	temp = rd32(E1000_ICRXDMTC); | 
 |  | 
 | 	temp = rd32(E1000_CBTMPC); | 
 | 	temp = rd32(E1000_HTDPMC); | 
 | 	temp = rd32(E1000_CBRMPC); | 
 | 	temp = rd32(E1000_RPTHC); | 
 | 	temp = rd32(E1000_HGPTC); | 
 | 	temp = rd32(E1000_HTCBDPC); | 
 | 	temp = rd32(E1000_HGORCL); | 
 | 	temp = rd32(E1000_HGORCH); | 
 | 	temp = rd32(E1000_HGOTCL); | 
 | 	temp = rd32(E1000_HGOTCH); | 
 | 	temp = rd32(E1000_LENERRS); | 
 |  | 
 | 	/* This register should not be read in copper configurations */ | 
 | 	if (hw->phy.media_type == e1000_media_type_internal_serdes) | 
 | 		temp = rd32(E1000_SCVPC); | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable | 
 |  *  @hw: pointer to the HW structure | 
 |  * | 
 |  *  After rx enable if managability is enabled then there is likely some | 
 |  *  bad data at the start of the fifo and possibly in the DMA fifo.  This | 
 |  *  function clears the fifos and flushes any packets that came in as rx was | 
 |  *  being enabled. | 
 |  **/ | 
 | void igb_rx_fifo_flush_82575(struct e1000_hw *hw) | 
 | { | 
 | 	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; | 
 | 	int i, ms_wait; | 
 |  | 
 | 	if (hw->mac.type != e1000_82575 || | 
 | 	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) | 
 | 		return; | 
 |  | 
 | 	/* Disable all RX queues */ | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		rxdctl[i] = rd32(E1000_RXDCTL(i)); | 
 | 		wr32(E1000_RXDCTL(i), | 
 | 		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); | 
 | 	} | 
 | 	/* Poll all queues to verify they have shut down */ | 
 | 	for (ms_wait = 0; ms_wait < 10; ms_wait++) { | 
 | 		msleep(1); | 
 | 		rx_enabled = 0; | 
 | 		for (i = 0; i < 4; i++) | 
 | 			rx_enabled |= rd32(E1000_RXDCTL(i)); | 
 | 		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (ms_wait == 10) | 
 | 		hw_dbg("Queue disable timed out after 10ms\n"); | 
 |  | 
 | 	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all | 
 | 	 * incoming packets are rejected.  Set enable and wait 2ms so that | 
 | 	 * any packet that was coming in as RCTL.EN was set is flushed | 
 | 	 */ | 
 | 	rfctl = rd32(E1000_RFCTL); | 
 | 	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); | 
 |  | 
 | 	rlpml = rd32(E1000_RLPML); | 
 | 	wr32(E1000_RLPML, 0); | 
 |  | 
 | 	rctl = rd32(E1000_RCTL); | 
 | 	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); | 
 | 	temp_rctl |= E1000_RCTL_LPE; | 
 |  | 
 | 	wr32(E1000_RCTL, temp_rctl); | 
 | 	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); | 
 | 	wrfl(); | 
 | 	msleep(2); | 
 |  | 
 | 	/* Enable RX queues that were previously enabled and restore our | 
 | 	 * previous state | 
 | 	 */ | 
 | 	for (i = 0; i < 4; i++) | 
 | 		wr32(E1000_RXDCTL(i), rxdctl[i]); | 
 | 	wr32(E1000_RCTL, rctl); | 
 | 	wrfl(); | 
 |  | 
 | 	wr32(E1000_RLPML, rlpml); | 
 | 	wr32(E1000_RFCTL, rfctl); | 
 |  | 
 | 	/* Flush receive errors generated by workaround */ | 
 | 	rd32(E1000_ROC); | 
 | 	rd32(E1000_RNBC); | 
 | 	rd32(E1000_MPC); | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback | 
 |  *  @hw: pointer to the hardware struct | 
 |  *  @enable: state to enter, either enabled or disabled | 
 |  * | 
 |  *  enables/disables L2 switch loopback functionality. | 
 |  **/ | 
 | void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) | 
 | { | 
 | 	u32 dtxswc = rd32(E1000_DTXSWC); | 
 |  | 
 | 	if (enable) | 
 | 		dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; | 
 | 	else | 
 | 		dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; | 
 |  | 
 | 	wr32(E1000_DTXSWC, dtxswc); | 
 | } | 
 |  | 
 | /** | 
 |  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication | 
 |  *  @hw: pointer to the hardware struct | 
 |  *  @enable: state to enter, either enabled or disabled | 
 |  * | 
 |  *  enables/disables replication of packets across multiple pools. | 
 |  **/ | 
 | void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) | 
 | { | 
 | 	u32 vt_ctl = rd32(E1000_VT_CTL); | 
 |  | 
 | 	if (enable) | 
 | 		vt_ctl |= E1000_VT_CTL_VM_REPL_EN; | 
 | 	else | 
 | 		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; | 
 |  | 
 | 	wr32(E1000_VT_CTL, vt_ctl); | 
 | } | 
 |  | 
 | static struct e1000_mac_operations e1000_mac_ops_82575 = { | 
 | 	.reset_hw             = igb_reset_hw_82575, | 
 | 	.init_hw              = igb_init_hw_82575, | 
 | 	.check_for_link       = igb_check_for_link_82575, | 
 | 	.rar_set              = igb_rar_set, | 
 | 	.read_mac_addr        = igb_read_mac_addr_82575, | 
 | 	.get_speed_and_duplex = igb_get_speed_and_duplex_copper, | 
 | }; | 
 |  | 
 | static struct e1000_phy_operations e1000_phy_ops_82575 = { | 
 | 	.acquire              = igb_acquire_phy_82575, | 
 | 	.get_cfg_done         = igb_get_cfg_done_82575, | 
 | 	.release              = igb_release_phy_82575, | 
 | }; | 
 |  | 
 | static struct e1000_nvm_operations e1000_nvm_ops_82575 = { | 
 | 	.acquire              = igb_acquire_nvm_82575, | 
 | 	.read                 = igb_read_nvm_eerd, | 
 | 	.release              = igb_release_nvm_82575, | 
 | 	.write                = igb_write_nvm_spi, | 
 | }; | 
 |  | 
 | const struct e1000_info e1000_82575_info = { | 
 | 	.get_invariants = igb_get_invariants_82575, | 
 | 	.mac_ops = &e1000_mac_ops_82575, | 
 | 	.phy_ops = &e1000_phy_ops_82575, | 
 | 	.nvm_ops = &e1000_nvm_ops_82575, | 
 | }; | 
 |  |