|  | /* | 
|  | * PHY functions | 
|  | * | 
|  | * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> | 
|  | * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> | 
|  | * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> | 
|  | * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org> | 
|  | * | 
|  | * Permission to use, copy, modify, and distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR | 
|  | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define _ATH5K_PHY | 
|  |  | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include "ath5k.h" | 
|  | #include "reg.h" | 
|  | #include "base.h" | 
|  | #include "rfbuffer.h" | 
|  | #include "rfgain.h" | 
|  |  | 
|  | /* | 
|  | * Used to modify RF Banks before writing them to AR5K_RF_BUFFER | 
|  | */ | 
|  | static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah, | 
|  | const struct ath5k_rf_reg *rf_regs, | 
|  | u32 val, u8 reg_id, bool set) | 
|  | { | 
|  | const struct ath5k_rf_reg *rfreg = NULL; | 
|  | u8 offset, bank, num_bits, col, position; | 
|  | u16 entry; | 
|  | u32 mask, data, last_bit, bits_shifted, first_bit; | 
|  | u32 *rfb; | 
|  | s32 bits_left; | 
|  | int i; | 
|  |  | 
|  | data = 0; | 
|  | rfb = ah->ah_rf_banks; | 
|  |  | 
|  | for (i = 0; i < ah->ah_rf_regs_count; i++) { | 
|  | if (rf_regs[i].index == reg_id) { | 
|  | rfreg = &rf_regs[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rfb == NULL || rfreg == NULL) { | 
|  | ATH5K_PRINTF("Rf register not found!\n"); | 
|  | /* should not happen */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bank = rfreg->bank; | 
|  | num_bits = rfreg->field.len; | 
|  | first_bit = rfreg->field.pos; | 
|  | col = rfreg->field.col; | 
|  |  | 
|  | /* first_bit is an offset from bank's | 
|  | * start. Since we have all banks on | 
|  | * the same array, we use this offset | 
|  | * to mark each bank's start */ | 
|  | offset = ah->ah_offset[bank]; | 
|  |  | 
|  | /* Boundary check */ | 
|  | if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) { | 
|  | ATH5K_PRINTF("invalid values at offset %u\n", offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | entry = ((first_bit - 1) / 8) + offset; | 
|  | position = (first_bit - 1) % 8; | 
|  |  | 
|  | if (set) | 
|  | data = ath5k_hw_bitswap(val, num_bits); | 
|  |  | 
|  | for (bits_shifted = 0, bits_left = num_bits; bits_left > 0; | 
|  | position = 0, entry++) { | 
|  |  | 
|  | last_bit = (position + bits_left > 8) ? 8 : | 
|  | position + bits_left; | 
|  |  | 
|  | mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) << | 
|  | (col * 8); | 
|  |  | 
|  | if (set) { | 
|  | rfb[entry] &= ~mask; | 
|  | rfb[entry] |= ((data << position) << (col * 8)) & mask; | 
|  | data >>= (8 - position); | 
|  | } else { | 
|  | data |= (((rfb[entry] & mask) >> (col * 8)) >> position) | 
|  | << bits_shifted; | 
|  | bits_shifted += last_bit - position; | 
|  | } | 
|  |  | 
|  | bits_left -= 8 - position; | 
|  | } | 
|  |  | 
|  | data = set ? 1 : ath5k_hw_bitswap(data, num_bits); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /**********************\ | 
|  | * RF Gain optimization * | 
|  | \**********************/ | 
|  |  | 
|  | /* | 
|  | * This code is used to optimize rf gain on different environments | 
|  | * (temprature mostly) based on feedback from a power detector. | 
|  | * | 
|  | * It's only used on RF5111 and RF5112, later RF chips seem to have | 
|  | * auto adjustment on hw -notice they have a much smaller BANK 7 and | 
|  | * no gain optimization ladder-. | 
|  | * | 
|  | * For more infos check out this patent doc | 
|  | * http://www.freepatentsonline.com/7400691.html | 
|  | * | 
|  | * This paper describes power drops as seen on the receiver due to | 
|  | * probe packets | 
|  | * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues | 
|  | * %20of%20Power%20Control.pdf | 
|  | * | 
|  | * And this is the MadWiFi bug entry related to the above | 
|  | * http://madwifi-project.org/ticket/1659 | 
|  | * with various measurements and diagrams | 
|  | * | 
|  | * TODO: Deal with power drops due to probes by setting an apropriate | 
|  | * tx power on the probe packets ! Make this part of the calibration process. | 
|  | */ | 
|  |  | 
|  | /* Initialize ah_gain durring attach */ | 
|  | int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah) | 
|  | { | 
|  | /* Initialize the gain optimization values */ | 
|  | switch (ah->ah_radio) { | 
|  | case AR5K_RF5111: | 
|  | ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default; | 
|  | ah->ah_gain.g_low = 20; | 
|  | ah->ah_gain.g_high = 35; | 
|  | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | 
|  | break; | 
|  | case AR5K_RF5112: | 
|  | ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default; | 
|  | ah->ah_gain.g_low = 20; | 
|  | ah->ah_gain.g_high = 85; | 
|  | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Schedule a gain probe check on the next transmited packet. | 
|  | * That means our next packet is going to be sent with lower | 
|  | * tx power and a Peak to Average Power Detector (PAPD) will try | 
|  | * to measure the gain. | 
|  | * | 
|  | * TODO: Use propper tx power setting for the probe packet so | 
|  | * that we don't observe a serious power drop on the receiver | 
|  | * | 
|  | * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc) | 
|  | * just after we enable the probe so that we don't mess with | 
|  | * standard traffic ? Maybe it's time to use sw interrupts and | 
|  | * a probe tasklet !!! | 
|  | */ | 
|  | static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah) | 
|  | { | 
|  |  | 
|  | /* Skip if gain calibration is inactive or | 
|  | * we already handle a probe request */ | 
|  | if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) | 
|  | return; | 
|  |  | 
|  | /* Send the packet with 2dB below max power as | 
|  | * patent doc suggest */ | 
|  | ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4, | 
|  | AR5K_PHY_PAPD_PROBE_TXPOWER) | | 
|  | AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); | 
|  |  | 
|  | ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Calculate gain_F measurement correction | 
|  | * based on the current step for RF5112 rev. 2 */ | 
|  | static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah) | 
|  | { | 
|  | u32 mix, step; | 
|  | u32 *rf; | 
|  | const struct ath5k_gain_opt *go; | 
|  | const struct ath5k_gain_opt_step *g_step; | 
|  | const struct ath5k_rf_reg *rf_regs; | 
|  |  | 
|  | /* Only RF5112 Rev. 2 supports it */ | 
|  | if ((ah->ah_radio != AR5K_RF5112) || | 
|  | (ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A)) | 
|  | return 0; | 
|  |  | 
|  | go = &rfgain_opt_5112; | 
|  | rf_regs = rf_regs_5112a; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); | 
|  |  | 
|  | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | 
|  |  | 
|  | if (ah->ah_rf_banks == NULL) | 
|  | return 0; | 
|  |  | 
|  | rf = ah->ah_rf_banks; | 
|  | ah->ah_gain.g_f_corr = 0; | 
|  |  | 
|  | /* No VGA (Variable Gain Amplifier) override, skip */ | 
|  | if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1) | 
|  | return 0; | 
|  |  | 
|  | /* Mix gain stepping */ | 
|  | step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false); | 
|  |  | 
|  | /* Mix gain override */ | 
|  | mix = g_step->gos_param[0]; | 
|  |  | 
|  | switch (mix) { | 
|  | case 3: | 
|  | ah->ah_gain.g_f_corr = step * 2; | 
|  | break; | 
|  | case 2: | 
|  | ah->ah_gain.g_f_corr = (step - 5) * 2; | 
|  | break; | 
|  | case 1: | 
|  | ah->ah_gain.g_f_corr = step; | 
|  | break; | 
|  | default: | 
|  | ah->ah_gain.g_f_corr = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ah->ah_gain.g_f_corr; | 
|  | } | 
|  |  | 
|  | /* Check if current gain_F measurement is in the range of our | 
|  | * power detector windows. If we get a measurement outside range | 
|  | * we know it's not accurate (detectors can't measure anything outside | 
|  | * their detection window) so we must ignore it */ | 
|  | static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah) | 
|  | { | 
|  | const struct ath5k_rf_reg *rf_regs; | 
|  | u32 step, mix_ovr, level[4]; | 
|  | u32 *rf; | 
|  |  | 
|  | if (ah->ah_rf_banks == NULL) | 
|  | return false; | 
|  |  | 
|  | rf = ah->ah_rf_banks; | 
|  |  | 
|  | if (ah->ah_radio == AR5K_RF5111) { | 
|  |  | 
|  | rf_regs = rf_regs_5111; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); | 
|  |  | 
|  | step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP, | 
|  | false); | 
|  |  | 
|  | level[0] = 0; | 
|  | level[1] = (step == 63) ? 50 : step + 4; | 
|  | level[2] = (step != 63) ? 64 : level[0]; | 
|  | level[3] = level[2] + 50 ; | 
|  |  | 
|  | ah->ah_gain.g_high = level[3] - | 
|  | (step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5); | 
|  | ah->ah_gain.g_low = level[0] + | 
|  | (step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0); | 
|  | } else { | 
|  |  | 
|  | rf_regs = rf_regs_5112; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); | 
|  |  | 
|  | mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, | 
|  | false); | 
|  |  | 
|  | level[0] = level[2] = 0; | 
|  |  | 
|  | if (mix_ovr == 1) { | 
|  | level[1] = level[3] = 83; | 
|  | } else { | 
|  | level[1] = level[3] = 107; | 
|  | ah->ah_gain.g_high = 55; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (ah->ah_gain.g_current >= level[0] && | 
|  | ah->ah_gain.g_current <= level[1]) || | 
|  | (ah->ah_gain.g_current >= level[2] && | 
|  | ah->ah_gain.g_current <= level[3]); | 
|  | } | 
|  |  | 
|  | /* Perform gain_F adjustment by choosing the right set | 
|  | * of parameters from rf gain optimization ladder */ | 
|  | static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah) | 
|  | { | 
|  | const struct ath5k_gain_opt *go; | 
|  | const struct ath5k_gain_opt_step *g_step; | 
|  | int ret = 0; | 
|  |  | 
|  | switch (ah->ah_radio) { | 
|  | case AR5K_RF5111: | 
|  | go = &rfgain_opt_5111; | 
|  | break; | 
|  | case AR5K_RF5112: | 
|  | go = &rfgain_opt_5112; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | 
|  |  | 
|  | if (ah->ah_gain.g_current >= ah->ah_gain.g_high) { | 
|  |  | 
|  | /* Reached maximum */ | 
|  | if (ah->ah_gain.g_step_idx == 0) | 
|  | return -1; | 
|  |  | 
|  | for (ah->ah_gain.g_target = ah->ah_gain.g_current; | 
|  | ah->ah_gain.g_target >=  ah->ah_gain.g_high && | 
|  | ah->ah_gain.g_step_idx > 0; | 
|  | g_step = &go->go_step[ah->ah_gain.g_step_idx]) | 
|  | ah->ah_gain.g_target -= 2 * | 
|  | (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain - | 
|  | g_step->gos_gain); | 
|  |  | 
|  | ret = 1; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (ah->ah_gain.g_current <= ah->ah_gain.g_low) { | 
|  |  | 
|  | /* Reached minimum */ | 
|  | if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1)) | 
|  | return -2; | 
|  |  | 
|  | for (ah->ah_gain.g_target = ah->ah_gain.g_current; | 
|  | ah->ah_gain.g_target <= ah->ah_gain.g_low && | 
|  | ah->ah_gain.g_step_idx < go->go_steps_count-1; | 
|  | g_step = &go->go_step[ah->ah_gain.g_step_idx]) | 
|  | ah->ah_gain.g_target -= 2 * | 
|  | (go->go_step[++ah->ah_gain.g_step_idx].gos_gain - | 
|  | g_step->gos_gain); | 
|  |  | 
|  | ret = 2; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | done: | 
|  | ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE, | 
|  | "ret %d, gain step %u, current gain %u, target gain %u\n", | 
|  | ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current, | 
|  | ah->ah_gain.g_target); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Main callback for thermal rf gain calibration engine | 
|  | * Check for a new gain reading and schedule an adjustment | 
|  | * if needed. | 
|  | * | 
|  | * TODO: Use sw interrupt to schedule reset if gain_F needs | 
|  | * adjustment */ | 
|  | enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah) | 
|  | { | 
|  | u32 data, type; | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  |  | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  |  | 
|  | if (ah->ah_rf_banks == NULL || | 
|  | ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE) | 
|  | return AR5K_RFGAIN_INACTIVE; | 
|  |  | 
|  | /* No check requested, either engine is inactive | 
|  | * or an adjustment is already requested */ | 
|  | if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED) | 
|  | goto done; | 
|  |  | 
|  | /* Read the PAPD (Peak to Average Power Detector) | 
|  | * register */ | 
|  | data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE); | 
|  |  | 
|  | /* No probe is scheduled, read gain_F measurement */ | 
|  | if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) { | 
|  | ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S; | 
|  | type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE); | 
|  |  | 
|  | /* If tx packet is CCK correct the gain_F measurement | 
|  | * by cck ofdm gain delta */ | 
|  | if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) { | 
|  | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) | 
|  | ah->ah_gain.g_current += | 
|  | ee->ee_cck_ofdm_gain_delta; | 
|  | else | 
|  | ah->ah_gain.g_current += | 
|  | AR5K_GAIN_CCK_PROBE_CORR; | 
|  | } | 
|  |  | 
|  | /* Further correct gain_F measurement for | 
|  | * RF5112A radios */ | 
|  | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { | 
|  | ath5k_hw_rf_gainf_corr(ah); | 
|  | ah->ah_gain.g_current = | 
|  | ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ? | 
|  | (ah->ah_gain.g_current-ah->ah_gain.g_f_corr) : | 
|  | 0; | 
|  | } | 
|  |  | 
|  | /* Check if measurement is ok and if we need | 
|  | * to adjust gain, schedule a gain adjustment, | 
|  | * else switch back to the acive state */ | 
|  | if (ath5k_hw_rf_check_gainf_readback(ah) && | 
|  | AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) && | 
|  | ath5k_hw_rf_gainf_adjust(ah)) { | 
|  | ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE; | 
|  | } else { | 
|  | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | return ah->ah_gain.g_state; | 
|  | } | 
|  |  | 
|  | /* Write initial rf gain table to set the RF sensitivity | 
|  | * this one works on all RF chips and has nothing to do | 
|  | * with gain_F calibration */ | 
|  | int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq) | 
|  | { | 
|  | const struct ath5k_ini_rfgain *ath5k_rfg; | 
|  | unsigned int i, size; | 
|  |  | 
|  | switch (ah->ah_radio) { | 
|  | case AR5K_RF5111: | 
|  | ath5k_rfg = rfgain_5111; | 
|  | size = ARRAY_SIZE(rfgain_5111); | 
|  | break; | 
|  | case AR5K_RF5112: | 
|  | ath5k_rfg = rfgain_5112; | 
|  | size = ARRAY_SIZE(rfgain_5112); | 
|  | break; | 
|  | case AR5K_RF2413: | 
|  | ath5k_rfg = rfgain_2413; | 
|  | size = ARRAY_SIZE(rfgain_2413); | 
|  | break; | 
|  | case AR5K_RF2316: | 
|  | ath5k_rfg = rfgain_2316; | 
|  | size = ARRAY_SIZE(rfgain_2316); | 
|  | break; | 
|  | case AR5K_RF5413: | 
|  | ath5k_rfg = rfgain_5413; | 
|  | size = ARRAY_SIZE(rfgain_5413); | 
|  | break; | 
|  | case AR5K_RF2317: | 
|  | case AR5K_RF2425: | 
|  | ath5k_rfg = rfgain_2425; | 
|  | size = ARRAY_SIZE(rfgain_2425); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (freq) { | 
|  | case AR5K_INI_RFGAIN_2GHZ: | 
|  | case AR5K_INI_RFGAIN_5GHZ: | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | AR5K_REG_WAIT(i); | 
|  | ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq], | 
|  | (u32)ath5k_rfg[i].rfg_register); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /********************\ | 
|  | * RF Registers setup * | 
|  | \********************/ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Setup RF registers by writing rf buffer on hw | 
|  | */ | 
|  | int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel, | 
|  | unsigned int mode) | 
|  | { | 
|  | const struct ath5k_rf_reg *rf_regs; | 
|  | const struct ath5k_ini_rfbuffer *ini_rfb; | 
|  | const struct ath5k_gain_opt *go = NULL; | 
|  | const struct ath5k_gain_opt_step *g_step; | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | u8 ee_mode = 0; | 
|  | u32 *rfb; | 
|  | int i, obdb = -1, bank = -1; | 
|  |  | 
|  | switch (ah->ah_radio) { | 
|  | case AR5K_RF5111: | 
|  | rf_regs = rf_regs_5111; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111); | 
|  | ini_rfb = rfb_5111; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111); | 
|  | go = &rfgain_opt_5111; | 
|  | break; | 
|  | case AR5K_RF5112: | 
|  | if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) { | 
|  | rf_regs = rf_regs_5112a; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a); | 
|  | ini_rfb = rfb_5112a; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a); | 
|  | } else { | 
|  | rf_regs = rf_regs_5112; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112); | 
|  | ini_rfb = rfb_5112; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112); | 
|  | } | 
|  | go = &rfgain_opt_5112; | 
|  | break; | 
|  | case AR5K_RF2413: | 
|  | rf_regs = rf_regs_2413; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413); | 
|  | ini_rfb = rfb_2413; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413); | 
|  | break; | 
|  | case AR5K_RF2316: | 
|  | rf_regs = rf_regs_2316; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316); | 
|  | ini_rfb = rfb_2316; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316); | 
|  | break; | 
|  | case AR5K_RF5413: | 
|  | rf_regs = rf_regs_5413; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413); | 
|  | ini_rfb = rfb_5413; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413); | 
|  | break; | 
|  | case AR5K_RF2317: | 
|  | rf_regs = rf_regs_2425; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); | 
|  | ini_rfb = rfb_2317; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317); | 
|  | break; | 
|  | case AR5K_RF2425: | 
|  | rf_regs = rf_regs_2425; | 
|  | ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425); | 
|  | if (ah->ah_mac_srev < AR5K_SREV_AR2417) { | 
|  | ini_rfb = rfb_2425; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425); | 
|  | } else { | 
|  | ini_rfb = rfb_2417; | 
|  | ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* If it's the first time we set rf buffer, allocate | 
|  | * ah->ah_rf_banks based on ah->ah_rf_banks_size | 
|  | * we set above */ | 
|  | if (ah->ah_rf_banks == NULL) { | 
|  | ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size, | 
|  | GFP_KERNEL); | 
|  | if (ah->ah_rf_banks == NULL) { | 
|  | ATH5K_ERR(ah->ah_sc, "out of memory\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Copy values to modify them */ | 
|  | rfb = ah->ah_rf_banks; | 
|  |  | 
|  | for (i = 0; i < ah->ah_rf_banks_size; i++) { | 
|  | if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) { | 
|  | ATH5K_ERR(ah->ah_sc, "invalid bank\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Bank changed, write down the offset */ | 
|  | if (bank != ini_rfb[i].rfb_bank) { | 
|  | bank = ini_rfb[i].rfb_bank; | 
|  | ah->ah_offset[bank] = i; | 
|  | } | 
|  |  | 
|  | rfb[i] = ini_rfb[i].rfb_mode_data[mode]; | 
|  | } | 
|  |  | 
|  | /* Set Output and Driver bias current (OB/DB) */ | 
|  | if (channel->hw_value & CHANNEL_2GHZ) { | 
|  |  | 
|  | if (channel->hw_value & CHANNEL_CCK) | 
|  | ee_mode = AR5K_EEPROM_MODE_11B; | 
|  | else | 
|  | ee_mode = AR5K_EEPROM_MODE_11G; | 
|  |  | 
|  | /* For RF511X/RF211X combination we | 
|  | * use b_OB and b_DB parameters stored | 
|  | * in eeprom on ee->ee_ob[ee_mode][0] | 
|  | * | 
|  | * For all other chips we use OB/DB for 2Ghz | 
|  | * stored in the b/g modal section just like | 
|  | * 802.11a on ee->ee_ob[ee_mode][1] */ | 
|  | if ((ah->ah_radio == AR5K_RF5111) || | 
|  | (ah->ah_radio == AR5K_RF5112)) | 
|  | obdb = 0; | 
|  | else | 
|  | obdb = 1; | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], | 
|  | AR5K_RF_OB_2GHZ, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], | 
|  | AR5K_RF_DB_2GHZ, true); | 
|  |  | 
|  | /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */ | 
|  | } else if ((channel->hw_value & CHANNEL_5GHZ) || | 
|  | (ah->ah_radio == AR5K_RF5111)) { | 
|  |  | 
|  | /* For 11a, Turbo and XR we need to choose | 
|  | * OB/DB based on frequency range */ | 
|  | ee_mode = AR5K_EEPROM_MODE_11A; | 
|  | obdb =	 channel->center_freq >= 5725 ? 3 : | 
|  | (channel->center_freq >= 5500 ? 2 : | 
|  | (channel->center_freq >= 5260 ? 1 : | 
|  | (channel->center_freq > 4000 ? 0 : -1))); | 
|  |  | 
|  | if (obdb < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb], | 
|  | AR5K_RF_OB_5GHZ, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb], | 
|  | AR5K_RF_DB_5GHZ, true); | 
|  | } | 
|  |  | 
|  | g_step = &go->go_step[ah->ah_gain.g_step_idx]; | 
|  |  | 
|  | /* Bank Modifications (chip-specific) */ | 
|  | if (ah->ah_radio == AR5K_RF5111) { | 
|  |  | 
|  | /* Set gain_F settings according to current step */ | 
|  | if (channel->hw_value & CHANNEL_OFDM) { | 
|  |  | 
|  | AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL, | 
|  | AR5K_PHY_FRAME_CTL_TX_CLIP, | 
|  | g_step->gos_param[0]); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], | 
|  | AR5K_RF_PWD_90, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], | 
|  | AR5K_RF_PWD_84, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], | 
|  | AR5K_RF_RFGAIN_SEL, true); | 
|  |  | 
|  | /* We programmed gain_F parameters, switch back | 
|  | * to active state */ | 
|  | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Bank 6/7 setup */ | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode], | 
|  | AR5K_RF_PWD_XPD, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode], | 
|  | AR5K_RF_XPD_GAIN, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], | 
|  | AR5K_RF_GAIN_I, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], | 
|  | AR5K_RF_PLO_SEL, true); | 
|  |  | 
|  | /* TODO: Half/quarter channel support */ | 
|  | } | 
|  |  | 
|  | if (ah->ah_radio == AR5K_RF5112) { | 
|  |  | 
|  | /* Set gain_F settings according to current step */ | 
|  | if (channel->hw_value & CHANNEL_OFDM) { | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0], | 
|  | AR5K_RF_MIXGAIN_OVR, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1], | 
|  | AR5K_RF_PWD_138, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2], | 
|  | AR5K_RF_PWD_137, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3], | 
|  | AR5K_RF_PWD_136, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4], | 
|  | AR5K_RF_PWD_132, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5], | 
|  | AR5K_RF_PWD_131, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6], | 
|  | AR5K_RF_PWD_130, true); | 
|  |  | 
|  | /* We programmed gain_F parameters, switch back | 
|  | * to active state */ | 
|  | ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE; | 
|  | } | 
|  |  | 
|  | /* Bank 6/7 setup */ | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode], | 
|  | AR5K_RF_XPD_SEL, true); | 
|  |  | 
|  | if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) { | 
|  | /* Rev. 1 supports only one xpd */ | 
|  | ath5k_hw_rfb_op(ah, rf_regs, | 
|  | ee->ee_x_gain[ee_mode], | 
|  | AR5K_RF_XPD_GAIN, true); | 
|  |  | 
|  | } else { | 
|  | /* TODO: Set high and low gain bits */ | 
|  | ath5k_hw_rfb_op(ah, rf_regs, | 
|  | ee->ee_x_gain[ee_mode], | 
|  | AR5K_RF_PD_GAIN_LO, true); | 
|  | ath5k_hw_rfb_op(ah, rf_regs, | 
|  | ee->ee_x_gain[ee_mode], | 
|  | AR5K_RF_PD_GAIN_HI, true); | 
|  |  | 
|  | /* Lower synth voltage on Rev 2 */ | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 2, | 
|  | AR5K_RF_HIGH_VC_CP, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 2, | 
|  | AR5K_RF_MID_VC_CP, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 2, | 
|  | AR5K_RF_LOW_VC_CP, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 2, | 
|  | AR5K_RF_PUSH_UP, true); | 
|  |  | 
|  | /* Decrease power consumption on 5213+ BaseBand */ | 
|  | if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 1, | 
|  | AR5K_RF_PAD2GND, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 1, | 
|  | AR5K_RF_XB2_LVL, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 1, | 
|  | AR5K_RF_XB5_LVL, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 1, | 
|  | AR5K_RF_PWD_167, true); | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 1, | 
|  | AR5K_RF_PWD_166, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode], | 
|  | AR5K_RF_GAIN_I, true); | 
|  |  | 
|  | /* TODO: Half/quarter channel support */ | 
|  |  | 
|  | } | 
|  |  | 
|  | if (ah->ah_radio == AR5K_RF5413 && | 
|  | channel->hw_value & CHANNEL_2GHZ) { | 
|  |  | 
|  | ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE, | 
|  | true); | 
|  |  | 
|  | /* Set optimum value for early revisions (on pci-e chips) */ | 
|  | if (ah->ah_mac_srev >= AR5K_SREV_AR5424 && | 
|  | ah->ah_mac_srev < AR5K_SREV_AR5413) | 
|  | ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3), | 
|  | AR5K_RF_PWD_ICLOBUF_2G, true); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Write RF banks on hw */ | 
|  | for (i = 0; i < ah->ah_rf_banks_size; i++) { | 
|  | AR5K_REG_WAIT(i); | 
|  | ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /**************************\ | 
|  | PHY/RF channel functions | 
|  | \**************************/ | 
|  |  | 
|  | /* | 
|  | * Check if a channel is supported | 
|  | */ | 
|  | bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags) | 
|  | { | 
|  | /* Check if the channel is in our supported range */ | 
|  | if (flags & CHANNEL_2GHZ) { | 
|  | if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) && | 
|  | (freq <= ah->ah_capabilities.cap_range.range_2ghz_max)) | 
|  | return true; | 
|  | } else if (flags & CHANNEL_5GHZ) | 
|  | if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) && | 
|  | (freq <= ah->ah_capabilities.cap_range.range_5ghz_max)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convertion needed for RF5110 | 
|  | */ | 
|  | static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel) | 
|  | { | 
|  | u32 athchan; | 
|  |  | 
|  | /* | 
|  | * Convert IEEE channel/MHz to an internal channel value used | 
|  | * by the AR5210 chipset. This has not been verified with | 
|  | * newer chipsets like the AR5212A who have a completely | 
|  | * different RF/PHY part. | 
|  | */ | 
|  | athchan = (ath5k_hw_bitswap( | 
|  | (ieee80211_frequency_to_channel( | 
|  | channel->center_freq) - 24) / 2, 5) | 
|  | << 1) | (1 << 6) | 0x1; | 
|  | return athchan; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set channel on RF5110 | 
|  | */ | 
|  | static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel) | 
|  | { | 
|  | u32 data; | 
|  |  | 
|  | /* | 
|  | * Set the channel and wait | 
|  | */ | 
|  | data = ath5k_hw_rf5110_chan2athchan(channel); | 
|  | ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER); | 
|  | ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0); | 
|  | mdelay(1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convertion needed for 5111 | 
|  | */ | 
|  | static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee, | 
|  | struct ath5k_athchan_2ghz *athchan) | 
|  | { | 
|  | int channel; | 
|  |  | 
|  | /* Cast this value to catch negative channel numbers (>= -19) */ | 
|  | channel = (int)ieee; | 
|  |  | 
|  | /* | 
|  | * Map 2GHz IEEE channel to 5GHz Atheros channel | 
|  | */ | 
|  | if (channel <= 13) { | 
|  | athchan->a2_athchan = 115 + channel; | 
|  | athchan->a2_flags = 0x46; | 
|  | } else if (channel == 14) { | 
|  | athchan->a2_athchan = 124; | 
|  | athchan->a2_flags = 0x44; | 
|  | } else if (channel >= 15 && channel <= 26) { | 
|  | athchan->a2_athchan = ((channel - 14) * 4) + 132; | 
|  | athchan->a2_flags = 0x46; | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set channel on 5111 | 
|  | */ | 
|  | static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel) | 
|  | { | 
|  | struct ath5k_athchan_2ghz ath5k_channel_2ghz; | 
|  | unsigned int ath5k_channel = | 
|  | ieee80211_frequency_to_channel(channel->center_freq); | 
|  | u32 data0, data1, clock; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Set the channel on the RF5111 radio | 
|  | */ | 
|  | data0 = data1 = 0; | 
|  |  | 
|  | if (channel->hw_value & CHANNEL_2GHZ) { | 
|  | /* Map 2GHz channel to 5GHz Atheros channel ID */ | 
|  | ret = ath5k_hw_rf5111_chan2athchan( | 
|  | ieee80211_frequency_to_channel(channel->center_freq), | 
|  | &ath5k_channel_2ghz); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ath5k_channel = ath5k_channel_2ghz.a2_athchan; | 
|  | data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff) | 
|  | << 5) | (1 << 4); | 
|  | } | 
|  |  | 
|  | if (ath5k_channel < 145 || !(ath5k_channel & 1)) { | 
|  | clock = 1; | 
|  | data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) | | 
|  | (clock << 1) | (1 << 10) | 1; | 
|  | } else { | 
|  | clock = 0; | 
|  | data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff) | 
|  | << 2) | (clock << 1) | (1 << 10) | 1; | 
|  | } | 
|  |  | 
|  | ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8), | 
|  | AR5K_RF_BUFFER); | 
|  | ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00), | 
|  | AR5K_RF_BUFFER_CONTROL_3); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set channel on 5112 and newer | 
|  | */ | 
|  | static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel) | 
|  | { | 
|  | u32 data, data0, data1, data2; | 
|  | u16 c; | 
|  |  | 
|  | data = data0 = data1 = data2 = 0; | 
|  | c = channel->center_freq; | 
|  |  | 
|  | if (c < 4800) { | 
|  | if (!((c - 2224) % 5)) { | 
|  | data0 = ((2 * (c - 704)) - 3040) / 10; | 
|  | data1 = 1; | 
|  | } else if (!((c - 2192) % 5)) { | 
|  | data0 = ((2 * (c - 672)) - 3040) / 10; | 
|  | data1 = 0; | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8); | 
|  | } else if ((c - (c % 5)) != 2 || c > 5435) { | 
|  | if (!(c % 20) && c >= 5120) { | 
|  | data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); | 
|  | data2 = ath5k_hw_bitswap(3, 2); | 
|  | } else if (!(c % 10)) { | 
|  | data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); | 
|  | data2 = ath5k_hw_bitswap(2, 2); | 
|  | } else if (!(c % 5)) { | 
|  | data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); | 
|  | data2 = ath5k_hw_bitswap(1, 2); | 
|  | } else | 
|  | return -EINVAL; | 
|  | } else { | 
|  | data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); | 
|  | data2 = ath5k_hw_bitswap(0, 2); | 
|  | } | 
|  |  | 
|  | data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001; | 
|  |  | 
|  | ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); | 
|  | ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the channel on the RF2425 | 
|  | */ | 
|  | static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel) | 
|  | { | 
|  | u32 data, data0, data2; | 
|  | u16 c; | 
|  |  | 
|  | data = data0 = data2 = 0; | 
|  | c = channel->center_freq; | 
|  |  | 
|  | if (c < 4800) { | 
|  | data0 = ath5k_hw_bitswap((c - 2272), 8); | 
|  | data2 = 0; | 
|  | /* ? 5GHz ? */ | 
|  | } else if ((c - (c % 5)) != 2 || c > 5435) { | 
|  | if (!(c % 20) && c < 5120) | 
|  | data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8); | 
|  | else if (!(c % 10)) | 
|  | data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8); | 
|  | else if (!(c % 5)) | 
|  | data0 = ath5k_hw_bitswap((c - 4800) / 5, 8); | 
|  | else | 
|  | return -EINVAL; | 
|  | data2 = ath5k_hw_bitswap(1, 2); | 
|  | } else { | 
|  | data0 = ath5k_hw_bitswap((10 * (c - 2) - 4800) / 25 + 1, 8); | 
|  | data2 = ath5k_hw_bitswap(0, 2); | 
|  | } | 
|  |  | 
|  | data = (data0 << 4) | data2 << 2 | 0x1001; | 
|  |  | 
|  | ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER); | 
|  | ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set a channel on the radio chip | 
|  | */ | 
|  | int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel) | 
|  | { | 
|  | int ret; | 
|  | /* | 
|  | * Check bounds supported by the PHY (we don't care about regultory | 
|  | * restrictions at this point). Note: hw_value already has the band | 
|  | * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok() | 
|  | * of the band by that */ | 
|  | if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) { | 
|  | ATH5K_ERR(ah->ah_sc, | 
|  | "channel frequency (%u MHz) out of supported " | 
|  | "band range\n", | 
|  | channel->center_freq); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the channel and wait | 
|  | */ | 
|  | switch (ah->ah_radio) { | 
|  | case AR5K_RF5110: | 
|  | ret = ath5k_hw_rf5110_channel(ah, channel); | 
|  | break; | 
|  | case AR5K_RF5111: | 
|  | ret = ath5k_hw_rf5111_channel(ah, channel); | 
|  | break; | 
|  | case AR5K_RF2425: | 
|  | ret = ath5k_hw_rf2425_channel(ah, channel); | 
|  | break; | 
|  | default: | 
|  | ret = ath5k_hw_rf5112_channel(ah, channel); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Set JAPAN setting for channel 14 */ | 
|  | if (channel->center_freq == 2484) { | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, | 
|  | AR5K_PHY_CCKTXCTL_JAPAN); | 
|  | } else { | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL, | 
|  | AR5K_PHY_CCKTXCTL_WORLD); | 
|  | } | 
|  |  | 
|  | ah->ah_current_channel.center_freq = channel->center_freq; | 
|  | ah->ah_current_channel.hw_value = channel->hw_value; | 
|  | ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*****************\ | 
|  | PHY calibration | 
|  | \*****************/ | 
|  |  | 
|  | /** | 
|  | * ath5k_hw_noise_floor_calibration - perform PHY noise floor calibration | 
|  | * | 
|  | * @ah: struct ath5k_hw pointer we are operating on | 
|  | * @freq: the channel frequency, just used for error logging | 
|  | * | 
|  | * This function performs a noise floor calibration of the PHY and waits for | 
|  | * it to complete. Then the noise floor value is compared to some maximum | 
|  | * noise floor we consider valid. | 
|  | * | 
|  | * Note that this is different from what the madwifi HAL does: it reads the | 
|  | * noise floor and afterwards initiates the calibration. Since the noise floor | 
|  | * calibration can take some time to finish, depending on the current channel | 
|  | * use, that avoids the occasional timeout warnings we are seeing now. | 
|  | * | 
|  | * See the following link for an Atheros patent on noise floor calibration: | 
|  | * http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL \ | 
|  | * &p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=7245893.PN.&OS=PN/7 | 
|  | * | 
|  | * XXX: Since during noise floor calibration antennas are detached according to | 
|  | * the patent, we should stop tx queues here. | 
|  | */ | 
|  | int | 
|  | ath5k_hw_noise_floor_calibration(struct ath5k_hw *ah, short freq) | 
|  | { | 
|  | int ret; | 
|  | unsigned int i; | 
|  | s32 noise_floor; | 
|  |  | 
|  | /* | 
|  | * Enable noise floor calibration | 
|  | */ | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, | 
|  | AR5K_PHY_AGCCTL_NF); | 
|  |  | 
|  | ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, | 
|  | AR5K_PHY_AGCCTL_NF, 0, false); | 
|  | if (ret) { | 
|  | ATH5K_ERR(ah->ah_sc, | 
|  | "noise floor calibration timeout (%uMHz)\n", freq); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* Wait until the noise floor is calibrated and read the value */ | 
|  | for (i = 20; i > 0; i--) { | 
|  | mdelay(1); | 
|  | noise_floor = ath5k_hw_reg_read(ah, AR5K_PHY_NF); | 
|  | noise_floor = AR5K_PHY_NF_RVAL(noise_floor); | 
|  | if (noise_floor & AR5K_PHY_NF_ACTIVE) { | 
|  | noise_floor = AR5K_PHY_NF_AVAL(noise_floor); | 
|  |  | 
|  | if (noise_floor <= AR5K_TUNE_NOISE_FLOOR) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE, | 
|  | "noise floor %d\n", noise_floor); | 
|  |  | 
|  | if (noise_floor > AR5K_TUNE_NOISE_FLOOR) { | 
|  | ATH5K_ERR(ah->ah_sc, | 
|  | "noise floor calibration failed (%uMHz)\n", freq); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | ah->ah_noise_floor = noise_floor; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a PHY calibration on RF5110 | 
|  | * -Fix BPSK/QAM Constellation (I/Q correction) | 
|  | * -Calculate Noise Floor | 
|  | */ | 
|  | static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel) | 
|  | { | 
|  | u32 phy_sig, phy_agc, phy_sat, beacon; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Disable beacons and RX/TX queues, wait | 
|  | */ | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210, | 
|  | AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); | 
|  | beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210); | 
|  | ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210); | 
|  |  | 
|  | mdelay(2); | 
|  |  | 
|  | /* | 
|  | * Set the channel (with AGC turned off) | 
|  | */ | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | 
|  | udelay(10); | 
|  | ret = ath5k_hw_channel(ah, channel); | 
|  |  | 
|  | /* | 
|  | * Activate PHY and wait | 
|  | */ | 
|  | ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT); | 
|  | mdelay(1); | 
|  |  | 
|  | AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Calibrate the radio chip | 
|  | */ | 
|  |  | 
|  | /* Remember normal state */ | 
|  | phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG); | 
|  | phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE); | 
|  | phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT); | 
|  |  | 
|  | /* Update radio registers */ | 
|  | ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) | | 
|  | AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG); | 
|  |  | 
|  | ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI | | 
|  | AR5K_PHY_AGCCOARSE_LO)) | | 
|  | AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) | | 
|  | AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE); | 
|  |  | 
|  | ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT | | 
|  | AR5K_PHY_ADCSAT_THR)) | | 
|  | AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) | | 
|  | AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT); | 
|  |  | 
|  | udelay(20); | 
|  |  | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | 
|  | udelay(10); | 
|  | ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG); | 
|  | AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE); | 
|  |  | 
|  | mdelay(1); | 
|  |  | 
|  | /* | 
|  | * Enable calibration and wait until completion | 
|  | */ | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL); | 
|  |  | 
|  | ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, | 
|  | AR5K_PHY_AGCCTL_CAL, 0, false); | 
|  |  | 
|  | /* Reset to normal state */ | 
|  | ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG); | 
|  | ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE); | 
|  | ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT); | 
|  |  | 
|  | if (ret) { | 
|  | ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n", | 
|  | channel->center_freq); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ath5k_hw_noise_floor_calibration(ah, channel->center_freq); | 
|  |  | 
|  | /* | 
|  | * Re-enable RX/TX and beacons | 
|  | */ | 
|  | AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210, | 
|  | AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210); | 
|  | ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a PHY calibration on RF5111/5112 and newer chips | 
|  | */ | 
|  | static int ath5k_hw_rf511x_calibrate(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel) | 
|  | { | 
|  | u32 i_pwr, q_pwr; | 
|  | s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd; | 
|  | int i; | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  |  | 
|  | if (!ah->ah_calibration || | 
|  | ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN) | 
|  | goto done; | 
|  |  | 
|  | /* Calibration has finished, get the results and re-run */ | 
|  | for (i = 0; i <= 10; i++) { | 
|  | iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR); | 
|  | i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I); | 
|  | q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q); | 
|  | } | 
|  |  | 
|  | i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7; | 
|  | q_coffd = q_pwr >> 7; | 
|  |  | 
|  | /* No correction */ | 
|  | if (i_coffd == 0 || q_coffd == 0) | 
|  | goto done; | 
|  |  | 
|  | i_coff = ((-iq_corr) / i_coffd) & 0x3f; | 
|  |  | 
|  | /* Boundary check */ | 
|  | if (i_coff > 31) | 
|  | i_coff = 31; | 
|  | if (i_coff < -32) | 
|  | i_coff = -32; | 
|  |  | 
|  | q_coff = (((s32)i_pwr / q_coffd) - 128) & 0x1f; | 
|  |  | 
|  | /* Boundary check */ | 
|  | if (q_coff > 15) | 
|  | q_coff = 15; | 
|  | if (q_coff < -16) | 
|  | q_coff = -16; | 
|  |  | 
|  | /* Commit new I/Q value */ | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE | | 
|  | ((u32)q_coff) | ((u32)i_coff << AR5K_PHY_IQ_CORR_Q_I_COFF_S)); | 
|  |  | 
|  | /* Re-enable calibration -if we don't we'll commit | 
|  | * the same values again and again */ | 
|  | AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, | 
|  | AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15); | 
|  | AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN); | 
|  |  | 
|  | done: | 
|  |  | 
|  | /* TODO: Separate noise floor calibration from I/Q calibration | 
|  | * since noise floor calibration interrupts rx path while I/Q | 
|  | * calibration doesn't. We don't need to run noise floor calibration | 
|  | * as often as I/Q calibration.*/ | 
|  | ath5k_hw_noise_floor_calibration(ah, channel->center_freq); | 
|  |  | 
|  | /* Initiate a gain_F calibration */ | 
|  | ath5k_hw_request_rfgain_probe(ah); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform a PHY calibration | 
|  | */ | 
|  | int ath5k_hw_phy_calibrate(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (ah->ah_radio == AR5K_RF5110) | 
|  | ret = ath5k_hw_rf5110_calibrate(ah, channel); | 
|  | else | 
|  | ret = ath5k_hw_rf511x_calibrate(ah, channel); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int ath5k_hw_phy_disable(struct ath5k_hw *ah) | 
|  | { | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  | /*Just a try M.F.*/ | 
|  | ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /********************\ | 
|  | Misc PHY functions | 
|  | \********************/ | 
|  |  | 
|  | /* | 
|  | * Get the PHY Chip revision | 
|  | */ | 
|  | u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan) | 
|  | { | 
|  | unsigned int i; | 
|  | u32 srev; | 
|  | u16 ret; | 
|  |  | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  |  | 
|  | /* | 
|  | * Set the radio chip access register | 
|  | */ | 
|  | switch (chan) { | 
|  | case CHANNEL_2GHZ: | 
|  | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0)); | 
|  | break; | 
|  | case CHANNEL_5GHZ: | 
|  | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | mdelay(2); | 
|  |  | 
|  | /* ...wait until PHY is ready and read the selected radio revision */ | 
|  | ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34)); | 
|  |  | 
|  | for (i = 0; i < 8; i++) | 
|  | ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20)); | 
|  |  | 
|  | if (ah->ah_version == AR5K_AR5210) { | 
|  | srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf; | 
|  | ret = (u16)ath5k_hw_bitswap(srev, 4) + 1; | 
|  | } else { | 
|  | srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff; | 
|  | ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) | | 
|  | ((srev & 0x0f) << 4), 8); | 
|  | } | 
|  |  | 
|  | /* Reset to the 5GHz mode */ | 
|  | ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void /*TODO:Boundary check*/ | 
|  | ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant) | 
|  | { | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  | /*Just a try M.F.*/ | 
|  | if (ah->ah_version != AR5K_AR5210) | 
|  | ath5k_hw_reg_write(ah, ant, AR5K_DEFAULT_ANTENNA); | 
|  | } | 
|  |  | 
|  | unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah) | 
|  | { | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  | /*Just a try M.F.*/ | 
|  | if (ah->ah_version != AR5K_AR5210) | 
|  | return ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA); | 
|  |  | 
|  | return false; /*XXX: What do we return for 5210 ?*/ | 
|  | } | 
|  |  | 
|  |  | 
|  | /****************\ | 
|  | * TX power setup * | 
|  | \****************/ | 
|  |  | 
|  | /* | 
|  | * Helper functions | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Do linear interpolation between two given (x, y) points | 
|  | */ | 
|  | static s16 | 
|  | ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right, | 
|  | s16 y_left, s16 y_right) | 
|  | { | 
|  | s16 ratio, result; | 
|  |  | 
|  | /* Avoid divide by zero and skip interpolation | 
|  | * if we have the same point */ | 
|  | if ((x_left == x_right) || (y_left == y_right)) | 
|  | return y_left; | 
|  |  | 
|  | /* | 
|  | * Since we use ints and not fps, we need to scale up in | 
|  | * order to get a sane ratio value (or else we 'll eg. get | 
|  | * always 1 instead of 1.25, 1.75 etc). We scale up by 100 | 
|  | * to have some accuracy both for 0.5 and 0.25 steps. | 
|  | */ | 
|  | ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left)); | 
|  |  | 
|  | /* Now scale down to be in range */ | 
|  | result = y_left + (ratio * (target - x_left) / 100); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find vertical boundary (min pwr) for the linear PCDAC curve. | 
|  | * | 
|  | * Since we have the top of the curve and we draw the line below | 
|  | * until we reach 1 (1 pcdac step) we need to know which point | 
|  | * (x value) that is so that we don't go below y axis and have negative | 
|  | * pcdac values when creating the curve, or fill the table with zeroes. | 
|  | */ | 
|  | static s16 | 
|  | ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR, | 
|  | const s16 *pwrL, const s16 *pwrR) | 
|  | { | 
|  | s8 tmp; | 
|  | s16 min_pwrL, min_pwrR; | 
|  | s16 pwr_i = pwrL[0]; | 
|  |  | 
|  | do { | 
|  | pwr_i--; | 
|  | tmp = (s8) ath5k_get_interpolated_value(pwr_i, | 
|  | pwrL[0], pwrL[1], | 
|  | stepL[0], stepL[1]); | 
|  |  | 
|  | } while (tmp > 1); | 
|  |  | 
|  | min_pwrL = pwr_i; | 
|  |  | 
|  | pwr_i = pwrR[0]; | 
|  | do { | 
|  | pwr_i--; | 
|  | tmp = (s8) ath5k_get_interpolated_value(pwr_i, | 
|  | pwrR[0], pwrR[1], | 
|  | stepR[0], stepR[1]); | 
|  |  | 
|  | } while (tmp > 1); | 
|  |  | 
|  | min_pwrR = pwr_i; | 
|  |  | 
|  | /* Keep the right boundary so that it works for both curves */ | 
|  | return max(min_pwrL, min_pwrR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interpolate (pwr,vpd) points to create a Power to PDADC or a | 
|  | * Power to PCDAC curve. | 
|  | * | 
|  | * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC | 
|  | * steps (offsets) on y axis. Power can go up to 31.5dB and max | 
|  | * PCDAC/PDADC step for each curve is 64 but we can write more than | 
|  | * one curves on hw so we can go up to 128 (which is the max step we | 
|  | * can write on the final table). | 
|  | * | 
|  | * We write y values (PCDAC/PDADC steps) on hw. | 
|  | */ | 
|  | static void | 
|  | ath5k_create_power_curve(s16 pmin, s16 pmax, | 
|  | const s16 *pwr, const u8 *vpd, | 
|  | u8 num_points, | 
|  | u8 *vpd_table, u8 type) | 
|  | { | 
|  | u8 idx[2] = { 0, 1 }; | 
|  | s16 pwr_i = 2*pmin; | 
|  | int i; | 
|  |  | 
|  | if (num_points < 2) | 
|  | return; | 
|  |  | 
|  | /* We want the whole line, so adjust boundaries | 
|  | * to cover the entire power range. Note that | 
|  | * power values are already 0.25dB so no need | 
|  | * to multiply pwr_i by 2 */ | 
|  | if (type == AR5K_PWRTABLE_LINEAR_PCDAC) { | 
|  | pwr_i = pmin; | 
|  | pmin = 0; | 
|  | pmax = 63; | 
|  | } | 
|  |  | 
|  | /* Find surrounding turning points (TPs) | 
|  | * and interpolate between them */ | 
|  | for (i = 0; (i <= (u16) (pmax - pmin)) && | 
|  | (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { | 
|  |  | 
|  | /* We passed the right TP, move to the next set of TPs | 
|  | * if we pass the last TP, extrapolate above using the last | 
|  | * two TPs for ratio */ | 
|  | if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) { | 
|  | idx[0]++; | 
|  | idx[1]++; | 
|  | } | 
|  |  | 
|  | vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i, | 
|  | pwr[idx[0]], pwr[idx[1]], | 
|  | vpd[idx[0]], vpd[idx[1]]); | 
|  |  | 
|  | /* Increase by 0.5dB | 
|  | * (0.25 dB units) */ | 
|  | pwr_i += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the surrounding per-channel power calibration piers | 
|  | * for a given frequency so that we can interpolate between | 
|  | * them and come up with an apropriate dataset for our current | 
|  | * channel. | 
|  | */ | 
|  | static void | 
|  | ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel, | 
|  | struct ath5k_chan_pcal_info **pcinfo_l, | 
|  | struct ath5k_chan_pcal_info **pcinfo_r) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_chan_pcal_info *pcinfo; | 
|  | u8 idx_l, idx_r; | 
|  | u8 mode, max, i; | 
|  | u32 target = channel->center_freq; | 
|  |  | 
|  | idx_l = 0; | 
|  | idx_r = 0; | 
|  |  | 
|  | if (!(channel->hw_value & CHANNEL_OFDM)) { | 
|  | pcinfo = ee->ee_pwr_cal_b; | 
|  | mode = AR5K_EEPROM_MODE_11B; | 
|  | } else if (channel->hw_value & CHANNEL_2GHZ) { | 
|  | pcinfo = ee->ee_pwr_cal_g; | 
|  | mode = AR5K_EEPROM_MODE_11G; | 
|  | } else { | 
|  | pcinfo = ee->ee_pwr_cal_a; | 
|  | mode = AR5K_EEPROM_MODE_11A; | 
|  | } | 
|  | max = ee->ee_n_piers[mode] - 1; | 
|  |  | 
|  | /* Frequency is below our calibrated | 
|  | * range. Use the lowest power curve | 
|  | * we have */ | 
|  | if (target < pcinfo[0].freq) { | 
|  | idx_l = idx_r = 0; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Frequency is above our calibrated | 
|  | * range. Use the highest power curve | 
|  | * we have */ | 
|  | if (target > pcinfo[max].freq) { | 
|  | idx_l = idx_r = max; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* Frequency is inside our calibrated | 
|  | * channel range. Pick the surrounding | 
|  | * calibration piers so that we can | 
|  | * interpolate */ | 
|  | for (i = 0; i <= max; i++) { | 
|  |  | 
|  | /* Frequency matches one of our calibration | 
|  | * piers, no need to interpolate, just use | 
|  | * that calibration pier */ | 
|  | if (pcinfo[i].freq == target) { | 
|  | idx_l = idx_r = i; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* We found a calibration pier that's above | 
|  | * frequency, use this pier and the previous | 
|  | * one to interpolate */ | 
|  | if (target < pcinfo[i].freq) { | 
|  | idx_r = i; | 
|  | idx_l = idx_r - 1; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | *pcinfo_l = &pcinfo[idx_l]; | 
|  | *pcinfo_r = &pcinfo[idx_r]; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the surrounding per-rate power calibration data | 
|  | * for a given frequency and interpolate between power | 
|  | * values to set max target power supported by hw for | 
|  | * each rate. | 
|  | */ | 
|  | static void | 
|  | ath5k_get_rate_pcal_data(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel, | 
|  | struct ath5k_rate_pcal_info *rates) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_rate_pcal_info *rpinfo; | 
|  | u8 idx_l, idx_r; | 
|  | u8 mode, max, i; | 
|  | u32 target = channel->center_freq; | 
|  |  | 
|  | idx_l = 0; | 
|  | idx_r = 0; | 
|  |  | 
|  | if (!(channel->hw_value & CHANNEL_OFDM)) { | 
|  | rpinfo = ee->ee_rate_tpwr_b; | 
|  | mode = AR5K_EEPROM_MODE_11B; | 
|  | } else if (channel->hw_value & CHANNEL_2GHZ) { | 
|  | rpinfo = ee->ee_rate_tpwr_g; | 
|  | mode = AR5K_EEPROM_MODE_11G; | 
|  | } else { | 
|  | rpinfo = ee->ee_rate_tpwr_a; | 
|  | mode = AR5K_EEPROM_MODE_11A; | 
|  | } | 
|  | max = ee->ee_rate_target_pwr_num[mode] - 1; | 
|  |  | 
|  | /* Get the surrounding calibration | 
|  | * piers - same as above */ | 
|  | if (target < rpinfo[0].freq) { | 
|  | idx_l = idx_r = 0; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (target > rpinfo[max].freq) { | 
|  | idx_l = idx_r = max; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | for (i = 0; i <= max; i++) { | 
|  |  | 
|  | if (rpinfo[i].freq == target) { | 
|  | idx_l = idx_r = i; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | if (target < rpinfo[i].freq) { | 
|  | idx_r = i; | 
|  | idx_l = idx_r - 1; | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | /* Now interpolate power value, based on the frequency */ | 
|  | rates->freq = target; | 
|  |  | 
|  | rates->target_power_6to24 = | 
|  | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | 
|  | rpinfo[idx_r].freq, | 
|  | rpinfo[idx_l].target_power_6to24, | 
|  | rpinfo[idx_r].target_power_6to24); | 
|  |  | 
|  | rates->target_power_36 = | 
|  | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | 
|  | rpinfo[idx_r].freq, | 
|  | rpinfo[idx_l].target_power_36, | 
|  | rpinfo[idx_r].target_power_36); | 
|  |  | 
|  | rates->target_power_48 = | 
|  | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | 
|  | rpinfo[idx_r].freq, | 
|  | rpinfo[idx_l].target_power_48, | 
|  | rpinfo[idx_r].target_power_48); | 
|  |  | 
|  | rates->target_power_54 = | 
|  | ath5k_get_interpolated_value(target, rpinfo[idx_l].freq, | 
|  | rpinfo[idx_r].freq, | 
|  | rpinfo[idx_l].target_power_54, | 
|  | rpinfo[idx_r].target_power_54); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the max edge power for this channel if | 
|  | * we have such data from EEPROM's Conformance Test | 
|  | * Limits (CTL), and limit max power if needed. | 
|  | * | 
|  | * FIXME: Only works for world regulatory domains | 
|  | */ | 
|  | static void | 
|  | ath5k_get_max_ctl_power(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel) | 
|  | { | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | struct ath5k_edge_power *rep = ee->ee_ctl_pwr; | 
|  | u8 *ctl_val = ee->ee_ctl; | 
|  | s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4; | 
|  | s16 edge_pwr = 0; | 
|  | u8 rep_idx; | 
|  | u8 i, ctl_mode; | 
|  | u8 ctl_idx = 0xFF; | 
|  | u32 target = channel->center_freq; | 
|  |  | 
|  | /* Find out a CTL for our mode that's not mapped | 
|  | * on a specific reg domain. | 
|  | * | 
|  | * TODO: Map our current reg domain to one of the 3 available | 
|  | * reg domain ids so that we can support more CTLs. */ | 
|  | switch (channel->hw_value & CHANNEL_MODES) { | 
|  | case CHANNEL_A: | 
|  | ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN; | 
|  | break; | 
|  | case CHANNEL_G: | 
|  | ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN; | 
|  | break; | 
|  | case CHANNEL_B: | 
|  | ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN; | 
|  | break; | 
|  | case CHANNEL_T: | 
|  | ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN; | 
|  | break; | 
|  | case CHANNEL_TG: | 
|  | ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN; | 
|  | break; | 
|  | case CHANNEL_XR: | 
|  | /* Fall through */ | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ee->ee_ctls; i++) { | 
|  | if (ctl_val[i] == ctl_mode) { | 
|  | ctl_idx = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we have a CTL dataset available grab it and find the | 
|  | * edge power for our frequency */ | 
|  | if (ctl_idx == 0xFF) | 
|  | return; | 
|  |  | 
|  | /* Edge powers are sorted by frequency from lower | 
|  | * to higher. Each CTL corresponds to 8 edge power | 
|  | * measurements. */ | 
|  | rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES; | 
|  |  | 
|  | /* Don't do boundaries check because we | 
|  | * might have more that one bands defined | 
|  | * for this mode */ | 
|  |  | 
|  | /* Get the edge power that's closer to our | 
|  | * frequency */ | 
|  | for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) { | 
|  | rep_idx += i; | 
|  | if (target <= rep[rep_idx].freq) | 
|  | edge_pwr = (s16) rep[rep_idx].edge; | 
|  | } | 
|  |  | 
|  | if (edge_pwr) | 
|  | ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Power to PCDAC table functions | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Fill Power to PCDAC table on RF5111 | 
|  | * | 
|  | * No further processing is needed for RF5111, the only thing we have to | 
|  | * do is fill the values below and above calibration range since eeprom data | 
|  | * may not cover the entire PCDAC table. | 
|  | */ | 
|  | static void | 
|  | ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min, | 
|  | s16 *table_max) | 
|  | { | 
|  | u8 	*pcdac_out = ah->ah_txpower.txp_pd_table; | 
|  | u8	*pcdac_tmp = ah->ah_txpower.tmpL[0]; | 
|  | u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i; | 
|  | s16	min_pwr, max_pwr; | 
|  |  | 
|  | /* Get table boundaries */ | 
|  | min_pwr = table_min[0]; | 
|  | pcdac_0 = pcdac_tmp[0]; | 
|  |  | 
|  | max_pwr = table_max[0]; | 
|  | pcdac_n = pcdac_tmp[table_max[0] - table_min[0]]; | 
|  |  | 
|  | /* Extrapolate below minimum using pcdac_0 */ | 
|  | pcdac_i = 0; | 
|  | for (i = 0; i < min_pwr; i++) | 
|  | pcdac_out[pcdac_i++] = pcdac_0; | 
|  |  | 
|  | /* Copy values from pcdac_tmp */ | 
|  | pwr_idx = min_pwr; | 
|  | for (i = 0 ; pwr_idx <= max_pwr && | 
|  | pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) { | 
|  | pcdac_out[pcdac_i++] = pcdac_tmp[i]; | 
|  | pwr_idx++; | 
|  | } | 
|  |  | 
|  | /* Extrapolate above maximum */ | 
|  | while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE) | 
|  | pcdac_out[pcdac_i++] = pcdac_n; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Combine available XPD Curves and fill Linear Power to PCDAC table | 
|  | * on RF5112 | 
|  | * | 
|  | * RFX112 can have up to 2 curves (one for low txpower range and one for | 
|  | * higher txpower range). We need to put them both on pcdac_out and place | 
|  | * them in the correct location. In case we only have one curve available | 
|  | * just fit it on pcdac_out (it's supposed to cover the entire range of | 
|  | * available pwr levels since it's always the higher power curve). Extrapolate | 
|  | * below and above final table if needed. | 
|  | */ | 
|  | static void | 
|  | ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min, | 
|  | s16 *table_max, u8 pdcurves) | 
|  | { | 
|  | u8 	*pcdac_out = ah->ah_txpower.txp_pd_table; | 
|  | u8	*pcdac_low_pwr; | 
|  | u8	*pcdac_high_pwr; | 
|  | u8	*pcdac_tmp; | 
|  | u8	pwr; | 
|  | s16	max_pwr_idx; | 
|  | s16	min_pwr_idx; | 
|  | s16	mid_pwr_idx = 0; | 
|  | /* Edge flag turs on the 7nth bit on the PCDAC | 
|  | * to delcare the higher power curve (force values | 
|  | * to be greater than 64). If we only have one curve | 
|  | * we don't need to set this, if we have 2 curves and | 
|  | * fill the table backwards this can also be used to | 
|  | * switch from higher power curve to lower power curve */ | 
|  | u8	edge_flag; | 
|  | int	i; | 
|  |  | 
|  | /* When we have only one curve available | 
|  | * that's the higher power curve. If we have | 
|  | * two curves the first is the high power curve | 
|  | * and the next is the low power curve. */ | 
|  | if (pdcurves > 1) { | 
|  | pcdac_low_pwr = ah->ah_txpower.tmpL[1]; | 
|  | pcdac_high_pwr = ah->ah_txpower.tmpL[0]; | 
|  | mid_pwr_idx = table_max[1] - table_min[1] - 1; | 
|  | max_pwr_idx = (table_max[0] - table_min[0]) / 2; | 
|  |  | 
|  | /* If table size goes beyond 31.5dB, keep the | 
|  | * upper 31.5dB range when setting tx power. | 
|  | * Note: 126 = 31.5 dB in quarter dB steps */ | 
|  | if (table_max[0] - table_min[1] > 126) | 
|  | min_pwr_idx = table_max[0] - 126; | 
|  | else | 
|  | min_pwr_idx = table_min[1]; | 
|  |  | 
|  | /* Since we fill table backwards | 
|  | * start from high power curve */ | 
|  | pcdac_tmp = pcdac_high_pwr; | 
|  |  | 
|  | edge_flag = 0x40; | 
|  | #if 0 | 
|  | /* If both min and max power limits are in lower | 
|  | * power curve's range, only use the low power curve. | 
|  | * TODO: min/max levels are related to target | 
|  | * power values requested from driver/user | 
|  | * XXX: Is this really needed ? */ | 
|  | if (min_pwr < table_max[1] && | 
|  | max_pwr < table_max[1]) { | 
|  | edge_flag = 0; | 
|  | pcdac_tmp = pcdac_low_pwr; | 
|  | max_pwr_idx = (table_max[1] - table_min[1])/2; | 
|  | } | 
|  | #endif | 
|  | } else { | 
|  | pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */ | 
|  | pcdac_high_pwr = ah->ah_txpower.tmpL[0]; | 
|  | min_pwr_idx = table_min[0]; | 
|  | max_pwr_idx = (table_max[0] - table_min[0]) / 2; | 
|  | pcdac_tmp = pcdac_high_pwr; | 
|  | edge_flag = 0; | 
|  | } | 
|  |  | 
|  | /* This is used when setting tx power*/ | 
|  | ah->ah_txpower.txp_min_idx = min_pwr_idx/2; | 
|  |  | 
|  | /* Fill Power to PCDAC table backwards */ | 
|  | pwr = max_pwr_idx; | 
|  | for (i = 63; i >= 0; i--) { | 
|  | /* Entering lower power range, reset | 
|  | * edge flag and set pcdac_tmp to lower | 
|  | * power curve.*/ | 
|  | if (edge_flag == 0x40 && | 
|  | (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) { | 
|  | edge_flag = 0x00; | 
|  | pcdac_tmp = pcdac_low_pwr; | 
|  | pwr = mid_pwr_idx/2; | 
|  | } | 
|  |  | 
|  | /* Don't go below 1, extrapolate below if we have | 
|  | * already swithced to the lower power curve -or | 
|  | * we only have one curve and edge_flag is zero | 
|  | * anyway */ | 
|  | if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) { | 
|  | while (i >= 0) { | 
|  | pcdac_out[i] = pcdac_out[i + 1]; | 
|  | i--; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | pcdac_out[i] = pcdac_tmp[pwr] | edge_flag; | 
|  |  | 
|  | /* Extrapolate above if pcdac is greater than | 
|  | * 126 -this can happen because we OR pcdac_out | 
|  | * value with edge_flag on high power curve */ | 
|  | if (pcdac_out[i] > 126) | 
|  | pcdac_out[i] = 126; | 
|  |  | 
|  | /* Decrease by a 0.5dB step */ | 
|  | pwr--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write PCDAC values on hw */ | 
|  | static void | 
|  | ath5k_setup_pcdac_table(struct ath5k_hw *ah) | 
|  | { | 
|  | u8 	*pcdac_out = ah->ah_txpower.txp_pd_table; | 
|  | int	i; | 
|  |  | 
|  | /* | 
|  | * Write TX power values | 
|  | */ | 
|  | for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { | 
|  | ath5k_hw_reg_write(ah, | 
|  | (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) | | 
|  | (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16), | 
|  | AR5K_PHY_PCDAC_TXPOWER(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Power to PDADC table functions | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Set the gain boundaries and create final Power to PDADC table | 
|  | * | 
|  | * We can have up to 4 pd curves, we need to do a simmilar process | 
|  | * as we do for RF5112. This time we don't have an edge_flag but we | 
|  | * set the gain boundaries on a separate register. | 
|  | */ | 
|  | static void | 
|  | ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah, | 
|  | s16 *pwr_min, s16 *pwr_max, u8 pdcurves) | 
|  | { | 
|  | u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS]; | 
|  | u8 *pdadc_out = ah->ah_txpower.txp_pd_table; | 
|  | u8 *pdadc_tmp; | 
|  | s16 pdadc_0; | 
|  | u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size; | 
|  | u8 pd_gain_overlap; | 
|  |  | 
|  | /* Note: Register value is initialized on initvals | 
|  | * there is no feedback from hw. | 
|  | * XXX: What about pd_gain_overlap from EEPROM ? */ | 
|  | pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) & | 
|  | AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP; | 
|  |  | 
|  | /* Create final PDADC table */ | 
|  | for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) { | 
|  | pdadc_tmp = ah->ah_txpower.tmpL[pdg]; | 
|  |  | 
|  | if (pdg == pdcurves - 1) | 
|  | /* 2 dB boundary stretch for last | 
|  | * (higher power) curve */ | 
|  | gain_boundaries[pdg] = pwr_max[pdg] + 4; | 
|  | else | 
|  | /* Set gain boundary in the middle | 
|  | * between this curve and the next one */ | 
|  | gain_boundaries[pdg] = | 
|  | (pwr_max[pdg] + pwr_min[pdg + 1]) / 2; | 
|  |  | 
|  | /* Sanity check in case our 2 db stretch got out of | 
|  | * range. */ | 
|  | if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER) | 
|  | gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER; | 
|  |  | 
|  | /* For the first curve (lower power) | 
|  | * start from 0 dB */ | 
|  | if (pdg == 0) | 
|  | pdadc_0 = 0; | 
|  | else | 
|  | /* For the other curves use the gain overlap */ | 
|  | pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) - | 
|  | pd_gain_overlap; | 
|  |  | 
|  | /* Force each power step to be at least 0.5 dB */ | 
|  | if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1) | 
|  | pwr_step = pdadc_tmp[1] - pdadc_tmp[0]; | 
|  | else | 
|  | pwr_step = 1; | 
|  |  | 
|  | /* If pdadc_0 is negative, we need to extrapolate | 
|  | * below this pdgain by a number of pwr_steps */ | 
|  | while ((pdadc_0 < 0) && (pdadc_i < 128)) { | 
|  | s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step; | 
|  | pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp; | 
|  | pdadc_0++; | 
|  | } | 
|  |  | 
|  | /* Set last pwr level, using gain boundaries */ | 
|  | pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg]; | 
|  | /* Limit it to be inside pwr range */ | 
|  | table_size = pwr_max[pdg] - pwr_min[pdg]; | 
|  | max_idx = (pdadc_n < table_size) ? pdadc_n : table_size; | 
|  |  | 
|  | /* Fill pdadc_out table */ | 
|  | while (pdadc_0 < max_idx) | 
|  | pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++]; | 
|  |  | 
|  | /* Need to extrapolate above this pdgain? */ | 
|  | if (pdadc_n <= max_idx) | 
|  | continue; | 
|  |  | 
|  | /* Force each power step to be at least 0.5 dB */ | 
|  | if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1) | 
|  | pwr_step = pdadc_tmp[table_size - 1] - | 
|  | pdadc_tmp[table_size - 2]; | 
|  | else | 
|  | pwr_step = 1; | 
|  |  | 
|  | /* Extrapolate above */ | 
|  | while ((pdadc_0 < (s16) pdadc_n) && | 
|  | (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) { | 
|  | s16 tmp = pdadc_tmp[table_size - 1] + | 
|  | (pdadc_0 - max_idx) * pwr_step; | 
|  | pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp; | 
|  | pdadc_0++; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (pdg < AR5K_EEPROM_N_PD_GAINS) { | 
|  | gain_boundaries[pdg] = gain_boundaries[pdg - 1]; | 
|  | pdg++; | 
|  | } | 
|  |  | 
|  | while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) { | 
|  | pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1]; | 
|  | pdadc_i++; | 
|  | } | 
|  |  | 
|  | /* Set gain boundaries */ | 
|  | ath5k_hw_reg_write(ah, | 
|  | AR5K_REG_SM(pd_gain_overlap, | 
|  | AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) | | 
|  | AR5K_REG_SM(gain_boundaries[0], | 
|  | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) | | 
|  | AR5K_REG_SM(gain_boundaries[1], | 
|  | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) | | 
|  | AR5K_REG_SM(gain_boundaries[2], | 
|  | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) | | 
|  | AR5K_REG_SM(gain_boundaries[3], | 
|  | AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4), | 
|  | AR5K_PHY_TPC_RG5); | 
|  |  | 
|  | /* Used for setting rate power table */ | 
|  | ah->ah_txpower.txp_min_idx = pwr_min[0]; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Write PDADC values on hw */ | 
|  | static void | 
|  | ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah, | 
|  | u8 pdcurves, u8 *pdg_to_idx) | 
|  | { | 
|  | u8 *pdadc_out = ah->ah_txpower.txp_pd_table; | 
|  | u32 reg; | 
|  | u8 i; | 
|  |  | 
|  | /* Select the right pdgain curves */ | 
|  |  | 
|  | /* Clear current settings */ | 
|  | reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1); | 
|  | reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 | | 
|  | AR5K_PHY_TPC_RG1_PDGAIN_2 | | 
|  | AR5K_PHY_TPC_RG1_PDGAIN_3 | | 
|  | AR5K_PHY_TPC_RG1_NUM_PD_GAIN); | 
|  |  | 
|  | /* | 
|  | * Use pd_gains curve from eeprom | 
|  | * | 
|  | * This overrides the default setting from initvals | 
|  | * in case some vendors (e.g. Zcomax) don't use the default | 
|  | * curves. If we don't honor their settings we 'll get a | 
|  | * 5dB (1 * gain overlap ?) drop. | 
|  | */ | 
|  | reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN); | 
|  |  | 
|  | switch (pdcurves) { | 
|  | case 3: | 
|  | reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3); | 
|  | /* Fall through */ | 
|  | case 2: | 
|  | reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2); | 
|  | /* Fall through */ | 
|  | case 1: | 
|  | reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1); | 
|  | break; | 
|  | } | 
|  | ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1); | 
|  |  | 
|  | /* | 
|  | * Write TX power values | 
|  | */ | 
|  | for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { | 
|  | ath5k_hw_reg_write(ah, | 
|  | ((pdadc_out[4*i + 0] & 0xff) << 0) | | 
|  | ((pdadc_out[4*i + 1] & 0xff) << 8) | | 
|  | ((pdadc_out[4*i + 2] & 0xff) << 16) | | 
|  | ((pdadc_out[4*i + 3] & 0xff) << 24), | 
|  | AR5K_PHY_PDADC_TXPOWER(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Common code for PCDAC/PDADC tables | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This is the main function that uses all of the above | 
|  | * to set PCDAC/PDADC table on hw for the current channel. | 
|  | * This table is used for tx power calibration on the basband, | 
|  | * without it we get weird tx power levels and in some cases | 
|  | * distorted spectral mask | 
|  | */ | 
|  | static int | 
|  | ath5k_setup_channel_powertable(struct ath5k_hw *ah, | 
|  | struct ieee80211_channel *channel, | 
|  | u8 ee_mode, u8 type) | 
|  | { | 
|  | struct ath5k_pdgain_info *pdg_L, *pdg_R; | 
|  | struct ath5k_chan_pcal_info *pcinfo_L; | 
|  | struct ath5k_chan_pcal_info *pcinfo_R; | 
|  | struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; | 
|  | u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode]; | 
|  | s16 table_min[AR5K_EEPROM_N_PD_GAINS]; | 
|  | s16 table_max[AR5K_EEPROM_N_PD_GAINS]; | 
|  | u8 *tmpL; | 
|  | u8 *tmpR; | 
|  | u32 target = channel->center_freq; | 
|  | int pdg, i; | 
|  |  | 
|  | /* Get surounding freq piers for this channel */ | 
|  | ath5k_get_chan_pcal_surrounding_piers(ah, channel, | 
|  | &pcinfo_L, | 
|  | &pcinfo_R); | 
|  |  | 
|  | /* Loop over pd gain curves on | 
|  | * surounding freq piers by index */ | 
|  | for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) { | 
|  |  | 
|  | /* Fill curves in reverse order | 
|  | * from lower power (max gain) | 
|  | * to higher power. Use curve -> idx | 
|  | * backmaping we did on eeprom init */ | 
|  | u8 idx = pdg_curve_to_idx[pdg]; | 
|  |  | 
|  | /* Grab the needed curves by index */ | 
|  | pdg_L = &pcinfo_L->pd_curves[idx]; | 
|  | pdg_R = &pcinfo_R->pd_curves[idx]; | 
|  |  | 
|  | /* Initialize the temp tables */ | 
|  | tmpL = ah->ah_txpower.tmpL[pdg]; | 
|  | tmpR = ah->ah_txpower.tmpR[pdg]; | 
|  |  | 
|  | /* Set curve's x boundaries and create | 
|  | * curves so that they cover the same | 
|  | * range (if we don't do that one table | 
|  | * will have values on some range and the | 
|  | * other one won't have any so interpolation | 
|  | * will fail) */ | 
|  | table_min[pdg] = min(pdg_L->pd_pwr[0], | 
|  | pdg_R->pd_pwr[0]) / 2; | 
|  |  | 
|  | table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1], | 
|  | pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2; | 
|  |  | 
|  | /* Now create the curves on surrounding channels | 
|  | * and interpolate if needed to get the final | 
|  | * curve for this gain on this channel */ | 
|  | switch (type) { | 
|  | case AR5K_PWRTABLE_LINEAR_PCDAC: | 
|  | /* Override min/max so that we don't loose | 
|  | * accuracy (don't divide by 2) */ | 
|  | table_min[pdg] = min(pdg_L->pd_pwr[0], | 
|  | pdg_R->pd_pwr[0]); | 
|  |  | 
|  | table_max[pdg] = | 
|  | max(pdg_L->pd_pwr[pdg_L->pd_points - 1], | 
|  | pdg_R->pd_pwr[pdg_R->pd_points - 1]); | 
|  |  | 
|  | /* Override minimum so that we don't get | 
|  | * out of bounds while extrapolating | 
|  | * below. Don't do this when we have 2 | 
|  | * curves and we are on the high power curve | 
|  | * because table_min is ok in this case */ | 
|  | if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) { | 
|  |  | 
|  | table_min[pdg] = | 
|  | ath5k_get_linear_pcdac_min(pdg_L->pd_step, | 
|  | pdg_R->pd_step, | 
|  | pdg_L->pd_pwr, | 
|  | pdg_R->pd_pwr); | 
|  |  | 
|  | /* Don't go too low because we will | 
|  | * miss the upper part of the curve. | 
|  | * Note: 126 = 31.5dB (max power supported) | 
|  | * in 0.25dB units */ | 
|  | if (table_max[pdg] - table_min[pdg] > 126) | 
|  | table_min[pdg] = table_max[pdg] - 126; | 
|  | } | 
|  |  | 
|  | /* Fall through */ | 
|  | case AR5K_PWRTABLE_PWR_TO_PCDAC: | 
|  | case AR5K_PWRTABLE_PWR_TO_PDADC: | 
|  |  | 
|  | ath5k_create_power_curve(table_min[pdg], | 
|  | table_max[pdg], | 
|  | pdg_L->pd_pwr, | 
|  | pdg_L->pd_step, | 
|  | pdg_L->pd_points, tmpL, type); | 
|  |  | 
|  | /* We are in a calibration | 
|  | * pier, no need to interpolate | 
|  | * between freq piers */ | 
|  | if (pcinfo_L == pcinfo_R) | 
|  | continue; | 
|  |  | 
|  | ath5k_create_power_curve(table_min[pdg], | 
|  | table_max[pdg], | 
|  | pdg_R->pd_pwr, | 
|  | pdg_R->pd_step, | 
|  | pdg_R->pd_points, tmpR, type); | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Interpolate between curves | 
|  | * of surounding freq piers to | 
|  | * get the final curve for this | 
|  | * pd gain. Re-use tmpL for interpolation | 
|  | * output */ | 
|  | for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) && | 
|  | (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) { | 
|  | tmpL[i] = (u8) ath5k_get_interpolated_value(target, | 
|  | (s16) pcinfo_L->freq, | 
|  | (s16) pcinfo_R->freq, | 
|  | (s16) tmpL[i], | 
|  | (s16) tmpR[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now we have a set of curves for this | 
|  | * channel on tmpL (x range is table_max - table_min | 
|  | * and y values are tmpL[pdg][]) sorted in the same | 
|  | * order as EEPROM (because we've used the backmaping). | 
|  | * So for RF5112 it's from higher power to lower power | 
|  | * and for RF2413 it's from lower power to higher power. | 
|  | * For RF5111 we only have one curve. */ | 
|  |  | 
|  | /* Fill min and max power levels for this | 
|  | * channel by interpolating the values on | 
|  | * surounding channels to complete the dataset */ | 
|  | ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target, | 
|  | (s16) pcinfo_L->freq, | 
|  | (s16) pcinfo_R->freq, | 
|  | pcinfo_L->min_pwr, pcinfo_R->min_pwr); | 
|  |  | 
|  | ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target, | 
|  | (s16) pcinfo_L->freq, | 
|  | (s16) pcinfo_R->freq, | 
|  | pcinfo_L->max_pwr, pcinfo_R->max_pwr); | 
|  |  | 
|  | /* We are ready to go, fill PCDAC/PDADC | 
|  | * table and write settings on hardware */ | 
|  | switch (type) { | 
|  | case AR5K_PWRTABLE_LINEAR_PCDAC: | 
|  | /* For RF5112 we can have one or two curves | 
|  | * and each curve covers a certain power lvl | 
|  | * range so we need to do some more processing */ | 
|  | ath5k_combine_linear_pcdac_curves(ah, table_min, table_max, | 
|  | ee->ee_pd_gains[ee_mode]); | 
|  |  | 
|  | /* Set txp.offset so that we can | 
|  | * match max power value with max | 
|  | * table index */ | 
|  | ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2); | 
|  |  | 
|  | /* Write settings on hw */ | 
|  | ath5k_setup_pcdac_table(ah); | 
|  | break; | 
|  | case AR5K_PWRTABLE_PWR_TO_PCDAC: | 
|  | /* We are done for RF5111 since it has only | 
|  | * one curve, just fit the curve on the table */ | 
|  | ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max); | 
|  |  | 
|  | /* No rate powertable adjustment for RF5111 */ | 
|  | ah->ah_txpower.txp_min_idx = 0; | 
|  | ah->ah_txpower.txp_offset = 0; | 
|  |  | 
|  | /* Write settings on hw */ | 
|  | ath5k_setup_pcdac_table(ah); | 
|  | break; | 
|  | case AR5K_PWRTABLE_PWR_TO_PDADC: | 
|  | /* Set PDADC boundaries and fill | 
|  | * final PDADC table */ | 
|  | ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max, | 
|  | ee->ee_pd_gains[ee_mode]); | 
|  |  | 
|  | /* Write settings on hw */ | 
|  | ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx); | 
|  |  | 
|  | /* Set txp.offset, note that table_min | 
|  | * can be negative */ | 
|  | ah->ah_txpower.txp_offset = table_min[0]; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Per-rate tx power setting | 
|  | * | 
|  | * This is the code that sets the desired tx power (below | 
|  | * maximum) on hw for each rate (we also have TPC that sets | 
|  | * power per packet). We do that by providing an index on the | 
|  | * PCDAC/PDADC table we set up. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Set rate power table | 
|  | * | 
|  | * For now we only limit txpower based on maximum tx power | 
|  | * supported by hw (what's inside rate_info). We need to limit | 
|  | * this even more, based on regulatory domain etc. | 
|  | * | 
|  | * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps) | 
|  | * and is indexed as follows: | 
|  | * rates[0] - rates[7] -> OFDM rates | 
|  | * rates[8] - rates[14] -> CCK rates | 
|  | * rates[15] -> XR rates (they all have the same power) | 
|  | */ | 
|  | static void | 
|  | ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr, | 
|  | struct ath5k_rate_pcal_info *rate_info, | 
|  | u8 ee_mode) | 
|  | { | 
|  | unsigned int i; | 
|  | u16 *rates; | 
|  |  | 
|  | /* max_pwr is power level we got from driver/user in 0.5dB | 
|  | * units, switch to 0.25dB units so we can compare */ | 
|  | max_pwr *= 2; | 
|  | max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2; | 
|  |  | 
|  | /* apply rate limits */ | 
|  | rates = ah->ah_txpower.txp_rates_power_table; | 
|  |  | 
|  | /* OFDM rates 6 to 24Mb/s */ | 
|  | for (i = 0; i < 5; i++) | 
|  | rates[i] = min(max_pwr, rate_info->target_power_6to24); | 
|  |  | 
|  | /* Rest OFDM rates */ | 
|  | rates[5] = min(rates[0], rate_info->target_power_36); | 
|  | rates[6] = min(rates[0], rate_info->target_power_48); | 
|  | rates[7] = min(rates[0], rate_info->target_power_54); | 
|  |  | 
|  | /* CCK rates */ | 
|  | /* 1L */ | 
|  | rates[8] = min(rates[0], rate_info->target_power_6to24); | 
|  | /* 2L */ | 
|  | rates[9] = min(rates[0], rate_info->target_power_36); | 
|  | /* 2S */ | 
|  | rates[10] = min(rates[0], rate_info->target_power_36); | 
|  | /* 5L */ | 
|  | rates[11] = min(rates[0], rate_info->target_power_48); | 
|  | /* 5S */ | 
|  | rates[12] = min(rates[0], rate_info->target_power_48); | 
|  | /* 11L */ | 
|  | rates[13] = min(rates[0], rate_info->target_power_54); | 
|  | /* 11S */ | 
|  | rates[14] = min(rates[0], rate_info->target_power_54); | 
|  |  | 
|  | /* XR rates */ | 
|  | rates[15] = min(rates[0], rate_info->target_power_6to24); | 
|  |  | 
|  | /* CCK rates have different peak to average ratio | 
|  | * so we have to tweak their power so that gainf | 
|  | * correction works ok. For this we use OFDM to | 
|  | * CCK delta from eeprom */ | 
|  | if ((ee_mode == AR5K_EEPROM_MODE_11G) && | 
|  | (ah->ah_phy_revision < AR5K_SREV_PHY_5212A)) | 
|  | for (i = 8; i <= 15; i++) | 
|  | rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta; | 
|  |  | 
|  | ah->ah_txpower.txp_min_pwr = rates[7]; | 
|  | ah->ah_txpower.txp_max_pwr = rates[0]; | 
|  | ah->ah_txpower.txp_ofdm = rates[7]; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Set transmition power | 
|  | */ | 
|  | int | 
|  | ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, | 
|  | u8 ee_mode, u8 txpower) | 
|  | { | 
|  | struct ath5k_rate_pcal_info rate_info; | 
|  | u8 type; | 
|  | int ret; | 
|  |  | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  | if (txpower > AR5K_TUNE_MAX_TXPOWER) { | 
|  | ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (txpower == 0) | 
|  | txpower = AR5K_TUNE_DEFAULT_TXPOWER; | 
|  |  | 
|  | /* Reset TX power values */ | 
|  | memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); | 
|  | ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER; | 
|  | ah->ah_txpower.txp_min_pwr = 0; | 
|  | ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER; | 
|  |  | 
|  | /* Initialize TX power table */ | 
|  | switch (ah->ah_radio) { | 
|  | case AR5K_RF5111: | 
|  | type = AR5K_PWRTABLE_PWR_TO_PCDAC; | 
|  | break; | 
|  | case AR5K_RF5112: | 
|  | type = AR5K_PWRTABLE_LINEAR_PCDAC; | 
|  | break; | 
|  | case AR5K_RF2413: | 
|  | case AR5K_RF5413: | 
|  | case AR5K_RF2316: | 
|  | case AR5K_RF2317: | 
|  | case AR5K_RF2425: | 
|  | type = AR5K_PWRTABLE_PWR_TO_PDADC; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* FIXME: Only on channel/mode change */ | 
|  | ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Limit max power if we have a CTL available */ | 
|  | ath5k_get_max_ctl_power(ah, channel); | 
|  |  | 
|  | /* FIXME: Tx power limit for this regdomain | 
|  | * XXX: Mac80211/CRDA will do that anyway ? */ | 
|  |  | 
|  | /* FIXME: Antenna reduction stuff */ | 
|  |  | 
|  | /* FIXME: Limit power on turbo modes */ | 
|  |  | 
|  | /* FIXME: TPC scale reduction */ | 
|  |  | 
|  | /* Get surounding channels for per-rate power table | 
|  | * calibration */ | 
|  | ath5k_get_rate_pcal_data(ah, channel, &rate_info); | 
|  |  | 
|  | /* Setup rate power table */ | 
|  | ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode); | 
|  |  | 
|  | /* Write rate power table on hw */ | 
|  | ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | | 
|  | AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | | 
|  | AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); | 
|  |  | 
|  | ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) | | 
|  | AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) | | 
|  | AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2); | 
|  |  | 
|  | ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) | | 
|  | AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) | | 
|  | AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3); | 
|  |  | 
|  | ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) | | 
|  | AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | | 
|  | AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); | 
|  |  | 
|  | /* FIXME: TPC support */ | 
|  | if (ah->ah_txpower.txp_tpc) { | 
|  | ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | | 
|  | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); | 
|  |  | 
|  | ath5k_hw_reg_write(ah, | 
|  | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) | | 
|  | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) | | 
|  | AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP), | 
|  | AR5K_TPC); | 
|  | } else { | 
|  | ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | | 
|  | AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower) | 
|  | { | 
|  | /*Just a try M.F.*/ | 
|  | struct ieee80211_channel *channel = &ah->ah_current_channel; | 
|  |  | 
|  | ATH5K_TRACE(ah->ah_sc); | 
|  | ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER, | 
|  | "changing txpower to %d\n", txpower); | 
|  |  | 
|  | return ath5k_hw_txpower(ah, channel, mode, txpower); | 
|  | } | 
|  |  | 
|  | #undef _ATH5K_PHY |