|  | /* | 
|  | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | * | 
|  | * Copyright (C) 2001-2003 Red Hat, Inc. | 
|  | * | 
|  | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | * | 
|  | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | * | 
|  | * $Id: readinode.c,v 1.143 2005/11/07 11:14:41 gleixner Exp $ | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/compiler.h> | 
|  | #include "nodelist.h" | 
|  |  | 
|  | /* | 
|  | * Put a new tmp_dnode_info into the temporaty RB-tree, keeping the list in | 
|  | * order of increasing version. | 
|  | */ | 
|  | static void jffs2_add_tn_to_tree(struct jffs2_tmp_dnode_info *tn, struct rb_root *list) | 
|  | { | 
|  | struct rb_node **p = &list->rb_node; | 
|  | struct rb_node * parent = NULL; | 
|  | struct jffs2_tmp_dnode_info *this; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | this = rb_entry(parent, struct jffs2_tmp_dnode_info, rb); | 
|  |  | 
|  | /* There may actually be a collision here, but it doesn't | 
|  | actually matter. As long as the two nodes with the same | 
|  | version are together, it's all fine. */ | 
|  | if (tn->version > this->version) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  |  | 
|  | rb_link_node(&tn->rb, parent, p); | 
|  | rb_insert_color(&tn->rb, list); | 
|  | } | 
|  |  | 
|  | static void jffs2_free_tmp_dnode_info_list(struct rb_root *list) | 
|  | { | 
|  | struct rb_node *this; | 
|  | struct jffs2_tmp_dnode_info *tn; | 
|  |  | 
|  | this = list->rb_node; | 
|  |  | 
|  | /* Now at bottom of tree */ | 
|  | while (this) { | 
|  | if (this->rb_left) | 
|  | this = this->rb_left; | 
|  | else if (this->rb_right) | 
|  | this = this->rb_right; | 
|  | else { | 
|  | tn = rb_entry(this, struct jffs2_tmp_dnode_info, rb); | 
|  | jffs2_free_full_dnode(tn->fn); | 
|  | jffs2_free_tmp_dnode_info(tn); | 
|  |  | 
|  | this = rb_parent(this); | 
|  | if (!this) | 
|  | break; | 
|  |  | 
|  | if (this->rb_left == &tn->rb) | 
|  | this->rb_left = NULL; | 
|  | else if (this->rb_right == &tn->rb) | 
|  | this->rb_right = NULL; | 
|  | else BUG(); | 
|  | } | 
|  | } | 
|  | list->rb_node = NULL; | 
|  | } | 
|  |  | 
|  | static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd) | 
|  | { | 
|  | struct jffs2_full_dirent *next; | 
|  |  | 
|  | while (fd) { | 
|  | next = fd->next; | 
|  | jffs2_free_full_dirent(fd); | 
|  | fd = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Returns first valid node after 'ref'. May return 'ref' */ | 
|  | static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref) | 
|  | { | 
|  | while (ref && ref->next_in_ino) { | 
|  | if (!ref_obsolete(ref)) | 
|  | return ref; | 
|  | dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref)); | 
|  | ref = ref->next_in_ino; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for jffs2_get_inode_nodes(). | 
|  | * It is called every time an directory entry node is found. | 
|  | * | 
|  | * Returns: 0 on succes; | 
|  | * 	    1 if the node should be marked obsolete; | 
|  | * 	    negative error code on failure. | 
|  | */ | 
|  | static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, | 
|  | struct jffs2_raw_dirent *rd, size_t read, struct jffs2_full_dirent **fdp, | 
|  | uint32_t *latest_mctime, uint32_t *mctime_ver) | 
|  | { | 
|  | struct jffs2_full_dirent *fd; | 
|  | uint32_t crc; | 
|  |  | 
|  | /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ | 
|  | BUG_ON(ref_obsolete(ref)); | 
|  |  | 
|  | crc = crc32(0, rd, sizeof(*rd) - 8); | 
|  | if (unlikely(crc != je32_to_cpu(rd->node_crc))) { | 
|  | JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n", | 
|  | ref_offset(ref), je32_to_cpu(rd->node_crc), crc); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* If we've never checked the CRCs on this node, check them now */ | 
|  | if (ref_flags(ref) == REF_UNCHECKED) { | 
|  | struct jffs2_eraseblock *jeb; | 
|  | int len; | 
|  |  | 
|  | /* Sanity check */ | 
|  | if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) { | 
|  | JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n", | 
|  | ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | jeb = &c->blocks[ref->flash_offset / c->sector_size]; | 
|  | len = ref_totlen(c, jeb, ref); | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | jeb->used_size += len; | 
|  | jeb->unchecked_size -= len; | 
|  | c->used_size += len; | 
|  | c->unchecked_size -= len; | 
|  | ref->flash_offset = ref_offset(ref) | REF_PRISTINE; | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | fd = jffs2_alloc_full_dirent(rd->nsize + 1); | 
|  | if (unlikely(!fd)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fd->raw = ref; | 
|  | fd->version = je32_to_cpu(rd->version); | 
|  | fd->ino = je32_to_cpu(rd->ino); | 
|  | fd->type = rd->type; | 
|  |  | 
|  | /* Pick out the mctime of the latest dirent */ | 
|  | if(fd->version > *mctime_ver && je32_to_cpu(rd->mctime)) { | 
|  | *mctime_ver = fd->version; | 
|  | *latest_mctime = je32_to_cpu(rd->mctime); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy as much of the name as possible from the raw | 
|  | * dirent we've already read from the flash. | 
|  | */ | 
|  | if (read > sizeof(*rd)) | 
|  | memcpy(&fd->name[0], &rd->name[0], | 
|  | min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) )); | 
|  |  | 
|  | /* Do we need to copy any more of the name directly from the flash? */ | 
|  | if (rd->nsize + sizeof(*rd) > read) { | 
|  | /* FIXME: point() */ | 
|  | int err; | 
|  | int already = read - sizeof(*rd); | 
|  |  | 
|  | err = jffs2_flash_read(c, (ref_offset(ref)) + read, | 
|  | rd->nsize - already, &read, &fd->name[already]); | 
|  | if (unlikely(read != rd->nsize - already) && likely(!err)) | 
|  | return -EIO; | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | JFFS2_ERROR("read remainder of name: error %d\n", err); | 
|  | jffs2_free_full_dirent(fd); | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | fd->nhash = full_name_hash(fd->name, rd->nsize); | 
|  | fd->next = NULL; | 
|  | fd->name[rd->nsize] = '\0'; | 
|  |  | 
|  | /* | 
|  | * Wheee. We now have a complete jffs2_full_dirent structure, with | 
|  | * the name in it and everything. Link it into the list | 
|  | */ | 
|  | jffs2_add_fd_to_list(c, fd, fdp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for jffs2_get_inode_nodes(). | 
|  | * It is called every time an inode node is found. | 
|  | * | 
|  | * Returns: 0 on succes; | 
|  | * 	    1 if the node should be marked obsolete; | 
|  | * 	    negative error code on failure. | 
|  | */ | 
|  | static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, | 
|  | struct jffs2_raw_inode *rd, struct rb_root *tnp, int rdlen, | 
|  | uint32_t *latest_mctime, uint32_t *mctime_ver) | 
|  | { | 
|  | struct jffs2_tmp_dnode_info *tn; | 
|  | uint32_t len, csize; | 
|  | int ret = 1; | 
|  | uint32_t crc; | 
|  |  | 
|  | /* Obsoleted. This cannot happen, surely? dwmw2 20020308 */ | 
|  | BUG_ON(ref_obsolete(ref)); | 
|  |  | 
|  | crc = crc32(0, rd, sizeof(*rd) - 8); | 
|  | if (unlikely(crc != je32_to_cpu(rd->node_crc))) { | 
|  | JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n", | 
|  | ref_offset(ref), je32_to_cpu(rd->node_crc), crc); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | tn = jffs2_alloc_tmp_dnode_info(); | 
|  | if (!tn) { | 
|  | JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn)); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | tn->partial_crc = 0; | 
|  | csize = je32_to_cpu(rd->csize); | 
|  |  | 
|  | /* If we've never checked the CRCs on this node, check them now */ | 
|  | if (ref_flags(ref) == REF_UNCHECKED) { | 
|  |  | 
|  | /* Sanity checks */ | 
|  | if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) || | 
|  | unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) { | 
|  | JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref)); | 
|  | jffs2_dbg_dump_node(c, ref_offset(ref)); | 
|  | goto free_out; | 
|  | } | 
|  |  | 
|  | if (jffs2_is_writebuffered(c) && csize != 0) { | 
|  | /* At this point we are supposed to check the data CRC | 
|  | * of our unchecked node. But thus far, we do not | 
|  | * know whether the node is valid or obsolete. To | 
|  | * figure this out, we need to walk all the nodes of | 
|  | * the inode and build the inode fragtree. We don't | 
|  | * want to spend time checking data of nodes which may | 
|  | * later be found to be obsolete. So we put off the full | 
|  | * data CRC checking until we have read all the inode | 
|  | * nodes and have started building the fragtree. | 
|  | * | 
|  | * The fragtree is being built starting with nodes | 
|  | * having the highest version number, so we'll be able | 
|  | * to detect whether a node is valid (i.e., it is not | 
|  | * overlapped by a node with higher version) or not. | 
|  | * And we'll be able to check only those nodes, which | 
|  | * are not obsolete. | 
|  | * | 
|  | * Of course, this optimization only makes sense in case | 
|  | * of NAND flashes (or other flashes whith | 
|  | * !jffs2_can_mark_obsolete()), since on NOR flashes | 
|  | * nodes are marked obsolete physically. | 
|  | * | 
|  | * Since NAND flashes (or other flashes with | 
|  | * jffs2_is_writebuffered(c)) are anyway read by | 
|  | * fractions of c->wbuf_pagesize, and we have just read | 
|  | * the node header, it is likely that the starting part | 
|  | * of the node data is also read when we read the | 
|  | * header. So we don't mind to check the CRC of the | 
|  | * starting part of the data of the node now, and check | 
|  | * the second part later (in jffs2_check_node_data()). | 
|  | * Of course, we will not need to re-read and re-check | 
|  | * the NAND page which we have just read. This is why we | 
|  | * read the whole NAND page at jffs2_get_inode_nodes(), | 
|  | * while we needed only the node header. | 
|  | */ | 
|  | unsigned char *buf; | 
|  |  | 
|  | /* 'buf' will point to the start of data */ | 
|  | buf = (unsigned char *)rd + sizeof(*rd); | 
|  | /* len will be the read data length */ | 
|  | len = min_t(uint32_t, rdlen - sizeof(*rd), csize); | 
|  | tn->partial_crc = crc32(0, buf, len); | 
|  |  | 
|  | dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize); | 
|  |  | 
|  | /* If we actually calculated the whole data CRC | 
|  | * and it is wrong, drop the node. */ | 
|  | if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) { | 
|  | JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n", | 
|  | ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc)); | 
|  | goto free_out; | 
|  | } | 
|  |  | 
|  | } else if (csize == 0) { | 
|  | /* | 
|  | * We checked the header CRC. If the node has no data, adjust | 
|  | * the space accounting now. For other nodes this will be done | 
|  | * later either when the node is marked obsolete or when its | 
|  | * data is checked. | 
|  | */ | 
|  | struct jffs2_eraseblock *jeb; | 
|  |  | 
|  | dbg_readinode("the node has no data.\n"); | 
|  | jeb = &c->blocks[ref->flash_offset / c->sector_size]; | 
|  | len = ref_totlen(c, jeb, ref); | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | jeb->used_size += len; | 
|  | jeb->unchecked_size -= len; | 
|  | c->used_size += len; | 
|  | c->unchecked_size -= len; | 
|  | ref->flash_offset = ref_offset(ref) | REF_NORMAL; | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | tn->fn = jffs2_alloc_full_dnode(); | 
|  | if (!tn->fn) { | 
|  | JFFS2_ERROR("alloc fn failed\n"); | 
|  | ret = -ENOMEM; | 
|  | goto free_out; | 
|  | } | 
|  |  | 
|  | tn->version = je32_to_cpu(rd->version); | 
|  | tn->fn->ofs = je32_to_cpu(rd->offset); | 
|  | tn->data_crc = je32_to_cpu(rd->data_crc); | 
|  | tn->csize = csize; | 
|  | tn->fn->raw = ref; | 
|  |  | 
|  | /* There was a bug where we wrote hole nodes out with | 
|  | csize/dsize swapped. Deal with it */ | 
|  | if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize) | 
|  | tn->fn->size = csize; | 
|  | else // normal case... | 
|  | tn->fn->size = je32_to_cpu(rd->dsize); | 
|  |  | 
|  | dbg_readinode("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n", | 
|  | ref_offset(ref), je32_to_cpu(rd->version), je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize); | 
|  |  | 
|  | jffs2_add_tn_to_tree(tn, tnp); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_out: | 
|  | jffs2_free_tmp_dnode_info(tn); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for jffs2_get_inode_nodes(). | 
|  | * It is called every time an unknown node is found. | 
|  | * | 
|  | * Returns: 0 on success; | 
|  | * 	    1 if the node should be marked obsolete; | 
|  | * 	    negative error code on failure. | 
|  | */ | 
|  | static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un) | 
|  | { | 
|  | /* We don't mark unknown nodes as REF_UNCHECKED */ | 
|  | BUG_ON(ref_flags(ref) == REF_UNCHECKED); | 
|  |  | 
|  | un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype)); | 
|  |  | 
|  | switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) { | 
|  |  | 
|  | case JFFS2_FEATURE_INCOMPAT: | 
|  | JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n", | 
|  | je16_to_cpu(un->nodetype), ref_offset(ref)); | 
|  | /* EEP */ | 
|  | BUG(); | 
|  | break; | 
|  |  | 
|  | case JFFS2_FEATURE_ROCOMPAT: | 
|  | JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n", | 
|  | je16_to_cpu(un->nodetype), ref_offset(ref)); | 
|  | BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO)); | 
|  | break; | 
|  |  | 
|  | case JFFS2_FEATURE_RWCOMPAT_COPY: | 
|  | JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n", | 
|  | je16_to_cpu(un->nodetype), ref_offset(ref)); | 
|  | break; | 
|  |  | 
|  | case JFFS2_FEATURE_RWCOMPAT_DELETE: | 
|  | JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n", | 
|  | je16_to_cpu(un->nodetype), ref_offset(ref)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper function for jffs2_get_inode_nodes(). | 
|  | * The function detects whether more data should be read and reads it if yes. | 
|  | * | 
|  | * Returns: 0 on succes; | 
|  | * 	    negative error code on failure. | 
|  | */ | 
|  | static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, | 
|  | int right_size, int *rdlen, unsigned char *buf, unsigned char *bufstart) | 
|  | { | 
|  | int right_len, err, len; | 
|  | size_t retlen; | 
|  | uint32_t offs; | 
|  |  | 
|  | if (jffs2_is_writebuffered(c)) { | 
|  | right_len = c->wbuf_pagesize - (bufstart - buf); | 
|  | if (right_size + (int)(bufstart - buf) > c->wbuf_pagesize) | 
|  | right_len += c->wbuf_pagesize; | 
|  | } else | 
|  | right_len = right_size; | 
|  |  | 
|  | if (*rdlen == right_len) | 
|  | return 0; | 
|  |  | 
|  | /* We need to read more data */ | 
|  | offs = ref_offset(ref) + *rdlen; | 
|  | if (jffs2_is_writebuffered(c)) { | 
|  | bufstart = buf + c->wbuf_pagesize; | 
|  | len = c->wbuf_pagesize; | 
|  | } else { | 
|  | bufstart = buf + *rdlen; | 
|  | len = right_size - *rdlen; | 
|  | } | 
|  |  | 
|  | dbg_readinode("read more %d bytes\n", len); | 
|  |  | 
|  | err = jffs2_flash_read(c, offs, len, &retlen, bufstart); | 
|  | if (err) { | 
|  | JFFS2_ERROR("can not read %d bytes from 0x%08x, " | 
|  | "error code: %d.\n", len, offs, err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | if (retlen < len) { | 
|  | JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", | 
|  | offs, retlen, len); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | *rdlen = right_len; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated | 
|  | with this ino, returning the former in order of version */ | 
|  | static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f, | 
|  | struct rb_root *tnp, struct jffs2_full_dirent **fdp, | 
|  | uint32_t *highest_version, uint32_t *latest_mctime, | 
|  | uint32_t *mctime_ver) | 
|  | { | 
|  | struct jffs2_raw_node_ref *ref, *valid_ref; | 
|  | struct rb_root ret_tn = RB_ROOT; | 
|  | struct jffs2_full_dirent *ret_fd = NULL; | 
|  | unsigned char *buf = NULL; | 
|  | union jffs2_node_union *node; | 
|  | size_t retlen; | 
|  | int len, err; | 
|  |  | 
|  | *mctime_ver = 0; | 
|  |  | 
|  | dbg_readinode("ino #%u\n", f->inocache->ino); | 
|  |  | 
|  | if (jffs2_is_writebuffered(c)) { | 
|  | /* | 
|  | * If we have the write buffer, we assume the minimal I/O unit | 
|  | * is c->wbuf_pagesize. We implement some optimizations which in | 
|  | * this case and we need a temporary buffer of size = | 
|  | * 2*c->wbuf_pagesize bytes (see comments in read_dnode()). | 
|  | * Basically, we want to read not only the node header, but the | 
|  | * whole wbuf (NAND page in case of NAND) or 2, if the node | 
|  | * header overlaps the border between the 2 wbufs. | 
|  | */ | 
|  | len = 2*c->wbuf_pagesize; | 
|  | } else { | 
|  | /* | 
|  | * When there is no write buffer, the size of the temporary | 
|  | * buffer is the size of the larges node header. | 
|  | */ | 
|  | len = sizeof(union jffs2_node_union); | 
|  | } | 
|  |  | 
|  | /* FIXME: in case of NOR and available ->point() this | 
|  | * needs to be fixed. */ | 
|  | buf = kmalloc(len, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | valid_ref = jffs2_first_valid_node(f->inocache->nodes); | 
|  | if (!valid_ref && f->inocache->ino != 1) | 
|  | JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino); | 
|  | while (valid_ref) { | 
|  | unsigned char *bufstart; | 
|  |  | 
|  | /* We can hold a pointer to a non-obsolete node without the spinlock, | 
|  | but _obsolete_ nodes may disappear at any time, if the block | 
|  | they're in gets erased. So if we mark 'ref' obsolete while we're | 
|  | not holding the lock, it can go away immediately. For that reason, | 
|  | we find the next valid node first, before processing 'ref'. | 
|  | */ | 
|  | ref = valid_ref; | 
|  | valid_ref = jffs2_first_valid_node(ref->next_in_ino); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * At this point we don't know the type of the node we're going | 
|  | * to read, so we do not know the size of its header. In order | 
|  | * to minimize the amount of flash IO we assume the node has | 
|  | * size = JFFS2_MIN_NODE_HEADER. | 
|  | */ | 
|  | if (jffs2_is_writebuffered(c)) { | 
|  | /* | 
|  | * We treat 'buf' as 2 adjacent wbufs. We want to | 
|  | * adjust bufstart such as it points to the | 
|  | * beginning of the node within this wbuf. | 
|  | */ | 
|  | bufstart = buf + (ref_offset(ref) % c->wbuf_pagesize); | 
|  | /* We will read either one wbuf or 2 wbufs. */ | 
|  | len = c->wbuf_pagesize - (bufstart - buf); | 
|  | if (JFFS2_MIN_NODE_HEADER + (int)(bufstart - buf) > c->wbuf_pagesize) { | 
|  | /* The header spans the border of the first wbuf */ | 
|  | len += c->wbuf_pagesize; | 
|  | } | 
|  | } else { | 
|  | bufstart = buf; | 
|  | len = JFFS2_MIN_NODE_HEADER; | 
|  | } | 
|  |  | 
|  | dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref)); | 
|  |  | 
|  | /* FIXME: point() */ | 
|  | err = jffs2_flash_read(c, ref_offset(ref), len, | 
|  | &retlen, bufstart); | 
|  | if (err) { | 
|  | JFFS2_ERROR("can not read %d bytes from 0x%08x, " "error code: %d.\n", len, ref_offset(ref), err); | 
|  | goto free_out; | 
|  | } | 
|  |  | 
|  | if (retlen < len) { | 
|  | JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len); | 
|  | err = -EIO; | 
|  | goto free_out; | 
|  | } | 
|  |  | 
|  | node = (union jffs2_node_union *)bufstart; | 
|  |  | 
|  | /* No need to mask in the valid bit; it shouldn't be invalid */ | 
|  | if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) { | 
|  | JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n", | 
|  | ref_offset(ref), je16_to_cpu(node->u.magic), | 
|  | je16_to_cpu(node->u.nodetype), | 
|  | je32_to_cpu(node->u.totlen), | 
|  | je32_to_cpu(node->u.hdr_crc)); | 
|  | jffs2_dbg_dump_node(c, ref_offset(ref)); | 
|  | jffs2_mark_node_obsolete(c, ref); | 
|  | goto cont; | 
|  | } | 
|  |  | 
|  | switch (je16_to_cpu(node->u.nodetype)) { | 
|  |  | 
|  | case JFFS2_NODETYPE_DIRENT: | 
|  |  | 
|  | if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent)) { | 
|  | err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf, bufstart); | 
|  | if (unlikely(err)) | 
|  | goto free_out; | 
|  | } | 
|  |  | 
|  | err = read_direntry(c, ref, &node->d, retlen, &ret_fd, latest_mctime, mctime_ver); | 
|  | if (err == 1) { | 
|  | jffs2_mark_node_obsolete(c, ref); | 
|  | break; | 
|  | } else if (unlikely(err)) | 
|  | goto free_out; | 
|  |  | 
|  | if (je32_to_cpu(node->d.version) > *highest_version) | 
|  | *highest_version = je32_to_cpu(node->d.version); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case JFFS2_NODETYPE_INODE: | 
|  |  | 
|  | if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode)) { | 
|  | err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf, bufstart); | 
|  | if (unlikely(err)) | 
|  | goto free_out; | 
|  | } | 
|  |  | 
|  | err = read_dnode(c, ref, &node->i, &ret_tn, len, latest_mctime, mctime_ver); | 
|  | if (err == 1) { | 
|  | jffs2_mark_node_obsolete(c, ref); | 
|  | break; | 
|  | } else if (unlikely(err)) | 
|  | goto free_out; | 
|  |  | 
|  | if (je32_to_cpu(node->i.version) > *highest_version) | 
|  | *highest_version = je32_to_cpu(node->i.version); | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node)) { | 
|  | err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf, bufstart); | 
|  | if (unlikely(err)) | 
|  | goto free_out; | 
|  | } | 
|  |  | 
|  | err = read_unknown(c, ref, &node->u); | 
|  | if (err == 1) { | 
|  | jffs2_mark_node_obsolete(c, ref); | 
|  | break; | 
|  | } else if (unlikely(err)) | 
|  | goto free_out; | 
|  |  | 
|  | } | 
|  | cont: | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | *tnp = ret_tn; | 
|  | *fdp = ret_fd; | 
|  | kfree(buf); | 
|  |  | 
|  | dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n", | 
|  | f->inocache->ino, *highest_version, *latest_mctime, *mctime_ver); | 
|  | return 0; | 
|  |  | 
|  | free_out: | 
|  | jffs2_free_tmp_dnode_info_list(&ret_tn); | 
|  | jffs2_free_full_dirent_list(ret_fd); | 
|  | kfree(buf); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c, | 
|  | struct jffs2_inode_info *f, | 
|  | struct jffs2_raw_inode *latest_node) | 
|  | { | 
|  | struct jffs2_tmp_dnode_info *tn; | 
|  | struct rb_root tn_list; | 
|  | struct rb_node *rb, *repl_rb; | 
|  | struct jffs2_full_dirent *fd_list; | 
|  | struct jffs2_full_dnode *fn, *first_fn = NULL; | 
|  | uint32_t crc; | 
|  | uint32_t latest_mctime, mctime_ver; | 
|  | size_t retlen; | 
|  | int ret; | 
|  |  | 
|  | dbg_readinode("ino #%u nlink is %d\n", f->inocache->ino, f->inocache->nlink); | 
|  |  | 
|  | /* Grab all nodes relevant to this ino */ | 
|  | ret = jffs2_get_inode_nodes(c, f, &tn_list, &fd_list, &f->highest_version, &latest_mctime, &mctime_ver); | 
|  |  | 
|  | if (ret) { | 
|  | JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret); | 
|  | if (f->inocache->state == INO_STATE_READING) | 
|  | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); | 
|  | return ret; | 
|  | } | 
|  | f->dents = fd_list; | 
|  |  | 
|  | rb = rb_first(&tn_list); | 
|  |  | 
|  | while (rb) { | 
|  | cond_resched(); | 
|  | tn = rb_entry(rb, struct jffs2_tmp_dnode_info, rb); | 
|  | fn = tn->fn; | 
|  | ret = 1; | 
|  | dbg_readinode("consider node ver %u, phys offset " | 
|  | "%#08x(%d), range %u-%u.\n", tn->version, | 
|  | ref_offset(fn->raw), ref_flags(fn->raw), | 
|  | fn->ofs, fn->ofs + fn->size); | 
|  |  | 
|  | if (fn->size) { | 
|  | ret = jffs2_add_older_frag_to_fragtree(c, f, tn); | 
|  | /* TODO: the error code isn't checked, check it */ | 
|  | jffs2_dbg_fragtree_paranoia_check_nolock(f); | 
|  | BUG_ON(ret < 0); | 
|  | if (!first_fn && ret == 0) | 
|  | first_fn = fn; | 
|  | } else if (!first_fn) { | 
|  | first_fn = fn; | 
|  | f->metadata = fn; | 
|  | ret = 0; /* Prevent freeing the metadata update node */ | 
|  | } else | 
|  | jffs2_mark_node_obsolete(c, fn->raw); | 
|  |  | 
|  | BUG_ON(rb->rb_left); | 
|  | if (rb_parent(rb) && rb_parent(rb)->rb_left == rb) { | 
|  | /* We were then left-hand child of our parent. We need | 
|  | * to move our own right-hand child into our place. */ | 
|  | repl_rb = rb->rb_right; | 
|  | if (repl_rb) | 
|  | rb_set_parent(repl_rb, rb_parent(rb)); | 
|  | } else | 
|  | repl_rb = NULL; | 
|  |  | 
|  | rb = rb_next(rb); | 
|  |  | 
|  | /* Remove the spent tn from the tree; don't bother rebalancing | 
|  | * but put our right-hand child in our own place. */ | 
|  | if (rb_parent(&tn->rb)) { | 
|  | if (rb_parent(&tn->rb)->rb_left == &tn->rb) | 
|  | rb_parent(&tn->rb)->rb_left = repl_rb; | 
|  | else if (rb_parent(&tn->rb)->rb_right == &tn->rb) | 
|  | rb_parent(&tn->rb)->rb_right = repl_rb; | 
|  | else BUG(); | 
|  | } else if (tn->rb.rb_right) | 
|  | rb_set_parent(tn->rb.rb_right, NULL); | 
|  |  | 
|  | jffs2_free_tmp_dnode_info(tn); | 
|  | if (ret) { | 
|  | dbg_readinode("delete dnode %u-%u.\n", | 
|  | fn->ofs, fn->ofs + fn->size); | 
|  | jffs2_free_full_dnode(fn); | 
|  | } | 
|  | } | 
|  | jffs2_dbg_fragtree_paranoia_check_nolock(f); | 
|  |  | 
|  | BUG_ON(first_fn && ref_obsolete(first_fn->raw)); | 
|  |  | 
|  | fn = first_fn; | 
|  | if (unlikely(!first_fn)) { | 
|  | /* No data nodes for this inode. */ | 
|  | if (f->inocache->ino != 1) { | 
|  | JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino); | 
|  | if (!fd_list) { | 
|  | if (f->inocache->state == INO_STATE_READING) | 
|  | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); | 
|  | return -EIO; | 
|  | } | 
|  | JFFS2_NOTICE("but it has children so we fake some modes for it\n"); | 
|  | } | 
|  | latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO); | 
|  | latest_node->version = cpu_to_je32(0); | 
|  | latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0); | 
|  | latest_node->isize = cpu_to_je32(0); | 
|  | latest_node->gid = cpu_to_je16(0); | 
|  | latest_node->uid = cpu_to_je16(0); | 
|  | if (f->inocache->state == INO_STATE_READING) | 
|  | jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = jffs2_flash_read(c, ref_offset(fn->raw), sizeof(*latest_node), &retlen, (void *)latest_node); | 
|  | if (ret || retlen != sizeof(*latest_node)) { | 
|  | JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n", | 
|  | ret, retlen, sizeof(*latest_node)); | 
|  | /* FIXME: If this fails, there seems to be a memory leak. Find it. */ | 
|  | up(&f->sem); | 
|  | jffs2_do_clear_inode(c, f); | 
|  | return ret?ret:-EIO; | 
|  | } | 
|  |  | 
|  | crc = crc32(0, latest_node, sizeof(*latest_node)-8); | 
|  | if (crc != je32_to_cpu(latest_node->node_crc)) { | 
|  | JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n", | 
|  | f->inocache->ino, ref_offset(fn->raw)); | 
|  | up(&f->sem); | 
|  | jffs2_do_clear_inode(c, f); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | switch(jemode_to_cpu(latest_node->mode) & S_IFMT) { | 
|  | case S_IFDIR: | 
|  | if (mctime_ver > je32_to_cpu(latest_node->version)) { | 
|  | /* The times in the latest_node are actually older than | 
|  | mctime in the latest dirent. Cheat. */ | 
|  | latest_node->ctime = latest_node->mtime = cpu_to_je32(latest_mctime); | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | case S_IFREG: | 
|  | /* If it was a regular file, truncate it to the latest node's isize */ | 
|  | jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize)); | 
|  | break; | 
|  |  | 
|  | case S_IFLNK: | 
|  | /* Hack to work around broken isize in old symlink code. | 
|  | Remove this when dwmw2 comes to his senses and stops | 
|  | symlinks from being an entirely gratuitous special | 
|  | case. */ | 
|  | if (!je32_to_cpu(latest_node->isize)) | 
|  | latest_node->isize = latest_node->dsize; | 
|  |  | 
|  | if (f->inocache->state != INO_STATE_CHECKING) { | 
|  | /* Symlink's inode data is the target path. Read it and | 
|  | * keep in RAM to facilitate quick follow symlink | 
|  | * operation. */ | 
|  | f->target = kmalloc(je32_to_cpu(latest_node->csize) + 1, GFP_KERNEL); | 
|  | if (!f->target) { | 
|  | JFFS2_ERROR("can't allocate %d bytes of memory for the symlink target path cache\n", je32_to_cpu(latest_node->csize)); | 
|  | up(&f->sem); | 
|  | jffs2_do_clear_inode(c, f); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = jffs2_flash_read(c, ref_offset(fn->raw) + sizeof(*latest_node), | 
|  | je32_to_cpu(latest_node->csize), &retlen, (char *)f->target); | 
|  |  | 
|  | if (ret  || retlen != je32_to_cpu(latest_node->csize)) { | 
|  | if (retlen != je32_to_cpu(latest_node->csize)) | 
|  | ret = -EIO; | 
|  | kfree(f->target); | 
|  | f->target = NULL; | 
|  | up(&f->sem); | 
|  | jffs2_do_clear_inode(c, f); | 
|  | return -ret; | 
|  | } | 
|  |  | 
|  | f->target[je32_to_cpu(latest_node->csize)] = '\0'; | 
|  | dbg_readinode("symlink's target '%s' cached\n", f->target); | 
|  | } | 
|  |  | 
|  | /* fall through... */ | 
|  |  | 
|  | case S_IFBLK: | 
|  | case S_IFCHR: | 
|  | /* Certain inode types should have only one data node, and it's | 
|  | kept as the metadata node */ | 
|  | if (f->metadata) { | 
|  | JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n", | 
|  | f->inocache->ino, jemode_to_cpu(latest_node->mode)); | 
|  | up(&f->sem); | 
|  | jffs2_do_clear_inode(c, f); | 
|  | return -EIO; | 
|  | } | 
|  | if (!frag_first(&f->fragtree)) { | 
|  | JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n", | 
|  | f->inocache->ino, jemode_to_cpu(latest_node->mode)); | 
|  | up(&f->sem); | 
|  | jffs2_do_clear_inode(c, f); | 
|  | return -EIO; | 
|  | } | 
|  | /* ASSERT: f->fraglist != NULL */ | 
|  | if (frag_next(frag_first(&f->fragtree))) { | 
|  | JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n", | 
|  | f->inocache->ino, jemode_to_cpu(latest_node->mode)); | 
|  | /* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */ | 
|  | up(&f->sem); | 
|  | jffs2_do_clear_inode(c, f); | 
|  | return -EIO; | 
|  | } | 
|  | /* OK. We're happy */ | 
|  | f->metadata = frag_first(&f->fragtree)->node; | 
|  | jffs2_free_node_frag(frag_first(&f->fragtree)); | 
|  | f->fragtree = RB_ROOT; | 
|  | break; | 
|  | } | 
|  | if (f->inocache->state == INO_STATE_READING) | 
|  | jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Scan the list of all nodes present for this ino, build map of versions, etc. */ | 
|  | int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, | 
|  | uint32_t ino, struct jffs2_raw_inode *latest_node) | 
|  | { | 
|  | dbg_readinode("read inode #%u\n", ino); | 
|  |  | 
|  | retry_inocache: | 
|  | spin_lock(&c->inocache_lock); | 
|  | f->inocache = jffs2_get_ino_cache(c, ino); | 
|  |  | 
|  | if (f->inocache) { | 
|  | /* Check its state. We may need to wait before we can use it */ | 
|  | switch(f->inocache->state) { | 
|  | case INO_STATE_UNCHECKED: | 
|  | case INO_STATE_CHECKEDABSENT: | 
|  | f->inocache->state = INO_STATE_READING; | 
|  | break; | 
|  |  | 
|  | case INO_STATE_CHECKING: | 
|  | case INO_STATE_GC: | 
|  | /* If it's in either of these states, we need | 
|  | to wait for whoever's got it to finish and | 
|  | put it back. */ | 
|  | dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state); | 
|  | sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock); | 
|  | goto retry_inocache; | 
|  |  | 
|  | case INO_STATE_READING: | 
|  | case INO_STATE_PRESENT: | 
|  | /* Eep. This should never happen. It can | 
|  | happen if Linux calls read_inode() again | 
|  | before clear_inode() has finished though. */ | 
|  | JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state); | 
|  | /* Fail. That's probably better than allowing it to succeed */ | 
|  | f->inocache = NULL; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  | spin_unlock(&c->inocache_lock); | 
|  |  | 
|  | if (!f->inocache && ino == 1) { | 
|  | /* Special case - no root inode on medium */ | 
|  | f->inocache = jffs2_alloc_inode_cache(); | 
|  | if (!f->inocache) { | 
|  | JFFS2_ERROR("cannot allocate inocache for root inode\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | dbg_readinode("creating inocache for root inode\n"); | 
|  | memset(f->inocache, 0, sizeof(struct jffs2_inode_cache)); | 
|  | f->inocache->ino = f->inocache->nlink = 1; | 
|  | f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache; | 
|  | f->inocache->state = INO_STATE_READING; | 
|  | jffs2_add_ino_cache(c, f->inocache); | 
|  | } | 
|  | if (!f->inocache) { | 
|  | JFFS2_ERROR("requestied to read an nonexistent ino %u\n", ino); | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | return jffs2_do_read_inode_internal(c, f, latest_node); | 
|  | } | 
|  |  | 
|  | int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic) | 
|  | { | 
|  | struct jffs2_raw_inode n; | 
|  | struct jffs2_inode_info *f = kmalloc(sizeof(*f), GFP_KERNEL); | 
|  | int ret; | 
|  |  | 
|  | if (!f) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(f, 0, sizeof(*f)); | 
|  | init_MUTEX_LOCKED(&f->sem); | 
|  | f->inocache = ic; | 
|  |  | 
|  | ret = jffs2_do_read_inode_internal(c, f, &n); | 
|  | if (!ret) { | 
|  | up(&f->sem); | 
|  | jffs2_do_clear_inode(c, f); | 
|  | } | 
|  | kfree (f); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f) | 
|  | { | 
|  | struct jffs2_full_dirent *fd, *fds; | 
|  | int deleted; | 
|  |  | 
|  | jffs2_clear_acl(f); | 
|  | jffs2_xattr_delete_inode(c, f->inocache); | 
|  | down(&f->sem); | 
|  | deleted = f->inocache && !f->inocache->nlink; | 
|  |  | 
|  | if (f->inocache && f->inocache->state != INO_STATE_CHECKING) | 
|  | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING); | 
|  |  | 
|  | if (f->metadata) { | 
|  | if (deleted) | 
|  | jffs2_mark_node_obsolete(c, f->metadata->raw); | 
|  | jffs2_free_full_dnode(f->metadata); | 
|  | } | 
|  |  | 
|  | jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL); | 
|  |  | 
|  | if (f->target) { | 
|  | kfree(f->target); | 
|  | f->target = NULL; | 
|  | } | 
|  |  | 
|  | fds = f->dents; | 
|  | while(fds) { | 
|  | fd = fds; | 
|  | fds = fd->next; | 
|  | jffs2_free_full_dirent(fd); | 
|  | } | 
|  |  | 
|  | if (f->inocache && f->inocache->state != INO_STATE_CHECKING) { | 
|  | jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT); | 
|  | if (f->inocache->nodes == (void *)f->inocache) | 
|  | jffs2_del_ino_cache(c, f->inocache); | 
|  | } | 
|  |  | 
|  | up(&f->sem); | 
|  | } |