|  | #ifndef _ASM_X86_SPINLOCK_H | 
|  | #define _ASM_X86_SPINLOCK_H | 
|  |  | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/rwlock.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/processor.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <asm/paravirt.h> | 
|  | /* | 
|  | * Your basic SMP spinlocks, allowing only a single CPU anywhere | 
|  | * | 
|  | * Simple spin lock operations.  There are two variants, one clears IRQ's | 
|  | * on the local processor, one does not. | 
|  | * | 
|  | * These are fair FIFO ticket locks, which are currently limited to 256 | 
|  | * CPUs. | 
|  | * | 
|  | * (the type definitions are in asm/spinlock_types.h) | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | # define LOCK_PTR_REG "a" | 
|  | # define REG_PTR_MODE "k" | 
|  | #else | 
|  | # define LOCK_PTR_REG "D" | 
|  | # define REG_PTR_MODE "q" | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_X86_32) && \ | 
|  | (defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE)) | 
|  | /* | 
|  | * On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock | 
|  | * (PPro errata 66, 92) | 
|  | */ | 
|  | # define UNLOCK_LOCK_PREFIX LOCK_PREFIX | 
|  | #else | 
|  | # define UNLOCK_LOCK_PREFIX | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Ticket locks are conceptually two parts, one indicating the current head of | 
|  | * the queue, and the other indicating the current tail. The lock is acquired | 
|  | * by atomically noting the tail and incrementing it by one (thus adding | 
|  | * ourself to the queue and noting our position), then waiting until the head | 
|  | * becomes equal to the the initial value of the tail. | 
|  | * | 
|  | * We use an xadd covering *both* parts of the lock, to increment the tail and | 
|  | * also load the position of the head, which takes care of memory ordering | 
|  | * issues and should be optimal for the uncontended case. Note the tail must be | 
|  | * in the high part, because a wide xadd increment of the low part would carry | 
|  | * up and contaminate the high part. | 
|  | * | 
|  | * With fewer than 2^8 possible CPUs, we can use x86's partial registers to | 
|  | * save some instructions and make the code more elegant. There really isn't | 
|  | * much between them in performance though, especially as locks are out of line. | 
|  | */ | 
|  | #if (NR_CPUS < 256) | 
|  | #define TICKET_SHIFT 8 | 
|  |  | 
|  | static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock) | 
|  | { | 
|  | short inc = 0x0100; | 
|  |  | 
|  | asm volatile ( | 
|  | LOCK_PREFIX "xaddw %w0, %1\n" | 
|  | "1:\t" | 
|  | "cmpb %h0, %b0\n\t" | 
|  | "je 2f\n\t" | 
|  | "rep ; nop\n\t" | 
|  | "movb %1, %b0\n\t" | 
|  | /* don't need lfence here, because loads are in-order */ | 
|  | "jmp 1b\n" | 
|  | "2:" | 
|  | : "+Q" (inc), "+m" (lock->slock) | 
|  | : | 
|  | : "memory", "cc"); | 
|  | } | 
|  |  | 
|  | static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock) | 
|  | { | 
|  | int tmp, new; | 
|  |  | 
|  | asm volatile("movzwl %2, %0\n\t" | 
|  | "cmpb %h0,%b0\n\t" | 
|  | "leal 0x100(%" REG_PTR_MODE "0), %1\n\t" | 
|  | "jne 1f\n\t" | 
|  | LOCK_PREFIX "cmpxchgw %w1,%2\n\t" | 
|  | "1:" | 
|  | "sete %b1\n\t" | 
|  | "movzbl %b1,%0\n\t" | 
|  | : "=&a" (tmp), "=&q" (new), "+m" (lock->slock) | 
|  | : | 
|  | : "memory", "cc"); | 
|  |  | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock) | 
|  | { | 
|  | asm volatile(UNLOCK_LOCK_PREFIX "incb %0" | 
|  | : "+m" (lock->slock) | 
|  | : | 
|  | : "memory", "cc"); | 
|  | } | 
|  | #else | 
|  | #define TICKET_SHIFT 16 | 
|  |  | 
|  | static __always_inline void __ticket_spin_lock(raw_spinlock_t *lock) | 
|  | { | 
|  | int inc = 0x00010000; | 
|  | int tmp; | 
|  |  | 
|  | asm volatile(LOCK_PREFIX "xaddl %0, %1\n" | 
|  | "movzwl %w0, %2\n\t" | 
|  | "shrl $16, %0\n\t" | 
|  | "1:\t" | 
|  | "cmpl %0, %2\n\t" | 
|  | "je 2f\n\t" | 
|  | "rep ; nop\n\t" | 
|  | "movzwl %1, %2\n\t" | 
|  | /* don't need lfence here, because loads are in-order */ | 
|  | "jmp 1b\n" | 
|  | "2:" | 
|  | : "+r" (inc), "+m" (lock->slock), "=&r" (tmp) | 
|  | : | 
|  | : "memory", "cc"); | 
|  | } | 
|  |  | 
|  | static __always_inline int __ticket_spin_trylock(raw_spinlock_t *lock) | 
|  | { | 
|  | int tmp; | 
|  | int new; | 
|  |  | 
|  | asm volatile("movl %2,%0\n\t" | 
|  | "movl %0,%1\n\t" | 
|  | "roll $16, %0\n\t" | 
|  | "cmpl %0,%1\n\t" | 
|  | "leal 0x00010000(%" REG_PTR_MODE "0), %1\n\t" | 
|  | "jne 1f\n\t" | 
|  | LOCK_PREFIX "cmpxchgl %1,%2\n\t" | 
|  | "1:" | 
|  | "sete %b1\n\t" | 
|  | "movzbl %b1,%0\n\t" | 
|  | : "=&a" (tmp), "=&q" (new), "+m" (lock->slock) | 
|  | : | 
|  | : "memory", "cc"); | 
|  |  | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static __always_inline void __ticket_spin_unlock(raw_spinlock_t *lock) | 
|  | { | 
|  | asm volatile(UNLOCK_LOCK_PREFIX "incw %0" | 
|  | : "+m" (lock->slock) | 
|  | : | 
|  | : "memory", "cc"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int __ticket_spin_is_locked(raw_spinlock_t *lock) | 
|  | { | 
|  | int tmp = ACCESS_ONCE(lock->slock); | 
|  |  | 
|  | return !!(((tmp >> TICKET_SHIFT) ^ tmp) & ((1 << TICKET_SHIFT) - 1)); | 
|  | } | 
|  |  | 
|  | static inline int __ticket_spin_is_contended(raw_spinlock_t *lock) | 
|  | { | 
|  | int tmp = ACCESS_ONCE(lock->slock); | 
|  |  | 
|  | return (((tmp >> TICKET_SHIFT) - tmp) & ((1 << TICKET_SHIFT) - 1)) > 1; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_PARAVIRT_SPINLOCKS | 
|  |  | 
|  | static inline int __raw_spin_is_locked(raw_spinlock_t *lock) | 
|  | { | 
|  | return __ticket_spin_is_locked(lock); | 
|  | } | 
|  |  | 
|  | static inline int __raw_spin_is_contended(raw_spinlock_t *lock) | 
|  | { | 
|  | return __ticket_spin_is_contended(lock); | 
|  | } | 
|  | #define __raw_spin_is_contended	__raw_spin_is_contended | 
|  |  | 
|  | static __always_inline void __raw_spin_lock(raw_spinlock_t *lock) | 
|  | { | 
|  | __ticket_spin_lock(lock); | 
|  | } | 
|  |  | 
|  | static __always_inline int __raw_spin_trylock(raw_spinlock_t *lock) | 
|  | { | 
|  | return __ticket_spin_trylock(lock); | 
|  | } | 
|  |  | 
|  | static __always_inline void __raw_spin_unlock(raw_spinlock_t *lock) | 
|  | { | 
|  | __ticket_spin_unlock(lock); | 
|  | } | 
|  |  | 
|  | static __always_inline void __raw_spin_lock_flags(raw_spinlock_t *lock, | 
|  | unsigned long flags) | 
|  | { | 
|  | __raw_spin_lock(lock); | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_PARAVIRT_SPINLOCKS */ | 
|  |  | 
|  | static inline void __raw_spin_unlock_wait(raw_spinlock_t *lock) | 
|  | { | 
|  | while (__raw_spin_is_locked(lock)) | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read-write spinlocks, allowing multiple readers | 
|  | * but only one writer. | 
|  | * | 
|  | * NOTE! it is quite common to have readers in interrupts | 
|  | * but no interrupt writers. For those circumstances we | 
|  | * can "mix" irq-safe locks - any writer needs to get a | 
|  | * irq-safe write-lock, but readers can get non-irqsafe | 
|  | * read-locks. | 
|  | * | 
|  | * On x86, we implement read-write locks as a 32-bit counter | 
|  | * with the high bit (sign) being the "contended" bit. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * read_can_lock - would read_trylock() succeed? | 
|  | * @lock: the rwlock in question. | 
|  | */ | 
|  | static inline int __raw_read_can_lock(raw_rwlock_t *lock) | 
|  | { | 
|  | return (int)(lock)->lock > 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * write_can_lock - would write_trylock() succeed? | 
|  | * @lock: the rwlock in question. | 
|  | */ | 
|  | static inline int __raw_write_can_lock(raw_rwlock_t *lock) | 
|  | { | 
|  | return (lock)->lock == RW_LOCK_BIAS; | 
|  | } | 
|  |  | 
|  | static inline void __raw_read_lock(raw_rwlock_t *rw) | 
|  | { | 
|  | asm volatile(LOCK_PREFIX " subl $1,(%0)\n\t" | 
|  | "jns 1f\n" | 
|  | "call __read_lock_failed\n\t" | 
|  | "1:\n" | 
|  | ::LOCK_PTR_REG (rw) : "memory"); | 
|  | } | 
|  |  | 
|  | static inline void __raw_write_lock(raw_rwlock_t *rw) | 
|  | { | 
|  | asm volatile(LOCK_PREFIX " subl %1,(%0)\n\t" | 
|  | "jz 1f\n" | 
|  | "call __write_lock_failed\n\t" | 
|  | "1:\n" | 
|  | ::LOCK_PTR_REG (rw), "i" (RW_LOCK_BIAS) : "memory"); | 
|  | } | 
|  |  | 
|  | static inline int __raw_read_trylock(raw_rwlock_t *lock) | 
|  | { | 
|  | atomic_t *count = (atomic_t *)lock; | 
|  |  | 
|  | if (atomic_dec_return(count) >= 0) | 
|  | return 1; | 
|  | atomic_inc(count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int __raw_write_trylock(raw_rwlock_t *lock) | 
|  | { | 
|  | atomic_t *count = (atomic_t *)lock; | 
|  |  | 
|  | if (atomic_sub_and_test(RW_LOCK_BIAS, count)) | 
|  | return 1; | 
|  | atomic_add(RW_LOCK_BIAS, count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void __raw_read_unlock(raw_rwlock_t *rw) | 
|  | { | 
|  | asm volatile(LOCK_PREFIX "incl %0" :"+m" (rw->lock) : : "memory"); | 
|  | } | 
|  |  | 
|  | static inline void __raw_write_unlock(raw_rwlock_t *rw) | 
|  | { | 
|  | asm volatile(LOCK_PREFIX "addl %1, %0" | 
|  | : "+m" (rw->lock) : "i" (RW_LOCK_BIAS) : "memory"); | 
|  | } | 
|  |  | 
|  | #define __raw_read_lock_flags(lock, flags) __raw_read_lock(lock) | 
|  | #define __raw_write_lock_flags(lock, flags) __raw_write_lock(lock) | 
|  |  | 
|  | #define _raw_spin_relax(lock)	cpu_relax() | 
|  | #define _raw_read_relax(lock)	cpu_relax() | 
|  | #define _raw_write_relax(lock)	cpu_relax() | 
|  |  | 
|  | /* The {read|write|spin}_lock() on x86 are full memory barriers. */ | 
|  | static inline void smp_mb__after_lock(void) { } | 
|  | #define ARCH_HAS_SMP_MB_AFTER_LOCK | 
|  |  | 
|  | #endif /* _ASM_X86_SPINLOCK_H */ |