| /* | 
 |  *  linux/fs/file.c | 
 |  * | 
 |  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes | 
 |  * | 
 |  *  Manage the dynamic fd arrays in the process files_struct. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/time.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fdtable.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/workqueue.h> | 
 |  | 
 | struct fdtable_defer { | 
 | 	spinlock_t lock; | 
 | 	struct work_struct wq; | 
 | 	struct fdtable *next; | 
 | }; | 
 |  | 
 | int sysctl_nr_open __read_mostly = 1024*1024; | 
 | int sysctl_nr_open_min = BITS_PER_LONG; | 
 | int sysctl_nr_open_max = 1024 * 1024; /* raised later */ | 
 |  | 
 | /* | 
 |  * We use this list to defer free fdtables that have vmalloced | 
 |  * sets/arrays. By keeping a per-cpu list, we avoid having to embed | 
 |  * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in | 
 |  * this per-task structure. | 
 |  */ | 
 | static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); | 
 |  | 
 | static inline void * alloc_fdmem(unsigned int size) | 
 | { | 
 | 	if (size <= PAGE_SIZE) | 
 | 		return kmalloc(size, GFP_KERNEL); | 
 | 	else | 
 | 		return vmalloc(size); | 
 | } | 
 |  | 
 | static inline void free_fdarr(struct fdtable *fdt) | 
 | { | 
 | 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) | 
 | 		kfree(fdt->fd); | 
 | 	else | 
 | 		vfree(fdt->fd); | 
 | } | 
 |  | 
 | static inline void free_fdset(struct fdtable *fdt) | 
 | { | 
 | 	if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2)) | 
 | 		kfree(fdt->open_fds); | 
 | 	else | 
 | 		vfree(fdt->open_fds); | 
 | } | 
 |  | 
 | static void free_fdtable_work(struct work_struct *work) | 
 | { | 
 | 	struct fdtable_defer *f = | 
 | 		container_of(work, struct fdtable_defer, wq); | 
 | 	struct fdtable *fdt; | 
 |  | 
 | 	spin_lock_bh(&f->lock); | 
 | 	fdt = f->next; | 
 | 	f->next = NULL; | 
 | 	spin_unlock_bh(&f->lock); | 
 | 	while(fdt) { | 
 | 		struct fdtable *next = fdt->next; | 
 | 		vfree(fdt->fd); | 
 | 		free_fdset(fdt); | 
 | 		kfree(fdt); | 
 | 		fdt = next; | 
 | 	} | 
 | } | 
 |  | 
 | void free_fdtable_rcu(struct rcu_head *rcu) | 
 | { | 
 | 	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); | 
 | 	struct fdtable_defer *fddef; | 
 |  | 
 | 	BUG_ON(!fdt); | 
 |  | 
 | 	if (fdt->max_fds <= NR_OPEN_DEFAULT) { | 
 | 		/* | 
 | 		 * This fdtable is embedded in the files structure and that | 
 | 		 * structure itself is getting destroyed. | 
 | 		 */ | 
 | 		kmem_cache_free(files_cachep, | 
 | 				container_of(fdt, struct files_struct, fdtab)); | 
 | 		return; | 
 | 	} | 
 | 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) { | 
 | 		kfree(fdt->fd); | 
 | 		kfree(fdt->open_fds); | 
 | 		kfree(fdt); | 
 | 	} else { | 
 | 		fddef = &get_cpu_var(fdtable_defer_list); | 
 | 		spin_lock(&fddef->lock); | 
 | 		fdt->next = fddef->next; | 
 | 		fddef->next = fdt; | 
 | 		/* vmallocs are handled from the workqueue context */ | 
 | 		schedule_work(&fddef->wq); | 
 | 		spin_unlock(&fddef->lock); | 
 | 		put_cpu_var(fdtable_defer_list); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Expand the fdset in the files_struct.  Called with the files spinlock | 
 |  * held for write. | 
 |  */ | 
 | static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) | 
 | { | 
 | 	unsigned int cpy, set; | 
 |  | 
 | 	BUG_ON(nfdt->max_fds < ofdt->max_fds); | 
 |  | 
 | 	cpy = ofdt->max_fds * sizeof(struct file *); | 
 | 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); | 
 | 	memcpy(nfdt->fd, ofdt->fd, cpy); | 
 | 	memset((char *)(nfdt->fd) + cpy, 0, set); | 
 |  | 
 | 	cpy = ofdt->max_fds / BITS_PER_BYTE; | 
 | 	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; | 
 | 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy); | 
 | 	memset((char *)(nfdt->open_fds) + cpy, 0, set); | 
 | 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); | 
 | 	memset((char *)(nfdt->close_on_exec) + cpy, 0, set); | 
 | } | 
 |  | 
 | static struct fdtable * alloc_fdtable(unsigned int nr) | 
 | { | 
 | 	struct fdtable *fdt; | 
 | 	char *data; | 
 |  | 
 | 	/* | 
 | 	 * Figure out how many fds we actually want to support in this fdtable. | 
 | 	 * Allocation steps are keyed to the size of the fdarray, since it | 
 | 	 * grows far faster than any of the other dynamic data. We try to fit | 
 | 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B | 
 | 	 * and growing in powers of two from there on. | 
 | 	 */ | 
 | 	nr /= (1024 / sizeof(struct file *)); | 
 | 	nr = roundup_pow_of_two(nr + 1); | 
 | 	nr *= (1024 / sizeof(struct file *)); | 
 | 	/* | 
 | 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open | 
 | 	 * had been set lower between the check in expand_files() and here.  Deal | 
 | 	 * with that in caller, it's cheaper that way. | 
 | 	 * | 
 | 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise | 
 | 	 * bitmaps handling below becomes unpleasant, to put it mildly... | 
 | 	 */ | 
 | 	if (unlikely(nr > sysctl_nr_open)) | 
 | 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; | 
 |  | 
 | 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); | 
 | 	if (!fdt) | 
 | 		goto out; | 
 | 	fdt->max_fds = nr; | 
 | 	data = alloc_fdmem(nr * sizeof(struct file *)); | 
 | 	if (!data) | 
 | 		goto out_fdt; | 
 | 	fdt->fd = (struct file **)data; | 
 | 	data = alloc_fdmem(max_t(unsigned int, | 
 | 				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); | 
 | 	if (!data) | 
 | 		goto out_arr; | 
 | 	fdt->open_fds = (fd_set *)data; | 
 | 	data += nr / BITS_PER_BYTE; | 
 | 	fdt->close_on_exec = (fd_set *)data; | 
 | 	INIT_RCU_HEAD(&fdt->rcu); | 
 | 	fdt->next = NULL; | 
 |  | 
 | 	return fdt; | 
 |  | 
 | out_arr: | 
 | 	free_fdarr(fdt); | 
 | out_fdt: | 
 | 	kfree(fdt); | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * Expand the file descriptor table. | 
 |  * This function will allocate a new fdtable and both fd array and fdset, of | 
 |  * the given size. | 
 |  * Return <0 error code on error; 1 on successful completion. | 
 |  * The files->file_lock should be held on entry, and will be held on exit. | 
 |  */ | 
 | static int expand_fdtable(struct files_struct *files, int nr) | 
 | 	__releases(files->file_lock) | 
 | 	__acquires(files->file_lock) | 
 | { | 
 | 	struct fdtable *new_fdt, *cur_fdt; | 
 |  | 
 | 	spin_unlock(&files->file_lock); | 
 | 	new_fdt = alloc_fdtable(nr); | 
 | 	spin_lock(&files->file_lock); | 
 | 	if (!new_fdt) | 
 | 		return -ENOMEM; | 
 | 	/* | 
 | 	 * extremely unlikely race - sysctl_nr_open decreased between the check in | 
 | 	 * caller and alloc_fdtable().  Cheaper to catch it here... | 
 | 	 */ | 
 | 	if (unlikely(new_fdt->max_fds <= nr)) { | 
 | 		free_fdarr(new_fdt); | 
 | 		free_fdset(new_fdt); | 
 | 		kfree(new_fdt); | 
 | 		return -EMFILE; | 
 | 	} | 
 | 	/* | 
 | 	 * Check again since another task may have expanded the fd table while | 
 | 	 * we dropped the lock | 
 | 	 */ | 
 | 	cur_fdt = files_fdtable(files); | 
 | 	if (nr >= cur_fdt->max_fds) { | 
 | 		/* Continue as planned */ | 
 | 		copy_fdtable(new_fdt, cur_fdt); | 
 | 		rcu_assign_pointer(files->fdt, new_fdt); | 
 | 		if (cur_fdt->max_fds > NR_OPEN_DEFAULT) | 
 | 			free_fdtable(cur_fdt); | 
 | 	} else { | 
 | 		/* Somebody else expanded, so undo our attempt */ | 
 | 		free_fdarr(new_fdt); | 
 | 		free_fdset(new_fdt); | 
 | 		kfree(new_fdt); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Expand files. | 
 |  * This function will expand the file structures, if the requested size exceeds | 
 |  * the current capacity and there is room for expansion. | 
 |  * Return <0 error code on error; 0 when nothing done; 1 when files were | 
 |  * expanded and execution may have blocked. | 
 |  * The files->file_lock should be held on entry, and will be held on exit. | 
 |  */ | 
 | int expand_files(struct files_struct *files, int nr) | 
 | { | 
 | 	struct fdtable *fdt; | 
 |  | 
 | 	fdt = files_fdtable(files); | 
 |  | 
 | 	/* | 
 | 	 * N.B. For clone tasks sharing a files structure, this test | 
 | 	 * will limit the total number of files that can be opened. | 
 | 	 */ | 
 | 	if (nr >= rlimit(RLIMIT_NOFILE)) | 
 | 		return -EMFILE; | 
 |  | 
 | 	/* Do we need to expand? */ | 
 | 	if (nr < fdt->max_fds) | 
 | 		return 0; | 
 |  | 
 | 	/* Can we expand? */ | 
 | 	if (nr >= sysctl_nr_open) | 
 | 		return -EMFILE; | 
 |  | 
 | 	/* All good, so we try */ | 
 | 	return expand_fdtable(files, nr); | 
 | } | 
 |  | 
 | static int count_open_files(struct fdtable *fdt) | 
 | { | 
 | 	int size = fdt->max_fds; | 
 | 	int i; | 
 |  | 
 | 	/* Find the last open fd */ | 
 | 	for (i = size/(8*sizeof(long)); i > 0; ) { | 
 | 		if (fdt->open_fds->fds_bits[--i]) | 
 | 			break; | 
 | 	} | 
 | 	i = (i+1) * 8 * sizeof(long); | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a new files structure and copy contents from the | 
 |  * passed in files structure. | 
 |  * errorp will be valid only when the returned files_struct is NULL. | 
 |  */ | 
 | struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) | 
 | { | 
 | 	struct files_struct *newf; | 
 | 	struct file **old_fds, **new_fds; | 
 | 	int open_files, size, i; | 
 | 	struct fdtable *old_fdt, *new_fdt; | 
 |  | 
 | 	*errorp = -ENOMEM; | 
 | 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); | 
 | 	if (!newf) | 
 | 		goto out; | 
 |  | 
 | 	atomic_set(&newf->count, 1); | 
 |  | 
 | 	spin_lock_init(&newf->file_lock); | 
 | 	newf->next_fd = 0; | 
 | 	new_fdt = &newf->fdtab; | 
 | 	new_fdt->max_fds = NR_OPEN_DEFAULT; | 
 | 	new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; | 
 | 	new_fdt->open_fds = (fd_set *)&newf->open_fds_init; | 
 | 	new_fdt->fd = &newf->fd_array[0]; | 
 | 	INIT_RCU_HEAD(&new_fdt->rcu); | 
 | 	new_fdt->next = NULL; | 
 |  | 
 | 	spin_lock(&oldf->file_lock); | 
 | 	old_fdt = files_fdtable(oldf); | 
 | 	open_files = count_open_files(old_fdt); | 
 |  | 
 | 	/* | 
 | 	 * Check whether we need to allocate a larger fd array and fd set. | 
 | 	 */ | 
 | 	while (unlikely(open_files > new_fdt->max_fds)) { | 
 | 		spin_unlock(&oldf->file_lock); | 
 |  | 
 | 		if (new_fdt != &newf->fdtab) { | 
 | 			free_fdarr(new_fdt); | 
 | 			free_fdset(new_fdt); | 
 | 			kfree(new_fdt); | 
 | 		} | 
 |  | 
 | 		new_fdt = alloc_fdtable(open_files - 1); | 
 | 		if (!new_fdt) { | 
 | 			*errorp = -ENOMEM; | 
 | 			goto out_release; | 
 | 		} | 
 |  | 
 | 		/* beyond sysctl_nr_open; nothing to do */ | 
 | 		if (unlikely(new_fdt->max_fds < open_files)) { | 
 | 			free_fdarr(new_fdt); | 
 | 			free_fdset(new_fdt); | 
 | 			kfree(new_fdt); | 
 | 			*errorp = -EMFILE; | 
 | 			goto out_release; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Reacquire the oldf lock and a pointer to its fd table | 
 | 		 * who knows it may have a new bigger fd table. We need | 
 | 		 * the latest pointer. | 
 | 		 */ | 
 | 		spin_lock(&oldf->file_lock); | 
 | 		old_fdt = files_fdtable(oldf); | 
 | 		open_files = count_open_files(old_fdt); | 
 | 	} | 
 |  | 
 | 	old_fds = old_fdt->fd; | 
 | 	new_fds = new_fdt->fd; | 
 |  | 
 | 	memcpy(new_fdt->open_fds->fds_bits, | 
 | 		old_fdt->open_fds->fds_bits, open_files/8); | 
 | 	memcpy(new_fdt->close_on_exec->fds_bits, | 
 | 		old_fdt->close_on_exec->fds_bits, open_files/8); | 
 |  | 
 | 	for (i = open_files; i != 0; i--) { | 
 | 		struct file *f = *old_fds++; | 
 | 		if (f) { | 
 | 			get_file(f); | 
 | 		} else { | 
 | 			/* | 
 | 			 * The fd may be claimed in the fd bitmap but not yet | 
 | 			 * instantiated in the files array if a sibling thread | 
 | 			 * is partway through open().  So make sure that this | 
 | 			 * fd is available to the new process. | 
 | 			 */ | 
 | 			FD_CLR(open_files - i, new_fdt->open_fds); | 
 | 		} | 
 | 		rcu_assign_pointer(*new_fds++, f); | 
 | 	} | 
 | 	spin_unlock(&oldf->file_lock); | 
 |  | 
 | 	/* compute the remainder to be cleared */ | 
 | 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *); | 
 |  | 
 | 	/* This is long word aligned thus could use a optimized version */ | 
 | 	memset(new_fds, 0, size); | 
 |  | 
 | 	if (new_fdt->max_fds > open_files) { | 
 | 		int left = (new_fdt->max_fds-open_files)/8; | 
 | 		int start = open_files / (8 * sizeof(unsigned long)); | 
 |  | 
 | 		memset(&new_fdt->open_fds->fds_bits[start], 0, left); | 
 | 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); | 
 | 	} | 
 |  | 
 | 	rcu_assign_pointer(newf->fdt, new_fdt); | 
 |  | 
 | 	return newf; | 
 |  | 
 | out_release: | 
 | 	kmem_cache_free(files_cachep, newf); | 
 | out: | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void __devinit fdtable_defer_list_init(int cpu) | 
 | { | 
 | 	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); | 
 | 	spin_lock_init(&fddef->lock); | 
 | 	INIT_WORK(&fddef->wq, free_fdtable_work); | 
 | 	fddef->next = NULL; | 
 | } | 
 |  | 
 | void __init files_defer_init(void) | 
 | { | 
 | 	int i; | 
 | 	for_each_possible_cpu(i) | 
 | 		fdtable_defer_list_init(i); | 
 | 	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) & | 
 | 			     -BITS_PER_LONG; | 
 | } | 
 |  | 
 | struct files_struct init_files = { | 
 | 	.count		= ATOMIC_INIT(1), | 
 | 	.fdt		= &init_files.fdtab, | 
 | 	.fdtab		= { | 
 | 		.max_fds	= NR_OPEN_DEFAULT, | 
 | 		.fd		= &init_files.fd_array[0], | 
 | 		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init, | 
 | 		.open_fds	= (fd_set *)&init_files.open_fds_init, | 
 | 		.rcu		= RCU_HEAD_INIT, | 
 | 	}, | 
 | 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock), | 
 | }; | 
 |  | 
 | /* | 
 |  * allocate a file descriptor, mark it busy. | 
 |  */ | 
 | int alloc_fd(unsigned start, unsigned flags) | 
 | { | 
 | 	struct files_struct *files = current->files; | 
 | 	unsigned int fd; | 
 | 	int error; | 
 | 	struct fdtable *fdt; | 
 |  | 
 | 	spin_lock(&files->file_lock); | 
 | repeat: | 
 | 	fdt = files_fdtable(files); | 
 | 	fd = start; | 
 | 	if (fd < files->next_fd) | 
 | 		fd = files->next_fd; | 
 |  | 
 | 	if (fd < fdt->max_fds) | 
 | 		fd = find_next_zero_bit(fdt->open_fds->fds_bits, | 
 | 					   fdt->max_fds, fd); | 
 |  | 
 | 	error = expand_files(files, fd); | 
 | 	if (error < 0) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If we needed to expand the fs array we | 
 | 	 * might have blocked - try again. | 
 | 	 */ | 
 | 	if (error) | 
 | 		goto repeat; | 
 |  | 
 | 	if (start <= files->next_fd) | 
 | 		files->next_fd = fd + 1; | 
 |  | 
 | 	FD_SET(fd, fdt->open_fds); | 
 | 	if (flags & O_CLOEXEC) | 
 | 		FD_SET(fd, fdt->close_on_exec); | 
 | 	else | 
 | 		FD_CLR(fd, fdt->close_on_exec); | 
 | 	error = fd; | 
 | #if 1 | 
 | 	/* Sanity check */ | 
 | 	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) { | 
 | 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); | 
 | 		rcu_assign_pointer(fdt->fd[fd], NULL); | 
 | 	} | 
 | #endif | 
 |  | 
 | out: | 
 | 	spin_unlock(&files->file_lock); | 
 | 	return error; | 
 | } | 
 |  | 
 | int get_unused_fd(void) | 
 | { | 
 | 	return alloc_fd(0, 0); | 
 | } | 
 | EXPORT_SYMBOL(get_unused_fd); |