| /* | 
 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it would be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write the Free Software Foundation, | 
 |  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_types.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_inum.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_ag.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_dmapi.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_bmap_btree.h" | 
 | #include "xfs_alloc_btree.h" | 
 | #include "xfs_ialloc_btree.h" | 
 | #include "xfs_btree.h" | 
 | #include "xfs_dir2_sf.h" | 
 | #include "xfs_attr_sf.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_dinode.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_mru_cache.h" | 
 | #include "xfs_filestream.h" | 
 | #include "xfs_vnodeops.h" | 
 | #include "xfs_utils.h" | 
 | #include "xfs_buf_item.h" | 
 | #include "xfs_inode_item.h" | 
 | #include "xfs_rw.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_trace.h" | 
 |  | 
 | #include <linux/kthread.h> | 
 | #include <linux/freezer.h> | 
 |  | 
 |  | 
 | STATIC xfs_inode_t * | 
 | xfs_inode_ag_lookup( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_perag	*pag, | 
 | 	uint32_t		*first_index, | 
 | 	int			tag) | 
 | { | 
 | 	int			nr_found; | 
 | 	struct xfs_inode	*ip; | 
 |  | 
 | 	/* | 
 | 	 * use a gang lookup to find the next inode in the tree | 
 | 	 * as the tree is sparse and a gang lookup walks to find | 
 | 	 * the number of objects requested. | 
 | 	 */ | 
 | 	if (tag == XFS_ICI_NO_TAG) { | 
 | 		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, | 
 | 				(void **)&ip, *first_index, 1); | 
 | 	} else { | 
 | 		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root, | 
 | 				(void **)&ip, *first_index, 1, tag); | 
 | 	} | 
 | 	if (!nr_found) | 
 | 		return NULL; | 
 |  | 
 | 	/* | 
 | 	 * Update the index for the next lookup. Catch overflows | 
 | 	 * into the next AG range which can occur if we have inodes | 
 | 	 * in the last block of the AG and we are currently | 
 | 	 * pointing to the last inode. | 
 | 	 */ | 
 | 	*first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); | 
 | 	if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) | 
 | 		return NULL; | 
 | 	return ip; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_inode_ag_walk( | 
 | 	struct xfs_mount	*mp, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			(*execute)(struct xfs_inode *ip, | 
 | 					   struct xfs_perag *pag, int flags), | 
 | 	int			flags, | 
 | 	int			tag, | 
 | 	int			exclusive, | 
 | 	int			*nr_to_scan) | 
 | { | 
 | 	uint32_t		first_index; | 
 | 	int			last_error = 0; | 
 | 	int			skipped; | 
 |  | 
 | restart: | 
 | 	skipped = 0; | 
 | 	first_index = 0; | 
 | 	do { | 
 | 		int		error = 0; | 
 | 		xfs_inode_t	*ip; | 
 |  | 
 | 		if (exclusive) | 
 | 			write_lock(&pag->pag_ici_lock); | 
 | 		else | 
 | 			read_lock(&pag->pag_ici_lock); | 
 | 		ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag); | 
 | 		if (!ip) { | 
 | 			if (exclusive) | 
 | 				write_unlock(&pag->pag_ici_lock); | 
 | 			else | 
 | 				read_unlock(&pag->pag_ici_lock); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* execute releases pag->pag_ici_lock */ | 
 | 		error = execute(ip, pag, flags); | 
 | 		if (error == EAGAIN) { | 
 | 			skipped++; | 
 | 			continue; | 
 | 		} | 
 | 		if (error) | 
 | 			last_error = error; | 
 |  | 
 | 		/* bail out if the filesystem is corrupted.  */ | 
 | 		if (error == EFSCORRUPTED) | 
 | 			break; | 
 |  | 
 | 	} while ((*nr_to_scan)--); | 
 |  | 
 | 	if (skipped) { | 
 | 		delay(1); | 
 | 		goto restart; | 
 | 	} | 
 | 	return last_error; | 
 | } | 
 |  | 
 | int | 
 | xfs_inode_ag_iterator( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			(*execute)(struct xfs_inode *ip, | 
 | 					   struct xfs_perag *pag, int flags), | 
 | 	int			flags, | 
 | 	int			tag, | 
 | 	int			exclusive, | 
 | 	int			*nr_to_scan) | 
 | { | 
 | 	int			error = 0; | 
 | 	int			last_error = 0; | 
 | 	xfs_agnumber_t		ag; | 
 | 	int			nr; | 
 |  | 
 | 	nr = nr_to_scan ? *nr_to_scan : INT_MAX; | 
 | 	for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) { | 
 | 		struct xfs_perag	*pag; | 
 |  | 
 | 		pag = xfs_perag_get(mp, ag); | 
 | 		if (!pag->pag_ici_init) { | 
 | 			xfs_perag_put(pag); | 
 | 			continue; | 
 | 		} | 
 | 		error = xfs_inode_ag_walk(mp, pag, execute, flags, tag, | 
 | 						exclusive, &nr); | 
 | 		xfs_perag_put(pag); | 
 | 		if (error) { | 
 | 			last_error = error; | 
 | 			if (error == EFSCORRUPTED) | 
 | 				break; | 
 | 		} | 
 | 		if (nr <= 0) | 
 | 			break; | 
 | 	} | 
 | 	if (nr_to_scan) | 
 | 		*nr_to_scan = nr; | 
 | 	return XFS_ERROR(last_error); | 
 | } | 
 |  | 
 | /* must be called with pag_ici_lock held and releases it */ | 
 | int | 
 | xfs_sync_inode_valid( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_perag	*pag) | 
 | { | 
 | 	struct inode		*inode = VFS_I(ip); | 
 | 	int			error = EFSCORRUPTED; | 
 |  | 
 | 	/* nothing to sync during shutdown */ | 
 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */ | 
 | 	error = ENOENT; | 
 | 	if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* If we can't grab the inode, it must on it's way to reclaim. */ | 
 | 	if (!igrab(inode)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (is_bad_inode(inode)) { | 
 | 		IRELE(ip); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* inode is valid */ | 
 | 	error = 0; | 
 | out_unlock: | 
 | 	read_unlock(&pag->pag_ici_lock); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_sync_inode_data( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			flags) | 
 | { | 
 | 	struct inode		*inode = VFS_I(ip); | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	int			error = 0; | 
 |  | 
 | 	error = xfs_sync_inode_valid(ip, pag); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) | 
 | 		goto out_wait; | 
 |  | 
 | 	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) { | 
 | 		if (flags & SYNC_TRYLOCK) | 
 | 			goto out_wait; | 
 | 		xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
 | 	} | 
 |  | 
 | 	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ? | 
 | 				0 : XBF_ASYNC, FI_NONE); | 
 | 	xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
 |  | 
 |  out_wait: | 
 | 	if (flags & SYNC_WAIT) | 
 | 		xfs_ioend_wait(ip); | 
 | 	IRELE(ip); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_sync_inode_attr( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			flags) | 
 | { | 
 | 	int			error = 0; | 
 |  | 
 | 	error = xfs_sync_inode_valid(ip, pag); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_SHARED); | 
 | 	if (xfs_inode_clean(ip)) | 
 | 		goto out_unlock; | 
 | 	if (!xfs_iflock_nowait(ip)) { | 
 | 		if (!(flags & SYNC_WAIT)) | 
 | 			goto out_unlock; | 
 | 		xfs_iflock(ip); | 
 | 	} | 
 |  | 
 | 	if (xfs_inode_clean(ip)) { | 
 | 		xfs_ifunlock(ip); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	error = xfs_iflush(ip, flags); | 
 |  | 
 |  out_unlock: | 
 | 	xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
 | 	IRELE(ip); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Write out pagecache data for the whole filesystem. | 
 |  */ | 
 | int | 
 | xfs_sync_data( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			flags) | 
 | { | 
 | 	int			error; | 
 |  | 
 | 	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0); | 
 |  | 
 | 	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags, | 
 | 				      XFS_ICI_NO_TAG, 0, NULL); | 
 | 	if (error) | 
 | 		return XFS_ERROR(error); | 
 |  | 
 | 	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Write out inode metadata (attributes) for the whole filesystem. | 
 |  */ | 
 | int | 
 | xfs_sync_attr( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			flags) | 
 | { | 
 | 	ASSERT((flags & ~SYNC_WAIT) == 0); | 
 |  | 
 | 	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags, | 
 | 				     XFS_ICI_NO_TAG, 0, NULL); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_commit_dummy_trans( | 
 | 	struct xfs_mount	*mp, | 
 | 	uint			flags) | 
 | { | 
 | 	struct xfs_inode	*ip = mp->m_rootip; | 
 | 	struct xfs_trans	*tp; | 
 | 	int			error; | 
 |  | 
 | 	/* | 
 | 	 * Put a dummy transaction in the log to tell recovery | 
 | 	 * that all others are OK. | 
 | 	 */ | 
 | 	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1); | 
 | 	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0); | 
 | 	if (error) { | 
 | 		xfs_trans_cancel(tp, 0); | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); | 
 | 	xfs_trans_ihold(tp, ip); | 
 | 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
 | 	error = xfs_trans_commit(tp, 0); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* the log force ensures this transaction is pushed to disk */ | 
 | 	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0); | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC int | 
 | xfs_sync_fsdata( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			flags) | 
 | { | 
 | 	struct xfs_buf		*bp; | 
 | 	struct xfs_buf_log_item	*bip; | 
 | 	int			error = 0; | 
 |  | 
 | 	/* | 
 | 	 * If this is xfssyncd() then only sync the superblock if we can | 
 | 	 * lock it without sleeping and it is not pinned. | 
 | 	 */ | 
 | 	if (flags & SYNC_TRYLOCK) { | 
 | 		ASSERT(!(flags & SYNC_WAIT)); | 
 |  | 
 | 		bp = xfs_getsb(mp, XBF_TRYLOCK); | 
 | 		if (!bp) | 
 | 			goto out; | 
 |  | 
 | 		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *); | 
 | 		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp)) | 
 | 			goto out_brelse; | 
 | 	} else { | 
 | 		bp = xfs_getsb(mp, 0); | 
 |  | 
 | 		/* | 
 | 		 * If the buffer is pinned then push on the log so we won't | 
 | 		 * get stuck waiting in the write for someone, maybe | 
 | 		 * ourselves, to flush the log. | 
 | 		 * | 
 | 		 * Even though we just pushed the log above, we did not have | 
 | 		 * the superblock buffer locked at that point so it can | 
 | 		 * become pinned in between there and here. | 
 | 		 */ | 
 | 		if (XFS_BUF_ISPINNED(bp)) | 
 | 			xfs_log_force(mp, 0); | 
 | 	} | 
 |  | 
 |  | 
 | 	if (flags & SYNC_WAIT) | 
 | 		XFS_BUF_UNASYNC(bp); | 
 | 	else | 
 | 		XFS_BUF_ASYNC(bp); | 
 |  | 
 | 	error = xfs_bwrite(mp, bp); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	/* | 
 | 	 * If this is a data integrity sync make sure all pending buffers | 
 | 	 * are flushed out for the log coverage check below. | 
 | 	 */ | 
 | 	if (flags & SYNC_WAIT) | 
 | 		xfs_flush_buftarg(mp->m_ddev_targp, 1); | 
 |  | 
 | 	if (xfs_log_need_covered(mp)) | 
 | 		error = xfs_commit_dummy_trans(mp, flags); | 
 | 	return error; | 
 |  | 
 |  out_brelse: | 
 | 	xfs_buf_relse(bp); | 
 |  out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * When remounting a filesystem read-only or freezing the filesystem, we have | 
 |  * two phases to execute. This first phase is syncing the data before we | 
 |  * quiesce the filesystem, and the second is flushing all the inodes out after | 
 |  * we've waited for all the transactions created by the first phase to | 
 |  * complete. The second phase ensures that the inodes are written to their | 
 |  * location on disk rather than just existing in transactions in the log. This | 
 |  * means after a quiesce there is no log replay required to write the inodes to | 
 |  * disk (this is the main difference between a sync and a quiesce). | 
 |  */ | 
 | /* | 
 |  * First stage of freeze - no writers will make progress now we are here, | 
 |  * so we flush delwri and delalloc buffers here, then wait for all I/O to | 
 |  * complete.  Data is frozen at that point. Metadata is not frozen, | 
 |  * transactions can still occur here so don't bother flushing the buftarg | 
 |  * because it'll just get dirty again. | 
 |  */ | 
 | int | 
 | xfs_quiesce_data( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	/* push non-blocking */ | 
 | 	xfs_sync_data(mp, 0); | 
 | 	xfs_qm_sync(mp, SYNC_TRYLOCK); | 
 |  | 
 | 	/* push and block till complete */ | 
 | 	xfs_sync_data(mp, SYNC_WAIT); | 
 | 	xfs_qm_sync(mp, SYNC_WAIT); | 
 |  | 
 | 	/* write superblock and hoover up shutdown errors */ | 
 | 	error = xfs_sync_fsdata(mp, SYNC_WAIT); | 
 |  | 
 | 	/* flush data-only devices */ | 
 | 	if (mp->m_rtdev_targp) | 
 | 		XFS_bflush(mp->m_rtdev_targp); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_quiesce_fs( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	int	count = 0, pincount; | 
 |  | 
 | 	xfs_reclaim_inodes(mp, 0); | 
 | 	xfs_flush_buftarg(mp->m_ddev_targp, 0); | 
 |  | 
 | 	/* | 
 | 	 * This loop must run at least twice.  The first instance of the loop | 
 | 	 * will flush most meta data but that will generate more meta data | 
 | 	 * (typically directory updates).  Which then must be flushed and | 
 | 	 * logged before we can write the unmount record. We also so sync | 
 | 	 * reclaim of inodes to catch any that the above delwri flush skipped. | 
 | 	 */ | 
 | 	do { | 
 | 		xfs_reclaim_inodes(mp, SYNC_WAIT); | 
 | 		xfs_sync_attr(mp, SYNC_WAIT); | 
 | 		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1); | 
 | 		if (!pincount) { | 
 | 			delay(50); | 
 | 			count++; | 
 | 		} | 
 | 	} while (count < 2); | 
 | } | 
 |  | 
 | /* | 
 |  * Second stage of a quiesce. The data is already synced, now we have to take | 
 |  * care of the metadata. New transactions are already blocked, so we need to | 
 |  * wait for any remaining transactions to drain out before proceding. | 
 |  */ | 
 | void | 
 | xfs_quiesce_attr( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	int	error = 0; | 
 |  | 
 | 	/* wait for all modifications to complete */ | 
 | 	while (atomic_read(&mp->m_active_trans) > 0) | 
 | 		delay(100); | 
 |  | 
 | 	/* flush inodes and push all remaining buffers out to disk */ | 
 | 	xfs_quiesce_fs(mp); | 
 |  | 
 | 	/* | 
 | 	 * Just warn here till VFS can correctly support | 
 | 	 * read-only remount without racing. | 
 | 	 */ | 
 | 	WARN_ON(atomic_read(&mp->m_active_trans) != 0); | 
 |  | 
 | 	/* Push the superblock and write an unmount record */ | 
 | 	error = xfs_log_sbcount(mp, 1); | 
 | 	if (error) | 
 | 		xfs_fs_cmn_err(CE_WARN, mp, | 
 | 				"xfs_attr_quiesce: failed to log sb changes. " | 
 | 				"Frozen image may not be consistent."); | 
 | 	xfs_log_unmount_write(mp); | 
 | 	xfs_unmountfs_writesb(mp); | 
 | } | 
 |  | 
 | /* | 
 |  * Enqueue a work item to be picked up by the vfs xfssyncd thread. | 
 |  * Doing this has two advantages: | 
 |  * - It saves on stack space, which is tight in certain situations | 
 |  * - It can be used (with care) as a mechanism to avoid deadlocks. | 
 |  * Flushing while allocating in a full filesystem requires both. | 
 |  */ | 
 | STATIC void | 
 | xfs_syncd_queue_work( | 
 | 	struct xfs_mount *mp, | 
 | 	void		*data, | 
 | 	void		(*syncer)(struct xfs_mount *, void *), | 
 | 	struct completion *completion) | 
 | { | 
 | 	struct xfs_sync_work *work; | 
 |  | 
 | 	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP); | 
 | 	INIT_LIST_HEAD(&work->w_list); | 
 | 	work->w_syncer = syncer; | 
 | 	work->w_data = data; | 
 | 	work->w_mount = mp; | 
 | 	work->w_completion = completion; | 
 | 	spin_lock(&mp->m_sync_lock); | 
 | 	list_add_tail(&work->w_list, &mp->m_sync_list); | 
 | 	spin_unlock(&mp->m_sync_lock); | 
 | 	wake_up_process(mp->m_sync_task); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush delayed allocate data, attempting to free up reserved space | 
 |  * from existing allocations.  At this point a new allocation attempt | 
 |  * has failed with ENOSPC and we are in the process of scratching our | 
 |  * heads, looking about for more room... | 
 |  */ | 
 | STATIC void | 
 | xfs_flush_inodes_work( | 
 | 	struct xfs_mount *mp, | 
 | 	void		*arg) | 
 | { | 
 | 	struct inode	*inode = arg; | 
 | 	xfs_sync_data(mp, SYNC_TRYLOCK); | 
 | 	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT); | 
 | 	iput(inode); | 
 | } | 
 |  | 
 | void | 
 | xfs_flush_inodes( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	struct inode	*inode = VFS_I(ip); | 
 | 	DECLARE_COMPLETION_ONSTACK(completion); | 
 |  | 
 | 	igrab(inode); | 
 | 	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion); | 
 | 	wait_for_completion(&completion); | 
 | 	xfs_log_force(ip->i_mount, XFS_LOG_SYNC); | 
 | } | 
 |  | 
 | /* | 
 |  * Every sync period we need to unpin all items, reclaim inodes, sync | 
 |  * quota and write out the superblock. We might need to cover the log | 
 |  * to indicate it is idle. | 
 |  */ | 
 | STATIC void | 
 | xfs_sync_worker( | 
 | 	struct xfs_mount *mp, | 
 | 	void		*unused) | 
 | { | 
 | 	int		error; | 
 |  | 
 | 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { | 
 | 		xfs_log_force(mp, 0); | 
 | 		xfs_reclaim_inodes(mp, 0); | 
 | 		/* dgc: errors ignored here */ | 
 | 		error = xfs_qm_sync(mp, SYNC_TRYLOCK); | 
 | 		error = xfs_sync_fsdata(mp, SYNC_TRYLOCK); | 
 | 	} | 
 | 	mp->m_sync_seq++; | 
 | 	wake_up(&mp->m_wait_single_sync_task); | 
 | } | 
 |  | 
 | STATIC int | 
 | xfssyncd( | 
 | 	void			*arg) | 
 | { | 
 | 	struct xfs_mount	*mp = arg; | 
 | 	long			timeleft; | 
 | 	xfs_sync_work_t		*work, *n; | 
 | 	LIST_HEAD		(tmp); | 
 |  | 
 | 	set_freezable(); | 
 | 	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10); | 
 | 	for (;;) { | 
 | 		if (list_empty(&mp->m_sync_list)) | 
 | 			timeleft = schedule_timeout_interruptible(timeleft); | 
 | 		/* swsusp */ | 
 | 		try_to_freeze(); | 
 | 		if (kthread_should_stop() && list_empty(&mp->m_sync_list)) | 
 | 			break; | 
 |  | 
 | 		spin_lock(&mp->m_sync_lock); | 
 | 		/* | 
 | 		 * We can get woken by laptop mode, to do a sync - | 
 | 		 * that's the (only!) case where the list would be | 
 | 		 * empty with time remaining. | 
 | 		 */ | 
 | 		if (!timeleft || list_empty(&mp->m_sync_list)) { | 
 | 			if (!timeleft) | 
 | 				timeleft = xfs_syncd_centisecs * | 
 | 							msecs_to_jiffies(10); | 
 | 			INIT_LIST_HEAD(&mp->m_sync_work.w_list); | 
 | 			list_add_tail(&mp->m_sync_work.w_list, | 
 | 					&mp->m_sync_list); | 
 | 		} | 
 | 		list_splice_init(&mp->m_sync_list, &tmp); | 
 | 		spin_unlock(&mp->m_sync_lock); | 
 |  | 
 | 		list_for_each_entry_safe(work, n, &tmp, w_list) { | 
 | 			(*work->w_syncer)(mp, work->w_data); | 
 | 			list_del(&work->w_list); | 
 | 			if (work == &mp->m_sync_work) | 
 | 				continue; | 
 | 			if (work->w_completion) | 
 | 				complete(work->w_completion); | 
 | 			kmem_free(work); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | xfs_syncd_init( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	mp->m_sync_work.w_syncer = xfs_sync_worker; | 
 | 	mp->m_sync_work.w_mount = mp; | 
 | 	mp->m_sync_work.w_completion = NULL; | 
 | 	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd"); | 
 | 	if (IS_ERR(mp->m_sync_task)) | 
 | 		return -PTR_ERR(mp->m_sync_task); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | xfs_syncd_stop( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	kthread_stop(mp->m_sync_task); | 
 | } | 
 |  | 
 | void | 
 | __xfs_inode_set_reclaim_tag( | 
 | 	struct xfs_perag	*pag, | 
 | 	struct xfs_inode	*ip) | 
 | { | 
 | 	radix_tree_tag_set(&pag->pag_ici_root, | 
 | 			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), | 
 | 			   XFS_ICI_RECLAIM_TAG); | 
 | 	pag->pag_ici_reclaimable++; | 
 | } | 
 |  | 
 | /* | 
 |  * We set the inode flag atomically with the radix tree tag. | 
 |  * Once we get tag lookups on the radix tree, this inode flag | 
 |  * can go away. | 
 |  */ | 
 | void | 
 | xfs_inode_set_reclaim_tag( | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	struct xfs_mount *mp = ip->i_mount; | 
 | 	struct xfs_perag *pag; | 
 |  | 
 | 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino)); | 
 | 	write_lock(&pag->pag_ici_lock); | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	__xfs_inode_set_reclaim_tag(pag, ip); | 
 | 	__xfs_iflags_set(ip, XFS_IRECLAIMABLE); | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	write_unlock(&pag->pag_ici_lock); | 
 | 	xfs_perag_put(pag); | 
 | } | 
 |  | 
 | void | 
 | __xfs_inode_clear_reclaim_tag( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_perag_t	*pag, | 
 | 	xfs_inode_t	*ip) | 
 | { | 
 | 	radix_tree_tag_clear(&pag->pag_ici_root, | 
 | 			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG); | 
 | 	pag->pag_ici_reclaimable--; | 
 | } | 
 |  | 
 | /* | 
 |  * Inodes in different states need to be treated differently, and the return | 
 |  * value of xfs_iflush is not sufficient to get this right. The following table | 
 |  * lists the inode states and the reclaim actions necessary for non-blocking | 
 |  * reclaim: | 
 |  * | 
 |  * | 
 |  *	inode state	     iflush ret		required action | 
 |  *      ---------------      ----------         --------------- | 
 |  *	bad			-		reclaim | 
 |  *	shutdown		EIO		unpin and reclaim | 
 |  *	clean, unpinned		0		reclaim | 
 |  *	stale, unpinned		0		reclaim | 
 |  *	clean, pinned(*)	0		requeue | 
 |  *	stale, pinned		EAGAIN		requeue | 
 |  *	dirty, delwri ok	0		requeue | 
 |  *	dirty, delwri blocked	EAGAIN		requeue | 
 |  *	dirty, sync flush	0		reclaim | 
 |  * | 
 |  * (*) dgc: I don't think the clean, pinned state is possible but it gets | 
 |  * handled anyway given the order of checks implemented. | 
 |  * | 
 |  * As can be seen from the table, the return value of xfs_iflush() is not | 
 |  * sufficient to correctly decide the reclaim action here. The checks in | 
 |  * xfs_iflush() might look like duplicates, but they are not. | 
 |  * | 
 |  * Also, because we get the flush lock first, we know that any inode that has | 
 |  * been flushed delwri has had the flush completed by the time we check that | 
 |  * the inode is clean. The clean inode check needs to be done before flushing | 
 |  * the inode delwri otherwise we would loop forever requeuing clean inodes as | 
 |  * we cannot tell apart a successful delwri flush and a clean inode from the | 
 |  * return value of xfs_iflush(). | 
 |  * | 
 |  * Note that because the inode is flushed delayed write by background | 
 |  * writeback, the flush lock may already be held here and waiting on it can | 
 |  * result in very long latencies. Hence for sync reclaims, where we wait on the | 
 |  * flush lock, the caller should push out delayed write inodes first before | 
 |  * trying to reclaim them to minimise the amount of time spent waiting. For | 
 |  * background relaim, we just requeue the inode for the next pass. | 
 |  * | 
 |  * Hence the order of actions after gaining the locks should be: | 
 |  *	bad		=> reclaim | 
 |  *	shutdown	=> unpin and reclaim | 
 |  *	pinned, delwri	=> requeue | 
 |  *	pinned, sync	=> unpin | 
 |  *	stale		=> reclaim | 
 |  *	clean		=> reclaim | 
 |  *	dirty, delwri	=> flush and requeue | 
 |  *	dirty, sync	=> flush, wait and reclaim | 
 |  */ | 
 | STATIC int | 
 | xfs_reclaim_inode( | 
 | 	struct xfs_inode	*ip, | 
 | 	struct xfs_perag	*pag, | 
 | 	int			sync_mode) | 
 | { | 
 | 	int	error = 0; | 
 |  | 
 | 	/* | 
 | 	 * The radix tree lock here protects a thread in xfs_iget from racing | 
 | 	 * with us starting reclaim on the inode.  Once we have the | 
 | 	 * XFS_IRECLAIM flag set it will not touch us. | 
 | 	 */ | 
 | 	spin_lock(&ip->i_flags_lock); | 
 | 	ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE)); | 
 | 	if (__xfs_iflags_test(ip, XFS_IRECLAIM)) { | 
 | 		/* ignore as it is already under reclaim */ | 
 | 		spin_unlock(&ip->i_flags_lock); | 
 | 		write_unlock(&pag->pag_ici_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	__xfs_iflags_set(ip, XFS_IRECLAIM); | 
 | 	spin_unlock(&ip->i_flags_lock); | 
 | 	write_unlock(&pag->pag_ici_lock); | 
 |  | 
 | 	xfs_ilock(ip, XFS_ILOCK_EXCL); | 
 | 	if (!xfs_iflock_nowait(ip)) { | 
 | 		if (!(sync_mode & SYNC_WAIT)) | 
 | 			goto out; | 
 | 		xfs_iflock(ip); | 
 | 	} | 
 |  | 
 | 	if (is_bad_inode(VFS_I(ip))) | 
 | 		goto reclaim; | 
 | 	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 		xfs_iunpin_wait(ip); | 
 | 		goto reclaim; | 
 | 	} | 
 | 	if (xfs_ipincount(ip)) { | 
 | 		if (!(sync_mode & SYNC_WAIT)) { | 
 | 			xfs_ifunlock(ip); | 
 | 			goto out; | 
 | 		} | 
 | 		xfs_iunpin_wait(ip); | 
 | 	} | 
 | 	if (xfs_iflags_test(ip, XFS_ISTALE)) | 
 | 		goto reclaim; | 
 | 	if (xfs_inode_clean(ip)) | 
 | 		goto reclaim; | 
 |  | 
 | 	/* Now we have an inode that needs flushing */ | 
 | 	error = xfs_iflush(ip, sync_mode); | 
 | 	if (sync_mode & SYNC_WAIT) { | 
 | 		xfs_iflock(ip); | 
 | 		goto reclaim; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When we have to flush an inode but don't have SYNC_WAIT set, we | 
 | 	 * flush the inode out using a delwri buffer and wait for the next | 
 | 	 * call into reclaim to find it in a clean state instead of waiting for | 
 | 	 * it now. We also don't return errors here - if the error is transient | 
 | 	 * then the next reclaim pass will flush the inode, and if the error | 
 | 	 * is permanent then the next sync reclaim will reclaim the inode and | 
 | 	 * pass on the error. | 
 | 	 */ | 
 | 	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
 | 		xfs_fs_cmn_err(CE_WARN, ip->i_mount, | 
 | 			"inode 0x%llx background reclaim flush failed with %d", | 
 | 			(long long)ip->i_ino, error); | 
 | 	} | 
 | out: | 
 | 	xfs_iflags_clear(ip, XFS_IRECLAIM); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	/* | 
 | 	 * We could return EAGAIN here to make reclaim rescan the inode tree in | 
 | 	 * a short while. However, this just burns CPU time scanning the tree | 
 | 	 * waiting for IO to complete and xfssyncd never goes back to the idle | 
 | 	 * state. Instead, return 0 to let the next scheduled background reclaim | 
 | 	 * attempt to reclaim the inode again. | 
 | 	 */ | 
 | 	return 0; | 
 |  | 
 | reclaim: | 
 | 	xfs_ifunlock(ip); | 
 | 	xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
 | 	xfs_ireclaim(ip); | 
 | 	return error; | 
 |  | 
 | } | 
 |  | 
 | int | 
 | xfs_reclaim_inodes( | 
 | 	xfs_mount_t	*mp, | 
 | 	int		mode) | 
 | { | 
 | 	return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode, | 
 | 					XFS_ICI_RECLAIM_TAG, 1, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Shrinker infrastructure. | 
 |  * | 
 |  * This is all far more complex than it needs to be. It adds a global list of | 
 |  * mounts because the shrinkers can only call a global context. We need to make | 
 |  * the shrinkers pass a context to avoid the need for global state. | 
 |  */ | 
 | static LIST_HEAD(xfs_mount_list); | 
 | static struct rw_semaphore xfs_mount_list_lock; | 
 |  | 
 | static int | 
 | xfs_reclaim_inode_shrink( | 
 | 	int		nr_to_scan, | 
 | 	gfp_t		gfp_mask) | 
 | { | 
 | 	struct xfs_mount *mp; | 
 | 	struct xfs_perag *pag; | 
 | 	xfs_agnumber_t	ag; | 
 | 	int		reclaimable = 0; | 
 |  | 
 | 	if (nr_to_scan) { | 
 | 		if (!(gfp_mask & __GFP_FS)) | 
 | 			return -1; | 
 |  | 
 | 		down_read(&xfs_mount_list_lock); | 
 | 		list_for_each_entry(mp, &xfs_mount_list, m_mplist) { | 
 | 			xfs_inode_ag_iterator(mp, xfs_reclaim_inode, 0, | 
 | 					XFS_ICI_RECLAIM_TAG, 1, &nr_to_scan); | 
 | 			if (nr_to_scan <= 0) | 
 | 				break; | 
 | 		} | 
 | 		up_read(&xfs_mount_list_lock); | 
 | 	} | 
 |  | 
 | 	down_read(&xfs_mount_list_lock); | 
 | 	list_for_each_entry(mp, &xfs_mount_list, m_mplist) { | 
 | 		for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) { | 
 |  | 
 | 			pag = xfs_perag_get(mp, ag); | 
 | 			if (!pag->pag_ici_init) { | 
 | 				xfs_perag_put(pag); | 
 | 				continue; | 
 | 			} | 
 | 			reclaimable += pag->pag_ici_reclaimable; | 
 | 			xfs_perag_put(pag); | 
 | 		} | 
 | 	} | 
 | 	up_read(&xfs_mount_list_lock); | 
 | 	return reclaimable; | 
 | } | 
 |  | 
 | static struct shrinker xfs_inode_shrinker = { | 
 | 	.shrink = xfs_reclaim_inode_shrink, | 
 | 	.seeks = DEFAULT_SEEKS, | 
 | }; | 
 |  | 
 | void __init | 
 | xfs_inode_shrinker_init(void) | 
 | { | 
 | 	init_rwsem(&xfs_mount_list_lock); | 
 | 	register_shrinker(&xfs_inode_shrinker); | 
 | } | 
 |  | 
 | void | 
 | xfs_inode_shrinker_destroy(void) | 
 | { | 
 | 	ASSERT(list_empty(&xfs_mount_list)); | 
 | 	unregister_shrinker(&xfs_inode_shrinker); | 
 | } | 
 |  | 
 | void | 
 | xfs_inode_shrinker_register( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	down_write(&xfs_mount_list_lock); | 
 | 	list_add_tail(&mp->m_mplist, &xfs_mount_list); | 
 | 	up_write(&xfs_mount_list_lock); | 
 | } | 
 |  | 
 | void | 
 | xfs_inode_shrinker_unregister( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	down_write(&xfs_mount_list_lock); | 
 | 	list_del(&mp->m_mplist); | 
 | 	up_write(&xfs_mount_list_lock); | 
 | } |