|  | /* | 
|  | *  linux/arch/arm/mm/mm-armv.c | 
|  | * | 
|  | *  Copyright (C) 1998-2002 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | *  Page table sludge for ARM v3 and v4 processor architectures. | 
|  | */ | 
|  | #include <linux/config.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/nodemask.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include <asm/mach/map.h> | 
|  |  | 
|  | #define CPOLICY_UNCACHED	0 | 
|  | #define CPOLICY_BUFFERED	1 | 
|  | #define CPOLICY_WRITETHROUGH	2 | 
|  | #define CPOLICY_WRITEBACK	3 | 
|  | #define CPOLICY_WRITEALLOC	4 | 
|  |  | 
|  | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; | 
|  | static unsigned int ecc_mask __initdata = 0; | 
|  | pgprot_t pgprot_kernel; | 
|  |  | 
|  | EXPORT_SYMBOL(pgprot_kernel); | 
|  |  | 
|  | pmd_t *top_pmd; | 
|  |  | 
|  | struct cachepolicy { | 
|  | const char	policy[16]; | 
|  | unsigned int	cr_mask; | 
|  | unsigned int	pmd; | 
|  | unsigned int	pte; | 
|  | }; | 
|  |  | 
|  | static struct cachepolicy cache_policies[] __initdata = { | 
|  | { | 
|  | .policy		= "uncached", | 
|  | .cr_mask	= CR_W|CR_C, | 
|  | .pmd		= PMD_SECT_UNCACHED, | 
|  | .pte		= 0, | 
|  | }, { | 
|  | .policy		= "buffered", | 
|  | .cr_mask	= CR_C, | 
|  | .pmd		= PMD_SECT_BUFFERED, | 
|  | .pte		= PTE_BUFFERABLE, | 
|  | }, { | 
|  | .policy		= "writethrough", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WT, | 
|  | .pte		= PTE_CACHEABLE, | 
|  | }, { | 
|  | .policy		= "writeback", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WB, | 
|  | .pte		= PTE_BUFFERABLE|PTE_CACHEABLE, | 
|  | }, { | 
|  | .policy		= "writealloc", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WBWA, | 
|  | .pte		= PTE_BUFFERABLE|PTE_CACHEABLE, | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * These are useful for identifing cache coherency | 
|  | * problems by allowing the cache or the cache and | 
|  | * writebuffer to be turned off.  (Note: the write | 
|  | * buffer should not be on and the cache off). | 
|  | */ | 
|  | static void __init early_cachepolicy(char **p) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { | 
|  | int len = strlen(cache_policies[i].policy); | 
|  |  | 
|  | if (memcmp(*p, cache_policies[i].policy, len) == 0) { | 
|  | cachepolicy = i; | 
|  | cr_alignment &= ~cache_policies[i].cr_mask; | 
|  | cr_no_alignment &= ~cache_policies[i].cr_mask; | 
|  | *p += len; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == ARRAY_SIZE(cache_policies)) | 
|  | printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); | 
|  | flush_cache_all(); | 
|  | set_cr(cr_alignment); | 
|  | } | 
|  |  | 
|  | static void __init early_nocache(char **__unused) | 
|  | { | 
|  | char *p = "buffered"; | 
|  | printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(&p); | 
|  | } | 
|  |  | 
|  | static void __init early_nowrite(char **__unused) | 
|  | { | 
|  | char *p = "uncached"; | 
|  | printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(&p); | 
|  | } | 
|  |  | 
|  | static void __init early_ecc(char **p) | 
|  | { | 
|  | if (memcmp(*p, "on", 2) == 0) { | 
|  | ecc_mask = PMD_PROTECTION; | 
|  | *p += 2; | 
|  | } else if (memcmp(*p, "off", 3) == 0) { | 
|  | ecc_mask = 0; | 
|  | *p += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | __early_param("nocache", early_nocache); | 
|  | __early_param("nowb", early_nowrite); | 
|  | __early_param("cachepolicy=", early_cachepolicy); | 
|  | __early_param("ecc=", early_ecc); | 
|  |  | 
|  | static int __init noalign_setup(char *__unused) | 
|  | { | 
|  | cr_alignment &= ~CR_A; | 
|  | cr_no_alignment &= ~CR_A; | 
|  | set_cr(cr_alignment); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("noalign", noalign_setup); | 
|  |  | 
|  | #define FIRST_KERNEL_PGD_NR	(FIRST_USER_PGD_NR + USER_PTRS_PER_PGD) | 
|  |  | 
|  | static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt) | 
|  | { | 
|  | return pmd_offset(pgd, virt); | 
|  | } | 
|  |  | 
|  | static inline pmd_t *pmd_off_k(unsigned long virt) | 
|  | { | 
|  | return pmd_off(pgd_offset_k(virt), virt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * need to get a 16k page for level 1 | 
|  | */ | 
|  | pgd_t *get_pgd_slow(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *new_pgd, *init_pgd; | 
|  | pmd_t *new_pmd, *init_pmd; | 
|  | pte_t *new_pte, *init_pte; | 
|  |  | 
|  | new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2); | 
|  | if (!new_pgd) | 
|  | goto no_pgd; | 
|  |  | 
|  | memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t)); | 
|  |  | 
|  | init_pgd = pgd_offset_k(0); | 
|  |  | 
|  | if (!vectors_high()) { | 
|  | /* | 
|  | * This lock is here just to satisfy pmd_alloc and pte_lock | 
|  | */ | 
|  | spin_lock(&mm->page_table_lock); | 
|  |  | 
|  | /* | 
|  | * On ARM, first page must always be allocated since it | 
|  | * contains the machine vectors. | 
|  | */ | 
|  | new_pmd = pmd_alloc(mm, new_pgd, 0); | 
|  | if (!new_pmd) | 
|  | goto no_pmd; | 
|  |  | 
|  | new_pte = pte_alloc_map(mm, new_pmd, 0); | 
|  | if (!new_pte) | 
|  | goto no_pte; | 
|  |  | 
|  | init_pmd = pmd_offset(init_pgd, 0); | 
|  | init_pte = pte_offset_map_nested(init_pmd, 0); | 
|  | set_pte(new_pte, *init_pte); | 
|  | pte_unmap_nested(init_pte); | 
|  | pte_unmap(new_pte); | 
|  |  | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy over the kernel and IO PGD entries | 
|  | */ | 
|  | memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR, | 
|  | (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t)); | 
|  |  | 
|  | clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t)); | 
|  |  | 
|  | return new_pgd; | 
|  |  | 
|  | no_pte: | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | pmd_free(new_pmd); | 
|  | free_pages((unsigned long)new_pgd, 2); | 
|  | return NULL; | 
|  |  | 
|  | no_pmd: | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | free_pages((unsigned long)new_pgd, 2); | 
|  | return NULL; | 
|  |  | 
|  | no_pgd: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void free_pgd_slow(pgd_t *pgd) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | struct page *pte; | 
|  |  | 
|  | if (!pgd) | 
|  | return; | 
|  |  | 
|  | /* pgd is always present and good */ | 
|  | pmd = pmd_off(pgd, 0); | 
|  | if (pmd_none(*pmd)) | 
|  | goto free; | 
|  | if (pmd_bad(*pmd)) { | 
|  | pmd_ERROR(*pmd); | 
|  | pmd_clear(pmd); | 
|  | goto free; | 
|  | } | 
|  |  | 
|  | pte = pmd_page(*pmd); | 
|  | pmd_clear(pmd); | 
|  | dec_page_state(nr_page_table_pages); | 
|  | pte_free(pte); | 
|  | pmd_free(pmd); | 
|  | free: | 
|  | free_pages((unsigned long) pgd, 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a SECTION PGD between VIRT and PHYS in domain | 
|  | * DOMAIN with protection PROT.  This operates on half- | 
|  | * pgdir entry increments. | 
|  | */ | 
|  | static inline void | 
|  | alloc_init_section(unsigned long virt, unsigned long phys, int prot) | 
|  | { | 
|  | pmd_t *pmdp = pmd_off_k(virt); | 
|  |  | 
|  | if (virt & (1 << 20)) | 
|  | pmdp++; | 
|  |  | 
|  | *pmdp = __pmd(phys | prot); | 
|  | flush_pmd_entry(pmdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT | 
|  | */ | 
|  | static inline void | 
|  | alloc_init_supersection(unsigned long virt, unsigned long phys, int prot) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 16; i += 1) { | 
|  | alloc_init_section(virt, phys & SUPERSECTION_MASK, | 
|  | prot | PMD_SECT_SUPER); | 
|  |  | 
|  | virt += (PGDIR_SIZE / 2); | 
|  | phys += (PGDIR_SIZE / 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a PAGE mapping between VIRT and PHYS in domain | 
|  | * DOMAIN with protection PROT.  Note that due to the | 
|  | * way we map the PTEs, we must allocate two PTE_SIZE'd | 
|  | * blocks - one for the Linux pte table, and one for | 
|  | * the hardware pte table. | 
|  | */ | 
|  | static inline void | 
|  | alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmdp = pmd_off_k(virt); | 
|  | pte_t *ptep; | 
|  |  | 
|  | if (pmd_none(*pmdp)) { | 
|  | unsigned long pmdval; | 
|  | ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * | 
|  | sizeof(pte_t)); | 
|  |  | 
|  | pmdval = __pa(ptep) | prot_l1; | 
|  | pmdp[0] = __pmd(pmdval); | 
|  | pmdp[1] = __pmd(pmdval + 256 * sizeof(pte_t)); | 
|  | flush_pmd_entry(pmdp); | 
|  | } | 
|  | ptep = pte_offset_kernel(pmdp, virt); | 
|  |  | 
|  | set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear any PGD mapping.  On a two-level page table system, | 
|  | * the clearance is done by the middle-level functions (pmd) | 
|  | * rather than the top-level (pgd) functions. | 
|  | */ | 
|  | static inline void clear_mapping(unsigned long virt) | 
|  | { | 
|  | pmd_clear(pmd_off_k(virt)); | 
|  | } | 
|  |  | 
|  | struct mem_types { | 
|  | unsigned int	prot_pte; | 
|  | unsigned int	prot_l1; | 
|  | unsigned int	prot_sect; | 
|  | unsigned int	domain; | 
|  | }; | 
|  |  | 
|  | static struct mem_types mem_types[] __initdata = { | 
|  | [MT_DEVICE] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_WRITE, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | | 
|  | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_IO, | 
|  | }, | 
|  | [MT_CACHECLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MINICLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_MINICACHE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_LOW_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_USER, | 
|  | }, | 
|  | [MT_HIGH_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_USER | L_PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_USER, | 
|  | }, | 
|  | [MT_MEMORY] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_ROM] = { | 
|  | .prot_sect = PMD_TYPE_SECT, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */ | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_WRITE, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_SECT_UNCACHED | | 
|  | PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE | | 
|  | PMD_SECT_TEX(1), | 
|  | .domain    = DOMAIN_IO, | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Adjust the PMD section entries according to the CPU in use. | 
|  | */ | 
|  | static void __init build_mem_type_table(void) | 
|  | { | 
|  | struct cachepolicy *cp; | 
|  | unsigned int cr = get_cr(); | 
|  | int cpu_arch = cpu_architecture(); | 
|  | int i; | 
|  |  | 
|  | #if defined(CONFIG_CPU_DCACHE_DISABLE) | 
|  | if (cachepolicy > CPOLICY_BUFFERED) | 
|  | cachepolicy = CPOLICY_BUFFERED; | 
|  | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) | 
|  | if (cachepolicy > CPOLICY_WRITETHROUGH) | 
|  | cachepolicy = CPOLICY_WRITETHROUGH; | 
|  | #endif | 
|  | if (cpu_arch < CPU_ARCH_ARMv5) { | 
|  | if (cachepolicy >= CPOLICY_WRITEALLOC) | 
|  | cachepolicy = CPOLICY_WRITEBACK; | 
|  | ecc_mask = 0; | 
|  | } | 
|  |  | 
|  | if (cpu_arch <= CPU_ARCH_ARMv5) { | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
|  | if (mem_types[i].prot_l1) | 
|  | mem_types[i].prot_l1 |= PMD_BIT4; | 
|  | if (mem_types[i].prot_sect) | 
|  | mem_types[i].prot_sect |= PMD_BIT4; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ARMv6 and above have extended page tables. | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { | 
|  | /* | 
|  | * bit 4 becomes XN which we must clear for the | 
|  | * kernel memory mapping. | 
|  | */ | 
|  | mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4; | 
|  | mem_types[MT_ROM].prot_sect &= ~PMD_BIT4; | 
|  | /* | 
|  | * Mark cache clean areas and XIP ROM read only | 
|  | * from SVC mode and no access from userspace. | 
|  | */ | 
|  | mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | } | 
|  |  | 
|  | cp = &cache_policies[cachepolicy]; | 
|  |  | 
|  | if (cpu_arch >= CPU_ARCH_ARMv5) { | 
|  | mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE; | 
|  | mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE; | 
|  | } else { | 
|  | mem_types[MT_LOW_VECTORS].prot_pte |= cp->pte; | 
|  | mem_types[MT_HIGH_VECTORS].prot_pte |= cp->pte; | 
|  | mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1); | 
|  | } | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; | 
|  | mem_types[MT_ROM].prot_sect |= cp->pmd; | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned long v = pgprot_val(protection_map[i]); | 
|  | v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte; | 
|  | protection_map[i] = __pgprot(v); | 
|  | } | 
|  |  | 
|  | pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | | 
|  | L_PTE_DIRTY | L_PTE_WRITE | | 
|  | L_PTE_EXEC | cp->pte); | 
|  |  | 
|  | switch (cp->pmd) { | 
|  | case PMD_SECT_WT: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; | 
|  | break; | 
|  | case PMD_SECT_WB: | 
|  | case PMD_SECT_WBWA: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; | 
|  | break; | 
|  | } | 
|  | printk("Memory policy: ECC %sabled, Data cache %s\n", | 
|  | ecc_mask ? "en" : "dis", cp->policy); | 
|  | } | 
|  |  | 
|  | #define vectors_base()	(vectors_high() ? 0xffff0000 : 0) | 
|  |  | 
|  | /* | 
|  | * Create the page directory entries and any necessary | 
|  | * page tables for the mapping specified by `md'.  We | 
|  | * are able to cope here with varying sizes and address | 
|  | * offsets, and we take full advantage of sections and | 
|  | * supersections. | 
|  | */ | 
|  | static void __init create_mapping(struct map_desc *md) | 
|  | { | 
|  | unsigned long virt, length; | 
|  | int prot_sect, prot_l1, domain; | 
|  | pgprot_t prot_pte; | 
|  | long off; | 
|  |  | 
|  | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { | 
|  | printk(KERN_WARNING "BUG: not creating mapping for " | 
|  | "0x%08lx at 0x%08lx in user region\n", | 
|  | md->physical, md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((md->type == MT_DEVICE || md->type == MT_ROM) && | 
|  | md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { | 
|  | printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx " | 
|  | "overlaps vmalloc space\n", | 
|  | md->physical, md->virtual); | 
|  | } | 
|  |  | 
|  | domain	  = mem_types[md->type].domain; | 
|  | prot_pte  = __pgprot(mem_types[md->type].prot_pte); | 
|  | prot_l1   = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain); | 
|  | prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain); | 
|  |  | 
|  | virt   = md->virtual; | 
|  | off    = md->physical - virt; | 
|  | length = md->length; | 
|  |  | 
|  | if (mem_types[md->type].prot_l1 == 0 && | 
|  | (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) { | 
|  | printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " | 
|  | "be mapped using pages, ignoring.\n", | 
|  | md->physical, md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) { | 
|  | alloc_init_page(virt, virt + off, prot_l1, prot_pte); | 
|  |  | 
|  | virt   += PAGE_SIZE; | 
|  | length -= PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* N.B.	ARMv6 supersections are only defined to work with domain 0. | 
|  | *	Since domain assignments can in fact be arbitrary, the | 
|  | *	'domain == 0' check below is required to insure that ARMv6 | 
|  | *	supersections are only allocated for domain 0 regardless | 
|  | *	of the actual domain assignments in use. | 
|  | */ | 
|  | if (cpu_architecture() >= CPU_ARCH_ARMv6 && domain == 0) { | 
|  | /* Align to supersection boundary */ | 
|  | while ((virt & ~SUPERSECTION_MASK || (virt + off) & | 
|  | ~SUPERSECTION_MASK) && length >= (PGDIR_SIZE / 2)) { | 
|  | alloc_init_section(virt, virt + off, prot_sect); | 
|  |  | 
|  | virt   += (PGDIR_SIZE / 2); | 
|  | length -= (PGDIR_SIZE / 2); | 
|  | } | 
|  |  | 
|  | while (length >= SUPERSECTION_SIZE) { | 
|  | alloc_init_supersection(virt, virt + off, prot_sect); | 
|  |  | 
|  | virt   += SUPERSECTION_SIZE; | 
|  | length -= SUPERSECTION_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A section mapping covers half a "pgdir" entry. | 
|  | */ | 
|  | while (length >= (PGDIR_SIZE / 2)) { | 
|  | alloc_init_section(virt, virt + off, prot_sect); | 
|  |  | 
|  | virt   += (PGDIR_SIZE / 2); | 
|  | length -= (PGDIR_SIZE / 2); | 
|  | } | 
|  |  | 
|  | while (length >= PAGE_SIZE) { | 
|  | alloc_init_page(virt, virt + off, prot_l1, prot_pte); | 
|  |  | 
|  | virt   += PAGE_SIZE; | 
|  | length -= PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In order to soft-boot, we need to insert a 1:1 mapping in place of | 
|  | * the user-mode pages.  This will then ensure that we have predictable | 
|  | * results when turning the mmu off | 
|  | */ | 
|  | void setup_mm_for_reboot(char mode) | 
|  | { | 
|  | unsigned long pmdval; | 
|  | pgd_t *pgd; | 
|  | pmd_t *pmd; | 
|  | int i; | 
|  | int cpu_arch = cpu_architecture(); | 
|  |  | 
|  | if (current->mm && current->mm->pgd) | 
|  | pgd = current->mm->pgd; | 
|  | else | 
|  | pgd = init_mm.pgd; | 
|  |  | 
|  | for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) { | 
|  | pmdval = (i << PGDIR_SHIFT) | | 
|  | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | | 
|  | PMD_TYPE_SECT; | 
|  | if (cpu_arch <= CPU_ARCH_ARMv5) | 
|  | pmdval |= PMD_BIT4; | 
|  | pmd = pmd_off(pgd, i << PGDIR_SHIFT); | 
|  | pmd[0] = __pmd(pmdval); | 
|  | pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); | 
|  | flush_pmd_entry(pmd); | 
|  | } | 
|  | } | 
|  |  | 
|  | extern void _stext, _etext; | 
|  |  | 
|  | /* | 
|  | * Setup initial mappings.  We use the page we allocated for zero page to hold | 
|  | * the mappings, which will get overwritten by the vectors in traps_init(). | 
|  | * The mappings must be in virtual address order. | 
|  | */ | 
|  | void __init memtable_init(struct meminfo *mi) | 
|  | { | 
|  | struct map_desc *init_maps, *p, *q; | 
|  | unsigned long address = 0; | 
|  | int i; | 
|  |  | 
|  | build_mem_type_table(); | 
|  |  | 
|  | init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE); | 
|  |  | 
|  | #ifdef CONFIG_XIP_KERNEL | 
|  | p->physical   = CONFIG_XIP_PHYS_ADDR & PMD_MASK; | 
|  | p->virtual    = (unsigned long)&_stext & PMD_MASK; | 
|  | p->length     = ((unsigned long)&_etext - p->virtual + ~PMD_MASK) & PMD_MASK; | 
|  | p->type       = MT_ROM; | 
|  | p ++; | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < mi->nr_banks; i++) { | 
|  | if (mi->bank[i].size == 0) | 
|  | continue; | 
|  |  | 
|  | p->physical   = mi->bank[i].start; | 
|  | p->virtual    = __phys_to_virt(p->physical); | 
|  | p->length     = mi->bank[i].size; | 
|  | p->type       = MT_MEMORY; | 
|  | p ++; | 
|  | } | 
|  |  | 
|  | #ifdef FLUSH_BASE | 
|  | p->physical   = FLUSH_BASE_PHYS; | 
|  | p->virtual    = FLUSH_BASE; | 
|  | p->length     = PGDIR_SIZE; | 
|  | p->type       = MT_CACHECLEAN; | 
|  | p ++; | 
|  | #endif | 
|  |  | 
|  | #ifdef FLUSH_BASE_MINICACHE | 
|  | p->physical   = FLUSH_BASE_PHYS + PGDIR_SIZE; | 
|  | p->virtual    = FLUSH_BASE_MINICACHE; | 
|  | p->length     = PGDIR_SIZE; | 
|  | p->type       = MT_MINICLEAN; | 
|  | p ++; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Go through the initial mappings, but clear out any | 
|  | * pgdir entries that are not in the description. | 
|  | */ | 
|  | q = init_maps; | 
|  | do { | 
|  | if (address < q->virtual || q == p) { | 
|  | clear_mapping(address); | 
|  | address += PGDIR_SIZE; | 
|  | } else { | 
|  | create_mapping(q); | 
|  |  | 
|  | address = q->virtual + q->length; | 
|  | address = (address + PGDIR_SIZE - 1) & PGDIR_MASK; | 
|  |  | 
|  | q ++; | 
|  | } | 
|  | } while (address != 0); | 
|  |  | 
|  | /* | 
|  | * Create a mapping for the machine vectors at the high-vectors | 
|  | * location (0xffff0000).  If we aren't using high-vectors, also | 
|  | * create a mapping at the low-vectors virtual address. | 
|  | */ | 
|  | init_maps->physical   = virt_to_phys(init_maps); | 
|  | init_maps->virtual    = 0xffff0000; | 
|  | init_maps->length     = PAGE_SIZE; | 
|  | init_maps->type       = MT_HIGH_VECTORS; | 
|  | create_mapping(init_maps); | 
|  |  | 
|  | if (!vectors_high()) { | 
|  | init_maps->virtual = 0; | 
|  | init_maps->type = MT_LOW_VECTORS; | 
|  | create_mapping(init_maps); | 
|  | } | 
|  |  | 
|  | flush_cache_all(); | 
|  | flush_tlb_all(); | 
|  |  | 
|  | top_pmd = pmd_off_k(0xffff0000); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the architecture specific mappings | 
|  | */ | 
|  | void __init iotable_init(struct map_desc *io_desc, int nr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | create_mapping(io_desc + i); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) | 
|  | { | 
|  | struct page *start_pg, *end_pg; | 
|  | unsigned long pg, pgend; | 
|  |  | 
|  | /* | 
|  | * Convert start_pfn/end_pfn to a struct page pointer. | 
|  | */ | 
|  | start_pg = pfn_to_page(start_pfn); | 
|  | end_pg = pfn_to_page(end_pfn); | 
|  |  | 
|  | /* | 
|  | * Convert to physical addresses, and | 
|  | * round start upwards and end downwards. | 
|  | */ | 
|  | pg = PAGE_ALIGN(__pa(start_pg)); | 
|  | pgend = __pa(end_pg) & PAGE_MASK; | 
|  |  | 
|  | /* | 
|  | * If there are free pages between these, | 
|  | * free the section of the memmap array. | 
|  | */ | 
|  | if (pg < pgend) | 
|  | free_bootmem_node(NODE_DATA(node), pg, pgend - pg); | 
|  | } | 
|  |  | 
|  | static inline void free_unused_memmap_node(int node, struct meminfo *mi) | 
|  | { | 
|  | unsigned long bank_start, prev_bank_end = 0; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * [FIXME] This relies on each bank being in address order.  This | 
|  | * may not be the case, especially if the user has provided the | 
|  | * information on the command line. | 
|  | */ | 
|  | for (i = 0; i < mi->nr_banks; i++) { | 
|  | if (mi->bank[i].size == 0 || mi->bank[i].node != node) | 
|  | continue; | 
|  |  | 
|  | bank_start = mi->bank[i].start >> PAGE_SHIFT; | 
|  | if (bank_start < prev_bank_end) { | 
|  | printk(KERN_ERR "MEM: unordered memory banks.  " | 
|  | "Not freeing memmap.\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we had a previous bank, and there is a space | 
|  | * between the current bank and the previous, free it. | 
|  | */ | 
|  | if (prev_bank_end && prev_bank_end != bank_start) | 
|  | free_memmap(node, prev_bank_end, bank_start); | 
|  |  | 
|  | prev_bank_end = PAGE_ALIGN(mi->bank[i].start + | 
|  | mi->bank[i].size) >> PAGE_SHIFT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The mem_map array can get very big.  Free | 
|  | * the unused area of the memory map. | 
|  | */ | 
|  | void __init create_memmap_holes(struct meminfo *mi) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) | 
|  | free_unused_memmap_node(node, mi); | 
|  | } |