|  | /* | 
|  | *  linux/arch/arm/vfp/vfpmodule.c | 
|  | * | 
|  | *  Copyright (C) 2004 ARM Limited. | 
|  | *  Written by Deep Blue Solutions Limited. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/config.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <asm/vfp.h> | 
|  |  | 
|  | #include "vfpinstr.h" | 
|  | #include "vfp.h" | 
|  |  | 
|  | /* | 
|  | * Our undef handlers (in entry.S) | 
|  | */ | 
|  | void vfp_testing_entry(void); | 
|  | void vfp_support_entry(void); | 
|  |  | 
|  | void (*vfp_vector)(void) = vfp_testing_entry; | 
|  | union vfp_state *last_VFP_context; | 
|  |  | 
|  | /* | 
|  | * Dual-use variable. | 
|  | * Used in startup: set to non-zero if VFP checks fail | 
|  | * After startup, holds VFP architecture | 
|  | */ | 
|  | unsigned int VFP_arch; | 
|  |  | 
|  | /* | 
|  | * Per-thread VFP initialisation. | 
|  | */ | 
|  | void vfp_flush_thread(union vfp_state *vfp) | 
|  | { | 
|  | memset(vfp, 0, sizeof(union vfp_state)); | 
|  |  | 
|  | vfp->hard.fpexc = FPEXC_ENABLE; | 
|  | vfp->hard.fpscr = FPSCR_ROUND_NEAREST; | 
|  |  | 
|  | /* | 
|  | * Disable VFP to ensure we initialise it first. | 
|  | */ | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE); | 
|  |  | 
|  | /* | 
|  | * Ensure we don't try to overwrite our newly initialised | 
|  | * state information on the first fault. | 
|  | */ | 
|  | if (last_VFP_context == vfp) | 
|  | last_VFP_context = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per-thread VFP cleanup. | 
|  | */ | 
|  | void vfp_release_thread(union vfp_state *vfp) | 
|  | { | 
|  | if (last_VFP_context == vfp) | 
|  | last_VFP_context = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Raise a SIGFPE for the current process. | 
|  | * sicode describes the signal being raised. | 
|  | */ | 
|  | void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | memset(&info, 0, sizeof(info)); | 
|  |  | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_code = sicode; | 
|  | info.si_addr = (void *)(instruction_pointer(regs) - 4); | 
|  |  | 
|  | /* | 
|  | * This is the same as NWFPE, because it's not clear what | 
|  | * this is used for | 
|  | */ | 
|  | current->thread.error_code = 0; | 
|  | current->thread.trap_no = 6; | 
|  |  | 
|  | force_sig_info(SIGFPE, &info, current); | 
|  | } | 
|  |  | 
|  | static void vfp_panic(char *reason) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk(KERN_ERR "VFP: Error: %s\n", reason); | 
|  | printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n", | 
|  | fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST)); | 
|  | for (i = 0; i < 32; i += 2) | 
|  | printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n", | 
|  | i, vfp_get_float(i), i+1, vfp_get_float(i+1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process bitmask of exception conditions. | 
|  | */ | 
|  | static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) | 
|  | { | 
|  | int si_code = 0; | 
|  |  | 
|  | pr_debug("VFP: raising exceptions %08x\n", exceptions); | 
|  |  | 
|  | if (exceptions == (u32)-1) { | 
|  | vfp_panic("unhandled bounce"); | 
|  | vfp_raise_sigfpe(0, regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If any of the status flags are set, update the FPSCR. | 
|  | * Comparison instructions always return at least one of | 
|  | * these flags set. | 
|  | */ | 
|  | if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) | 
|  | fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); | 
|  |  | 
|  | fpscr |= exceptions; | 
|  |  | 
|  | fmxr(FPSCR, fpscr); | 
|  |  | 
|  | #define RAISE(stat,en,sig)				\ | 
|  | if (exceptions & stat && fpscr & en)		\ | 
|  | si_code = sig; | 
|  |  | 
|  | /* | 
|  | * These are arranged in priority order, least to highest. | 
|  | */ | 
|  | RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES); | 
|  | RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND); | 
|  | RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); | 
|  | RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); | 
|  |  | 
|  | if (si_code) | 
|  | vfp_raise_sigfpe(si_code, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emulate a VFP instruction. | 
|  | */ | 
|  | static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) | 
|  | { | 
|  | u32 exceptions = (u32)-1; | 
|  |  | 
|  | pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr); | 
|  |  | 
|  | if (INST_CPRTDO(inst)) { | 
|  | if (!INST_CPRT(inst)) { | 
|  | /* | 
|  | * CPDO | 
|  | */ | 
|  | if (vfp_single(inst)) { | 
|  | exceptions = vfp_single_cpdo(inst, fpscr); | 
|  | } else { | 
|  | exceptions = vfp_double_cpdo(inst, fpscr); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * A CPRT instruction can not appear in FPINST2, nor | 
|  | * can it cause an exception.  Therefore, we do not | 
|  | * have to emulate it. | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * A CPDT instruction can not appear in FPINST2, nor can | 
|  | * it cause an exception.  Therefore, we do not have to | 
|  | * emulate it. | 
|  | */ | 
|  | } | 
|  | return exceptions; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Package up a bounce condition. | 
|  | */ | 
|  | void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) | 
|  | { | 
|  | u32 fpscr, orig_fpscr, exceptions, inst; | 
|  |  | 
|  | pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); | 
|  |  | 
|  | /* | 
|  | * Enable access to the VFP so we can handle the bounce. | 
|  | */ | 
|  | fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC)); | 
|  |  | 
|  | orig_fpscr = fpscr = fmrx(FPSCR); | 
|  |  | 
|  | /* | 
|  | * If we are running with inexact exceptions enabled, we need to | 
|  | * emulate the trigger instruction.  Note that as we're emulating | 
|  | * the trigger instruction, we need to increment PC. | 
|  | */ | 
|  | if (fpscr & FPSCR_IXE) { | 
|  | regs->ARM_pc += 4; | 
|  | goto emulate; | 
|  | } | 
|  |  | 
|  | barrier(); | 
|  |  | 
|  | /* | 
|  | * Modify fpscr to indicate the number of iterations remaining | 
|  | */ | 
|  | if (fpexc & FPEXC_EXCEPTION) { | 
|  | u32 len; | 
|  |  | 
|  | len = fpexc + (1 << FPEXC_LENGTH_BIT); | 
|  |  | 
|  | fpscr &= ~FPSCR_LENGTH_MASK; | 
|  | fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the first FP instruction.  We used to take note of the | 
|  | * FPEXC bounce reason, but this appears to be unreliable. | 
|  | * Emulate the bounced instruction instead. | 
|  | */ | 
|  | inst = fmrx(FPINST); | 
|  | exceptions = vfp_emulate_instruction(inst, fpscr, regs); | 
|  | if (exceptions) | 
|  | vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs); | 
|  |  | 
|  | /* | 
|  | * If there isn't a second FP instruction, exit now. | 
|  | */ | 
|  | if (!(fpexc & FPEXC_FPV2)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The barrier() here prevents fpinst2 being read | 
|  | * before the condition above. | 
|  | */ | 
|  | barrier(); | 
|  | trigger = fmrx(FPINST2); | 
|  | fpscr = fmrx(FPSCR); | 
|  |  | 
|  | emulate: | 
|  | exceptions = vfp_emulate_instruction(trigger, fpscr, regs); | 
|  | if (exceptions) | 
|  | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * VFP support code initialisation. | 
|  | */ | 
|  | static int __init vfp_init(void) | 
|  | { | 
|  | unsigned int vfpsid; | 
|  |  | 
|  | /* | 
|  | * First check that there is a VFP that we can use. | 
|  | * The handler is already setup to just log calls, so | 
|  | * we just need to read the VFPSID register. | 
|  | */ | 
|  | vfpsid = fmrx(FPSID); | 
|  |  | 
|  | printk(KERN_INFO "VFP support v0.3: "); | 
|  | if (VFP_arch) { | 
|  | printk("not present\n"); | 
|  | } else if (vfpsid & FPSID_NODOUBLE) { | 
|  | printk("no double precision support\n"); | 
|  | } else { | 
|  | VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */ | 
|  | printk("implementor %02x architecture %d part %02x variant %x rev %x\n", | 
|  | (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT, | 
|  | (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT, | 
|  | (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT, | 
|  | (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT, | 
|  | (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT); | 
|  | vfp_vector = vfp_support_entry; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(vfp_init); |