|  | /* | 
|  | * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation | 
|  | * August 2002: added remote node KVA remap - Martin J. Bligh | 
|  | * | 
|  | * Copyright (C) 2002, IBM Corp. | 
|  | * | 
|  | * All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | * NON INFRINGEMENT.  See the GNU General Public License for more | 
|  | * details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <asm/e820.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/mmzone.h> | 
|  | #include <bios_ebda.h> | 
|  |  | 
|  | struct pglist_data *node_data[MAX_NUMNODES]; | 
|  | bootmem_data_t node0_bdata; | 
|  |  | 
|  | /* | 
|  | * numa interface - we expect the numa architecture specfic code to have | 
|  | *                  populated the following initialisation. | 
|  | * | 
|  | * 1) node_online_map  - the map of all nodes configured (online) in the system | 
|  | * 2) physnode_map     - the mapping between a pfn and owning node | 
|  | * 3) node_start_pfn   - the starting page frame number for a node | 
|  | * 3) node_end_pfn     - the ending page fram number for a node | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * physnode_map keeps track of the physical memory layout of a generic | 
|  | * numa node on a 256Mb break (each element of the array will | 
|  | * represent 256Mb of memory and will be marked by the node id.  so, | 
|  | * if the first gig is on node 0, and the second gig is on node 1 | 
|  | * physnode_map will contain: | 
|  | * | 
|  | *     physnode_map[0-3] = 0; | 
|  | *     physnode_map[4-7] = 1; | 
|  | *     physnode_map[8- ] = -1; | 
|  | */ | 
|  | s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1}; | 
|  |  | 
|  | void memory_present(int nid, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n", | 
|  | nid, start, end); | 
|  | printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid); | 
|  | printk(KERN_DEBUG "  "); | 
|  | for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { | 
|  | physnode_map[pfn / PAGES_PER_ELEMENT] = nid; | 
|  | printk("%ld ", pfn); | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long nr_pages = end_pfn - start_pfn; | 
|  |  | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | return (nr_pages + 1) * sizeof(struct page); | 
|  | } | 
|  |  | 
|  | unsigned long node_start_pfn[MAX_NUMNODES]; | 
|  | unsigned long node_end_pfn[MAX_NUMNODES]; | 
|  |  | 
|  | extern unsigned long find_max_low_pfn(void); | 
|  | extern void find_max_pfn(void); | 
|  | extern void one_highpage_init(struct page *, int, int); | 
|  |  | 
|  | extern struct e820map e820; | 
|  | extern unsigned long init_pg_tables_end; | 
|  | extern unsigned long highend_pfn, highstart_pfn; | 
|  | extern unsigned long max_low_pfn; | 
|  | extern unsigned long totalram_pages; | 
|  | extern unsigned long totalhigh_pages; | 
|  |  | 
|  | #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) | 
|  |  | 
|  | unsigned long node_remap_start_pfn[MAX_NUMNODES]; | 
|  | unsigned long node_remap_size[MAX_NUMNODES]; | 
|  | unsigned long node_remap_offset[MAX_NUMNODES]; | 
|  | void *node_remap_start_vaddr[MAX_NUMNODES]; | 
|  | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); | 
|  |  | 
|  | /* | 
|  | * FLAT - support for basic PC memory model with discontig enabled, essentially | 
|  | *        a single node with all available processors in it with a flat | 
|  | *        memory map. | 
|  | */ | 
|  | int __init get_memcfg_numa_flat(void) | 
|  | { | 
|  | printk("NUMA - single node, flat memory mode\n"); | 
|  |  | 
|  | /* Run the memory configuration and find the top of memory. */ | 
|  | find_max_pfn(); | 
|  | node_start_pfn[0] = 0; | 
|  | node_end_pfn[0] = max_pfn; | 
|  | memory_present(0, 0, max_pfn); | 
|  |  | 
|  | /* Indicate there is one node available. */ | 
|  | nodes_clear(node_online_map); | 
|  | node_set_online(0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the highest page frame number we have available for the node | 
|  | */ | 
|  | static void __init find_max_pfn_node(int nid) | 
|  | { | 
|  | if (node_end_pfn[nid] > max_pfn) | 
|  | node_end_pfn[nid] = max_pfn; | 
|  | /* | 
|  | * if a user has given mem=XXXX, then we need to make sure | 
|  | * that the node _starts_ before that, too, not just ends | 
|  | */ | 
|  | if (node_start_pfn[nid] > max_pfn) | 
|  | node_start_pfn[nid] = max_pfn; | 
|  | if (node_start_pfn[nid] > node_end_pfn[nid]) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate memory for the pg_data_t for this node via a crude pre-bootmem | 
|  | * method.  For node zero take this from the bottom of memory, for | 
|  | * subsequent nodes place them at node_remap_start_vaddr which contains | 
|  | * node local data in physically node local memory.  See setup_memory() | 
|  | * for details. | 
|  | */ | 
|  | static void __init allocate_pgdat(int nid) | 
|  | { | 
|  | if (nid && node_has_online_mem(nid)) | 
|  | NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; | 
|  | else { | 
|  | NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT)); | 
|  | min_low_pfn += PFN_UP(sizeof(pg_data_t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init remap_numa_kva(void) | 
|  | { | 
|  | void *vaddr; | 
|  | unsigned long pfn; | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | if (node == 0) | 
|  | continue; | 
|  | for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { | 
|  | vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); | 
|  | set_pmd_pfn((ulong) vaddr, | 
|  | node_remap_start_pfn[node] + pfn, | 
|  | PAGE_KERNEL_LARGE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long calculate_numa_remap_pages(void) | 
|  | { | 
|  | int nid; | 
|  | unsigned long size, reserve_pages = 0; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | if (nid == 0) | 
|  | continue; | 
|  | if (!node_remap_size[nid]) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * The acpi/srat node info can show hot-add memroy zones | 
|  | * where memory could be added but not currently present. | 
|  | */ | 
|  | if (node_start_pfn[nid] > max_pfn) | 
|  | continue; | 
|  | if (node_end_pfn[nid] > max_pfn) | 
|  | node_end_pfn[nid] = max_pfn; | 
|  |  | 
|  | /* ensure the remap includes space for the pgdat. */ | 
|  | size = node_remap_size[nid] + sizeof(pg_data_t); | 
|  |  | 
|  | /* convert size to large (pmd size) pages, rounding up */ | 
|  | size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; | 
|  | /* now the roundup is correct, convert to PAGE_SIZE pages */ | 
|  | size = size * PTRS_PER_PTE; | 
|  | printk("Reserving %ld pages of KVA for lmem_map of node %d\n", | 
|  | size, nid); | 
|  | node_remap_size[nid] = size; | 
|  | reserve_pages += size; | 
|  | node_remap_offset[nid] = reserve_pages; | 
|  | printk("Shrinking node %d from %ld pages to %ld pages\n", | 
|  | nid, node_end_pfn[nid], node_end_pfn[nid] - size); | 
|  | node_end_pfn[nid] -= size; | 
|  | node_remap_start_pfn[nid] = node_end_pfn[nid]; | 
|  | } | 
|  | printk("Reserving total of %ld pages for numa KVA remap\n", | 
|  | reserve_pages); | 
|  | return reserve_pages; | 
|  | } | 
|  |  | 
|  | extern void setup_bootmem_allocator(void); | 
|  | unsigned long __init setup_memory(void) | 
|  | { | 
|  | int nid; | 
|  | unsigned long system_start_pfn, system_max_low_pfn; | 
|  | unsigned long reserve_pages; | 
|  |  | 
|  | /* | 
|  | * When mapping a NUMA machine we allocate the node_mem_map arrays | 
|  | * from node local memory.  They are then mapped directly into KVA | 
|  | * between zone normal and vmalloc space.  Calculate the size of | 
|  | * this space and use it to adjust the boundry between ZONE_NORMAL | 
|  | * and ZONE_HIGHMEM. | 
|  | */ | 
|  | find_max_pfn(); | 
|  | get_memcfg_numa(); | 
|  |  | 
|  | reserve_pages = calculate_numa_remap_pages(); | 
|  |  | 
|  | /* partially used pages are not usable - thus round upwards */ | 
|  | system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end); | 
|  |  | 
|  | system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages; | 
|  | printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n", | 
|  | reserve_pages, max_low_pfn + reserve_pages); | 
|  | printk("max_pfn = %ld\n", max_pfn); | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | highstart_pfn = highend_pfn = max_pfn; | 
|  | if (max_pfn > system_max_low_pfn) | 
|  | highstart_pfn = system_max_low_pfn; | 
|  | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | 
|  | pages_to_mb(highend_pfn - highstart_pfn)); | 
|  | #endif | 
|  | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | 
|  | pages_to_mb(system_max_low_pfn)); | 
|  | printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", | 
|  | min_low_pfn, max_low_pfn, highstart_pfn); | 
|  |  | 
|  | printk("Low memory ends at vaddr %08lx\n", | 
|  | (ulong) pfn_to_kaddr(max_low_pfn)); | 
|  | for_each_online_node(nid) { | 
|  | node_remap_start_vaddr[nid] = pfn_to_kaddr( | 
|  | (highstart_pfn + reserve_pages) - node_remap_offset[nid]); | 
|  | allocate_pgdat(nid); | 
|  | printk ("node %d will remap to vaddr %08lx - %08lx\n", nid, | 
|  | (ulong) node_remap_start_vaddr[nid], | 
|  | (ulong) pfn_to_kaddr(highstart_pfn + reserve_pages | 
|  | - node_remap_offset[nid] + node_remap_size[nid])); | 
|  | } | 
|  | printk("High memory starts at vaddr %08lx\n", | 
|  | (ulong) pfn_to_kaddr(highstart_pfn)); | 
|  | vmalloc_earlyreserve = reserve_pages * PAGE_SIZE; | 
|  | for_each_online_node(nid) | 
|  | find_max_pfn_node(nid); | 
|  |  | 
|  | memset(NODE_DATA(0), 0, sizeof(struct pglist_data)); | 
|  | NODE_DATA(0)->bdata = &node0_bdata; | 
|  | setup_bootmem_allocator(); | 
|  | return max_low_pfn; | 
|  | } | 
|  |  | 
|  | void __init zone_sizes_init(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | /* | 
|  | * Insert nodes into pgdat_list backward so they appear in order. | 
|  | * Clobber node 0's links and NULL out pgdat_list before starting. | 
|  | */ | 
|  | pgdat_list = NULL; | 
|  | for (nid = MAX_NUMNODES - 1; nid >= 0; nid--) { | 
|  | if (!node_online(nid)) | 
|  | continue; | 
|  | NODE_DATA(nid)->pgdat_next = pgdat_list; | 
|  | pgdat_list = NODE_DATA(nid); | 
|  | } | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; | 
|  | unsigned long *zholes_size; | 
|  | unsigned int max_dma; | 
|  |  | 
|  | unsigned long low = max_low_pfn; | 
|  | unsigned long start = node_start_pfn[nid]; | 
|  | unsigned long high = node_end_pfn[nid]; | 
|  |  | 
|  | max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
|  |  | 
|  | if (node_has_online_mem(nid)){ | 
|  | if (start > low) { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | BUG_ON(start > high); | 
|  | zones_size[ZONE_HIGHMEM] = high - start; | 
|  | #endif | 
|  | } else { | 
|  | if (low < max_dma) | 
|  | zones_size[ZONE_DMA] = low; | 
|  | else { | 
|  | BUG_ON(max_dma > low); | 
|  | BUG_ON(low > high); | 
|  | zones_size[ZONE_DMA] = max_dma; | 
|  | zones_size[ZONE_NORMAL] = low - max_dma; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | zones_size[ZONE_HIGHMEM] = high - low; | 
|  | #endif | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | zholes_size = get_zholes_size(nid); | 
|  | /* | 
|  | * We let the lmem_map for node 0 be allocated from the | 
|  | * normal bootmem allocator, but other nodes come from the | 
|  | * remapped KVA area - mbligh | 
|  | */ | 
|  | if (!nid) | 
|  | free_area_init_node(nid, NODE_DATA(nid), | 
|  | zones_size, start, zholes_size); | 
|  | else { | 
|  | unsigned long lmem_map; | 
|  | lmem_map = (unsigned long)node_remap_start_vaddr[nid]; | 
|  | lmem_map += sizeof(pg_data_t) + PAGE_SIZE - 1; | 
|  | lmem_map &= PAGE_MASK; | 
|  | NODE_DATA(nid)->node_mem_map = (struct page *)lmem_map; | 
|  | free_area_init_node(nid, NODE_DATA(nid), zones_size, | 
|  | start, zholes_size); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | void __init set_highmem_pages_init(int bad_ppro) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | struct zone *zone; | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | unsigned long node_pfn, node_high_size, zone_start_pfn; | 
|  | struct page * zone_mem_map; | 
|  |  | 
|  | if (!is_highmem(zone)) | 
|  | continue; | 
|  |  | 
|  | printk("Initializing %s for node %d\n", zone->name, | 
|  | zone->zone_pgdat->node_id); | 
|  |  | 
|  | node_high_size = zone->spanned_pages; | 
|  | zone_mem_map = zone->zone_mem_map; | 
|  | zone_start_pfn = zone->zone_start_pfn; | 
|  |  | 
|  | for (node_pfn = 0; node_pfn < node_high_size; node_pfn++) { | 
|  | one_highpage_init((struct page *)(zone_mem_map + node_pfn), | 
|  | zone_start_pfn + node_pfn, bad_ppro); | 
|  | } | 
|  | } | 
|  | totalram_pages += totalhigh_pages; | 
|  | #endif | 
|  | } |