|  | /* | 
|  | ** ----------------------------------------------------------------------------- | 
|  | ** | 
|  | **  Perle Specialix driver for Linux | 
|  | **  Ported from existing RIO Driver for SCO sources. | 
|  | * | 
|  | *  (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or modify | 
|  | *      it under the terms of the GNU General Public License as published by | 
|  | *      the Free Software Foundation; either version 2 of the License, or | 
|  | *      (at your option) any later version. | 
|  | * | 
|  | *      This program is distributed in the hope that it will be useful, | 
|  | *      but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *      GNU General Public License for more details. | 
|  | * | 
|  | *      You should have received a copy of the GNU General Public License | 
|  | *      along with this program; if not, write to the Free Software | 
|  | *      Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | ** | 
|  | **	Module		: rioboot.c | 
|  | **	SID		: 1.3 | 
|  | **	Last Modified	: 11/6/98 10:33:36 | 
|  | **	Retrieved	: 11/6/98 10:33:48 | 
|  | ** | 
|  | **  ident @(#)rioboot.c	1.3 | 
|  | ** | 
|  | ** ----------------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | #ifdef SCCS_LABELS | 
|  | static char *_rioboot_c_sccs_ = "@(#)rioboot.c	1.3"; | 
|  | #endif | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/string.h> | 
|  | #include <asm/semaphore.h> | 
|  |  | 
|  |  | 
|  | #include <linux/termios.h> | 
|  | #include <linux/serial.h> | 
|  |  | 
|  | #include <linux/generic_serial.h> | 
|  |  | 
|  |  | 
|  |  | 
|  | #include "linux_compat.h" | 
|  | #include "rio_linux.h" | 
|  | #include "typdef.h" | 
|  | #include "pkt.h" | 
|  | #include "daemon.h" | 
|  | #include "rio.h" | 
|  | #include "riospace.h" | 
|  | #include "top.h" | 
|  | #include "cmdpkt.h" | 
|  | #include "map.h" | 
|  | #include "riotypes.h" | 
|  | #include "rup.h" | 
|  | #include "port.h" | 
|  | #include "riodrvr.h" | 
|  | #include "rioinfo.h" | 
|  | #include "func.h" | 
|  | #include "errors.h" | 
|  | #include "pci.h" | 
|  |  | 
|  | #include "parmmap.h" | 
|  | #include "unixrup.h" | 
|  | #include "board.h" | 
|  | #include "host.h" | 
|  | #include "error.h" | 
|  | #include "phb.h" | 
|  | #include "link.h" | 
|  | #include "cmdblk.h" | 
|  | #include "route.h" | 
|  |  | 
|  | static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP ); | 
|  |  | 
|  | static uchar | 
|  | RIOAtVec2Ctrl[] = | 
|  | { | 
|  | /* 0 */  INTERRUPT_DISABLE, | 
|  | /* 1 */  INTERRUPT_DISABLE, | 
|  | /* 2 */  INTERRUPT_DISABLE, | 
|  | /* 3 */  INTERRUPT_DISABLE, | 
|  | /* 4 */  INTERRUPT_DISABLE, | 
|  | /* 5 */  INTERRUPT_DISABLE, | 
|  | /* 6 */  INTERRUPT_DISABLE, | 
|  | /* 7 */  INTERRUPT_DISABLE, | 
|  | /* 8 */  INTERRUPT_DISABLE, | 
|  | /* 9 */  IRQ_9|INTERRUPT_ENABLE, | 
|  | /* 10 */ INTERRUPT_DISABLE, | 
|  | /* 11 */ IRQ_11|INTERRUPT_ENABLE, | 
|  | /* 12 */ IRQ_12|INTERRUPT_ENABLE, | 
|  | /* 13 */ INTERRUPT_DISABLE, | 
|  | /* 14 */ INTERRUPT_DISABLE, | 
|  | /* 15 */ IRQ_15|INTERRUPT_ENABLE | 
|  | }; | 
|  |  | 
|  | /* | 
|  | ** Load in the RTA boot code. | 
|  | */ | 
|  | int | 
|  | RIOBootCodeRTA(p, rbp) | 
|  | struct rio_info *	p; | 
|  | struct DownLoad *	rbp; | 
|  | { | 
|  | int offset; | 
|  |  | 
|  | func_enter (); | 
|  |  | 
|  | /* Linux doesn't allow you to disable interrupts during a | 
|  | "copyin". (Crash when a pagefault occurs). */ | 
|  | /* disable(oldspl); */ | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Data at user address 0x%x\n",(int)rbp->DataP); | 
|  |  | 
|  | /* | 
|  | ** Check that we have set asside enough memory for this | 
|  | */ | 
|  | if ( rbp->Count > SIXTY_FOUR_K ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n"); | 
|  | p->RIOError.Error = HOST_FILE_TOO_LARGE; | 
|  | /* restore(oldspl); */ | 
|  | func_exit (); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if ( p->RIOBooting ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n"); | 
|  | p->RIOError.Error = BOOT_IN_PROGRESS; | 
|  | /* restore(oldspl); */ | 
|  | func_exit (); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary, | 
|  | ** so calculate how far we have to move the data up the buffer | 
|  | ** to achieve this. | 
|  | */ | 
|  | offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % | 
|  | RTA_BOOT_DATA_SIZE; | 
|  |  | 
|  | /* | 
|  | ** Be clean, and clear the 'unused' portion of the boot buffer, | 
|  | ** because it will (eventually) be part of the Rta run time environment | 
|  | ** and so should be zeroed. | 
|  | */ | 
|  | bzero( (caddr_t)p->RIOBootPackets, offset ); | 
|  |  | 
|  | /* | 
|  | ** Copy the data from user space. | 
|  | */ | 
|  |  | 
|  | if ( copyin((int)rbp->DataP,((caddr_t)(p->RIOBootPackets))+offset, | 
|  | rbp->Count) ==COPYFAIL ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Bad data copy from user space\n"); | 
|  | p->RIOError.Error = COPYIN_FAILED; | 
|  | /* restore(oldspl); */ | 
|  | func_exit (); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Make sure that our copy of the size includes that offset we discussed | 
|  | ** earlier. | 
|  | */ | 
|  | p->RIONumBootPkts = (rbp->Count+offset)/RTA_BOOT_DATA_SIZE; | 
|  | p->RIOBootCount   = rbp->Count; | 
|  |  | 
|  | /* restore(oldspl); */ | 
|  | func_exit(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void rio_start_card_running (struct Host * HostP) | 
|  | { | 
|  | func_enter (); | 
|  |  | 
|  | switch ( HostP->Type ) { | 
|  | case RIO_AT: | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Start ISA card running\n"); | 
|  | WBYTE(HostP->Control, | 
|  | BOOT_FROM_RAM | EXTERNAL_BUS_ON | 
|  | | HostP->Mode | 
|  | | RIOAtVec2Ctrl[HostP->Ivec & 0xF] ); | 
|  | break; | 
|  |  | 
|  | #ifdef FUTURE_RELEASE | 
|  | case RIO_MCA: | 
|  | /* | 
|  | ** MCA handles IRQ vectors differently, so we don't write | 
|  | ** them to this register. | 
|  | */ | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Start MCA card running\n"); | 
|  | WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode); | 
|  | break; | 
|  |  | 
|  | case RIO_EISA: | 
|  | /* | 
|  | ** EISA is totally different and expects OUTBZs to turn it on. | 
|  | */ | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Start EISA card running\n"); | 
|  | OUTBZ( HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM ); | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case RIO_PCI: | 
|  | /* | 
|  | ** PCI is much the same as MCA. Everything is once again memory | 
|  | ** mapped, so we are writing to memory registers instead of io | 
|  | ** ports. | 
|  | */ | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Start PCI card running\n"); | 
|  | WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode); | 
|  | break; | 
|  | default: | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | printk (KERN_INFO "Done with starting the card\n"); | 
|  | func_exit (); | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Load in the host boot code - load it directly onto all halted hosts | 
|  | ** of the correct type. | 
|  | ** | 
|  | ** Put your rubber pants on before messing with this code - even the magic | 
|  | ** numbers have trouble understanding what they are doing here. | 
|  | */ | 
|  | int | 
|  | RIOBootCodeHOST(p, rbp) | 
|  | struct rio_info *	p; | 
|  | register struct DownLoad *rbp; | 
|  | { | 
|  | register struct Host *HostP; | 
|  | register caddr_t Cad; | 
|  | register PARM_MAP *ParmMapP; | 
|  | register int RupN; | 
|  | int PortN; | 
|  | uint host; | 
|  | caddr_t StartP; | 
|  | BYTE *DestP; | 
|  | int wait_count; | 
|  | ushort OldParmMap; | 
|  | ushort offset;	/* It is very important that this is a ushort */ | 
|  | /* uint byte; */ | 
|  | caddr_t DownCode = NULL; | 
|  | unsigned long flags; | 
|  |  | 
|  | HostP = NULL; /* Assure the compiler we've initialized it */ | 
|  | for ( host=0; host<p->RIONumHosts; host++ ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Attempt to boot host %d\n",host); | 
|  | HostP = &p->RIOHosts[host]; | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT,  "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", | 
|  | HostP->Type, HostP->Mode, HostP->Ivec); | 
|  |  | 
|  |  | 
|  | if ( (HostP->Flags & RUN_STATE) != RC_WAITING ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "%s %d already running\n","Host",host); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Grab a 32 bit pointer to the card. | 
|  | */ | 
|  | Cad = HostP->Caddr; | 
|  |  | 
|  | /* | 
|  | ** We are going to (try) and load in rbp->Count bytes. | 
|  | ** The last byte will reside at p->RIOConf.HostLoadBase-1; | 
|  | ** Therefore, we need to start copying at address | 
|  | ** (caddr+p->RIOConf.HostLoadBase-rbp->Count) | 
|  | */ | 
|  | StartP = (caddr_t)&Cad[p->RIOConf.HostLoadBase-rbp->Count]; | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for host is 0x%x\n", (int)Cad ); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "kernel virtual address for download is 0x%x\n", (int)StartP); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count); | 
|  |  | 
|  | if ( p->RIOConf.HostLoadBase < rbp->Count ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Bin too large\n"); | 
|  | p->RIOError.Error = HOST_FILE_TOO_LARGE; | 
|  | func_exit (); | 
|  | return -EFBIG; | 
|  | } | 
|  | /* | 
|  | ** Ensure that the host really is stopped. | 
|  | ** Disable it's external bus & twang its reset line. | 
|  | */ | 
|  | RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot ); | 
|  |  | 
|  | /* | 
|  | ** Copy the data directly from user space to the SRAM. | 
|  | ** This ain't going to be none too clever if the download | 
|  | ** code is bigger than this segment. | 
|  | */ | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Copy in code\n"); | 
|  |  | 
|  | /* | 
|  | ** PCI hostcard can't cope with 32 bit accesses and so need to copy | 
|  | ** data to a local buffer, and then dripfeed the card. | 
|  | */ | 
|  | if ( HostP->Type == RIO_PCI ) { | 
|  | /* int offset; */ | 
|  |  | 
|  | DownCode = sysbrk(rbp->Count); | 
|  | if ( !DownCode ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "No system memory available\n"); | 
|  | p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY; | 
|  | func_exit (); | 
|  | return -ENOMEM; | 
|  | } | 
|  | bzero(DownCode, rbp->Count); | 
|  |  | 
|  | if ( copyin((int)rbp->DataP,DownCode,rbp->Count)==COPYFAIL ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n"); | 
|  | sysfree( DownCode, rbp->Count ); | 
|  | p->RIOError.Error = COPYIN_FAILED; | 
|  | func_exit (); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | HostP->Copy( DownCode, StartP, rbp->Count ); | 
|  |  | 
|  | sysfree( DownCode, rbp->Count ); | 
|  | } | 
|  | else if ( copyin((int)rbp->DataP,StartP,rbp->Count)==COPYFAIL ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Bad copyin of host data\n"); | 
|  | p->RIOError.Error = COPYIN_FAILED; | 
|  | func_exit (); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Copy completed\n"); | 
|  |  | 
|  | /* | 
|  | **			S T O P ! | 
|  | ** | 
|  | ** Upto this point the code has been fairly rational, and possibly | 
|  | ** even straight forward. What follows is a pile of crud that will | 
|  | ** magically turn into six bytes of transputer assembler. Normally | 
|  | ** you would expect an array or something, but, being me, I have | 
|  | ** chosen [been told] to use a technique whereby the startup code | 
|  | ** will be correct if we change the loadbase for the code. Which | 
|  | ** brings us onto another issue - the loadbase is the *end* of the | 
|  | ** code, not the start. | 
|  | ** | 
|  | ** If I were you I wouldn't start from here. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | ** We now need to insert a short boot section into | 
|  | ** the memory at the end of Sram2. This is normally (de)composed | 
|  | ** of the last eight bytes of the download code. The | 
|  | ** download has been assembled/compiled to expect to be | 
|  | ** loaded from 0x7FFF downwards. We have loaded it | 
|  | ** at some other address. The startup code goes into the small | 
|  | ** ram window at Sram2, in the last 8 bytes, which are really | 
|  | ** at addresses 0x7FF8-0x7FFF. | 
|  | ** | 
|  | ** If the loadbase is, say, 0x7C00, then we need to branch to | 
|  | ** address 0x7BFE to run the host.bin startup code. We assemble | 
|  | ** this jump manually. | 
|  | ** | 
|  | ** The two byte sequence 60 08 is loaded into memory at address | 
|  | ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0, | 
|  | ** which adds '0' to the .O register, complements .O, and then shifts | 
|  | ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will | 
|  | ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new | 
|  | ** location. Now, the branch starts from the value of .PC (or .IP or | 
|  | ** whatever the bloody register is called on this chip), and the .PC | 
|  | ** will be pointing to the location AFTER the branch, in this case | 
|  | ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8. | 
|  | ** | 
|  | ** A long branch is coded at 0x7FF8. This consists of loading a four | 
|  | ** byte offset into .O using nfix (as above) and pfix operators. The | 
|  | ** pfix operates in exactly the same way as the nfix operator, but | 
|  | ** without the complement operation. The offset, of course, must be | 
|  | ** relative to the address of the byte AFTER the branch instruction, | 
|  | ** which will be (urm) 0x7FFC, so, our final destination of the branch | 
|  | ** (loadbase-2), has to be reached from here. Imagine that the loadbase | 
|  | ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which | 
|  | ** is the first byte of the initial two byte short local branch of the | 
|  | ** download code). | 
|  | ** | 
|  | ** To code a jump from 0x7FFC (which is where the branch will start | 
|  | ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)= | 
|  | ** 0x7BFE. | 
|  | ** This will be coded as four bytes: | 
|  | ** 60 2C 20 02 | 
|  | ** being nfix .O+0 | 
|  | **	   pfix .O+C | 
|  | **	   pfix .O+0 | 
|  | **	   jump .O+2 | 
|  | ** | 
|  | ** The nfix operator is used, so that the startup code will be | 
|  | ** compatible with the whole Tp family. (lies, damn lies, it'll never | 
|  | ** work in a month of Sundays). | 
|  | ** | 
|  | ** The nfix nyble is the 1s complement of the nyble value you | 
|  | ** want to load - in this case we wanted 'F' so we nfix loaded '0'. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Dest points to the top 8 bytes of Sram2. The Tp jumps | 
|  | ** to 0x7FFE at reset time, and starts executing. This is | 
|  | ** a short branch to 0x7FF8, where a long branch is coded. | 
|  | */ | 
|  |  | 
|  | DestP = (BYTE *)&Cad[0x7FF8];	/* <<<---- READ THE ABOVE COMMENTS */ | 
|  |  | 
|  | #define	NFIX(N)	(0x60 | (N))	/* .O  = (~(.O + N))<<4 */ | 
|  | #define	PFIX(N)	(0x20 | (N))	/* .O  =   (.O + N)<<4  */ | 
|  | #define	JUMP(N)	(0x00 | (N))	/* .PC =   .PC + .O	 */ | 
|  |  | 
|  | /* | 
|  | ** 0x7FFC is the address of the location following the last byte of | 
|  | ** the four byte jump instruction. | 
|  | ** READ THE ABOVE COMMENTS | 
|  | ** | 
|  | ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about. | 
|  | ** Memsize is 64K for this range of Tp, so offset is a short (unsigned, | 
|  | ** cos I don't understand 2's complement). | 
|  | */ | 
|  | offset = (p->RIOConf.HostLoadBase-2)-0x7FFC; | 
|  | WBYTE( DestP[0] , NFIX(((ushort)(~offset) >> (ushort)12) & 0xF) ); | 
|  | WBYTE( DestP[1] , PFIX(( offset >> 8) & 0xF) ); | 
|  | WBYTE( DestP[2] , PFIX(( offset >> 4) & 0xF) ); | 
|  | WBYTE( DestP[3] , JUMP( offset & 0xF) ); | 
|  |  | 
|  | WBYTE( DestP[6] , NFIX(0) ); | 
|  | WBYTE( DestP[7] , JUMP(8) ); | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "host loadbase is 0x%x\n",p->RIOConf.HostLoadBase); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "startup offset is 0x%x\n",offset); | 
|  |  | 
|  | /* | 
|  | ** Flag what is going on | 
|  | */ | 
|  | HostP->Flags &= ~RUN_STATE; | 
|  | HostP->Flags |= RC_STARTUP; | 
|  |  | 
|  | /* | 
|  | ** Grab a copy of the current ParmMap pointer, so we | 
|  | ** can tell when it has changed. | 
|  | */ | 
|  | OldParmMap = RWORD(HostP->__ParmMapR); | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n",OldParmMap); | 
|  |  | 
|  | /* | 
|  | ** And start it running (I hope). | 
|  | ** As there is nothing dodgy or obscure about the | 
|  | ** above code, this is guaranteed to work every time. | 
|  | */ | 
|  | rio_dprintk (RIO_DEBUG_BOOT,  "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", | 
|  | HostP->Type, HostP->Mode, HostP->Ivec); | 
|  |  | 
|  | rio_start_card_running(HostP); | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Set control port\n"); | 
|  |  | 
|  | /* | 
|  | ** Now, wait for upto five seconds for the Tp to setup the parmmap | 
|  | ** pointer: | 
|  | */ | 
|  | for ( wait_count=0; (wait_count<p->RIOConf.StartupTime)&& | 
|  | (RWORD(HostP->__ParmMapR)==OldParmMap); wait_count++ ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n",wait_count,RWORD(HostP->__ParmMapR)); | 
|  | delay(HostP, HUNDRED_MS); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** If the parmmap pointer is unchanged, then the host code | 
|  | ** has crashed & burned in a really spectacular way | 
|  | */ | 
|  | if ( RWORD(HostP->__ParmMapR) == OldParmMap ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "parmmap 0x%x\n", RWORD(HostP->__ParmMapR)); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n"); | 
|  |  | 
|  | #define	HOST_DISABLE \ | 
|  | HostP->Flags &= ~RUN_STATE; \ | 
|  | HostP->Flags |= RC_STUFFED; \ | 
|  | RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );\ | 
|  | continue | 
|  |  | 
|  | HOST_DISABLE; | 
|  | } | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Running 0x%x\n", RWORD(HostP->__ParmMapR)); | 
|  |  | 
|  | /* | 
|  | ** Well, the board thought it was OK, and setup its parmmap | 
|  | ** pointer. For the time being, we will pretend that this | 
|  | ** board is running, and check out what the error flag says. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | ** Grab a 32 bit pointer to the parmmap structure | 
|  | */ | 
|  | ParmMapP = (PARM_MAP *)RIO_PTR(Cad,RWORD(HostP->__ParmMapR)); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP); | 
|  | ParmMapP = (PARM_MAP *)((unsigned long)Cad + | 
|  | (unsigned long)((RWORD((HostP->__ParmMapR))) & 0xFFFF)); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "ParmMapP : %x\n", (int)ParmMapP); | 
|  |  | 
|  | /* | 
|  | ** The links entry should be 0xFFFF; we set it up | 
|  | ** with a mask to say how many PHBs to use, and | 
|  | ** which links to use. | 
|  | */ | 
|  | if ( (RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Links = 0x%x\n",RWORD(ParmMapP->links)); | 
|  | HOST_DISABLE; | 
|  | } | 
|  |  | 
|  | WWORD(ParmMapP->links , RIO_LINK_ENABLE); | 
|  |  | 
|  | /* | 
|  | ** now wait for the card to set all the parmmap->XXX stuff | 
|  | ** this is a wait of upto two seconds.... | 
|  | */ | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n",p->RIOConf.StartupTime); | 
|  | HostP->timeout_id = 0; | 
|  | for ( wait_count=0; (wait_count<p->RIOConf.StartupTime) && | 
|  | !RWORD(ParmMapP->init_done); wait_count++ ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Waiting for init_done\n"); | 
|  | delay(HostP, HUNDRED_MS); | 
|  | } | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "OK! init_done!\n"); | 
|  |  | 
|  | if (RWORD(ParmMapP->error) != E_NO_ERROR || | 
|  | !RWORD(ParmMapP->init_done) ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Timedout waiting for init_done\n"); | 
|  | HOST_DISABLE; | 
|  | } | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Got init_done\n"); | 
|  |  | 
|  | /* | 
|  | ** It runs! It runs! | 
|  | */ | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Host ID %x Running\n",HostP->UniqueNum); | 
|  |  | 
|  | /* | 
|  | ** set the time period between interrupts. | 
|  | */ | 
|  | WWORD(ParmMapP->timer, (short)p->RIOConf.Timer ); | 
|  |  | 
|  | /* | 
|  | ** Translate all the 16 bit pointers in the __ParmMapR into | 
|  | ** 32 bit pointers for the driver. | 
|  | */ | 
|  | HostP->ParmMapP	 =	ParmMapP; | 
|  | HostP->PhbP		 =	(PHB*)RIO_PTR(Cad,RWORD(ParmMapP->phb_ptr)); | 
|  | HostP->RupP		 =	(RUP*)RIO_PTR(Cad,RWORD(ParmMapP->rups)); | 
|  | HostP->PhbNumP	  = (ushort*)RIO_PTR(Cad,RWORD(ParmMapP->phb_num_ptr)); | 
|  | HostP->LinkStrP	 =	(LPB*)RIO_PTR(Cad,RWORD(ParmMapP->link_str_ptr)); | 
|  |  | 
|  | /* | 
|  | ** point the UnixRups at the real Rups | 
|  | */ | 
|  | for ( RupN = 0; RupN<MAX_RUP; RupN++ ) { | 
|  | HostP->UnixRups[RupN].RupP		= &HostP->RupP[RupN]; | 
|  | HostP->UnixRups[RupN].Id		  = RupN+1; | 
|  | HostP->UnixRups[RupN].BaseSysPort = NO_PORT; | 
|  | spin_lock_init(&HostP->UnixRups[RupN].RupLock); | 
|  | } | 
|  |  | 
|  | for ( RupN = 0; RupN<LINKS_PER_UNIT; RupN++ ) { | 
|  | HostP->UnixRups[RupN+MAX_RUP].RupP	= &HostP->LinkStrP[RupN].rup; | 
|  | HostP->UnixRups[RupN+MAX_RUP].Id  = 0; | 
|  | HostP->UnixRups[RupN+MAX_RUP].BaseSysPort = NO_PORT; | 
|  | spin_lock_init(&HostP->UnixRups[RupN+MAX_RUP].RupLock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** point the PortP->Phbs at the real Phbs | 
|  | */ | 
|  | for ( PortN=p->RIOFirstPortsMapped; | 
|  | PortN<p->RIOLastPortsMapped+PORTS_PER_RTA; PortN++ ) { | 
|  | if ( p->RIOPortp[PortN]->HostP == HostP ) { | 
|  | struct Port *PortP = p->RIOPortp[PortN]; | 
|  | struct PHB *PhbP; | 
|  | /* int oldspl; */ | 
|  |  | 
|  | if ( !PortP->Mapped ) | 
|  | continue; | 
|  |  | 
|  | PhbP = &HostP->PhbP[PortP->HostPort]; | 
|  | rio_spin_lock_irqsave(&PortP->portSem, flags); | 
|  |  | 
|  | PortP->PhbP = PhbP; | 
|  |  | 
|  | PortP->TxAdd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_add)); | 
|  | PortP->TxStart  = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_start)); | 
|  | PortP->TxEnd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_end)); | 
|  | PortP->RxRemove = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_remove)); | 
|  | PortP->RxStart  = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_start)); | 
|  | PortP->RxEnd	= (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_end)); | 
|  |  | 
|  | rio_spin_unlock_irqrestore(&PortP->portSem, flags); | 
|  | /* | 
|  | ** point the UnixRup at the base SysPort | 
|  | */ | 
|  | if ( !(PortN % PORTS_PER_RTA) ) | 
|  | HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN; | 
|  | } | 
|  | } | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Set the card running... \n"); | 
|  | /* | 
|  | ** last thing - show the world that everything is in place | 
|  | */ | 
|  | HostP->Flags &= ~RUN_STATE; | 
|  | HostP->Flags |= RC_RUNNING; | 
|  | } | 
|  | /* | 
|  | ** MPX always uses a poller. This is actually patched into the system | 
|  | ** configuration and called directly from each clock tick. | 
|  | ** | 
|  | */ | 
|  | p->RIOPolling = 1; | 
|  |  | 
|  | p->RIOSystemUp++; | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec); | 
|  | func_exit (); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Boot an RTA. If we have successfully processed this boot, then | 
|  | ** return 1. If we havent, then return 0. | 
|  | */ | 
|  | int | 
|  | RIOBootRup( p, Rup, HostP, PacketP) | 
|  | struct rio_info *	p; | 
|  | uint Rup; | 
|  | struct Host *HostP; | 
|  | struct PKT *PacketP; | 
|  | { | 
|  | struct PktCmd *PktCmdP = (struct PktCmd *)PacketP->data; | 
|  | struct PktCmd_M *PktReplyP; | 
|  | struct CmdBlk *CmdBlkP; | 
|  | uint sequence; | 
|  |  | 
|  | #ifdef CHECK | 
|  | CheckHost(Host); | 
|  | CheckRup(Rup); | 
|  | CheckHostP(HostP); | 
|  | CheckPacketP(PacketP); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** If we haven't been told what to boot, we can't boot it. | 
|  | */ | 
|  | if ( p->RIONumBootPkts == 0 ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "No RTA code to download yet\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* rio_dprint(RIO_DEBUG_BOOT, NULL,DBG_BOOT,"Incoming command packet\n"); */ | 
|  | /* ShowPacket( DBG_BOOT, PacketP ); */ | 
|  |  | 
|  | /* | 
|  | ** Special case of boot completed - if we get one of these then we | 
|  | ** don't need a command block. For all other cases we do, so handle | 
|  | ** this first and then get a command block, then handle every other | 
|  | ** case, relinquishing the command block if disaster strikes! | 
|  | */ | 
|  | if ( (RBYTE(PacketP->len) & PKT_CMD_BIT) && | 
|  | (RBYTE(PktCmdP->Command)==BOOT_COMPLETED) ) | 
|  | return RIOBootComplete(p, HostP, Rup, PktCmdP ); | 
|  |  | 
|  | /* | 
|  | ** try to unhook a command block from the command free list. | 
|  | */ | 
|  | if ( !(CmdBlkP = RIOGetCmdBlk()) ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Fill in the default info on the command block | 
|  | */ | 
|  | CmdBlkP->Packet.dest_unit = Rup < (ushort)MAX_RUP ? Rup : 0; | 
|  | CmdBlkP->Packet.dest_port = BOOT_RUP; | 
|  | CmdBlkP->Packet.src_unit  = 0; | 
|  | CmdBlkP->Packet.src_port  = BOOT_RUP; | 
|  |  | 
|  | CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL; | 
|  | PktReplyP = (struct PktCmd_M *)CmdBlkP->Packet.data; | 
|  |  | 
|  | /* | 
|  | ** process COMMANDS on the boot rup! | 
|  | */ | 
|  | if ( RBYTE(PacketP->len) & PKT_CMD_BIT ) { | 
|  | /* | 
|  | ** We only expect one type of command - a BOOT_REQUEST! | 
|  | */ | 
|  | if ( RBYTE(PktCmdP->Command) != BOOT_REQUEST ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %d\n", | 
|  | PktCmdP->Command,Rup,HostP-p->RIOHosts); | 
|  | ShowPacket( DBG_BOOT, PacketP ); | 
|  | RIOFreeCmdBlk( CmdBlkP ); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Build a Boot Sequence command block | 
|  | ** | 
|  | ** 02.03.1999 ARG - ESIL 0820 fix | 
|  | ** We no longer need to use "Boot Mode", we'll always allow | 
|  | ** boot requests - the boot will not complete if the device | 
|  | ** appears in the bindings table. | 
|  | ** So, this conditional is not required ... | 
|  | ** | 
|  | if (p->RIOBootMode == RC_BOOT_NONE) | 
|  | ** | 
|  | ** If the system is in slave mode, and a boot request is | 
|  | ** received, set command to BOOT_ABORT so that the boot | 
|  | ** will not complete. | 
|  | ** | 
|  | PktReplyP->Command			 = BOOT_ABORT; | 
|  | else | 
|  | ** | 
|  | ** We'll just (always) set the command field in packet reply | 
|  | ** to allow an attempted boot sequence : | 
|  | */ | 
|  | PktReplyP->Command = BOOT_SEQUENCE; | 
|  |  | 
|  | PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts; | 
|  | PktReplyP->BootSequence.LoadBase   = p->RIOConf.RtaLoadBase; | 
|  | PktReplyP->BootSequence.CodeSize   = p->RIOBootCount; | 
|  |  | 
|  | CmdBlkP->Packet.len				= BOOT_SEQUENCE_LEN | PKT_CMD_BIT; | 
|  |  | 
|  | bcopy("BOOT",(void *)&CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN],4); | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n", | 
|  | HostP-p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, | 
|  | p->RIOConf.RtaLoadBase); | 
|  |  | 
|  | /* | 
|  | ** If this host is in slave mode, send the RTA an invalid boot | 
|  | ** sequence command block to force it to kill the boot. We wait | 
|  | ** for half a second before sending this packet to prevent the RTA | 
|  | ** attempting to boot too often. The master host should then grab | 
|  | ** the RTA and make it its own. | 
|  | */ | 
|  | p->RIOBooting++; | 
|  | RIOQueueCmdBlk( HostP, Rup, CmdBlkP ); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** It is a request for boot data. | 
|  | */ | 
|  | sequence = RWORD(PktCmdP->Sequence); | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Boot block %d on Host %d Rup%d\n",sequence,HostP-p->RIOHosts,Rup); | 
|  |  | 
|  | if ( sequence >= p->RIONumBootPkts ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, | 
|  | p->RIONumBootPkts); | 
|  | ShowPacket( DBG_BOOT, PacketP ); | 
|  | } | 
|  |  | 
|  | PktReplyP->Sequence = sequence; | 
|  |  | 
|  | bcopy( p->RIOBootPackets[ p->RIONumBootPkts - sequence - 1 ], | 
|  | PktReplyP->BootData, RTA_BOOT_DATA_SIZE ); | 
|  |  | 
|  | CmdBlkP->Packet.len = PKT_MAX_DATA_LEN; | 
|  | ShowPacket( DBG_BOOT, &CmdBlkP->Packet ); | 
|  | RIOQueueCmdBlk( HostP, Rup, CmdBlkP ); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This function is called when an RTA been booted. | 
|  | ** If booted by a host, HostP->HostUniqueNum is the booting host. | 
|  | ** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA. | 
|  | ** RtaUniq is the booted RTA. | 
|  | */ | 
|  | static int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP ) | 
|  | { | 
|  | struct Map	*MapP = NULL; | 
|  | struct Map	*MapP2 = NULL; | 
|  | int	Flag; | 
|  | int	found; | 
|  | int	host, rta; | 
|  | int	EmptySlot = -1; | 
|  | int	entry, entry2; | 
|  | char	*MyType, *MyName; | 
|  | uint	MyLink; | 
|  | ushort	RtaType; | 
|  | uint	RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) + | 
|  | (RBYTE(PktCmdP->UniqNum[1]) << 8) + | 
|  | (RBYTE(PktCmdP->UniqNum[2]) << 16) + | 
|  | (RBYTE(PktCmdP->UniqNum[3]) << 24); | 
|  |  | 
|  | /* Was RIOBooting-- . That's bad. If an RTA sends two of them, the | 
|  | driver will never think that the RTA has booted... -- REW */ | 
|  | p->RIOBooting = 0; | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting); | 
|  |  | 
|  | /* | 
|  | ** Determine type of unit (16/8 port RTA). | 
|  | */ | 
|  | RtaType = GetUnitType(RtaUniq); | 
|  | if ( Rup >= (ushort)MAX_RUP ) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", | 
|  | HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A'); | 
|  | } else { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", | 
|  | HostP->Mapping[Rup].Name, 8 * RtaType, | 
|  | RBYTE(PktCmdP->LinkNum)+'A'); | 
|  | } | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "UniqNum is 0x%x\n",RtaUniq); | 
|  |  | 
|  | if ( ( RtaUniq == 0x00000000 ) || ( RtaUniq == 0xffffffff ) ) | 
|  | { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n"); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** If this RTA has just booted an RTA which doesn't belong to this | 
|  | ** system, or the system is in slave mode, do not attempt to create | 
|  | ** a new table entry for it. | 
|  | */ | 
|  | if (!RIOBootOk(p, HostP, RtaUniq)) | 
|  | { | 
|  | MyLink = RBYTE(PktCmdP->LinkNum); | 
|  | if (Rup < (ushort) MAX_RUP) | 
|  | { | 
|  | /* | 
|  | ** RtaUniq was clone booted (by this RTA). Instruct this RTA | 
|  | ** to hold off further attempts to boot on this link for 30 | 
|  | ** seconds. | 
|  | */ | 
|  | if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) | 
|  | { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", | 
|  | 'A' + MyLink); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* | 
|  | ** RtaUniq was booted by this host. Set the booting link | 
|  | ** to hold off for 30 seconds to give another unit a | 
|  | ** chance to boot it. | 
|  | */ | 
|  | WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30); | 
|  | } | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", | 
|  | RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Check for a SLOT_IN_USE entry for this RTA attached to the | 
|  | ** current host card in the driver table. | 
|  | ** | 
|  | ** If it exists, make a note that we have booted it. Other parts of | 
|  | ** the driver are interested in this information at a later date, | 
|  | ** in particular when the booting RTA asks for an ID for this unit, | 
|  | ** we must have set the BOOTED flag, and the NEWBOOT flag is used | 
|  | ** to force an open on any ports that where previously open on this | 
|  | ** unit. | 
|  | */ | 
|  | for ( entry=0; entry<MAX_RUP; entry++ ) | 
|  | { | 
|  | uint sysport; | 
|  |  | 
|  | if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && | 
|  | (HostP->Mapping[entry].RtaUniqueNum==RtaUniq)) | 
|  | { | 
|  | HostP->Mapping[entry].Flags |= RTA_BOOTED|RTA_NEWBOOT; | 
|  | #if NEED_TO_FIX | 
|  | RIO_SV_BROADCAST(HostP->svFlags[entry]); | 
|  | #endif | 
|  | if ( (sysport=HostP->Mapping[entry].SysPort) != NO_PORT ) | 
|  | { | 
|  | if ( sysport < p->RIOFirstPortsBooted ) | 
|  | p->RIOFirstPortsBooted = sysport; | 
|  | if ( sysport > p->RIOLastPortsBooted ) | 
|  | p->RIOLastPortsBooted = sysport; | 
|  | /* | 
|  | ** For a 16 port RTA, check the second bank of 8 ports | 
|  | */ | 
|  | if (RtaType == TYPE_RTA16) | 
|  | { | 
|  | entry2 = HostP->Mapping[entry].ID2 - 1; | 
|  | HostP->Mapping[entry2].Flags |= RTA_BOOTED|RTA_NEWBOOT; | 
|  | #if NEED_TO_FIX | 
|  | RIO_SV_BROADCAST(HostP->svFlags[entry2]); | 
|  | #endif | 
|  | sysport = HostP->Mapping[entry2].SysPort; | 
|  | if ( sysport < p->RIOFirstPortsBooted ) | 
|  | p->RIOFirstPortsBooted = sysport; | 
|  | if ( sysport > p->RIOLastPortsBooted ) | 
|  | p->RIOLastPortsBooted = sysport; | 
|  | } | 
|  | } | 
|  | if (RtaType == TYPE_RTA16) { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", | 
|  | entry+1, entry2+1); | 
|  | } else { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RTA will be given ID %d\n",entry+1); | 
|  | } | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "RTA not configured for this host\n"); | 
|  |  | 
|  | if ( Rup >= (ushort)MAX_RUP ) | 
|  | { | 
|  | /* | 
|  | ** It was a host that did the booting | 
|  | */ | 
|  | MyType = "Host"; | 
|  | MyName = HostP->Name; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* | 
|  | ** It was an RTA that did the booting | 
|  | */ | 
|  | MyType = "RTA"; | 
|  | MyName = HostP->Mapping[Rup].Name; | 
|  | } | 
|  | #ifdef CHECK | 
|  | CheckString(MyType); | 
|  | CheckString(MyName); | 
|  | #endif | 
|  |  | 
|  | MyLink = RBYTE(PktCmdP->LinkNum); | 
|  |  | 
|  | /* | 
|  | ** There is no SLOT_IN_USE entry for this RTA attached to the current | 
|  | ** host card in the driver table. | 
|  | ** | 
|  | ** Check for a SLOT_TENTATIVE entry for this RTA attached to the | 
|  | ** current host card in the driver table. | 
|  | ** | 
|  | ** If we find one, then we re-use that slot. | 
|  | */ | 
|  | for ( entry=0; entry<MAX_RUP; entry++ ) | 
|  | { | 
|  | if ( (HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && | 
|  | (HostP->Mapping[entry].RtaUniqueNum == RtaUniq) ) | 
|  | { | 
|  | if (RtaType == TYPE_RTA16) | 
|  | { | 
|  | entry2 = HostP->Mapping[entry].ID2 - 1; | 
|  | if ( (HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && | 
|  | (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq) ) | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", | 
|  | entry, entry2); | 
|  | else | 
|  | continue; | 
|  | } | 
|  | else | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n",entry); | 
|  | if (! p->RIONoMessage) | 
|  | cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A'); | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA | 
|  | ** attached to the current host card in the driver table. | 
|  | ** | 
|  | ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another | 
|  | ** host for this RTA in the driver table. | 
|  | ** | 
|  | ** For a SLOT_IN_USE entry on another host, we need to delete the RTA | 
|  | ** entry from the other host and add it to this host (using some of | 
|  | ** the functions from table.c which do this). | 
|  | ** For a SLOT_TENTATIVE entry on another host, we must cope with the | 
|  | ** following scenario: | 
|  | ** | 
|  | ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry | 
|  | **   in table) | 
|  | ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE | 
|  | **   entries) | 
|  | ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE) | 
|  | ** + Unplug RTA and plug back into host A. | 
|  | ** + Configure RTA on host A. We now have the same RTA configured | 
|  | **   with different ports on two different hosts. | 
|  | */ | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq ); | 
|  | found = 0; | 
|  | Flag = 0; /* Convince the compiler this variable is initialized */ | 
|  | for ( host = 0; !found && (host < p->RIONumHosts); host++ ) | 
|  | { | 
|  | for ( rta=0; rta<MAX_RUP; rta++ ) | 
|  | { | 
|  | if ((p->RIOHosts[host].Mapping[rta].Flags & | 
|  | (SLOT_IN_USE | SLOT_TENTATIVE)) && | 
|  | (p->RIOHosts[host].Mapping[rta].RtaUniqueNum==RtaUniq)) | 
|  | { | 
|  | Flag = p->RIOHosts[host].Mapping[rta].Flags; | 
|  | MapP = &p->RIOHosts[host].Mapping[rta]; | 
|  | if (RtaType == TYPE_RTA16) | 
|  | { | 
|  | MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1]; | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", | 
|  | rta+1, MapP->ID2, p->RIOHosts[host].Name); | 
|  | } | 
|  | else | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", | 
|  | rta+1, p->RIOHosts[host].Name); | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA | 
|  | ** attached to the current host card in the driver table. | 
|  | ** | 
|  | ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on | 
|  | ** another host for this RTA in the driver table... | 
|  | ** | 
|  | ** Check for a SLOT_IN_USE entry for this RTA in the config table. | 
|  | */ | 
|  | if ( !MapP ) | 
|  | { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n",RtaUniq); | 
|  | for ( rta=0; rta < TOTAL_MAP_ENTRIES; rta++ ) | 
|  | { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "Check table entry %d (%x)", | 
|  | rta, | 
|  | p->RIOSavedTable[rta].RtaUniqueNum); | 
|  |  | 
|  | if ( (p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && | 
|  | (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq) ) | 
|  | { | 
|  | MapP = &p->RIOSavedTable[rta]; | 
|  | Flag = p->RIOSavedTable[rta].Flags; | 
|  | if (RtaType == TYPE_RTA16) | 
|  | { | 
|  | for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; | 
|  | entry2++) | 
|  | { | 
|  | if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq) | 
|  | break; | 
|  | } | 
|  | MapP2 = &p->RIOSavedTable[entry2]; | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", | 
|  | rta, entry2); | 
|  | } | 
|  | else | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA | 
|  | ** attached to the current host card in the driver table. | 
|  | ** | 
|  | ** We may have found a SLOT_IN_USE entry on another host for this | 
|  | ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry | 
|  | ** on another host for this RTA in the driver table. | 
|  | ** | 
|  | ** Check the driver table for room to fit this newly discovered RTA. | 
|  | ** RIOFindFreeID() first looks for free slots and if it does not | 
|  | ** find any free slots it will then attempt to oust any | 
|  | ** tentative entry in the table. | 
|  | */ | 
|  | EmptySlot = 1; | 
|  | if (RtaType == TYPE_RTA16) | 
|  | { | 
|  | if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) | 
|  | { | 
|  | RIODefaultName(p, HostP, entry); | 
|  | FillSlot(entry, entry2, RtaUniq, HostP); | 
|  | EmptySlot = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) | 
|  | { | 
|  | RIODefaultName(p, HostP, entry); | 
|  | FillSlot(entry, 0, RtaUniq, HostP); | 
|  | EmptySlot = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA | 
|  | ** attached to the current host card in the driver table. | 
|  | ** | 
|  | ** If we found a SLOT_IN_USE entry on another host for this | 
|  | ** RTA in the config or driver table, and there are enough free | 
|  | ** slots in the driver table, then we need to move it over and | 
|  | ** delete it from the other host. | 
|  | ** If we found a SLOT_TENTATIVE entry on another host for this | 
|  | ** RTA in the driver table, just delete the other host entry. | 
|  | */ | 
|  | if (EmptySlot == 0) | 
|  | { | 
|  | if ( MapP ) | 
|  | { | 
|  | if (Flag & SLOT_IN_USE) | 
|  | { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, | 
|  | "This RTA configured on another host - move entry to current host (1)\n"); | 
|  | HostP->Mapping[entry].SysPort = MapP->SysPort; | 
|  | CCOPY( MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN ); | 
|  | HostP->Mapping[entry].Flags = | 
|  | SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT; | 
|  | #if NEED_TO_FIX | 
|  | RIO_SV_BROADCAST(HostP->svFlags[entry]); | 
|  | #endif | 
|  | RIOReMapPorts( p, HostP, &HostP->Mapping[entry] ); | 
|  | if ( HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted ) | 
|  | p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort; | 
|  | if ( HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted ) | 
|  | p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort; | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n",(int)MapP->SysPort,MapP->Name); | 
|  | } | 
|  | else | 
|  | { | 
|  | rio_dprintk (RIO_DEBUG_BOOT, | 
|  | "This RTA has a tentative entry on another host - delete that entry (1)\n"); | 
|  | HostP->Mapping[entry].Flags = | 
|  | SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT; | 
|  | #if NEED_TO_FIX | 
|  | RIO_SV_BROADCAST(HostP->svFlags[entry]); | 
|  | #endif | 
|  | } | 
|  | if (RtaType == TYPE_RTA16) | 
|  | { | 
|  | if (Flag & SLOT_IN_USE) | 
|  | { | 
|  | HostP->Mapping[entry2].Flags = SLOT_IN_USE | | 
|  | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; | 
|  | #if NEED_TO_FIX | 
|  | RIO_SV_BROADCAST(HostP->svFlags[entry2]); | 
|  | #endif | 
|  | HostP->Mapping[entry2].SysPort = MapP2->SysPort; | 
|  | /* | 
|  | ** Map second block of ttys for 16 port RTA | 
|  | */ | 
|  | RIOReMapPorts( p, HostP, &HostP->Mapping[entry2] ); | 
|  | if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted) | 
|  | p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort; | 
|  | if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted) | 
|  | p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort; | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", | 
|  | (int)HostP->Mapping[entry2].SysPort, | 
|  | HostP->Mapping[entry].Name); | 
|  | } | 
|  | else | 
|  | HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | | 
|  | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; | 
|  | #if NEED_TO_FIX | 
|  | RIO_SV_BROADCAST(HostP->svFlags[entry2]); | 
|  | #endif | 
|  | bzero( (caddr_t)MapP2, sizeof(struct Map) ); | 
|  | } | 
|  | bzero( (caddr_t)MapP, sizeof(struct Map) ); | 
|  | if (! p->RIONoMessage) | 
|  | cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n",MyType,MyName,MyLink+'A'); | 
|  | } | 
|  | else if (! p->RIONoMessage) | 
|  | cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A'); | 
|  | RIOSetChange(p); | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** There is no room in the driver table to make an entry for the | 
|  | ** booted RTA. Keep a note of its Uniq Num in the overflow table, | 
|  | ** so we can ignore it's ID requests. | 
|  | */ | 
|  | if (! p->RIONoMessage) | 
|  | cprintf("The RTA connected to %s '%s' (%c) cannot be configured.  You cannot configure more than 128 ports to one host card.\n",MyType,MyName,MyLink+'A'); | 
|  | for ( entry=0; entry<HostP->NumExtraBooted; entry++ ) | 
|  | { | 
|  | if ( HostP->ExtraUnits[entry] == RtaUniq ) | 
|  | { | 
|  | /* | 
|  | ** already got it! | 
|  | */ | 
|  | return TRUE; | 
|  | } | 
|  | } | 
|  | /* | 
|  | ** If there is room, add the unit to the list of extras | 
|  | */ | 
|  | if ( HostP->NumExtraBooted < MAX_EXTRA_UNITS ) | 
|  | HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** If the RTA or its host appears in the RIOBindTab[] structure then | 
|  | ** we mustn't boot the RTA and should return FALSE. | 
|  | ** This operation is slightly different from the other drivers for RIO | 
|  | ** in that this is designed to work with the new utilities | 
|  | ** not config.rio and is FAR SIMPLER. | 
|  | ** We no longer support the RIOBootMode variable. It is all done from the | 
|  | ** "boot/noboot" field in the rio.cf file. | 
|  | */ | 
|  | int | 
|  | RIOBootOk(p, HostP, RtaUniq) | 
|  | struct rio_info *	p; | 
|  | struct Host *		HostP; | 
|  | ulong RtaUniq; | 
|  | { | 
|  | int		Entry; | 
|  | uint HostUniq = HostP->UniqueNum; | 
|  |  | 
|  | /* | 
|  | ** Search bindings table for RTA or its parent. | 
|  | ** If it exists, return 0, else 1. | 
|  | */ | 
|  | for (Entry = 0; | 
|  | ( Entry < MAX_RTA_BINDINGS ) && ( p->RIOBindTab[Entry] != 0 ); | 
|  | Entry++) | 
|  | { | 
|  | if ( (p->RIOBindTab[Entry] == HostUniq) || | 
|  | (p->RIOBindTab[Entry] == RtaUniq) ) | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Make an empty slot tentative. If this is a 16 port RTA, make both | 
|  | ** slots tentative, and the second one RTA_SECOND_SLOT as well. | 
|  | */ | 
|  |  | 
|  | void | 
|  | FillSlot(entry, entry2, RtaUniq, HostP) | 
|  | int entry; | 
|  | int entry2; | 
|  | uint RtaUniq; | 
|  | struct Host *HostP; | 
|  | { | 
|  | int		link; | 
|  |  | 
|  | rio_dprintk (RIO_DEBUG_BOOT, "FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq); | 
|  |  | 
|  | HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE); | 
|  | HostP->Mapping[entry].SysPort = NO_PORT; | 
|  | HostP->Mapping[entry].RtaUniqueNum = RtaUniq; | 
|  | HostP->Mapping[entry].HostUniqueNum = HostP->UniqueNum; | 
|  | HostP->Mapping[entry].ID = entry + 1; | 
|  | HostP->Mapping[entry].ID2 = 0; | 
|  | if (entry2) { | 
|  | HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | | 
|  | SLOT_TENTATIVE | RTA16_SECOND_SLOT); | 
|  | HostP->Mapping[entry2].SysPort = NO_PORT; | 
|  | HostP->Mapping[entry2].RtaUniqueNum = RtaUniq; | 
|  | HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum; | 
|  | HostP->Mapping[entry2].Name[0] = '\0'; | 
|  | HostP->Mapping[entry2].ID = entry2 + 1; | 
|  | HostP->Mapping[entry2].ID2 = entry + 1; | 
|  | HostP->Mapping[entry].ID2 = entry2 + 1; | 
|  | } | 
|  | /* | 
|  | ** Must set these up, so that utilities show | 
|  | ** topology of 16 port RTAs correctly | 
|  | */ | 
|  | for ( link=0; link<LINKS_PER_UNIT; link++ ) { | 
|  | HostP->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT; | 
|  | HostP->Mapping[entry].Topology[link].Link = NO_LINK; | 
|  | if (entry2) { | 
|  | HostP->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT; | 
|  | HostP->Mapping[entry2].Topology[link].Link = NO_LINK; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* | 
|  | Function:	This function is to disable the disk interrupt | 
|  | Returns :   Nothing | 
|  | */ | 
|  | void | 
|  | disable_interrupt(vector) | 
|  | int	vector; | 
|  | { | 
|  | int	ps; | 
|  | int	val; | 
|  |  | 
|  | disable(ps); | 
|  | if (vector > 40)  { | 
|  | val = 1 << (vector - 40); | 
|  | __outb(S8259+1, __inb(S8259+1) | val); | 
|  | } | 
|  | else { | 
|  | val = 1 << (vector - 32); | 
|  | __outb(M8259+1, __inb(M8259+1) | val); | 
|  | } | 
|  | restore(ps); | 
|  | } | 
|  |  | 
|  | /* | 
|  | Function:	This function is to enable the disk interrupt | 
|  | Returns :   Nothing | 
|  | */ | 
|  | void | 
|  | enable_interrupt(vector) | 
|  | int	vector; | 
|  | { | 
|  | int	ps; | 
|  | int	val; | 
|  |  | 
|  | disable(ps); | 
|  | if (vector > 40)  { | 
|  | val = 1 << (vector - 40); | 
|  | val = ~val; | 
|  | __outb(S8259+1, __inb(S8259+1) & val); | 
|  | } | 
|  | else { | 
|  | val = 1 << (vector - 32); | 
|  | val = ~val; | 
|  | __outb(M8259+1, __inb(M8259+1) & val); | 
|  | } | 
|  | restore(ps); | 
|  | } | 
|  | #endif |