|  | /* | 
|  | *  kernel/cpuset.c | 
|  | * | 
|  | *  Processor and Memory placement constraints for sets of tasks. | 
|  | * | 
|  | *  Copyright (C) 2003 BULL SA. | 
|  | *  Copyright (C) 2004 Silicon Graphics, Inc. | 
|  | * | 
|  | *  Portions derived from Patrick Mochel's sysfs code. | 
|  | *  sysfs is Copyright (c) 2001-3 Patrick Mochel | 
|  | *  Portions Copyright (c) 2004 Silicon Graphics, Inc. | 
|  | * | 
|  | *  2003-10-10 Written by Simon Derr <simon.derr@bull.net> | 
|  | *  2003-10-22 Updates by Stephen Hemminger. | 
|  | *  2004 May-July Rework by Paul Jackson <pj@sgi.com> | 
|  | * | 
|  | *  This file is subject to the terms and conditions of the GNU General Public | 
|  | *  License.  See the file COPYING in the main directory of the Linux | 
|  | *  distribution for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <linux/sort.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/semaphore.h> | 
|  |  | 
|  | #define CPUSET_SUPER_MAGIC 		0x27e0eb | 
|  |  | 
|  | struct cpuset { | 
|  | unsigned long flags;		/* "unsigned long" so bitops work */ | 
|  | cpumask_t cpus_allowed;		/* CPUs allowed to tasks in cpuset */ | 
|  | nodemask_t mems_allowed;	/* Memory Nodes allowed to tasks */ | 
|  |  | 
|  | atomic_t count;			/* count tasks using this cpuset */ | 
|  |  | 
|  | /* | 
|  | * We link our 'sibling' struct into our parents 'children'. | 
|  | * Our children link their 'sibling' into our 'children'. | 
|  | */ | 
|  | struct list_head sibling;	/* my parents children */ | 
|  | struct list_head children;	/* my children */ | 
|  |  | 
|  | struct cpuset *parent;		/* my parent */ | 
|  | struct dentry *dentry;		/* cpuset fs entry */ | 
|  |  | 
|  | /* | 
|  | * Copy of global cpuset_mems_generation as of the most | 
|  | * recent time this cpuset changed its mems_allowed. | 
|  | */ | 
|  | int mems_generation; | 
|  | }; | 
|  |  | 
|  | /* bits in struct cpuset flags field */ | 
|  | typedef enum { | 
|  | CS_CPU_EXCLUSIVE, | 
|  | CS_MEM_EXCLUSIVE, | 
|  | CS_REMOVED, | 
|  | CS_NOTIFY_ON_RELEASE | 
|  | } cpuset_flagbits_t; | 
|  |  | 
|  | /* convenient tests for these bits */ | 
|  | static inline int is_cpu_exclusive(const struct cpuset *cs) | 
|  | { | 
|  | return !!test_bit(CS_CPU_EXCLUSIVE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_mem_exclusive(const struct cpuset *cs) | 
|  | { | 
|  | return !!test_bit(CS_MEM_EXCLUSIVE, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int is_removed(const struct cpuset *cs) | 
|  | { | 
|  | return !!test_bit(CS_REMOVED, &cs->flags); | 
|  | } | 
|  |  | 
|  | static inline int notify_on_release(const struct cpuset *cs) | 
|  | { | 
|  | return !!test_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Increment this atomic integer everytime any cpuset changes its | 
|  | * mems_allowed value.  Users of cpusets can track this generation | 
|  | * number, and avoid having to lock and reload mems_allowed unless | 
|  | * the cpuset they're using changes generation. | 
|  | * | 
|  | * A single, global generation is needed because attach_task() could | 
|  | * reattach a task to a different cpuset, which must not have its | 
|  | * generation numbers aliased with those of that tasks previous cpuset. | 
|  | * | 
|  | * Generations are needed for mems_allowed because one task cannot | 
|  | * modify anothers memory placement.  So we must enable every task, | 
|  | * on every visit to __alloc_pages(), to efficiently check whether | 
|  | * its current->cpuset->mems_allowed has changed, requiring an update | 
|  | * of its current->mems_allowed. | 
|  | */ | 
|  | static atomic_t cpuset_mems_generation = ATOMIC_INIT(1); | 
|  |  | 
|  | static struct cpuset top_cpuset = { | 
|  | .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)), | 
|  | .cpus_allowed = CPU_MASK_ALL, | 
|  | .mems_allowed = NODE_MASK_ALL, | 
|  | .count = ATOMIC_INIT(0), | 
|  | .sibling = LIST_HEAD_INIT(top_cpuset.sibling), | 
|  | .children = LIST_HEAD_INIT(top_cpuset.children), | 
|  | .parent = NULL, | 
|  | .dentry = NULL, | 
|  | .mems_generation = 0, | 
|  | }; | 
|  |  | 
|  | static struct vfsmount *cpuset_mount; | 
|  | static struct super_block *cpuset_sb = NULL; | 
|  |  | 
|  | /* | 
|  | * cpuset_sem should be held by anyone who is depending on the children | 
|  | * or sibling lists of any cpuset, or performing non-atomic operations | 
|  | * on the flags or *_allowed values of a cpuset, such as raising the | 
|  | * CS_REMOVED flag bit iff it is not already raised, or reading and | 
|  | * conditionally modifying the *_allowed values.  One kernel global | 
|  | * cpuset semaphore should be sufficient - these things don't change | 
|  | * that much. | 
|  | * | 
|  | * The code that modifies cpusets holds cpuset_sem across the entire | 
|  | * operation, from cpuset_common_file_write() down, single threading | 
|  | * all cpuset modifications (except for counter manipulations from | 
|  | * fork and exit) across the system.  This presumes that cpuset | 
|  | * modifications are rare - better kept simple and safe, even if slow. | 
|  | * | 
|  | * The code that reads cpusets, such as in cpuset_common_file_read() | 
|  | * and below, only holds cpuset_sem across small pieces of code, such | 
|  | * as when reading out possibly multi-word cpumasks and nodemasks, as | 
|  | * the risks are less, and the desire for performance a little greater. | 
|  | * The proc_cpuset_show() routine needs to hold cpuset_sem to insure | 
|  | * that no cs->dentry is NULL, as it walks up the cpuset tree to root. | 
|  | * | 
|  | * The hooks from fork and exit, cpuset_fork() and cpuset_exit(), don't | 
|  | * (usually) grab cpuset_sem.  These are the two most performance | 
|  | * critical pieces of code here.  The exception occurs on exit(), | 
|  | * when a task in a notify_on_release cpuset exits.  Then cpuset_sem | 
|  | * is taken, and if the cpuset count is zero, a usermode call made | 
|  | * to /sbin/cpuset_release_agent with the name of the cpuset (path | 
|  | * relative to the root of cpuset file system) as the argument. | 
|  | * | 
|  | * A cpuset can only be deleted if both its 'count' of using tasks is | 
|  | * zero, and its list of 'children' cpusets is empty.  Since all tasks | 
|  | * in the system use _some_ cpuset, and since there is always at least | 
|  | * one task in the system (init, pid == 1), therefore, top_cpuset | 
|  | * always has either children cpusets and/or using tasks.  So no need | 
|  | * for any special hack to ensure that top_cpuset cannot be deleted. | 
|  | */ | 
|  |  | 
|  | static DECLARE_MUTEX(cpuset_sem); | 
|  |  | 
|  | /* | 
|  | * A couple of forward declarations required, due to cyclic reference loop: | 
|  | *  cpuset_mkdir -> cpuset_create -> cpuset_populate_dir -> cpuset_add_file | 
|  | *  -> cpuset_create_file -> cpuset_dir_inode_operations -> cpuset_mkdir. | 
|  | */ | 
|  |  | 
|  | static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode); | 
|  | static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry); | 
|  |  | 
|  | static struct backing_dev_info cpuset_backing_dev_info = { | 
|  | .ra_pages = 0,		/* No readahead */ | 
|  | .capabilities	= BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, | 
|  | }; | 
|  |  | 
|  | static struct inode *cpuset_new_inode(mode_t mode) | 
|  | { | 
|  | struct inode *inode = new_inode(cpuset_sb); | 
|  |  | 
|  | if (inode) { | 
|  | inode->i_mode = mode; | 
|  | inode->i_uid = current->fsuid; | 
|  | inode->i_gid = current->fsgid; | 
|  | inode->i_blksize = PAGE_CACHE_SIZE; | 
|  | inode->i_blocks = 0; | 
|  | inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; | 
|  | inode->i_mapping->backing_dev_info = &cpuset_backing_dev_info; | 
|  | } | 
|  | return inode; | 
|  | } | 
|  |  | 
|  | static void cpuset_diput(struct dentry *dentry, struct inode *inode) | 
|  | { | 
|  | /* is dentry a directory ? if so, kfree() associated cpuset */ | 
|  | if (S_ISDIR(inode->i_mode)) { | 
|  | struct cpuset *cs = dentry->d_fsdata; | 
|  | BUG_ON(!(is_removed(cs))); | 
|  | kfree(cs); | 
|  | } | 
|  | iput(inode); | 
|  | } | 
|  |  | 
|  | static struct dentry_operations cpuset_dops = { | 
|  | .d_iput = cpuset_diput, | 
|  | }; | 
|  |  | 
|  | static struct dentry *cpuset_get_dentry(struct dentry *parent, const char *name) | 
|  | { | 
|  | struct qstr qstr; | 
|  | struct dentry *d; | 
|  |  | 
|  | qstr.name = name; | 
|  | qstr.len = strlen(name); | 
|  | qstr.hash = full_name_hash(name, qstr.len); | 
|  | d = lookup_hash(&qstr, parent); | 
|  | if (!IS_ERR(d)) | 
|  | d->d_op = &cpuset_dops; | 
|  | return d; | 
|  | } | 
|  |  | 
|  | static void remove_dir(struct dentry *d) | 
|  | { | 
|  | struct dentry *parent = dget(d->d_parent); | 
|  |  | 
|  | d_delete(d); | 
|  | simple_rmdir(parent->d_inode, d); | 
|  | dput(parent); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE : the dentry must have been dget()'ed | 
|  | */ | 
|  | static void cpuset_d_remove_dir(struct dentry *dentry) | 
|  | { | 
|  | struct list_head *node; | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | node = dentry->d_subdirs.next; | 
|  | while (node != &dentry->d_subdirs) { | 
|  | struct dentry *d = list_entry(node, struct dentry, d_child); | 
|  | list_del_init(node); | 
|  | if (d->d_inode) { | 
|  | d = dget_locked(d); | 
|  | spin_unlock(&dcache_lock); | 
|  | d_delete(d); | 
|  | simple_unlink(dentry->d_inode, d); | 
|  | dput(d); | 
|  | spin_lock(&dcache_lock); | 
|  | } | 
|  | node = dentry->d_subdirs.next; | 
|  | } | 
|  | list_del_init(&dentry->d_child); | 
|  | spin_unlock(&dcache_lock); | 
|  | remove_dir(dentry); | 
|  | } | 
|  |  | 
|  | static struct super_operations cpuset_ops = { | 
|  | .statfs = simple_statfs, | 
|  | .drop_inode = generic_delete_inode, | 
|  | }; | 
|  |  | 
|  | static int cpuset_fill_super(struct super_block *sb, void *unused_data, | 
|  | int unused_silent) | 
|  | { | 
|  | struct inode *inode; | 
|  | struct dentry *root; | 
|  |  | 
|  | sb->s_blocksize = PAGE_CACHE_SIZE; | 
|  | sb->s_blocksize_bits = PAGE_CACHE_SHIFT; | 
|  | sb->s_magic = CPUSET_SUPER_MAGIC; | 
|  | sb->s_op = &cpuset_ops; | 
|  | cpuset_sb = sb; | 
|  |  | 
|  | inode = cpuset_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR); | 
|  | if (inode) { | 
|  | inode->i_op = &simple_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  | /* directories start off with i_nlink == 2 (for "." entry) */ | 
|  | inode->i_nlink++; | 
|  | } else { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | root = d_alloc_root(inode); | 
|  | if (!root) { | 
|  | iput(inode); | 
|  | return -ENOMEM; | 
|  | } | 
|  | sb->s_root = root; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct super_block *cpuset_get_sb(struct file_system_type *fs_type, | 
|  | int flags, const char *unused_dev_name, | 
|  | void *data) | 
|  | { | 
|  | return get_sb_single(fs_type, flags, data, cpuset_fill_super); | 
|  | } | 
|  |  | 
|  | static struct file_system_type cpuset_fs_type = { | 
|  | .name = "cpuset", | 
|  | .get_sb = cpuset_get_sb, | 
|  | .kill_sb = kill_litter_super, | 
|  | }; | 
|  |  | 
|  | /* struct cftype: | 
|  | * | 
|  | * The files in the cpuset filesystem mostly have a very simple read/write | 
|  | * handling, some common function will take care of it. Nevertheless some cases | 
|  | * (read tasks) are special and therefore I define this structure for every | 
|  | * kind of file. | 
|  | * | 
|  | * | 
|  | * When reading/writing to a file: | 
|  | *	- the cpuset to use in file->f_dentry->d_parent->d_fsdata | 
|  | *	- the 'cftype' of the file is file->f_dentry->d_fsdata | 
|  | */ | 
|  |  | 
|  | struct cftype { | 
|  | char *name; | 
|  | int private; | 
|  | int (*open) (struct inode *inode, struct file *file); | 
|  | ssize_t (*read) (struct file *file, char __user *buf, size_t nbytes, | 
|  | loff_t *ppos); | 
|  | int (*write) (struct file *file, const char __user *buf, size_t nbytes, | 
|  | loff_t *ppos); | 
|  | int (*release) (struct inode *inode, struct file *file); | 
|  | }; | 
|  |  | 
|  | static inline struct cpuset *__d_cs(struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_fsdata; | 
|  | } | 
|  |  | 
|  | static inline struct cftype *__d_cft(struct dentry *dentry) | 
|  | { | 
|  | return dentry->d_fsdata; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call with cpuset_sem held.  Writes path of cpuset into buf. | 
|  | * Returns 0 on success, -errno on error. | 
|  | */ | 
|  |  | 
|  | static int cpuset_path(const struct cpuset *cs, char *buf, int buflen) | 
|  | { | 
|  | char *start; | 
|  |  | 
|  | start = buf + buflen; | 
|  |  | 
|  | *--start = '\0'; | 
|  | for (;;) { | 
|  | int len = cs->dentry->d_name.len; | 
|  | if ((start -= len) < buf) | 
|  | return -ENAMETOOLONG; | 
|  | memcpy(start, cs->dentry->d_name.name, len); | 
|  | cs = cs->parent; | 
|  | if (!cs) | 
|  | break; | 
|  | if (!cs->parent) | 
|  | continue; | 
|  | if (--start < buf) | 
|  | return -ENAMETOOLONG; | 
|  | *start = '/'; | 
|  | } | 
|  | memmove(buf, start, buf + buflen - start); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Notify userspace when a cpuset is released, by running | 
|  | * /sbin/cpuset_release_agent with the name of the cpuset (path | 
|  | * relative to the root of cpuset file system) as the argument. | 
|  | * | 
|  | * Most likely, this user command will try to rmdir this cpuset. | 
|  | * | 
|  | * This races with the possibility that some other task will be | 
|  | * attached to this cpuset before it is removed, or that some other | 
|  | * user task will 'mkdir' a child cpuset of this cpuset.  That's ok. | 
|  | * The presumed 'rmdir' will fail quietly if this cpuset is no longer | 
|  | * unused, and this cpuset will be reprieved from its death sentence, | 
|  | * to continue to serve a useful existence.  Next time it's released, | 
|  | * we will get notified again, if it still has 'notify_on_release' set. | 
|  | * | 
|  | * Note final arg to call_usermodehelper() is 0 - that means | 
|  | * don't wait.  Since we are holding the global cpuset_sem here, | 
|  | * and we are asking another thread (started from keventd) to rmdir a | 
|  | * cpuset, we can't wait - or we'd deadlock with the removing thread | 
|  | * on cpuset_sem. | 
|  | */ | 
|  |  | 
|  | static int cpuset_release_agent(char *cpuset_str) | 
|  | { | 
|  | char *argv[3], *envp[3]; | 
|  | int i; | 
|  |  | 
|  | i = 0; | 
|  | argv[i++] = "/sbin/cpuset_release_agent"; | 
|  | argv[i++] = cpuset_str; | 
|  | argv[i] = NULL; | 
|  |  | 
|  | i = 0; | 
|  | /* minimal command environment */ | 
|  | envp[i++] = "HOME=/"; | 
|  | envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; | 
|  | envp[i] = NULL; | 
|  |  | 
|  | return call_usermodehelper(argv[0], argv, envp, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Either cs->count of using tasks transitioned to zero, or the | 
|  | * cs->children list of child cpusets just became empty.  If this | 
|  | * cs is notify_on_release() and now both the user count is zero and | 
|  | * the list of children is empty, send notice to user land. | 
|  | */ | 
|  |  | 
|  | static void check_for_release(struct cpuset *cs) | 
|  | { | 
|  | if (notify_on_release(cs) && atomic_read(&cs->count) == 0 && | 
|  | list_empty(&cs->children)) { | 
|  | char *buf; | 
|  |  | 
|  | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return; | 
|  | if (cpuset_path(cs, buf, PAGE_SIZE) < 0) | 
|  | goto out; | 
|  | cpuset_release_agent(buf); | 
|  | out: | 
|  | kfree(buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return in *pmask the portion of a cpusets's cpus_allowed that | 
|  | * are online.  If none are online, walk up the cpuset hierarchy | 
|  | * until we find one that does have some online cpus.  If we get | 
|  | * all the way to the top and still haven't found any online cpus, | 
|  | * return cpu_online_map.  Or if passed a NULL cs from an exit'ing | 
|  | * task, return cpu_online_map. | 
|  | * | 
|  | * One way or another, we guarantee to return some non-empty subset | 
|  | * of cpu_online_map. | 
|  | * | 
|  | * Call with cpuset_sem held. | 
|  | */ | 
|  |  | 
|  | static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask) | 
|  | { | 
|  | while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map)) | 
|  | cs = cs->parent; | 
|  | if (cs) | 
|  | cpus_and(*pmask, cs->cpus_allowed, cpu_online_map); | 
|  | else | 
|  | *pmask = cpu_online_map; | 
|  | BUG_ON(!cpus_intersects(*pmask, cpu_online_map)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return in *pmask the portion of a cpusets's mems_allowed that | 
|  | * are online.  If none are online, walk up the cpuset hierarchy | 
|  | * until we find one that does have some online mems.  If we get | 
|  | * all the way to the top and still haven't found any online mems, | 
|  | * return node_online_map. | 
|  | * | 
|  | * One way or another, we guarantee to return some non-empty subset | 
|  | * of node_online_map. | 
|  | * | 
|  | * Call with cpuset_sem held. | 
|  | */ | 
|  |  | 
|  | static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask) | 
|  | { | 
|  | while (cs && !nodes_intersects(cs->mems_allowed, node_online_map)) | 
|  | cs = cs->parent; | 
|  | if (cs) | 
|  | nodes_and(*pmask, cs->mems_allowed, node_online_map); | 
|  | else | 
|  | *pmask = node_online_map; | 
|  | BUG_ON(!nodes_intersects(*pmask, node_online_map)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Refresh current tasks mems_allowed and mems_generation from | 
|  | * current tasks cpuset.  Call with cpuset_sem held. | 
|  | * | 
|  | * Be sure to call refresh_mems() on any cpuset operation which | 
|  | * (1) holds cpuset_sem, and (2) might possibly alloc memory. | 
|  | * Call after obtaining cpuset_sem lock, before any possible | 
|  | * allocation.  Otherwise one risks trying to allocate memory | 
|  | * while the task cpuset_mems_generation is not the same as | 
|  | * the mems_generation in its cpuset, which would deadlock on | 
|  | * cpuset_sem in cpuset_update_current_mems_allowed(). | 
|  | * | 
|  | * Since we hold cpuset_sem, once refresh_mems() is called, the | 
|  | * test (current->cpuset_mems_generation != cs->mems_generation) | 
|  | * in cpuset_update_current_mems_allowed() will remain false, | 
|  | * until we drop cpuset_sem.  Anyone else who would change our | 
|  | * cpusets mems_generation needs to lock cpuset_sem first. | 
|  | */ | 
|  |  | 
|  | static void refresh_mems(void) | 
|  | { | 
|  | struct cpuset *cs = current->cpuset; | 
|  |  | 
|  | if (current->cpuset_mems_generation != cs->mems_generation) { | 
|  | guarantee_online_mems(cs, ¤t->mems_allowed); | 
|  | current->cpuset_mems_generation = cs->mems_generation; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? | 
|  | * | 
|  | * One cpuset is a subset of another if all its allowed CPUs and | 
|  | * Memory Nodes are a subset of the other, and its exclusive flags | 
|  | * are only set if the other's are set. | 
|  | */ | 
|  |  | 
|  | static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) | 
|  | { | 
|  | return	cpus_subset(p->cpus_allowed, q->cpus_allowed) && | 
|  | nodes_subset(p->mems_allowed, q->mems_allowed) && | 
|  | is_cpu_exclusive(p) <= is_cpu_exclusive(q) && | 
|  | is_mem_exclusive(p) <= is_mem_exclusive(q); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate_change() - Used to validate that any proposed cpuset change | 
|  | *		       follows the structural rules for cpusets. | 
|  | * | 
|  | * If we replaced the flag and mask values of the current cpuset | 
|  | * (cur) with those values in the trial cpuset (trial), would | 
|  | * our various subset and exclusive rules still be valid?  Presumes | 
|  | * cpuset_sem held. | 
|  | * | 
|  | * 'cur' is the address of an actual, in-use cpuset.  Operations | 
|  | * such as list traversal that depend on the actual address of the | 
|  | * cpuset in the list must use cur below, not trial. | 
|  | * | 
|  | * 'trial' is the address of bulk structure copy of cur, with | 
|  | * perhaps one or more of the fields cpus_allowed, mems_allowed, | 
|  | * or flags changed to new, trial values. | 
|  | * | 
|  | * Return 0 if valid, -errno if not. | 
|  | */ | 
|  |  | 
|  | static int validate_change(const struct cpuset *cur, const struct cpuset *trial) | 
|  | { | 
|  | struct cpuset *c, *par; | 
|  |  | 
|  | /* Each of our child cpusets must be a subset of us */ | 
|  | list_for_each_entry(c, &cur->children, sibling) { | 
|  | if (!is_cpuset_subset(c, trial)) | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Remaining checks don't apply to root cpuset */ | 
|  | if ((par = cur->parent) == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* We must be a subset of our parent cpuset */ | 
|  | if (!is_cpuset_subset(trial, par)) | 
|  | return -EACCES; | 
|  |  | 
|  | /* If either I or some sibling (!= me) is exclusive, we can't overlap */ | 
|  | list_for_each_entry(c, &par->children, sibling) { | 
|  | if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && | 
|  | c != cur && | 
|  | cpus_intersects(trial->cpus_allowed, c->cpus_allowed)) | 
|  | return -EINVAL; | 
|  | if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && | 
|  | c != cur && | 
|  | nodes_intersects(trial->mems_allowed, c->mems_allowed)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int update_cpumask(struct cpuset *cs, char *buf) | 
|  | { | 
|  | struct cpuset trialcs; | 
|  | int retval; | 
|  |  | 
|  | trialcs = *cs; | 
|  | retval = cpulist_parse(buf, trialcs.cpus_allowed); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  | cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map); | 
|  | if (cpus_empty(trialcs.cpus_allowed)) | 
|  | return -ENOSPC; | 
|  | retval = validate_change(cs, &trialcs); | 
|  | if (retval == 0) | 
|  | cs->cpus_allowed = trialcs.cpus_allowed; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int update_nodemask(struct cpuset *cs, char *buf) | 
|  | { | 
|  | struct cpuset trialcs; | 
|  | int retval; | 
|  |  | 
|  | trialcs = *cs; | 
|  | retval = nodelist_parse(buf, trialcs.mems_allowed); | 
|  | if (retval < 0) | 
|  | return retval; | 
|  | nodes_and(trialcs.mems_allowed, trialcs.mems_allowed, node_online_map); | 
|  | if (nodes_empty(trialcs.mems_allowed)) | 
|  | return -ENOSPC; | 
|  | retval = validate_change(cs, &trialcs); | 
|  | if (retval == 0) { | 
|  | cs->mems_allowed = trialcs.mems_allowed; | 
|  | atomic_inc(&cpuset_mems_generation); | 
|  | cs->mems_generation = atomic_read(&cpuset_mems_generation); | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * update_flag - read a 0 or a 1 in a file and update associated flag | 
|  | * bit:	the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE, | 
|  | *						CS_NOTIFY_ON_RELEASE) | 
|  | * cs:	the cpuset to update | 
|  | * buf:	the buffer where we read the 0 or 1 | 
|  | */ | 
|  |  | 
|  | static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf) | 
|  | { | 
|  | int turning_on; | 
|  | struct cpuset trialcs; | 
|  | int err; | 
|  |  | 
|  | turning_on = (simple_strtoul(buf, NULL, 10) != 0); | 
|  |  | 
|  | trialcs = *cs; | 
|  | if (turning_on) | 
|  | set_bit(bit, &trialcs.flags); | 
|  | else | 
|  | clear_bit(bit, &trialcs.flags); | 
|  |  | 
|  | err = validate_change(cs, &trialcs); | 
|  | if (err == 0) { | 
|  | if (turning_on) | 
|  | set_bit(bit, &cs->flags); | 
|  | else | 
|  | clear_bit(bit, &cs->flags); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int attach_task(struct cpuset *cs, char *buf) | 
|  | { | 
|  | pid_t pid; | 
|  | struct task_struct *tsk; | 
|  | struct cpuset *oldcs; | 
|  | cpumask_t cpus; | 
|  |  | 
|  | if (sscanf(buf, "%d", &pid) != 1) | 
|  | return -EIO; | 
|  | if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | if (pid) { | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | tsk = find_task_by_pid(pid); | 
|  | if (!tsk) { | 
|  | read_unlock(&tasklist_lock); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | get_task_struct(tsk); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | if ((current->euid) && (current->euid != tsk->uid) | 
|  | && (current->euid != tsk->suid)) { | 
|  | put_task_struct(tsk); | 
|  | return -EACCES; | 
|  | } | 
|  | } else { | 
|  | tsk = current; | 
|  | get_task_struct(tsk); | 
|  | } | 
|  |  | 
|  | task_lock(tsk); | 
|  | oldcs = tsk->cpuset; | 
|  | if (!oldcs) { | 
|  | task_unlock(tsk); | 
|  | put_task_struct(tsk); | 
|  | return -ESRCH; | 
|  | } | 
|  | atomic_inc(&cs->count); | 
|  | tsk->cpuset = cs; | 
|  | task_unlock(tsk); | 
|  |  | 
|  | guarantee_online_cpus(cs, &cpus); | 
|  | set_cpus_allowed(tsk, cpus); | 
|  |  | 
|  | put_task_struct(tsk); | 
|  | if (atomic_dec_and_test(&oldcs->count)) | 
|  | check_for_release(oldcs); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The various types of files and directories in a cpuset file system */ | 
|  |  | 
|  | typedef enum { | 
|  | FILE_ROOT, | 
|  | FILE_DIR, | 
|  | FILE_CPULIST, | 
|  | FILE_MEMLIST, | 
|  | FILE_CPU_EXCLUSIVE, | 
|  | FILE_MEM_EXCLUSIVE, | 
|  | FILE_NOTIFY_ON_RELEASE, | 
|  | FILE_TASKLIST, | 
|  | } cpuset_filetype_t; | 
|  |  | 
|  | static ssize_t cpuset_common_file_write(struct file *file, const char __user *userbuf, | 
|  | size_t nbytes, loff_t *unused_ppos) | 
|  | { | 
|  | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | char *buffer; | 
|  | int retval = 0; | 
|  |  | 
|  | /* Crude upper limit on largest legitimate cpulist user might write. */ | 
|  | if (nbytes > 100 + 6 * NR_CPUS) | 
|  | return -E2BIG; | 
|  |  | 
|  | /* +1 for nul-terminator */ | 
|  | if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (copy_from_user(buffer, userbuf, nbytes)) { | 
|  | retval = -EFAULT; | 
|  | goto out1; | 
|  | } | 
|  | buffer[nbytes] = 0;	/* nul-terminate */ | 
|  |  | 
|  | down(&cpuset_sem); | 
|  |  | 
|  | if (is_removed(cs)) { | 
|  | retval = -ENODEV; | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | switch (type) { | 
|  | case FILE_CPULIST: | 
|  | retval = update_cpumask(cs, buffer); | 
|  | break; | 
|  | case FILE_MEMLIST: | 
|  | retval = update_nodemask(cs, buffer); | 
|  | break; | 
|  | case FILE_CPU_EXCLUSIVE: | 
|  | retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer); | 
|  | break; | 
|  | case FILE_MEM_EXCLUSIVE: | 
|  | retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer); | 
|  | break; | 
|  | case FILE_NOTIFY_ON_RELEASE: | 
|  | retval = update_flag(CS_NOTIFY_ON_RELEASE, cs, buffer); | 
|  | break; | 
|  | case FILE_TASKLIST: | 
|  | retval = attach_task(cs, buffer); | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | if (retval == 0) | 
|  | retval = nbytes; | 
|  | out2: | 
|  | up(&cpuset_sem); | 
|  | out1: | 
|  | kfree(buffer); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static ssize_t cpuset_file_write(struct file *file, const char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | ssize_t retval = 0; | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | if (!cft) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* special function ? */ | 
|  | if (cft->write) | 
|  | retval = cft->write(file, buf, nbytes, ppos); | 
|  | else | 
|  | retval = cpuset_common_file_write(file, buf, nbytes, ppos); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These ascii lists should be read in a single call, by using a user | 
|  | * buffer large enough to hold the entire map.  If read in smaller | 
|  | * chunks, there is no guarantee of atomicity.  Since the display format | 
|  | * used, list of ranges of sequential numbers, is variable length, | 
|  | * and since these maps can change value dynamically, one could read | 
|  | * gibberish by doing partial reads while a list was changing. | 
|  | * A single large read to a buffer that crosses a page boundary is | 
|  | * ok, because the result being copied to user land is not recomputed | 
|  | * across a page fault. | 
|  | */ | 
|  |  | 
|  | static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs) | 
|  | { | 
|  | cpumask_t mask; | 
|  |  | 
|  | down(&cpuset_sem); | 
|  | mask = cs->cpus_allowed; | 
|  | up(&cpuset_sem); | 
|  |  | 
|  | return cpulist_scnprintf(page, PAGE_SIZE, mask); | 
|  | } | 
|  |  | 
|  | static int cpuset_sprintf_memlist(char *page, struct cpuset *cs) | 
|  | { | 
|  | nodemask_t mask; | 
|  |  | 
|  | down(&cpuset_sem); | 
|  | mask = cs->mems_allowed; | 
|  | up(&cpuset_sem); | 
|  |  | 
|  | return nodelist_scnprintf(page, PAGE_SIZE, mask); | 
|  | } | 
|  |  | 
|  | static ssize_t cpuset_common_file_read(struct file *file, char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | 
|  | cpuset_filetype_t type = cft->private; | 
|  | char *page; | 
|  | ssize_t retval = 0; | 
|  | char *s; | 
|  | char *start; | 
|  | size_t n; | 
|  |  | 
|  | if (!(page = (char *)__get_free_page(GFP_KERNEL))) | 
|  | return -ENOMEM; | 
|  |  | 
|  | s = page; | 
|  |  | 
|  | switch (type) { | 
|  | case FILE_CPULIST: | 
|  | s += cpuset_sprintf_cpulist(s, cs); | 
|  | break; | 
|  | case FILE_MEMLIST: | 
|  | s += cpuset_sprintf_memlist(s, cs); | 
|  | break; | 
|  | case FILE_CPU_EXCLUSIVE: | 
|  | *s++ = is_cpu_exclusive(cs) ? '1' : '0'; | 
|  | break; | 
|  | case FILE_MEM_EXCLUSIVE: | 
|  | *s++ = is_mem_exclusive(cs) ? '1' : '0'; | 
|  | break; | 
|  | case FILE_NOTIFY_ON_RELEASE: | 
|  | *s++ = notify_on_release(cs) ? '1' : '0'; | 
|  | break; | 
|  | default: | 
|  | retval = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | *s++ = '\n'; | 
|  | *s = '\0'; | 
|  |  | 
|  | start = page + *ppos; | 
|  | n = s - start; | 
|  | retval = n - copy_to_user(buf, start, min(n, nbytes)); | 
|  | *ppos += retval; | 
|  | out: | 
|  | free_page((unsigned long)page); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static ssize_t cpuset_file_read(struct file *file, char __user *buf, size_t nbytes, | 
|  | loff_t *ppos) | 
|  | { | 
|  | ssize_t retval = 0; | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | if (!cft) | 
|  | return -ENODEV; | 
|  |  | 
|  | /* special function ? */ | 
|  | if (cft->read) | 
|  | retval = cft->read(file, buf, nbytes, ppos); | 
|  | else | 
|  | retval = cpuset_common_file_read(file, buf, nbytes, ppos); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cpuset_file_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | int err; | 
|  | struct cftype *cft; | 
|  |  | 
|  | err = generic_file_open(inode, file); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | cft = __d_cft(file->f_dentry); | 
|  | if (!cft) | 
|  | return -ENODEV; | 
|  | if (cft->open) | 
|  | err = cft->open(inode, file); | 
|  | else | 
|  | err = 0; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cpuset_file_release(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct cftype *cft = __d_cft(file->f_dentry); | 
|  | if (cft->release) | 
|  | return cft->release(inode, file); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct file_operations cpuset_file_operations = { | 
|  | .read = cpuset_file_read, | 
|  | .write = cpuset_file_write, | 
|  | .llseek = generic_file_llseek, | 
|  | .open = cpuset_file_open, | 
|  | .release = cpuset_file_release, | 
|  | }; | 
|  |  | 
|  | static struct inode_operations cpuset_dir_inode_operations = { | 
|  | .lookup = simple_lookup, | 
|  | .mkdir = cpuset_mkdir, | 
|  | .rmdir = cpuset_rmdir, | 
|  | }; | 
|  |  | 
|  | static int cpuset_create_file(struct dentry *dentry, int mode) | 
|  | { | 
|  | struct inode *inode; | 
|  |  | 
|  | if (!dentry) | 
|  | return -ENOENT; | 
|  | if (dentry->d_inode) | 
|  | return -EEXIST; | 
|  |  | 
|  | inode = cpuset_new_inode(mode); | 
|  | if (!inode) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (S_ISDIR(mode)) { | 
|  | inode->i_op = &cpuset_dir_inode_operations; | 
|  | inode->i_fop = &simple_dir_operations; | 
|  |  | 
|  | /* start off with i_nlink == 2 (for "." entry) */ | 
|  | inode->i_nlink++; | 
|  | } else if (S_ISREG(mode)) { | 
|  | inode->i_size = 0; | 
|  | inode->i_fop = &cpuset_file_operations; | 
|  | } | 
|  |  | 
|  | d_instantiate(dentry, inode); | 
|  | dget(dentry);	/* Extra count - pin the dentry in core */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	cpuset_create_dir - create a directory for an object. | 
|  | *	cs: 	the cpuset we create the directory for. | 
|  | *		It must have a valid ->parent field | 
|  | *		And we are going to fill its ->dentry field. | 
|  | *	name:	The name to give to the cpuset directory. Will be copied. | 
|  | *	mode:	mode to set on new directory. | 
|  | */ | 
|  |  | 
|  | static int cpuset_create_dir(struct cpuset *cs, const char *name, int mode) | 
|  | { | 
|  | struct dentry *dentry = NULL; | 
|  | struct dentry *parent; | 
|  | int error = 0; | 
|  |  | 
|  | parent = cs->parent->dentry; | 
|  | dentry = cpuset_get_dentry(parent, name); | 
|  | if (IS_ERR(dentry)) | 
|  | return PTR_ERR(dentry); | 
|  | error = cpuset_create_file(dentry, S_IFDIR | mode); | 
|  | if (!error) { | 
|  | dentry->d_fsdata = cs; | 
|  | parent->d_inode->i_nlink++; | 
|  | cs->dentry = dentry; | 
|  | } | 
|  | dput(dentry); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static int cpuset_add_file(struct dentry *dir, const struct cftype *cft) | 
|  | { | 
|  | struct dentry *dentry; | 
|  | int error; | 
|  |  | 
|  | down(&dir->d_inode->i_sem); | 
|  | dentry = cpuset_get_dentry(dir, cft->name); | 
|  | if (!IS_ERR(dentry)) { | 
|  | error = cpuset_create_file(dentry, 0644 | S_IFREG); | 
|  | if (!error) | 
|  | dentry->d_fsdata = (void *)cft; | 
|  | dput(dentry); | 
|  | } else | 
|  | error = PTR_ERR(dentry); | 
|  | up(&dir->d_inode->i_sem); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stuff for reading the 'tasks' file. | 
|  | * | 
|  | * Reading this file can return large amounts of data if a cpuset has | 
|  | * *lots* of attached tasks. So it may need several calls to read(), | 
|  | * but we cannot guarantee that the information we produce is correct | 
|  | * unless we produce it entirely atomically. | 
|  | * | 
|  | * Upon tasks file open(), a struct ctr_struct is allocated, that | 
|  | * will have a pointer to an array (also allocated here).  The struct | 
|  | * ctr_struct * is stored in file->private_data.  Its resources will | 
|  | * be freed by release() when the file is closed.  The array is used | 
|  | * to sprintf the PIDs and then used by read(). | 
|  | */ | 
|  |  | 
|  | /* cpusets_tasks_read array */ | 
|  |  | 
|  | struct ctr_struct { | 
|  | char *buf; | 
|  | int bufsz; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Load into 'pidarray' up to 'npids' of the tasks using cpuset 'cs'. | 
|  | * Return actual number of pids loaded. | 
|  | */ | 
|  | static inline int pid_array_load(pid_t *pidarray, int npids, struct cpuset *cs) | 
|  | { | 
|  | int n = 0; | 
|  | struct task_struct *g, *p; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | do_each_thread(g, p) { | 
|  | if (p->cpuset == cs) { | 
|  | pidarray[n++] = p->pid; | 
|  | if (unlikely(n == npids)) | 
|  | goto array_full; | 
|  | } | 
|  | } while_each_thread(g, p); | 
|  |  | 
|  | array_full: | 
|  | read_unlock(&tasklist_lock); | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static int cmppid(const void *a, const void *b) | 
|  | { | 
|  | return *(pid_t *)a - *(pid_t *)b; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert array 'a' of 'npids' pid_t's to a string of newline separated | 
|  | * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return | 
|  | * count 'cnt' of how many chars would be written if buf were large enough. | 
|  | */ | 
|  | static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids) | 
|  | { | 
|  | int cnt = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < npids; i++) | 
|  | cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]); | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  | static int cpuset_tasks_open(struct inode *unused, struct file *file) | 
|  | { | 
|  | struct cpuset *cs = __d_cs(file->f_dentry->d_parent); | 
|  | struct ctr_struct *ctr; | 
|  | pid_t *pidarray; | 
|  | int npids; | 
|  | char c; | 
|  |  | 
|  | if (!(file->f_mode & FMODE_READ)) | 
|  | return 0; | 
|  |  | 
|  | ctr = kmalloc(sizeof(*ctr), GFP_KERNEL); | 
|  | if (!ctr) | 
|  | goto err0; | 
|  |  | 
|  | /* | 
|  | * If cpuset gets more users after we read count, we won't have | 
|  | * enough space - tough.  This race is indistinguishable to the | 
|  | * caller from the case that the additional cpuset users didn't | 
|  | * show up until sometime later on. | 
|  | */ | 
|  | npids = atomic_read(&cs->count); | 
|  | pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL); | 
|  | if (!pidarray) | 
|  | goto err1; | 
|  |  | 
|  | npids = pid_array_load(pidarray, npids, cs); | 
|  | sort(pidarray, npids, sizeof(pid_t), cmppid, NULL); | 
|  |  | 
|  | /* Call pid_array_to_buf() twice, first just to get bufsz */ | 
|  | ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1; | 
|  | ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL); | 
|  | if (!ctr->buf) | 
|  | goto err2; | 
|  | ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids); | 
|  |  | 
|  | kfree(pidarray); | 
|  | file->private_data = ctr; | 
|  | return 0; | 
|  |  | 
|  | err2: | 
|  | kfree(pidarray); | 
|  | err1: | 
|  | kfree(ctr); | 
|  | err0: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static ssize_t cpuset_tasks_read(struct file *file, char __user *buf, | 
|  | size_t nbytes, loff_t *ppos) | 
|  | { | 
|  | struct ctr_struct *ctr = file->private_data; | 
|  |  | 
|  | if (*ppos + nbytes > ctr->bufsz) | 
|  | nbytes = ctr->bufsz - *ppos; | 
|  | if (copy_to_user(buf, ctr->buf + *ppos, nbytes)) | 
|  | return -EFAULT; | 
|  | *ppos += nbytes; | 
|  | return nbytes; | 
|  | } | 
|  |  | 
|  | static int cpuset_tasks_release(struct inode *unused_inode, struct file *file) | 
|  | { | 
|  | struct ctr_struct *ctr; | 
|  |  | 
|  | if (file->f_mode & FMODE_READ) { | 
|  | ctr = file->private_data; | 
|  | kfree(ctr->buf); | 
|  | kfree(ctr); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for the common functions, 'private' gives the type of file | 
|  | */ | 
|  |  | 
|  | static struct cftype cft_tasks = { | 
|  | .name = "tasks", | 
|  | .open = cpuset_tasks_open, | 
|  | .read = cpuset_tasks_read, | 
|  | .release = cpuset_tasks_release, | 
|  | .private = FILE_TASKLIST, | 
|  | }; | 
|  |  | 
|  | static struct cftype cft_cpus = { | 
|  | .name = "cpus", | 
|  | .private = FILE_CPULIST, | 
|  | }; | 
|  |  | 
|  | static struct cftype cft_mems = { | 
|  | .name = "mems", | 
|  | .private = FILE_MEMLIST, | 
|  | }; | 
|  |  | 
|  | static struct cftype cft_cpu_exclusive = { | 
|  | .name = "cpu_exclusive", | 
|  | .private = FILE_CPU_EXCLUSIVE, | 
|  | }; | 
|  |  | 
|  | static struct cftype cft_mem_exclusive = { | 
|  | .name = "mem_exclusive", | 
|  | .private = FILE_MEM_EXCLUSIVE, | 
|  | }; | 
|  |  | 
|  | static struct cftype cft_notify_on_release = { | 
|  | .name = "notify_on_release", | 
|  | .private = FILE_NOTIFY_ON_RELEASE, | 
|  | }; | 
|  |  | 
|  | static int cpuset_populate_dir(struct dentry *cs_dentry) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if ((err = cpuset_add_file(cs_dentry, &cft_cpus)) < 0) | 
|  | return err; | 
|  | if ((err = cpuset_add_file(cs_dentry, &cft_mems)) < 0) | 
|  | return err; | 
|  | if ((err = cpuset_add_file(cs_dentry, &cft_cpu_exclusive)) < 0) | 
|  | return err; | 
|  | if ((err = cpuset_add_file(cs_dentry, &cft_mem_exclusive)) < 0) | 
|  | return err; | 
|  | if ((err = cpuset_add_file(cs_dentry, &cft_notify_on_release)) < 0) | 
|  | return err; | 
|  | if ((err = cpuset_add_file(cs_dentry, &cft_tasks)) < 0) | 
|  | return err; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	cpuset_create - create a cpuset | 
|  | *	parent:	cpuset that will be parent of the new cpuset. | 
|  | *	name:		name of the new cpuset. Will be strcpy'ed. | 
|  | *	mode:		mode to set on new inode | 
|  | * | 
|  | *	Must be called with the semaphore on the parent inode held | 
|  | */ | 
|  |  | 
|  | static long cpuset_create(struct cpuset *parent, const char *name, int mode) | 
|  | { | 
|  | struct cpuset *cs; | 
|  | int err; | 
|  |  | 
|  | cs = kmalloc(sizeof(*cs), GFP_KERNEL); | 
|  | if (!cs) | 
|  | return -ENOMEM; | 
|  |  | 
|  | down(&cpuset_sem); | 
|  | refresh_mems(); | 
|  | cs->flags = 0; | 
|  | if (notify_on_release(parent)) | 
|  | set_bit(CS_NOTIFY_ON_RELEASE, &cs->flags); | 
|  | cs->cpus_allowed = CPU_MASK_NONE; | 
|  | cs->mems_allowed = NODE_MASK_NONE; | 
|  | atomic_set(&cs->count, 0); | 
|  | INIT_LIST_HEAD(&cs->sibling); | 
|  | INIT_LIST_HEAD(&cs->children); | 
|  | atomic_inc(&cpuset_mems_generation); | 
|  | cs->mems_generation = atomic_read(&cpuset_mems_generation); | 
|  |  | 
|  | cs->parent = parent; | 
|  |  | 
|  | list_add(&cs->sibling, &cs->parent->children); | 
|  |  | 
|  | err = cpuset_create_dir(cs, name, mode); | 
|  | if (err < 0) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * Release cpuset_sem before cpuset_populate_dir() because it | 
|  | * will down() this new directory's i_sem and if we race with | 
|  | * another mkdir, we might deadlock. | 
|  | */ | 
|  | up(&cpuset_sem); | 
|  |  | 
|  | err = cpuset_populate_dir(cs->dentry); | 
|  | /* If err < 0, we have a half-filled directory - oh well ;) */ | 
|  | return 0; | 
|  | err: | 
|  | list_del(&cs->sibling); | 
|  | up(&cpuset_sem); | 
|  | kfree(cs); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int cpuset_mkdir(struct inode *dir, struct dentry *dentry, int mode) | 
|  | { | 
|  | struct cpuset *c_parent = dentry->d_parent->d_fsdata; | 
|  |  | 
|  | /* the vfs holds inode->i_sem already */ | 
|  | return cpuset_create(c_parent, dentry->d_name.name, mode | S_IFDIR); | 
|  | } | 
|  |  | 
|  | static int cpuset_rmdir(struct inode *unused_dir, struct dentry *dentry) | 
|  | { | 
|  | struct cpuset *cs = dentry->d_fsdata; | 
|  | struct dentry *d; | 
|  | struct cpuset *parent; | 
|  |  | 
|  | /* the vfs holds both inode->i_sem already */ | 
|  |  | 
|  | down(&cpuset_sem); | 
|  | refresh_mems(); | 
|  | if (atomic_read(&cs->count) > 0) { | 
|  | up(&cpuset_sem); | 
|  | return -EBUSY; | 
|  | } | 
|  | if (!list_empty(&cs->children)) { | 
|  | up(&cpuset_sem); | 
|  | return -EBUSY; | 
|  | } | 
|  | spin_lock(&cs->dentry->d_lock); | 
|  | parent = cs->parent; | 
|  | set_bit(CS_REMOVED, &cs->flags); | 
|  | list_del(&cs->sibling);	/* delete my sibling from parent->children */ | 
|  | if (list_empty(&parent->children)) | 
|  | check_for_release(parent); | 
|  | d = dget(cs->dentry); | 
|  | cs->dentry = NULL; | 
|  | spin_unlock(&d->d_lock); | 
|  | cpuset_d_remove_dir(d); | 
|  | dput(d); | 
|  | up(&cpuset_sem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_init - initialize cpusets at system boot | 
|  | * | 
|  | * Description: Initialize top_cpuset and the cpuset internal file system, | 
|  | **/ | 
|  |  | 
|  | int __init cpuset_init(void) | 
|  | { | 
|  | struct dentry *root; | 
|  | int err; | 
|  |  | 
|  | top_cpuset.cpus_allowed = CPU_MASK_ALL; | 
|  | top_cpuset.mems_allowed = NODE_MASK_ALL; | 
|  |  | 
|  | atomic_inc(&cpuset_mems_generation); | 
|  | top_cpuset.mems_generation = atomic_read(&cpuset_mems_generation); | 
|  |  | 
|  | init_task.cpuset = &top_cpuset; | 
|  |  | 
|  | err = register_filesystem(&cpuset_fs_type); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | cpuset_mount = kern_mount(&cpuset_fs_type); | 
|  | if (IS_ERR(cpuset_mount)) { | 
|  | printk(KERN_ERR "cpuset: could not mount!\n"); | 
|  | err = PTR_ERR(cpuset_mount); | 
|  | cpuset_mount = NULL; | 
|  | goto out; | 
|  | } | 
|  | root = cpuset_mount->mnt_sb->s_root; | 
|  | root->d_fsdata = &top_cpuset; | 
|  | root->d_inode->i_nlink++; | 
|  | top_cpuset.dentry = root; | 
|  | root->d_inode->i_op = &cpuset_dir_inode_operations; | 
|  | err = cpuset_populate_dir(root); | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_init_smp - initialize cpus_allowed | 
|  | * | 
|  | * Description: Finish top cpuset after cpu, node maps are initialized | 
|  | **/ | 
|  |  | 
|  | void __init cpuset_init_smp(void) | 
|  | { | 
|  | top_cpuset.cpus_allowed = cpu_online_map; | 
|  | top_cpuset.mems_allowed = node_online_map; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_fork - attach newly forked task to its parents cpuset. | 
|  | * @p: pointer to task_struct of forking parent process. | 
|  | * | 
|  | * Description: By default, on fork, a task inherits its | 
|  | * parents cpuset.  The pointer to the shared cpuset is | 
|  | * automatically copied in fork.c by dup_task_struct(). | 
|  | * This cpuset_fork() routine need only increment the usage | 
|  | * counter in that cpuset. | 
|  | **/ | 
|  |  | 
|  | void cpuset_fork(struct task_struct *tsk) | 
|  | { | 
|  | atomic_inc(&tsk->cpuset->count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_exit - detach cpuset from exiting task | 
|  | * @tsk: pointer to task_struct of exiting process | 
|  | * | 
|  | * Description: Detach cpuset from @tsk and release it. | 
|  | * | 
|  | * Note that cpusets marked notify_on_release force every task | 
|  | * in them to take the global cpuset_sem semaphore when exiting. | 
|  | * This could impact scaling on very large systems.  Be reluctant | 
|  | * to use notify_on_release cpusets where very high task exit | 
|  | * scaling is required on large systems. | 
|  | * | 
|  | * Don't even think about derefencing 'cs' after the cpuset use | 
|  | * count goes to zero, except inside a critical section guarded | 
|  | * by the cpuset_sem semaphore.  If you don't hold cpuset_sem, | 
|  | * then a zero cpuset use count is a license to any other task to | 
|  | * nuke the cpuset immediately. | 
|  | * | 
|  | **/ | 
|  |  | 
|  | void cpuset_exit(struct task_struct *tsk) | 
|  | { | 
|  | struct cpuset *cs; | 
|  |  | 
|  | task_lock(tsk); | 
|  | cs = tsk->cpuset; | 
|  | tsk->cpuset = NULL; | 
|  | task_unlock(tsk); | 
|  |  | 
|  | if (notify_on_release(cs)) { | 
|  | down(&cpuset_sem); | 
|  | if (atomic_dec_and_test(&cs->count)) | 
|  | check_for_release(cs); | 
|  | up(&cpuset_sem); | 
|  | } else { | 
|  | atomic_dec(&cs->count); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. | 
|  | * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. | 
|  | * | 
|  | * Description: Returns the cpumask_t cpus_allowed of the cpuset | 
|  | * attached to the specified @tsk.  Guaranteed to return some non-empty | 
|  | * subset of cpu_online_map, even if this means going outside the | 
|  | * tasks cpuset. | 
|  | **/ | 
|  |  | 
|  | cpumask_t cpuset_cpus_allowed(const struct task_struct *tsk) | 
|  | { | 
|  | cpumask_t mask; | 
|  |  | 
|  | down(&cpuset_sem); | 
|  | task_lock((struct task_struct *)tsk); | 
|  | guarantee_online_cpus(tsk->cpuset, &mask); | 
|  | task_unlock((struct task_struct *)tsk); | 
|  | up(&cpuset_sem); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | void cpuset_init_current_mems_allowed(void) | 
|  | { | 
|  | current->mems_allowed = NODE_MASK_ALL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the current tasks cpusets mems_allowed changed behind our backs, | 
|  | * update current->mems_allowed and mems_generation to the new value. | 
|  | * Do not call this routine if in_interrupt(). | 
|  | */ | 
|  |  | 
|  | void cpuset_update_current_mems_allowed(void) | 
|  | { | 
|  | struct cpuset *cs = current->cpuset; | 
|  |  | 
|  | if (!cs) | 
|  | return;		/* task is exiting */ | 
|  | if (current->cpuset_mems_generation != cs->mems_generation) { | 
|  | down(&cpuset_sem); | 
|  | refresh_mems(); | 
|  | up(&cpuset_sem); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cpuset_restrict_to_mems_allowed(unsigned long *nodes) | 
|  | { | 
|  | bitmap_and(nodes, nodes, nodes_addr(current->mems_allowed), | 
|  | MAX_NUMNODES); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Are any of the nodes on zonelist zl allowed in current->mems_allowed? | 
|  | */ | 
|  | int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; zl->zones[i]; i++) { | 
|  | int nid = zl->zones[i]->zone_pgdat->node_id; | 
|  |  | 
|  | if (node_isset(nid, current->mems_allowed)) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is 'current' valid, and is zone z allowed in current->mems_allowed? | 
|  | */ | 
|  | int cpuset_zone_allowed(struct zone *z) | 
|  | { | 
|  | return in_interrupt() || | 
|  | node_isset(z->zone_pgdat->node_id, current->mems_allowed); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * proc_cpuset_show() | 
|  | *  - Print tasks cpuset path into seq_file. | 
|  | *  - Used for /proc/<pid>/cpuset. | 
|  | */ | 
|  |  | 
|  | static int proc_cpuset_show(struct seq_file *m, void *v) | 
|  | { | 
|  | struct cpuset *cs; | 
|  | struct task_struct *tsk; | 
|  | char *buf; | 
|  | int retval = 0; | 
|  |  | 
|  | buf = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | tsk = m->private; | 
|  | down(&cpuset_sem); | 
|  | task_lock(tsk); | 
|  | cs = tsk->cpuset; | 
|  | task_unlock(tsk); | 
|  | if (!cs) { | 
|  | retval = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | retval = cpuset_path(cs, buf, PAGE_SIZE); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  | seq_puts(m, buf); | 
|  | seq_putc(m, '\n'); | 
|  | out: | 
|  | up(&cpuset_sem); | 
|  | kfree(buf); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int cpuset_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | struct task_struct *tsk = PROC_I(inode)->task; | 
|  | return single_open(file, proc_cpuset_show, tsk); | 
|  | } | 
|  |  | 
|  | struct file_operations proc_cpuset_operations = { | 
|  | .open		= cpuset_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  |  | 
|  | /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */ | 
|  | char *cpuset_task_status_allowed(struct task_struct *task, char *buffer) | 
|  | { | 
|  | buffer += sprintf(buffer, "Cpus_allowed:\t"); | 
|  | buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed); | 
|  | buffer += sprintf(buffer, "\n"); | 
|  | buffer += sprintf(buffer, "Mems_allowed:\t"); | 
|  | buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed); | 
|  | buffer += sprintf(buffer, "\n"); | 
|  | return buffer; | 
|  | } |