blob: e618ec06b42ffe3bb2535de329955f905a0a0173 [file] [log] [blame]
/*
* rmnet.c -- RmNet function driver
*
* Copyright (C) 2003-2005,2008 David Brownell
* Copyright (C) 2003-2004 Robert Schwebel, Benedikt Spranger
* Copyright (C) 2003 Al Borchers (alborchers@steinerpoint.com)
* Copyright (C) 2008 Nokia Corporation
* Copyright (c) 2010, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kfifo.h>
#include <mach/msm_smd.h>
#include <linux/usb/cdc.h>
#include "usb_function.h"
static char *rmnet_ctl_ch = CONFIG_RMNET_SMD_CTL_CHANNEL;
module_param(rmnet_ctl_ch, charp, S_IRUGO);
MODULE_PARM_DESC(rmnet_ctl_ch, "RmNet control SMD channel");
static char *rmnet_data_ch = CONFIG_RMNET_SMD_DATA_CHANNEL;
module_param(rmnet_data_ch, charp, S_IRUGO);
MODULE_PARM_DESC(rmnet_data_ch, "RmNet data SMD channel");
#define RMNET_NOTIFY_INTERVAL 5
#define RMNET_MAX_NOTIFY_SIZE sizeof(struct usb_cdc_notification)
#define QMI_REQ_MAX 4
#define QMI_REQ_SIZE 2048
#define QMI_RESP_MAX 8
#define QMI_RESP_SIZE 2048
#define RX_REQ_MAX 8
#define RX_REQ_SIZE 2048
#define TX_REQ_MAX 8
#define TX_REQ_SIZE 2048
#define TXN_MAX 2048
static struct usb_interface_descriptor rmnet_interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
/* .bInterfaceNumber = DYNAMIC */
.bNumEndpoints = 3,
.bInterfaceClass = USB_CLASS_VENDOR_SPEC,
.bInterfaceSubClass = USB_CLASS_VENDOR_SPEC,
.bInterfaceProtocol = USB_CLASS_VENDOR_SPEC,
/* .iInterface = DYNAMIC */
};
/* Full speed support */
static struct usb_endpoint_descriptor rmnet_fs_notify_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = __constant_cpu_to_le16(RMNET_MAX_NOTIFY_SIZE),
.bInterval = 1 << RMNET_NOTIFY_INTERVAL,
};
static struct usb_endpoint_descriptor rmnet_fs_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(64),
};
static struct usb_endpoint_descriptor rmnet_fs_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(64),
};
/* High speed support */
static struct usb_endpoint_descriptor rmnet_hs_notify_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = __constant_cpu_to_le16(RMNET_MAX_NOTIFY_SIZE),
.bInterval = RMNET_NOTIFY_INTERVAL + 4,
};
static struct usb_endpoint_descriptor rmnet_hs_in_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(512),
};
static struct usb_endpoint_descriptor rmnet_hs_out_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = __constant_cpu_to_le16(512),
};
/* QMI requests & responses buffer*/
struct qmi_buf {
void *buf;
int len;
struct list_head list;
};
/* Control & data SMD channel private data */
struct rmnet_smd_info {
struct smd_channel *ch;
struct tasklet_struct tx_tlet;
struct tasklet_struct rx_tlet;
#define CH_OPENED 0
unsigned long flags;
/* pending rx packet length */
atomic_t rx_pkt;
/* wait for smd open event*/
wait_queue_head_t wait;
};
struct rmnet_dev {
struct usb_endpoint *epout;
struct usb_endpoint *epin;
struct usb_endpoint *epnotify;
struct usb_request *notify_req;
u8 ifc_id;
/* QMI lists */
struct list_head qmi_req_pool;
struct list_head qmi_resp_pool;
struct list_head qmi_req_q;
struct list_head qmi_resp_q;
/* Tx/Rx lists */
struct list_head tx_idle;
struct list_head rx_idle;
struct list_head rx_queue;
spinlock_t lock;
atomic_t online;
atomic_t notify_count;
struct rmnet_smd_info smd_ctl;
struct rmnet_smd_info smd_data;
struct workqueue_struct *wq;
struct work_struct connect_work;
struct work_struct disconnect_work;
};
static struct usb_function rmnet_function;
struct qmi_buf *
rmnet_alloc_qmi(unsigned len, gfp_t kmalloc_flags)
{
struct qmi_buf *qmi;
qmi = kmalloc(sizeof(struct qmi_buf), kmalloc_flags);
if (qmi != NULL) {
qmi->buf = kmalloc(len, kmalloc_flags);
if (qmi->buf == NULL) {
kfree(qmi);
qmi = NULL;
}
}
return qmi ? qmi : ERR_PTR(-ENOMEM);
}
void rmnet_free_qmi(struct qmi_buf *qmi)
{
kfree(qmi->buf);
kfree(qmi);
}
/*
* Allocate a usb_request and its buffer. Returns a pointer to the
* usb_request or NULL if there is an error.
*/
struct usb_request *
rmnet_alloc_req(struct usb_endpoint *ep, unsigned len, gfp_t kmalloc_flags)
{
struct usb_request *req;
req = usb_ept_alloc_req(ep, 0);
if (req != NULL) {
req->length = len;
req->buf = kmalloc(len, kmalloc_flags);
if (req->buf == NULL) {
usb_ept_free_req(ep, req);
req = NULL;
}
}
return req ? req : ERR_PTR(-ENOMEM);
}
/*
* Free a usb_request and its buffer.
*/
void rmnet_free_req(struct usb_endpoint *ep, struct usb_request *req)
{
kfree(req->buf);
usb_ept_free_req(ep, req);
}
static void rmnet_notify_complete(struct usb_endpoint *ep,
struct usb_request *req)
{
struct rmnet_dev *dev = req->context;
int status = req->status;
switch (status) {
case -ECONNRESET:
case -ESHUTDOWN:
case -ENODEV:
/* connection gone */
atomic_set(&dev->notify_count, 0);
break;
default:
pr_err("%s: rmnet notify ep error %d\n", __func__, status);
/* FALLTHROUGH */
case 0:
if (ep != dev->epnotify)
break;
/* handle multiple pending QMI_RESPONSE_AVAILABLE
* notifications by resending until we're done
*/
if (atomic_dec_and_test(&dev->notify_count))
break;
status = usb_ept_queue_xfer(dev->epnotify, dev->notify_req);
if (status) {
atomic_dec(&dev->notify_count);
pr_err("%s: rmnet notify ep enqueue error %d\n",
__func__, status);
}
break;
}
}
static void qmi_response_available(struct rmnet_dev *dev)
{
struct usb_request *req = dev->notify_req;
struct usb_cdc_notification *event = req->buf;
int status;
/* Response will be sent later */
if (atomic_inc_return(&dev->notify_count) != 1)
return;
event->bmRequestType = USB_DIR_IN | USB_TYPE_CLASS
| USB_RECIP_INTERFACE;
event->bNotificationType = USB_CDC_NOTIFY_RESPONSE_AVAILABLE;
event->wValue = cpu_to_le16(0);
event->wIndex = cpu_to_le16(dev->ifc_id);
event->wLength = cpu_to_le16(0);
status = usb_ept_queue_xfer(dev->epnotify, dev->notify_req);
if (status < 0) {
atomic_dec(&dev->notify_count);
pr_err("%s: rmnet notify ep enqueue error %d\n",
__func__, status);
}
}
/* TODO
* handle modem restart events
*/
static void rmnet_smd_notify(void *priv, unsigned event)
{
struct rmnet_smd_info *smd_info = priv;
int len = atomic_read(&smd_info->rx_pkt);
switch (event) {
case SMD_EVENT_DATA: {
if (len && (smd_write_avail(smd_info->ch) >= len))
tasklet_schedule(&smd_info->rx_tlet);
if (smd_read_avail(smd_info->ch))
tasklet_schedule(&smd_info->tx_tlet);
break;
}
case SMD_EVENT_OPEN:
/* usb endpoints are not enabled untill smd channels
* are opened. wake up worker thread to continue
* connection processing
*/
set_bit(CH_OPENED, &smd_info->flags);
wake_up(&smd_info->wait);
break;
case SMD_EVENT_CLOSE:
/* We will never come here.
* reset flags after closing smd channel
* */
clear_bit(CH_OPENED, &smd_info->flags);
break;
}
}
static void rmnet_control_tx_tlet(unsigned long arg)
{
struct rmnet_dev *dev = (struct rmnet_dev *) arg;
struct qmi_buf *qmi_resp;
int sz;
unsigned long flags;
while (1) {
sz = smd_cur_packet_size(dev->smd_ctl.ch);
if (sz == 0)
break;
if (smd_read_avail(dev->smd_ctl.ch) < sz)
break;
spin_lock_irqsave(&dev->lock, flags);
if (list_empty(&dev->qmi_resp_pool)) {
pr_err("%s: rmnet QMI Tx buffers full\n", __func__);
spin_unlock_irqrestore(&dev->lock, flags);
break;
}
qmi_resp = list_first_entry(&dev->qmi_resp_pool,
struct qmi_buf, list);
list_del(&qmi_resp->list);
spin_unlock_irqrestore(&dev->lock, flags);
qmi_resp->len = smd_read(dev->smd_ctl.ch, qmi_resp->buf, sz);
spin_lock_irqsave(&dev->lock, flags);
list_add_tail(&qmi_resp->list, &dev->qmi_resp_q);
spin_unlock_irqrestore(&dev->lock, flags);
qmi_response_available(dev);
}
}
static void rmnet_control_rx_tlet(unsigned long arg)
{
struct rmnet_dev *dev = (struct rmnet_dev *) arg;
struct qmi_buf *qmi_req;
int ret;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
while (1) {
if (list_empty(&dev->qmi_req_q)) {
atomic_set(&dev->smd_ctl.rx_pkt, 0);
break;
}
qmi_req = list_first_entry(&dev->qmi_req_q,
struct qmi_buf, list);
if (smd_write_avail(dev->smd_ctl.ch) < qmi_req->len) {
atomic_set(&dev->smd_ctl.rx_pkt, qmi_req->len);
pr_debug("%s: rmnet control smd channel full\n",
__func__);
break;
}
list_del(&qmi_req->list);
spin_unlock_irqrestore(&dev->lock, flags);
ret = smd_write(dev->smd_ctl.ch, qmi_req->buf, qmi_req->len);
spin_lock_irqsave(&dev->lock, flags);
if (ret != qmi_req->len) {
pr_err("%s: rmnet control smd write failed\n",
__func__);
break;
}
list_add_tail(&qmi_req->list, &dev->qmi_req_pool);
}
spin_unlock_irqrestore(&dev->lock, flags);
}
static void rmnet_command_complete(struct usb_endpoint *ep,
struct usb_request *req)
{
struct rmnet_dev *dev = req->context;
struct usb_function *func = &rmnet_function;
struct usb_request *in_req;
struct qmi_buf *qmi_req;
int ret;
if (req->status < 0) {
pr_err("%s: rmnet command error %d\n", __func__, req->status);
return;
}
spin_lock(&dev->lock);
/* no pending control rx packet */
if (!atomic_read(&dev->smd_ctl.rx_pkt)) {
if (smd_write_avail(dev->smd_ctl.ch) < req->actual) {
atomic_set(&dev->smd_ctl.rx_pkt, req->actual);
goto queue_req;
}
spin_unlock(&dev->lock);
ret = smd_write(dev->smd_ctl.ch, req->buf, req->actual);
/* This should never happen */
if (ret != req->actual)
pr_err("%s: rmnet control smd write failed\n",
__func__);
goto ep0_ack;
}
queue_req:
if (list_empty(&dev->qmi_req_pool)) {
spin_unlock(&dev->lock);
pr_err("%s: rmnet QMI pool is empty\n", __func__);
return;
}
qmi_req = list_first_entry(&dev->qmi_req_pool, struct qmi_buf, list);
list_del(&qmi_req->list);
spin_unlock(&dev->lock);
memcpy(qmi_req->buf, req->buf, req->actual);
qmi_req->len = req->actual;
spin_lock(&dev->lock);
list_add_tail(&qmi_req->list, &dev->qmi_req_q);
spin_unlock(&dev->lock);
ep0_ack:
/* Send ACK on EP0 IN */
in_req = func->ep0_in_req;
in_req->length = 0;
in_req->complete = 0;
usb_ept_queue_xfer(func->ep0_in, in_req);
}
static int rmnet_setup(struct usb_ctrlrequest *ctrl, void *buf,
int len, void *context)
{
struct rmnet_dev *dev = context;
struct usb_request *req = rmnet_function.ep0_out_req;
int ret = -EOPNOTSUPP;
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
u16 w_length = le16_to_cpu(ctrl->wLength);
struct qmi_buf *resp;
int schedule = 0;
if (!atomic_read(&dev->online))
return -ENOTCONN;
switch ((ctrl->bRequestType << 8) | ctrl->bRequest) {
case ((USB_DIR_OUT | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8)
| USB_CDC_SEND_ENCAPSULATED_COMMAND:
if (w_value || w_index != dev->ifc_id)
goto invalid;
ret = w_length;
req->complete = rmnet_command_complete;
req->context = dev;
break;
case ((USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE) << 8)
| USB_CDC_GET_ENCAPSULATED_RESPONSE:
if (w_value || w_index != dev->ifc_id)
goto invalid;
else {
spin_lock(&dev->lock);
resp = list_first_entry(&dev->qmi_resp_q,
struct qmi_buf, list);
list_del(&resp->list);
spin_unlock(&dev->lock);
memcpy(buf, resp->buf, resp->len);
ret = resp->len;
spin_lock(&dev->lock);
if (list_empty(&dev->qmi_resp_pool))
schedule = 1;
list_add_tail(&resp->list, &dev->qmi_resp_pool);
if (schedule)
tasklet_schedule(&dev->smd_ctl.tx_tlet);
spin_unlock(&dev->lock);
}
break;
default:
invalid:
pr_debug("%s: invalid control req%02x.%02x v%04x i%04x l%d\n",
__func__, ctrl->bRequestType, ctrl->bRequest,
w_value, w_index, w_length);
}
return ret;
}
static void rmnet_start_rx(struct rmnet_dev *dev)
{
int status;
struct usb_request *req;
struct list_head *act, *tmp;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
list_for_each_safe(act, tmp, &dev->rx_idle) {
req = list_entry(act, struct usb_request, list);
list_del(&req->list);
spin_unlock_irqrestore(&dev->lock, flags);
status = usb_ept_queue_xfer(dev->epout, req);
spin_lock_irqsave(&dev->lock, flags);
if (status) {
pr_err("%s: rmnet data rx enqueue err %d\n",
__func__, status);
list_add_tail(&req->list, &dev->rx_idle);
break;
}
}
spin_unlock_irqrestore(&dev->lock, flags);
}
static void rmnet_data_tx_tlet(unsigned long arg)
{
struct rmnet_dev *dev = (struct rmnet_dev *) arg;
struct usb_request *req;
int status;
int sz;
unsigned long flags;
while (1) {
sz = smd_cur_packet_size(dev->smd_data.ch);
if (sz == 0)
break;
if (smd_read_avail(dev->smd_data.ch) < sz)
break;
spin_lock_irqsave(&dev->lock, flags);
if (list_empty(&dev->tx_idle)) {
spin_unlock_irqrestore(&dev->lock, flags);
pr_debug("%s: rmnet data Tx buffers full\n", __func__);
break;
}
req = list_first_entry(&dev->tx_idle, struct usb_request, list);
list_del(&req->list);
spin_unlock_irqrestore(&dev->lock, flags);
req->length = smd_read(dev->smd_data.ch, req->buf, sz);
status = usb_ept_queue_xfer(dev->epin, req);
if (status) {
pr_err("%s: rmnet tx data enqueue err %d\n",
__func__, status);
spin_lock_irqsave(&dev->lock, flags);
list_add_tail(&req->list, &dev->tx_idle);
spin_unlock_irqrestore(&dev->lock, flags);
break;
}
}
}
static void rmnet_data_rx_tlet(unsigned long arg)
{
struct rmnet_dev *dev = (struct rmnet_dev *) arg;
struct usb_request *req;
int ret;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
while (1) {
if (list_empty(&dev->rx_queue)) {
atomic_set(&dev->smd_data.rx_pkt, 0);
break;
}
req = list_first_entry(&dev->rx_queue,
struct usb_request, list);
if (smd_write_avail(dev->smd_data.ch) < req->actual) {
atomic_set(&dev->smd_data.rx_pkt, req->actual);
pr_debug("%s: rmnet SMD data channel full\n", __func__);
break;
}
list_del(&req->list);
spin_unlock_irqrestore(&dev->lock, flags);
ret = smd_write(dev->smd_data.ch, req->buf, req->actual);
spin_lock_irqsave(&dev->lock, flags);
if (ret != req->actual) {
pr_err("%s: rmnet SMD data write failed\n", __func__);
break;
}
list_add_tail(&req->list, &dev->rx_idle);
}
spin_unlock_irqrestore(&dev->lock, flags);
/* We have free rx data requests. */
rmnet_start_rx(dev);
}
/* If SMD has enough room to accommodate a data rx packet,
* write into SMD directly. Otherwise enqueue to rx_queue.
* We will not write into SMD directly untill rx_queue is
* empty to strictly follow the ordering requests.
*/
static void rmnet_complete_epout(struct usb_endpoint *ep,
struct usb_request *req)
{
struct rmnet_dev *dev = req->context;
int status = req->status;
int ret;
switch (status) {
case 0:
/* normal completion */
break;
case -ECONNRESET:
case -ESHUTDOWN:
case -ENODEV:
/* connection gone */
spin_lock(&dev->lock);
list_add_tail(&req->list, &dev->rx_idle);
spin_unlock(&dev->lock);
return;
default:
/* unexpected failure */
pr_err("%s: response error %d, %d/%d\n",
__func__, status, req->actual,
req->length);
spin_lock(&dev->lock);
list_add_tail(&req->list, &dev->rx_idle);
spin_unlock(&dev->lock);
return;
}
spin_lock(&dev->lock);
if (!atomic_read(&dev->smd_data.rx_pkt)) {
if (smd_write_avail(dev->smd_data.ch) < req->actual) {
atomic_set(&dev->smd_data.rx_pkt, req->actual);
goto queue_req;
}
spin_unlock(&dev->lock);
ret = smd_write(dev->smd_data.ch, req->buf, req->actual);
/* This should never happen */
if (ret != req->actual)
pr_err("%s: rmnet data smd write failed\n", __func__);
/* Restart Rx */
spin_lock(&dev->lock);
list_add_tail(&req->list, &dev->rx_idle);
spin_unlock(&dev->lock);
rmnet_start_rx(dev);
return;
}
queue_req:
list_add_tail(&req->list, &dev->rx_queue);
spin_unlock(&dev->lock);
}
static void rmnet_complete_epin(struct usb_endpoint *ep,
struct usb_request *req)
{
struct rmnet_dev *dev = req->context;
int status = req->status;
int schedule = 0;
switch (status) {
case -ECONNRESET:
case -ESHUTDOWN:
case -ENODEV:
/* connection gone */
spin_lock(&dev->lock);
list_add_tail(&req->list, &dev->tx_idle);
spin_unlock(&dev->lock);
break;
default:
pr_err("%s: rmnet data tx ep error %d\n", __func__, status);
/* FALLTHROUGH */
case 0:
spin_lock(&dev->lock);
if (list_empty(&dev->tx_idle))
schedule = 1;
list_add_tail(&req->list, &dev->tx_idle);
if (schedule)
tasklet_schedule(&dev->smd_data.tx_tlet);
spin_unlock(&dev->lock);
break;
}
}
static void rmnet_disconnect_work(struct work_struct *w)
{
struct qmi_buf *qmi;
struct usb_request *req;
struct list_head *act, *tmp;
struct rmnet_dev *dev = container_of(w, struct rmnet_dev,
disconnect_work);
atomic_set(&dev->notify_count, 0);
tasklet_kill(&dev->smd_ctl.rx_tlet);
tasklet_kill(&dev->smd_ctl.tx_tlet);
tasklet_kill(&dev->smd_data.rx_tlet);
tasklet_kill(&dev->smd_data.rx_tlet);
list_for_each_safe(act, tmp, &dev->rx_queue) {
req = list_entry(act, struct usb_request, list);
list_del(&req->list);
list_add_tail(&req->list, &dev->rx_idle);
}
list_for_each_safe(act, tmp, &dev->qmi_req_q) {
qmi = list_entry(act, struct qmi_buf, list);
list_del(&qmi->list);
list_add_tail(&qmi->list, &dev->qmi_req_pool);
}
list_for_each_safe(act, tmp, &dev->qmi_resp_q) {
qmi = list_entry(act, struct qmi_buf, list);
list_del(&qmi->list);
list_add_tail(&qmi->list, &dev->qmi_resp_pool);
}
smd_close(dev->smd_ctl.ch);
dev->smd_ctl.flags = 0;
smd_close(dev->smd_data.ch);
dev->smd_data.flags = 0;
}
static void rmnet_connect_work(struct work_struct *w)
{
struct rmnet_dev *dev = container_of(w, struct rmnet_dev, connect_work);
int ret;
/* Control channel for QMI messages */
ret = smd_open(rmnet_ctl_ch, &dev->smd_ctl.ch,
&dev->smd_ctl, rmnet_smd_notify);
if (ret) {
pr_err("%s: Unable to open control smd channel\n", __func__);
return;
}
wait_event(dev->smd_ctl.wait, test_bit(CH_OPENED,
&dev->smd_ctl.flags));
/* Data channel for network packets */
ret = smd_open(rmnet_data_ch, &dev->smd_data.ch,
&dev->smd_data, rmnet_smd_notify);
if (ret) {
pr_err("%s: Unable to open data smd channel\n", __func__);
smd_close(dev->smd_ctl.ch);
}
wait_event(dev->smd_data.wait, test_bit(CH_OPENED,
&dev->smd_data.flags));
if (usb_msm_get_speed() == USB_SPEED_HIGH) {
usb_configure_endpoint(dev->epin, &rmnet_hs_in_desc);
usb_configure_endpoint(dev->epout, &rmnet_hs_out_desc);
usb_configure_endpoint(dev->epnotify, &rmnet_hs_notify_desc);
} else {
usb_configure_endpoint(dev->epin, &rmnet_fs_in_desc);
usb_configure_endpoint(dev->epout, &rmnet_fs_out_desc);
usb_configure_endpoint(dev->epnotify, &rmnet_fs_notify_desc);
}
usb_ept_enable(dev->epin, 1);
usb_ept_enable(dev->epout, 1);
usb_ept_enable(dev->epnotify, 1);
atomic_set(&dev->online, 1);
/* Queue Rx data requests */
rmnet_start_rx(dev);
}
static void rmnet_configure(int configured, void *context)
{
struct rmnet_dev *dev = context;
if (configured) {
queue_work(dev->wq, &dev->connect_work);
} else {
/* all pending requests will be canceled */
if (!atomic_read(&dev->online))
return;
atomic_set(&dev->online, 0);
usb_ept_fifo_flush(dev->epnotify);
usb_ept_enable(dev->epnotify, 0);
usb_ept_fifo_flush(dev->epout);
usb_ept_enable(dev->epout, 0);
usb_ept_fifo_flush(dev->epin);
usb_ept_enable(dev->epin, 0);
/* cleanup work */
queue_work(dev->wq, &dev->disconnect_work);
}
}
static void rmnet_free_buf(struct rmnet_dev *dev)
{
struct qmi_buf *qmi;
struct usb_request *req;
struct list_head *act, *tmp;
/* free all usb requests in tx pool */
list_for_each_safe(act, tmp, &dev->tx_idle) {
req = list_entry(act, struct usb_request, list);
list_del(&req->list);
rmnet_free_req(dev->epout, req);
}
/* free all usb requests in rx pool */
list_for_each_safe(act, tmp, &dev->rx_idle) {
req = list_entry(act, struct usb_request, list);
list_del(&req->list);
rmnet_free_req(dev->epin, req);
}
/* free all buffers in qmi request pool */
list_for_each_safe(act, tmp, &dev->qmi_req_pool) {
qmi = list_entry(act, struct qmi_buf, list);
list_del(&qmi->list);
rmnet_free_qmi(qmi);
}
/* free all buffers in qmi request pool */
list_for_each_safe(act, tmp, &dev->qmi_resp_pool) {
qmi = list_entry(act, struct qmi_buf, list);
list_del(&qmi->list);
rmnet_free_qmi(qmi);
}
rmnet_free_req(dev->epnotify, dev->notify_req);
}
static void rmnet_bind(void *context)
{
struct rmnet_dev *dev = context;
int i, ret;
struct usb_request *req;
struct qmi_buf *qmi;
dev->ifc_id = usb_msm_get_next_ifc_number(&rmnet_function);
rmnet_interface_desc.bInterfaceNumber = dev->ifc_id;
/*Configuring IN Endpoint*/
dev->epin = usb_alloc_endpoint(USB_DIR_IN);
if (!dev->epin)
return;
rmnet_hs_in_desc.bEndpointAddress = USB_DIR_IN |
dev->epin->num;
rmnet_fs_in_desc.bEndpointAddress = USB_DIR_IN |
dev->epin->num;
/*Configuring OUT Endpoint*/
dev->epout = usb_alloc_endpoint(USB_DIR_OUT);
if (!dev->epout)
goto free_epin;
rmnet_hs_out_desc.bEndpointAddress = USB_DIR_OUT |
dev->epout->num;
rmnet_fs_out_desc.bEndpointAddress = USB_DIR_OUT |
dev->epout->num;
/*Configuring NOTIFY Endpoint*/
dev->epnotify = usb_alloc_endpoint(USB_DIR_IN);
if (!dev->epnotify)
goto free_epout;
rmnet_hs_notify_desc.bEndpointAddress = USB_DIR_IN |
dev->epnotify->num;
rmnet_fs_notify_desc.bEndpointAddress = USB_DIR_IN |
dev->epnotify->num;
dev->notify_req = usb_ept_alloc_req(dev->epnotify, 0);
if (!dev->notify_req)
goto free_epnotify;
dev->notify_req->buf = kmalloc(RMNET_MAX_NOTIFY_SIZE, GFP_KERNEL);
if (!dev->notify_req->buf)
goto free_buf;;
dev->notify_req->complete = rmnet_notify_complete;
dev->notify_req->context = dev;
dev->notify_req->length = RMNET_MAX_NOTIFY_SIZE;
/* Allocate the qmi request and response buffers */
for (i = 0; i < QMI_REQ_MAX; i++) {
qmi = rmnet_alloc_qmi(QMI_REQ_SIZE, GFP_KERNEL);
if (IS_ERR(qmi)) {
ret = PTR_ERR(qmi);
goto free_buf;
}
list_add_tail(&qmi->list, &dev->qmi_req_pool);
}
for (i = 0; i < QMI_RESP_MAX; i++) {
qmi = rmnet_alloc_qmi(QMI_RESP_SIZE, GFP_KERNEL);
if (IS_ERR(qmi)) {
ret = PTR_ERR(qmi);
goto free_buf;
}
list_add_tail(&qmi->list, &dev->qmi_resp_pool);
}
/* Allocate bulk in/out requests for data transfer */
for (i = 0; i < RX_REQ_MAX; i++) {
req = rmnet_alloc_req(dev->epout, RX_REQ_SIZE, GFP_KERNEL);
if (IS_ERR(req)) {
ret = PTR_ERR(req);
goto free_buf;
}
req->length = TXN_MAX;
req->context = dev;
req->complete = rmnet_complete_epout;
list_add_tail(&req->list, &dev->rx_idle);
}
for (i = 0; i < TX_REQ_MAX; i++) {
req = rmnet_alloc_req(dev->epout, TX_REQ_SIZE, GFP_KERNEL);
if (IS_ERR(req)) {
ret = PTR_ERR(req);
goto free_buf;
}
req->context = dev;
req->complete = rmnet_complete_epin;
list_add_tail(&req->list, &dev->tx_idle);
}
pr_info("Rmnet function bind completed\n");
return;
free_buf:
rmnet_free_buf(dev);
free_epnotify:
usb_free_endpoint(dev->epnotify);
free_epout:
usb_free_endpoint(dev->epout);
free_epin:
usb_free_endpoint(dev->epin);
}
static void rmnet_unbind(void *context)
{
struct rmnet_dev *dev = context;
tasklet_kill(&dev->smd_ctl.rx_tlet);
tasklet_kill(&dev->smd_ctl.tx_tlet);
tasklet_kill(&dev->smd_data.rx_tlet);
tasklet_kill(&dev->smd_data.rx_tlet);
flush_workqueue(dev->wq);
rmnet_free_buf(dev);
usb_free_endpoint(dev->epin);
usb_free_endpoint(dev->epout);
usb_free_endpoint(dev->epnotify);
kfree(dev);
}
static struct usb_function rmnet_function = {
.bind = rmnet_bind,
.configure = rmnet_configure,
.unbind = rmnet_unbind,
.setup = rmnet_setup,
.name = "rmnet",
};
struct usb_descriptor_header *rmnet_hs_descriptors[5];
struct usb_descriptor_header *rmnet_fs_descriptors[5];
static int __init rmnet_init(void)
{
struct rmnet_dev *dev;
int ret;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->wq = create_singlethread_workqueue("k_rmnet_work");
if (!dev->wq) {
ret = -ENOMEM;
goto free_dev;
}
spin_lock_init(&dev->lock);
atomic_set(&dev->notify_count, 0);
atomic_set(&dev->online, 0);
atomic_set(&dev->smd_ctl.rx_pkt, 0);
atomic_set(&dev->smd_data.rx_pkt, 0);
INIT_WORK(&dev->connect_work, rmnet_connect_work);
INIT_WORK(&dev->disconnect_work, rmnet_disconnect_work);
tasklet_init(&dev->smd_ctl.rx_tlet, rmnet_control_rx_tlet,
(unsigned long) dev);
tasklet_init(&dev->smd_ctl.tx_tlet, rmnet_control_tx_tlet,
(unsigned long) dev);
tasklet_init(&dev->smd_data.rx_tlet, rmnet_data_rx_tlet,
(unsigned long) dev);
tasklet_init(&dev->smd_data.tx_tlet, rmnet_data_tx_tlet,
(unsigned long) dev);
init_waitqueue_head(&dev->smd_ctl.wait);
init_waitqueue_head(&dev->smd_data.wait);
INIT_LIST_HEAD(&dev->qmi_req_pool);
INIT_LIST_HEAD(&dev->qmi_req_q);
INIT_LIST_HEAD(&dev->qmi_resp_pool);
INIT_LIST_HEAD(&dev->qmi_resp_q);
INIT_LIST_HEAD(&dev->rx_idle);
INIT_LIST_HEAD(&dev->rx_queue);
INIT_LIST_HEAD(&dev->tx_idle);
rmnet_hs_descriptors[0] =
(struct usb_descriptor_header *)&rmnet_interface_desc;
rmnet_hs_descriptors[1] =
(struct usb_descriptor_header *)&rmnet_hs_in_desc;
rmnet_hs_descriptors[2] =
(struct usb_descriptor_header *)&rmnet_hs_out_desc;
rmnet_hs_descriptors[3] =
(struct usb_descriptor_header *)&rmnet_hs_notify_desc;
rmnet_hs_descriptors[4] = NULL;
rmnet_fs_descriptors[0] =
(struct usb_descriptor_header *)&rmnet_interface_desc;
rmnet_fs_descriptors[1] =
(struct usb_descriptor_header *)&rmnet_fs_in_desc;
rmnet_fs_descriptors[2] =
(struct usb_descriptor_header *)&rmnet_fs_out_desc;
rmnet_fs_descriptors[3] =
(struct usb_descriptor_header *)&rmnet_fs_notify_desc;
rmnet_fs_descriptors[4] = NULL;
rmnet_function.hs_descriptors = rmnet_hs_descriptors;
rmnet_function.fs_descriptors = rmnet_fs_descriptors;
rmnet_function.context = dev;
ret = usb_function_register(&rmnet_function);
if (ret)
goto free_wq;
return 0;
free_wq:
destroy_workqueue(dev->wq);
free_dev:
kfree(dev);
return ret;
}
static void __exit rmnet_exit(void)
{
usb_function_unregister(&rmnet_function);
}
module_init(rmnet_init);
module_exit(rmnet_exit);
MODULE_DESCRIPTION("RmNet usb function driver");
MODULE_VERSION("1.0");
MODULE_LICENSE("GPL v2");