blob: 05393518b2c16e205166c767fcccafe360960f1a [file] [log] [blame]
/*
* serial.c -- USB Serial Function driver
*
* Copyright 2003 (C) Al Borchers (alborchers@steinerpoint.com)
* Copyright (c) 2008-2009, Code Aurora Forum. All rights reserved.
*
* This code is based in part on the Gadget Zero driver, which
* is Copyright (C) 2003 by David Brownell, all rights reserved.
*
* This code also borrows from usbserial.c, which is
* Copyright (C) 1999 - 2002 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2000 Peter Berger (pberger@brimson.com)
* Copyright (C) 2000 Al Borchers (alborchers@steinerpoint.com)
*
* All source code in this file is licensed under the following license except
* where indicated.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can find it at http://www.fsf.org
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/utsname.h>
#include <linux/wait.h>
#include <linux/serial.h>
#include <linux/proc_fs.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/uaccess.h>
#include <asm/byteorder.h>
#include <asm/system.h>
#include <asm/unaligned.h>
#include <linux/usb/cdc.h>
#include "usb_function.h"
#include <linux/workqueue.h>
/* Defines */
#define GS_VERSION_STR "v2.2"
#define GS_VERSION_NUM 0x0202
#define GS_LONG_NAME "Serial Function"
#define GS_SHORT_NAME "serial"
static int instances = 2;
#define MAX_INSTANCES 2
#define GS_MAJOR 127
#define GS_MINOR_START 0
#define GS_NUM_PORTS 16
#define GS_NO_CONFIG_ID 0
#define GS_ACM_CONFIG_ID 2
#define GS_MAX_DESC_LEN 256
/* defines for maintaining serial states */
#define MSR_CTS (1 << 4)
#define MSR_DSR (1 << 5)
#define MSR_RI (1 << 6)
#define MSR_CD (1 << 7)
#define MCR_DTR (1 << 0)
#define MCR_RTS (1 << 1)
#define MCR_LOOP (1 << 4)
/* USB CDC control line state defines */
#define USB_CDC_SET_CONTROL_LINE_STATE_DTR 0x1
#define USB_CDC_SET_CONTROL_LINE_STATE_RTS 0x2
#define GS_DEFAULT_READ_Q_SIZE 16
#define GS_DEFAULT_WRITE_Q_SIZE 16
#define GS_DEFAULT_INT_REQ 1
#define GS_DEFAULT_WRITE_BUF_SIZE 8192
#define GS_TMP_BUF_SIZE 8192
#define GS_CLOSE_TIMEOUT 15
#define GS_DEFAULT_USE_ACM 0
#define GS_DEFAULT_DTE_RATE 9600
#define GS_DEFAULT_DATA_BITS 8
#define GS_DEFAULT_PARITY USB_CDC_NO_PARITY
#define GS_DEFAULT_CHAR_FORMAT USB_CDC_1_STOP_BITS
/* #define GS_DEBUG */
/* debug settings */
#ifdef GS_DEBUG
static int debug = 1;
#define gs_debug(format, arg...) \
do { if (debug) printk(KERN_DEBUG format, ## arg); } while (0)
#define gs_debug_level(level, format, arg...) \
do { if (debug >= level) printk(KERN_DEBUG format, ## arg); } while (0)
#else
#define gs_debug(format, arg...) \
do { } while (0)
#define gs_debug_level(level, format, arg...) \
do { } while (0)
#endif /* GS_DEBUG */
#define GS_LOG2_NOTIFY_INTERVAL 5 /* 1 << 5 == 32 msec */
#define GS_NOTIFY_MAXPACKET 8
#define SERIAL_CONFIGURED 1
#define SERIAL_UNCONFIGURED 0
/* Structures */
struct gs_dev;
/* circular buffer */
struct gs_buf {
unsigned int buf_size;
char *buf_buf;
char *buf_get;
char *buf_put;
};
/* list of requests */
struct gs_req_entry {
struct list_head re_entry;
struct usb_request *re_req;
};
/* the port structure holds info for each port, one for each minor number */
struct gs_port {
struct gs_dev *port_dev; /* pointer to device struct */
struct tty_struct *port_tty; /* pointer to tty struct */
spinlock_t port_lock;
struct mutex mutex_lock; /* protect open/close */
int port_num;
int port_open_count;
int port_in_use; /* open/close in progress */
wait_queue_head_t port_write_wait; /* waiting to write */
struct gs_buf *port_write_buf;
struct usb_cdc_line_coding port_line_coding;
struct list_head read_pool;
struct list_head read_queue;
struct list_head write_pool;
unsigned n_read;
unsigned int msr;
unsigned int prev_msr;
unsigned int mcr;
struct work_struct push_work;
};
/*-------------------------------------------------------------*/
/*Allocate DMA buffer in non interrupt context(gs_bind)*/
struct gs_reqbuf {
void *buf;
};
/*-------------------------------------------------------------*/
/* the device structure holds info for the USB device */
struct gs_dev {
/* lock for set/reset config */
spinlock_t dev_lock;
/* configuration number */
int dev_config;
/* address of notify endpoint */
struct usb_endpoint *dev_notify_ep;
/* address of in endpoint */
struct usb_endpoint *dev_in_ep;
struct usb_request *notify_req;
unsigned long notify_queued;
/* address of out endpoint */
struct usb_endpoint *dev_out_ep;
/* list of write requests */
struct list_head dev_req_list;
/* round robin port scheduled */
int dev_sched_port;
struct gs_port *dev_port[GS_NUM_PORTS]; /* the ports */
struct gs_reqbuf statusreqbuf;
u16 interface_num;
/*interface, endpoint descriptors*/
struct usb_interface_descriptor gs_ifc_desc;
struct usb_endpoint_descriptor gs_hs_bulkin_desc, gs_fs_bulkin_desc;
struct usb_endpoint_descriptor gs_hs_bulkout_desc, gs_fs_bulkout_desc;
struct usb_endpoint_descriptor gs_hs_notifyin_desc, gs_fs_notifyin_desc;
struct usb_descriptor_header **gs_fullspeed_header;
struct usb_descriptor_header **gs_highspeed_header;
struct usb_function *func;
int configured;
int bound;
};
/* Functions */
/* module */
static int __init gs_module_init(void);
static void __exit gs_module_exit(void);
static void send_notify_data(struct usb_endpoint *ep, struct usb_request *req);
/* tty driver */
static int gs_open(struct tty_struct *tty, struct file *file);
static void gs_close(struct tty_struct *tty, struct file *file);
static int gs_write(struct tty_struct *tty,
const unsigned char *buf, int count);
static int gs_put_char(struct tty_struct *tty, unsigned char ch);
static void gs_flush_chars(struct tty_struct *tty);
static int gs_write_room(struct tty_struct *tty);
static int gs_chars_in_buffer(struct tty_struct *tty);
static void gs_throttle(struct tty_struct *tty);
static void gs_unthrottle(struct tty_struct *tty);
static int gs_break(struct tty_struct *tty, int break_state);
static int gs_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg);
static void gs_set_termios(struct tty_struct *tty, struct ktermios *old);
static unsigned gs_start_rx(struct gs_dev *dev);
static int gs_send(struct gs_dev *dev);
static int gs_send_packet(struct gs_dev *dev, char *packet, unsigned int size);
static void gs_read_complete(struct usb_endpoint *ep, struct usb_request *req);
static void gs_write_complete(struct usb_endpoint *ep, struct usb_request *req);
static int gs_tiocmget(struct tty_struct *tty, struct file *file);
static int gs_tiocmset(struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear);
/* Function driver */
static void gs_bind(void *);
static void gs_unbind(void *);
static int gs_setup(struct usb_ctrlrequest *req,
void *buf, int len, void *_ctxt);
static void gs_configure(int config, void *_ctxt);
static void gs_disconnect(void *_ctxt);
static void gs_reset_config(struct gs_dev *dev);
static struct usb_request *gs_alloc_req(struct usb_endpoint *ep,
unsigned int len);
static void gs_free_req(struct usb_endpoint *ep, struct usb_request *req);
static int gs_alloc_ports(struct gs_dev *dev, gfp_t kmalloc_flags);
static void gs_free_ports(struct gs_dev *dev);
/* circular buffer */
static struct gs_buf *gs_buf_alloc(unsigned int size, gfp_t kmalloc_flags);
static void gs_buf_free(struct gs_buf *gb);
static void gs_buf_clear(struct gs_buf *gb);
static unsigned int gs_buf_data_avail(struct gs_buf *gb);
static unsigned int gs_buf_space_avail(struct gs_buf *gb);
static unsigned int gs_buf_put(struct gs_buf *gb, const char *buf,
unsigned int count);
static unsigned int gs_buf_get(struct gs_buf *gb, char *buf,
unsigned int count);
/* Globals */
static struct gs_dev **gs_devices;
static struct semaphore gs_open_close_sem[GS_NUM_PORTS];
static unsigned int read_q_size = GS_DEFAULT_READ_Q_SIZE;
static unsigned int write_q_size = GS_DEFAULT_WRITE_Q_SIZE;
static unsigned int write_buf_size = GS_DEFAULT_WRITE_BUF_SIZE;
static struct workqueue_struct *gs_tty_wq;
/* tty driver struct */
static const struct tty_operations gs_tty_ops = {
.open = gs_open,
.close = gs_close,
.write = gs_write,
.put_char = gs_put_char,
.flush_chars = gs_flush_chars,
.write_room = gs_write_room,
.ioctl = gs_ioctl,
.set_termios = gs_set_termios,
.throttle = gs_throttle,
.unthrottle = gs_unthrottle,
.break_ctl = gs_break,
.chars_in_buffer = gs_chars_in_buffer,
.tiocmget = gs_tiocmget,
.tiocmset = gs_tiocmset,
};
static struct tty_driver *gs_tty_driver;
/* Function driver struct */
static struct usb_function usb_function_serial[2];
struct usb_function *global_func_serial;
struct gs_dev **dum_device;
/* Module */
MODULE_DESCRIPTION(GS_LONG_NAME);
MODULE_AUTHOR("Al Borchers");
MODULE_LICENSE("GPL");
#ifdef GS_DEBUG
module_param(debug, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(debug, "Enable debugging, 0=off, 1=on");
#endif
module_param(read_q_size, uint, S_IRUGO);
MODULE_PARM_DESC(read_q_size, "Read request queue size, default=32");
module_param(write_q_size, uint, S_IRUGO);
MODULE_PARM_DESC(write_q_size, "Write request queue size, default=32");
module_param(write_buf_size, uint, S_IRUGO);
MODULE_PARM_DESC(write_buf_size, "Write buffer size, default=8192");
module_param(instances, int, 0);
MODULE_PARM_DESC(instances, "Number of serial instances");
module_init(gs_module_init);
module_exit(gs_module_exit);
/******************************************************************************/
/*
* CDC-ACM Class specific Descriptors
*/
static const struct usb_cdc_header_desc gs_header_desc = {
.bLength = sizeof(gs_header_desc),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_HEADER_TYPE,
.bcdCDC = __constant_cpu_to_le16(0x0110),
};
static const struct usb_cdc_call_mgmt_descriptor gs_call_mgmt_descriptor = {
.bLength = sizeof(gs_call_mgmt_descriptor),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_CALL_MANAGEMENT_TYPE,
.bmCapabilities = 0,
.bDataInterface = 0,
};
static struct usb_cdc_acm_descriptor gs_acm_descriptor = {
.bLength = sizeof(gs_acm_descriptor),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_ACM_TYPE,
.bmCapabilities = 3, /* bits should be 00000011 (refer to 5.2.3.3) */
};
static const struct usb_cdc_union_desc gs_union_desc = {
.bLength = sizeof(gs_union_desc),
.bDescriptorType = USB_DT_CS_INTERFACE,
.bDescriptorSubType = USB_CDC_UNION_TYPE,
.bMasterInterface0 = 0,
.bSlaveInterface0 = 0,
};
static void gs_init_ifc_desc(struct usb_interface_descriptor *ifc_desc)
{
ifc_desc->bLength = USB_DT_INTERFACE_SIZE;
ifc_desc->bDescriptorType = USB_DT_INTERFACE;
ifc_desc->bNumEndpoints = 3;
ifc_desc->bInterfaceClass = USB_CLASS_VENDOR_SPEC;
ifc_desc->bInterfaceSubClass = USB_CLASS_VENDOR_SPEC;
ifc_desc->bInterfaceProtocol = USB_CLASS_VENDOR_SPEC;
ifc_desc->iInterface = 0;
}
#define HIGHSPEED 1
#define FULLSPEED 2
#define BULK 1
#define INTERRUPT 2
static void gs_init_ep_desc(struct usb_endpoint_descriptor *ep_desc,
unsigned type, unsigned speed)
{
ep_desc->bLength = USB_DT_ENDPOINT_SIZE;
ep_desc->bDescriptorType = USB_DT_ENDPOINT;
if (type == BULK) {
ep_desc->bmAttributes = USB_ENDPOINT_XFER_BULK;
if (speed == HIGHSPEED)
ep_desc->wMaxPacketSize = 512;
else
ep_desc->wMaxPacketSize = 64;
} else {
ep_desc->bmAttributes = USB_ENDPOINT_XFER_INT;
ep_desc->wMaxPacketSize = 64;
ep_desc->bInterval = 4;
}
}
static void gs_init_header_desc(struct gs_dev *dev)
{
dev->gs_highspeed_header[0] =
(struct usb_descriptor_header *)&dev->gs_ifc_desc;
dev->gs_highspeed_header[1] =
(struct usb_descriptor_header *)&dev->gs_hs_bulkin_desc;
dev->gs_highspeed_header[2] =
(struct usb_descriptor_header *)&dev->gs_hs_bulkout_desc;
dev->gs_highspeed_header[3] =
(struct usb_descriptor_header *)&dev->gs_hs_notifyin_desc;
dev->gs_highspeed_header[4] = NULL;
dev->gs_fullspeed_header[0] =
(struct usb_descriptor_header *)&dev->gs_ifc_desc;
dev->gs_fullspeed_header[1] =
(struct usb_descriptor_header *)&dev->gs_fs_bulkin_desc;
dev->gs_fullspeed_header[2] =
(struct usb_descriptor_header *)&dev->gs_fs_bulkout_desc;
dev->gs_fullspeed_header[3] =
(struct usb_descriptor_header *)&dev->gs_fs_notifyin_desc;
dev->gs_fullspeed_header[4] = NULL;
}
/*****************************************************************************/
/*
* gs_module_init
*
* Register as a USB gadget driver and a tty driver.
*/
char *a[] = {"modem", "nmea"};
static int __init gs_module_init(void)
{
int i, retval;
struct usb_function *func;
if (instances > MAX_INSTANCES || instances == 0) {
printk(KERN_ERR "Incorrect instances entered \n");
return -ENODEV;
}
gs_tty_wq = create_singlethread_workqueue("gs_tty");
if (gs_tty_wq == 0)
return -ENOMEM;
gs_tty_driver = alloc_tty_driver(GS_NUM_PORTS);
if (!gs_tty_driver) {
destroy_workqueue(gs_tty_wq);
return -ENOMEM;
}
gs_tty_driver->owner = THIS_MODULE;
gs_tty_driver->driver_name = GS_SHORT_NAME;
gs_tty_driver->name = "ttyHSUSB";
gs_tty_driver->major = GS_MAJOR;
gs_tty_driver->minor_start = GS_MINOR_START;
gs_tty_driver->type = TTY_DRIVER_TYPE_SERIAL;
gs_tty_driver->subtype = SERIAL_TYPE_NORMAL;
gs_tty_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV
| TTY_DRIVER_RESET_TERMIOS;
gs_tty_driver->init_termios = tty_std_termios;
gs_tty_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL
| CLOCAL;
tty_set_operations(gs_tty_driver, &gs_tty_ops);
for (i = 0; i < GS_NUM_PORTS; i++)
sema_init(&gs_open_close_sem[i], 1);
retval = tty_register_driver(gs_tty_driver);
if (retval) {
/*usb_function_unregister(&usb_func_serial); */
put_tty_driver(gs_tty_driver);
printk(KERN_ERR
"gs_module_init: cannot register tty driver,ret = %d\n",
retval);
return retval;
}
for (i = 0; i < MAX_INSTANCES; i++)
tty_register_device(gs_tty_driver, i, NULL);
gs_devices = kzalloc(sizeof(struct gs_dev *) * instances,
GFP_KERNEL);
if (!gs_devices)
return -ENOMEM;
for (i = 0; i < instances; i++) {
func = &usb_function_serial[i];
gs_devices[i] = kzalloc(sizeof(struct gs_dev), GFP_KERNEL);
if (!gs_devices[i])
return -ENOMEM;
spin_lock_init(&gs_devices[i]->dev_lock);
INIT_LIST_HEAD(&gs_devices[i]->dev_req_list);
gs_devices[i]->func = func;
/*1 - Interface, 3 Endpoints-> Total 4 + 1 for NULL*/
gs_devices[i]->gs_fullspeed_header =
kmalloc(sizeof(struct usb_descriptor_header *) * 5, GFP_KERNEL);
gs_devices[i]->gs_highspeed_header =
kmalloc(sizeof(struct usb_descriptor_header *) * 5, GFP_KERNEL);
gs_init_ifc_desc(&gs_devices[i]->gs_ifc_desc);
gs_init_ep_desc(&gs_devices[i]->gs_hs_bulkin_desc, BULK,
HIGHSPEED);
gs_init_ep_desc(&gs_devices[i]->gs_hs_bulkout_desc, BULK,
HIGHSPEED);
gs_init_ep_desc(&gs_devices[i]->gs_hs_notifyin_desc, INTERRUPT,
HIGHSPEED);
gs_init_ep_desc(&gs_devices[i]->gs_fs_bulkin_desc, BULK,
FULLSPEED);
gs_init_ep_desc(&gs_devices[i]->gs_fs_bulkout_desc, BULK,
FULLSPEED);
gs_init_ep_desc(&gs_devices[i]->gs_fs_notifyin_desc, INTERRUPT,
FULLSPEED);
gs_init_header_desc(gs_devices[i]);
/*Initializing Directions*/
gs_devices[i]->gs_hs_bulkin_desc.bEndpointAddress = USB_DIR_IN;
gs_devices[i]->gs_hs_bulkout_desc.bEndpointAddress =
USB_DIR_OUT;
gs_devices[i]->gs_hs_notifyin_desc.bEndpointAddress =
USB_DIR_IN;
gs_devices[i]->gs_fs_bulkin_desc.bEndpointAddress = USB_DIR_IN;
gs_devices[i]->gs_fs_bulkout_desc.bEndpointAddress =
USB_DIR_OUT;
gs_devices[i]->gs_fs_notifyin_desc.bEndpointAddress =
USB_DIR_IN;
func->bind = gs_bind;
func->unbind = gs_unbind;
func->configure = gs_configure;
func->disconnect = gs_disconnect;
func->setup = gs_setup;
func->name = a[i];
func->context = gs_devices[i];
func->fs_descriptors = gs_devices[i]->gs_fullspeed_header;
func->hs_descriptors = gs_devices[i]->gs_highspeed_header;
retval = usb_function_register(func);
if (retval) {
printk(KERN_ERR
"gs_module_init: cannot register Function driver, ret = %d\n",
retval);
return retval;
}
}
return 0;
}
/*
* gs_module_exit
*
* Unregister as a tty driver and a USB gadget driver.
*/
static void __exit gs_module_exit(void)
{
int i;
for (i = 0; i < instances; i++)
usb_function_unregister(&usb_function_serial[i]);
for (i = 0; i < instances; ++i) {
kfree(gs_devices[i]->gs_fullspeed_header);
kfree(gs_devices[i]->gs_highspeed_header);
kfree(gs_devices[i]);
}
for (i = 0; i < MAX_INSTANCES; i++)
tty_unregister_device(gs_tty_driver, i);
tty_unregister_driver(gs_tty_driver);
put_tty_driver(gs_tty_driver);
printk(KERN_INFO "gs_module_exit: %s %s unloaded\n", GS_LONG_NAME,
GS_VERSION_STR);
}
/* TTY Driver */
/*
* gs_open
*/
static int gs_open(struct tty_struct *tty, struct file *file)
{
int port_num;
unsigned long flags;
struct gs_port *port;
struct gs_dev *dev;
struct gs_buf *buf;
struct semaphore *sem;
int ret;
port_num = tty->index;
gs_debug("gs_open: (%d,%p,%p)\n", port_num, tty, file);
if (port_num < 0 || port_num >= GS_NUM_PORTS) {
printk(KERN_ERR "gs_open: (%d,%p,%p) invalid port number\n",
port_num, tty, file);
return -ENODEV;
}
dev = gs_devices[tty->index];
if (dev == NULL) {
printk(KERN_ERR "gs_open: (%d,%p,%p) NULL device pointer\n",
port_num, tty, file);
return -ENODEV;
}
sem = &gs_open_close_sem[port_num];
if (down_interruptible(sem)) {
printk(KERN_ERR
"gs_open: (%d,%p,%p) interrupted waiting for semaphore\n",
port_num, tty, file);
return -ERESTARTSYS;
}
spin_lock_irqsave(&dev->dev_lock, flags);
port = dev->dev_port[0];
if (port == NULL) {
printk(KERN_ERR "gs_open: (%d,%p,%p) NULL port pointer\n",
port_num, tty, file);
ret = -ENODEV;
goto exit_unlock_dev;
}
spin_unlock_irqrestore(&dev->dev_lock, flags);
spin_lock_irqsave(&port->port_lock, flags);
if (port->port_dev == NULL) {
printk(KERN_ERR "gs_open: (%d,%p,%p) port disconnected (1)\n",
port_num, tty, file);
ret = -EIO;
goto exit_unlock_port;
}
if (port->port_open_count > 0) {
++port->port_open_count;
gs_debug("gs_open: (%d,%p,%p) already open\n",
port_num, tty, file);
ret = 0;
goto exit_unlock_port;
}
tty->driver_data = NULL;
/* mark port as in use, we can drop port lock and sleep if necessary */
port->port_in_use = 1;
/* allocate write buffer on first open */
if (port->port_write_buf == NULL) {
spin_unlock_irqrestore(&port->port_lock, flags);
buf = gs_buf_alloc(write_buf_size, GFP_KERNEL);
spin_lock_irqsave(&port->port_lock, flags);
/* might have been disconnected while asleep, check */
if (port->port_dev == NULL) {
printk(KERN_ERR
"gs_open: (%d,%p,%p) port disconnected (2)\n",
port_num, tty, file);
port->port_in_use = 0;
ret = -EIO;
goto exit_unlock_port;
}
port->port_write_buf = buf;
if (port->port_write_buf == NULL) {
printk(KERN_ERR
"gs_open: (%d,%p,%p) cannot allocate port write buffer\n",
port_num, tty, file);
port->port_in_use = 0;
ret = -ENOMEM;
goto exit_unlock_port;
}
}
/* wait for carrier detect (not implemented) */
/* might have been disconnected while asleep, check */
if (port->port_dev == NULL) {
printk(KERN_ERR "gs_open: (%d,%p,%p) port disconnected (3)\n",
port_num, tty, file);
port->port_in_use = 0;
ret = -EIO;
goto exit_unlock_port;
}
tty->driver_data = port;
port->port_tty = tty;
port->port_tty->low_latency = 1;
port->port_open_count = 1;
port->port_in_use = 0;
gs_debug("gs_open: (%d,%p,%p) completed\n", port_num, tty, file);
/* Queue RX requests */
port->n_read = 0;
gs_start_rx(dev);
ret = 0;
exit_unlock_port:
spin_unlock_irqrestore(&port->port_lock, flags);
up(sem);
return ret;
exit_unlock_dev:
spin_unlock_irqrestore(&dev->dev_lock, flags);
up(sem);
return ret;
}
/*
* gs_close
*/
#define GS_WRITE_FINISHED_EVENT_SAFELY(p) \
({ \
int cond; \
\
spin_lock_irq(&(p)->port_lock); \
cond = !(p)->port_dev || !gs_buf_data_avail((p)->port_write_buf); \
spin_unlock_irq(&(p)->port_lock); \
cond; \
})
static void gs_close(struct tty_struct *tty, struct file *file)
{
struct gs_port *port = tty->driver_data;
struct semaphore *sem;
if (port == NULL) {
printk(KERN_ERR "gs_close: NULL port pointer\n");
return;
}
gs_debug("gs_close: (%d,%p,%p)\n", port->port_num, tty, file);
sem = &gs_open_close_sem[port->port_num];
down(sem);
spin_lock_irq(&port->port_lock);
if (port->port_open_count == 0) {
printk(KERN_ERR
"gs_close: (%d,%p,%p) port is already closed\n",
port->port_num, tty, file);
goto exit;
}
if (port->port_open_count > 1) {
--port->port_open_count;
goto exit;
}
/* free disconnected port on final close */
if (port->port_dev == NULL)
goto exit;
/* mark port as closed but in use, we can drop port lock */
/* and sleep if necessary */
port->port_in_use = 1;
port->port_open_count = 0;
/* wait for write buffer to drain, or */
/* at most GS_CLOSE_TIMEOUT seconds */
if (gs_buf_data_avail(port->port_write_buf) > 0) {
spin_unlock_irq(&port->port_lock);
wait_event_interruptible_timeout(port->port_write_wait,
GS_WRITE_FINISHED_EVENT_SAFELY
(port), GS_CLOSE_TIMEOUT * HZ);
spin_lock_irq(&port->port_lock);
}
/* free disconnected port on final close */
/* (might have happened during the above sleep) */
if (port->port_dev == NULL)
goto exit;
gs_buf_clear(port->port_write_buf);
/* Flush bulk-out pipe */
usb_ept_fifo_flush(port->port_dev->dev_out_ep);
tty->driver_data = NULL;
port->port_tty = NULL;
port->port_in_use = 0;
gs_debug("gs_close: (%d,%p,%p) completed\n", port->port_num, tty, file);
exit:
spin_unlock_irq(&port->port_lock);
up(sem);
if (port->port_dev == NULL)
kfree(port);
}
/*
* gs_write
*/
static int gs_write(struct tty_struct *tty, const unsigned char *buf, int count)
{
unsigned long flags;
struct gs_port *port = tty->driver_data;
int ret;
if (port == NULL) {
printk(KERN_ERR "gs_write: NULL port pointer\n");
return -EIO;
}
gs_debug("gs_write: (%d,%p) writing %d bytes\n", port->port_num, tty,
count);
if (count == 0)
return 0;
spin_lock_irqsave(&port->port_lock, flags);
if (port->port_dev == NULL) {
printk(KERN_ERR "gs_write: (%d,%p) port is not connected\n",
port->port_num, tty);
ret = -EIO;
goto exit;
}
if (port->port_open_count == 0) {
printk(KERN_ERR "gs_write: (%d,%p) port is closed\n",
port->port_num, tty);
ret = -EBADF;
goto exit;
}
count = gs_buf_put(port->port_write_buf, buf, count);
if (port->port_dev->dev_config)
gs_send(gs_devices[tty->index]);
spin_unlock_irqrestore(&port->port_lock, flags);
gs_debug("gs_write: (%d,%p) wrote %d bytes\n", port->port_num, tty,
count);
return count;
exit:
spin_unlock_irqrestore(&port->port_lock, flags);
return ret;
}
/*
* gs_put_char
*/
static int gs_put_char(struct tty_struct *tty, unsigned char ch)
{
unsigned long flags;
int ret = 0;
struct gs_port *port = tty->driver_data;
if (port == NULL) {
printk(KERN_ERR "gs_put_char: NULL port pointer\n");
goto out;
}
gs_debug("gs_put_char: (%d,%p) char=0x%x, called from %p, %p, %p\n",
port->port_num, tty, ch, __builtin_return_address(0),
__builtin_return_address(1), __builtin_return_address(2));
spin_lock_irqsave(&port->port_lock, flags);
if (port->port_dev == NULL) {
printk(KERN_ERR "gs_put_char: (%d,%p) port is not connected\n",
port->port_num, tty);
goto exit_unlock;
}
if (port->port_open_count == 0) {
printk(KERN_ERR "gs_put_char: (%d,%p) port is closed\n",
port->port_num, tty);
goto exit_unlock;
}
ret = gs_buf_put(port->port_write_buf, &ch, 1);
exit_unlock:
spin_unlock_irqrestore(&port->port_lock, flags);
out:
return ret;
}
/*
* gs_flush_chars
*/
static void gs_flush_chars(struct tty_struct *tty)
{
unsigned long flags;
struct gs_port *port = tty->driver_data;
if (port == NULL) {
printk(KERN_ERR "gs_flush_chars: NULL port pointer\n");
return;
}
gs_debug("gs_flush_chars: (%d,%p)\n", port->port_num, tty);
spin_lock_irqsave(&port->port_lock, flags);
if (port->port_dev == NULL) {
printk(KERN_ERR
"gs_flush_chars: (%d,%p) port is not connected\n",
port->port_num, tty);
goto exit;
}
if (port->port_open_count == 0) {
printk(KERN_ERR "gs_flush_chars: (%d,%p) port is closed\n",
port->port_num, tty);
goto exit;
}
if (port->port_dev->dev_config)
gs_send(gs_devices[tty->index]);
spin_unlock_irqrestore(&port->port_lock, flags);
return;
exit:
spin_unlock_irqrestore(&port->port_lock, flags);
}
/*
* gs_write_room
*/
static int gs_write_room(struct tty_struct *tty)
{
int room = 0;
unsigned long flags;
struct gs_port *port = tty->driver_data;
if (port == NULL)
return 0;
spin_lock_irqsave(&port->port_lock, flags);
if (port->port_dev != NULL && port->port_open_count > 0
&& port->port_write_buf != NULL)
room = gs_buf_space_avail(port->port_write_buf);
spin_unlock_irqrestore(&port->port_lock, flags);
gs_debug("gs_write_room: (%d,%p) room=%d\n", port->port_num, tty, room);
return room;
}
/*
* gs_chars_in_buffer
*/
static int gs_chars_in_buffer(struct tty_struct *tty)
{
int chars = 0;
unsigned long flags;
struct gs_port *port = tty->driver_data;
if (port == NULL)
return 0;
spin_lock_irqsave(&port->port_lock, flags);
if (port->port_dev != NULL && port->port_open_count > 0
&& port->port_write_buf != NULL)
chars = gs_buf_data_avail(port->port_write_buf);
spin_unlock_irqrestore(&port->port_lock, flags);
gs_debug("gs_chars_in_buffer: (%d,%p) chars=%d\n",
port->port_num, tty, chars);
return chars;
}
/*
* gs_throttle
*/
static void gs_throttle(struct tty_struct *tty)
{
}
/*
* gs_unthrottle
*/
static void gs_unthrottle(struct tty_struct *tty)
{
struct gs_port *port = tty->driver_data;
unsigned long flags;
spin_lock_irqsave(&port->port_lock, flags);
queue_work(gs_tty_wq, &port->push_work);
spin_unlock_irqrestore(&port->port_lock, flags);
}
/*
* gs_break
*/
static int gs_break(struct tty_struct *tty, int break_state)
{
return 0;
}
/*
* gs_ioctl
*/
static int gs_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
{
/* could not handle ioctl */
return -ENOIOCTLCMD;
}
/*
* gs_set_termios
*/
static void gs_set_termios(struct tty_struct *tty, struct ktermios *old)
{
}
/*
* gs_send
*
* This function finds available write requests, calls
* gs_send_packet to fill these packets with data, and
* continues until either there are no more write requests
* available or no more data to send. This function is
* run whenever data arrives or write requests are available.
*/
static int gs_send(struct gs_dev *dev)
{
struct gs_port *port = dev->dev_port[0];
struct list_head *pool = &port->write_pool;
int status = 0;
static long prev_len;
bool do_tty_wake = false;
struct usb_endpoint *ep = dev->dev_in_ep;
while (!list_empty(pool)) {
struct usb_request *req;
int len;
req = list_entry(pool->next, struct usb_request, list);
len = gs_send_packet(dev, req->buf, usb_ept_get_max_packet(ep));
if (len == 0) {
/* Queue zero length packet */
if (prev_len == usb_ept_get_max_packet(ep)) {
req->length = 0;
list_del(&req->list);
spin_unlock(&port->port_lock);
status = usb_ept_queue_xfer(ep, req);
spin_lock(&port->port_lock);
if (status) {
printk(KERN_ERR "%s: %s err %d\n",
__func__, "queue", status);
list_add(&req->list, pool);
}
prev_len = 0;
}
wake_up_interruptible(&port->port_write_wait);
break;
}
do_tty_wake = true;
req->length = len;
list_del(&req->list);
/* Drop lock while we call out of driver; completions
* could be issued while we do so. Disconnection may
* happen too; maybe immediately before we queue this!
* NOTE that we may keep sending data for a while after
* the TTY closed (dev->ioport->port_tty is NULL).
*/
spin_unlock(&port->port_lock);
status = usb_ept_queue_xfer(ep, req);
spin_lock(&port->port_lock);
if (status) {
printk(KERN_ERR "%s: %s err %d\n",
__func__, "queue", status);
list_add(&req->list, pool);
break;
}
prev_len = req->length;
}
if (do_tty_wake && port->port_tty)
tty_wakeup(port->port_tty);
return status;
}
/*
* gs_send_packet
*
* If there is data to send, a packet is built in the given
* buffer and the size is returned. If there is no data to
* send, 0 is returned. If there is any error a negative
* error number is returned.
*
* Called during USB completion routine, on interrupt time.
*
* We assume that disconnect will not happen until all completion
* routines have completed, so we can assume that the dev_port
* array does not change during the lifetime of this function.
*/
static int gs_send_packet(struct gs_dev *dev, char *packet, unsigned int size)
{
unsigned int len;
struct gs_port *port;
if (dev == NULL) {
printk(KERN_ERR "gs_recv_packet:NULL device pointer\n");
return -EIO;
}
/* TEMPORARY -- only port 0 is supported right now */
port = dev->dev_port[0];
if (port == NULL) {
printk(KERN_ERR
"gs_send_packet: port=%d, NULL port pointer\n", 0);
return -EIO;
}
len = gs_buf_data_avail(port->port_write_buf);
if (len < size)
size = len;
if (size != 0)
size = gs_buf_get(port->port_write_buf, packet, size);
if (port->port_tty)
tty_wakeup(port->port_tty);
return size;
}
static void gs_rx_push(struct work_struct *work)
{
struct gs_port *port = container_of(work,
struct gs_port,
push_work);
struct tty_struct *tty;
struct list_head *queue = &port->read_queue;
bool do_push = false;
struct gs_dev *dev = port->port_dev;
/* hand any queued data to the tty */
spin_lock_irq(&port->port_lock);
tty = port->port_tty;
while (!list_empty(queue)) {
struct usb_request *req;
req = list_first_entry(queue, struct usb_request, list);
/* discard data if tty was closed */
if (!tty)
goto recycle;
if (req->actual) {
char *packet = req->buf;
unsigned size = req->actual;
unsigned n;
int count;
/* we may have pushed part of this packet already... */
n = port->n_read;
if (n) {
packet += n;
size -= n;
}
/*printk(KERN_INFO "tty_push:%d\n",size);*/
count = tty_insert_flip_string(tty, packet, size);
if (count == 0)
printk(KERN_INFO "%s: tty buffer is full: throttle\n",
__func__);
if (count)
do_push = true;
if (count != size) {
/* stop pushing; TTY layer can't handle more */
port->n_read += count;
break;
}
port->n_read = 0;
}
recycle:
list_move(&req->list, &port->read_pool);
}
if (tty && do_push) {
spin_unlock_irq(&port->port_lock);
tty_flip_buffer_push(tty);
wake_up_interruptible(&tty->read_wait);
spin_lock_irq(&port->port_lock);
/* tty may have been closed */
tty = port->port_tty;
}
if (!list_empty(queue) && tty) {
if (!test_bit(TTY_THROTTLED, &tty->flags)) {
if (do_push)
queue_work(gs_tty_wq, &port->push_work);
}
}
gs_start_rx(dev);
spin_unlock_irq(&port->port_lock);
}
/*
* gs_read_complete
*/
static void gs_read_complete(struct usb_endpoint *ep, struct usb_request *req)
{
/* used global variable */
struct gs_dev *dev = (struct gs_dev *)req->device;
struct gs_port *port;
struct tty_struct *tty;
if (dev == NULL) {
printk(KERN_ERR "gs_read_complete: NULL device pointer\n");
return;
}
port = dev->dev_port[0];
tty = port->port_tty;
switch (req->status) {
case 0:
spin_lock(&port->port_lock);
list_add_tail(&req->list, &port->read_queue);
if (!test_bit(TTY_THROTTLED, &tty->flags))
queue_work(gs_tty_wq, &port->push_work);
spin_unlock(&port->port_lock);
break;
case -ESHUTDOWN:
/* disconnect */
gs_debug("gs_read_complete: shutdown\n");
gs_free_req(ep, req);
break;
case -ENODEV:
list_add_tail(&req->list, &port->read_pool);
/* Implemented handling in future if needed */
break;
default:
list_add_tail(&req->list, &port->read_pool);
printk(KERN_ERR
"gs_read_complete: unexpected status error, status=%d\n",
req->status);
/* goto requeue; */
break;
}
}
/*
* gs_write_complete
*/
static void gs_write_complete(struct usb_endpoint *ep, struct usb_request *req)
{
struct gs_dev *dev = (struct gs_dev *)req->device;
struct gs_port *port = dev->dev_port[0];
unsigned long flags;
if (dev == NULL) {
printk(KERN_ERR "gs_write_complete: NULL device pointer\n");
return;
}
spin_lock_irqsave(&port->port_lock, flags);
list_add(&req->list, &port->write_pool);
switch (req->status) {
default:
/* presumably a transient fault */
printk(KERN_ERR "%s: unexpected status %d\n",
__func__, req->status);
/* FALL THROUGH */
case 0:
/* normal completion */
if ((req->length == 0) &&
(gs_buf_data_avail(port->port_write_buf) == 0)) {
break;
}
if (dev->dev_config)
gs_send(dev);
break;
case -ESHUTDOWN:
/* disconnect */
printk(KERN_DEBUG "%s: shutdown\n", __func__);
break;
}
spin_unlock_irqrestore(&port->port_lock, flags);
}
/* Send Notification to host if Status changes */
static void send_notify_data(struct usb_endpoint *ep, struct usb_request *req)
{
struct gs_dev *dev = (struct gs_dev *)req->device;
struct usb_cdc_notification *notify;
struct gs_port *port;
unsigned int msr, ret;
__le16 *data;
if (dev == NULL) {
printk(KERN_ERR "send_notify_data: NULL device pointer\n");
return;
}
port = dev->dev_port[0];
if (port == NULL) {
printk(KERN_ERR"send_notify_data:port is NULL\n");
return;
}
if (test_bit(0, &dev->notify_queued))
usb_ept_cancel_xfer(dev->dev_notify_ep,
dev->notify_req);
notify = req->buf;
msr = port->msr;
notify->bmRequestType = 0xA1;
notify->bNotificationType = USB_CDC_NOTIFY_SERIAL_STATE;
notify->wValue = __constant_cpu_to_le16(0);
notify->wIndex = __constant_cpu_to_le16(dev->interface_num);
notify->wLength = __constant_cpu_to_le16(2);
data = req->buf + sizeof *notify;
data[0] = __constant_cpu_to_le16(((msr & MSR_CD) ? 1 : 0)
| ((msr & MSR_DSR) ? (1<<1) : (0<<1))
| ((msr & MSR_RI) ? (1<<3) : (0<<3)));
set_bit(0, &dev->notify_queued);
ret = usb_ept_queue_xfer(ep, req);
if (ret) {
clear_bit(0, &dev->notify_queued);
printk(KERN_ERR
"send_notify_data: cannot queue status request,ret = %d\n",
ret);
}
}
/* Free request if -ESHUTDOWN */
static void gs_status_complete(struct usb_endpoint *ep,
struct usb_request *req)
{
struct gs_dev *dev = (struct gs_dev *)req->device;
struct gs_port *port;
if (dev == NULL) {
printk(KERN_ERR"gs_status_complete : NULL device pointer\n");
return;
}
port = dev->dev_port[0];
if (port == NULL) {
printk(KERN_ERR "gs_status_complete: NULL port pointer\n");
return;
}
clear_bit(0, &dev->notify_queued);
switch (req->status) {
case 0:
gs_debug("%s:port->msr=%x,dev=%p,ep=%p,req=%p", __func__,
port->msr, dev, dev->dev_notify_ep, dev->notify_req);
/* executed only if data missed because of
** request already in queue and user modifies using tiocmset */
if (port->prev_msr != port->msr) {
send_notify_data(dev->dev_notify_ep, dev->notify_req);
port->prev_msr = port->msr;
}
break;
case -ESHUTDOWN:
/* disconnect */
gs_debug("gs_status_complete: shutdown\n");
gs_free_req(ep, req);
break;
default:
printk(KERN_ERR
"gs_status_complete: unexpected status error, status=%d\n",
req->status);
break;
}
}
/* Function Driver */
/*
* gs_bind
*
* Called on module load. Allocates and initializes the device
* structure and a control request.
*/
static void gs_bind(void *_ctxt)
{
struct usb_endpoint *ep;
struct gs_dev *dev = _ctxt;
struct usb_function *func = dev->func;
int i = 0;
int ret;
if (func == NULL) {
pr_err("%s: NULL function pointer\n", __func__);
return;
}
ret = gs_alloc_ports(dev, GFP_KERNEL);
if (ret != 0) {
pr_err("%s: cannot allocate ports\n", __func__);
gs_unbind(_ctxt);
return;
}
ret = usb_msm_get_next_ifc_number(func);
dev->gs_ifc_desc.bInterfaceNumber = ret;
dev->gs_ifc_desc.iInterface = 0;
/*Configuring IN Endpoint*/
ep = dev->dev_in_ep = usb_alloc_endpoint(USB_DIR_IN);
if (!ep) {
pr_err("%s: in endpoint allocation failed\n", __func__);
return;
}
dev->gs_hs_bulkin_desc.bEndpointAddress = USB_DIR_IN | ep->num;
dev->gs_fs_bulkin_desc.bEndpointAddress = USB_DIR_IN | ep->num;
pr_debug("%s: bulk_in_endpoint Number = %d\n",
__func__, ep->num);
/*Configuring OUT endpoint*/
ep = dev->dev_out_ep = usb_alloc_endpoint(USB_DIR_OUT);
if (!ep) {
pr_err("out endpoint allocation failed\n");
return;
}
dev->gs_hs_bulkout_desc.bEndpointAddress = USB_DIR_OUT | ep->num;
dev->gs_fs_bulkout_desc.bEndpointAddress = USB_DIR_OUT | ep->num;
pr_debug("%s: bulk_out_endpoint Number = %d\n",
__func__, ep->num);
/*Configuring NOTIFY endpoint*/
ep = dev->dev_notify_ep = usb_alloc_endpoint(USB_DIR_IN);
if (!ep) {
pr_err("notify endpoint allocation failed\n");
return;
}
dev->gs_hs_notifyin_desc.bEndpointAddress = USB_DIR_IN | ep->num;
dev->gs_fs_notifyin_desc.bEndpointAddress = USB_DIR_IN | ep->num;
pr_debug("%s: notify_in_endpoint Number = %d\n",
__func__, ep->num);
for (i = 0; i < GS_DEFAULT_INT_REQ; ++i) {
struct gs_reqbuf *bh = &dev->statusreqbuf;
bh->buf = kmalloc(64, GFP_KERNEL);
if (!bh->buf)
return;
}
dev->bound = 1;
return;
}
/*
* gs_unbind
*
* Called on module unload. Frees the control request and device
* structure.
*/
static void /* __init_or_exit */ gs_unbind(void *_ctxt)
{
struct gs_dev *dev = _ctxt;
if (!dev) {
pr_err("%s: error: null device\n", __func__);
return;
}
if (!dev->bound)
return;
kfree(dev->statusreqbuf.buf);
if (dev->dev_in_ep) {
usb_ept_fifo_flush(dev->dev_in_ep);
usb_ept_enable(dev->dev_in_ep, 0);
usb_free_endpoint(dev->dev_in_ep);
}
if (dev->dev_out_ep) {
usb_ept_fifo_flush(dev->dev_out_ep);
usb_ept_enable(dev->dev_out_ep, 0);
usb_free_endpoint(dev->dev_out_ep);
}
if (dev->dev_notify_ep) {
usb_ept_fifo_flush(dev->dev_notify_ep);
usb_ept_enable(dev->dev_notify_ep, 0);
usb_free_endpoint(dev->dev_notify_ep);
}
gs_free_ports(dev);
dev->bound = 0;
pr_debug("%s: %s %s\n", __func__, GS_LONG_NAME, GS_VERSION_STR);
}
static void gser_complete_set_line_coding(struct usb_endpoint *ep,
struct usb_request *req)
{
struct gs_dev *dev = (struct gs_dev *)req->device;
struct gs_port *port;
struct usb_cdc_line_coding *value;
struct usb_request *in_req;
port = dev->dev_port[0];
if (!(dev && dev->dev_port[0])) {
printk(KERN_ERR "%s(): dev or dev_port is null\n", __func__);
usb_ept_set_halt(dev->func->ep0_in);
return;
}
if (req->actual != sizeof(port->port_line_coding)) {
printk(KERN_ERR "%s(): received wrong data\n", __func__);
usb_ept_set_halt(dev->func->ep0_in);
return;
}
port = dev->dev_port[0];
/* Use Host assigned port_line setting */
value = req->buf;
port->port_line_coding = *value;
/* Send ACK on EP0 IN */
in_req = dev->func->ep0_in_req;
in_req->length = 0;
in_req->complete = 0;
usb_ept_queue_xfer(dev->func->ep0_in, in_req);
}
static int gs_setup(struct usb_ctrlrequest *ctrl,
void *buf, int len, void *_ctxt)
{
int ret = -EOPNOTSUPP;
struct gs_dev *dev = _ctxt;
struct gs_port *port;/* ACM only has one port */
u16 wIndex = le16_to_cpu(ctrl->wIndex);
u16 wValue = le16_to_cpu(ctrl->wValue);
u16 wLength = le16_to_cpu(ctrl->wLength);
if (dev == NULL) {
printk(KERN_ERR"gs_setup:device pointer NULL\n");
return 0;
}
port = dev->dev_port[0];
if (port == NULL) {
printk(KERN_ERR"gs_setup: port pointer is NULL\n");
return 0;
}
switch (ctrl->bRequest) {
case USB_CDC_REQ_SET_LINE_CODING:
if (port) {
struct usb_request *req = dev->func->ep0_out_req;
ret = min(wLength,
(u16) sizeof(struct usb_cdc_line_coding));
if (ret != sizeof(struct usb_cdc_line_coding))
ret = -EOPNOTSUPP;
else {
req->device = dev;
req->complete = gser_complete_set_line_coding;
}
} else
ret = -ENODEV;
break;
case USB_CDC_REQ_GET_LINE_CODING:
port = dev->dev_port[0];/* ACM only has one port */
ret = min(wLength, (u16) sizeof(struct usb_cdc_line_coding));
if (port) {
spin_lock(&port->port_lock);
memcpy(buf, &port->port_line_coding, ret);
spin_unlock(&port->port_lock);
}
break;
case USB_CDC_REQ_SET_CONTROL_LINE_STATE:
port = dev->dev_port[0];/* ACM only has one port */
if (wValue & USB_CDC_SET_CONTROL_LINE_STATE_DTR) {
port->mcr |= MCR_DTR;
} else {
port->mcr &= ~MCR_DTR;
}
if (wValue & USB_CDC_SET_CONTROL_LINE_STATE_RTS)
port->mcr |= MCR_RTS;
else
port->mcr &= ~MCR_RTS;
dev->interface_num = wIndex;
ret = 0;
break;
default:
break;
}
return ret;
}
static void gs_disconnect(void *_ctxt)
{
struct gs_dev *dev = _ctxt;
struct gs_port *port = dev->dev_port[0];
unsigned long flags;
/* tell the TTY glue not to do I/O here any more */
spin_lock_irqsave(&port->port_lock, flags);
dev->dev_config = 0;
if (port->port_open_count > 0 || port->port_in_use) {
wake_up_interruptible(&port->port_write_wait);
if (port->port_tty) {
wake_up_interruptible(&port->port_tty->read_wait);
wake_up_interruptible(&port->port_tty->write_wait);
tty_hangup(port->port_tty);
}
}
port->mcr = 0;
port->msr = 0;
spin_unlock_irqrestore(&port->port_lock, flags);
}
/*
* gs_configure
*
* Configures the device by enabling device specific
* optimizations, setting up the endpoints, allocating
* read and write requests and queuing read requests.
*
* The device lock must be held when calling this function.
*/
static void gs_configure(int config, void *_ctxt)
{
int i, ret = 0;
unsigned MaxPacketSize;
struct gs_dev *dev = _ctxt;
struct usb_endpoint *ep;
struct usb_request *req;
struct gs_port *port;
struct list_head *rhead;
struct list_head *whead;
unsigned started = 0;
if (dev == NULL) {
printk(KERN_ERR "gs_configure: NULL device pointer\n");
return;
}
if (!dev->bound)
return;
port = dev->dev_port[0];
rhead = &port->read_pool;
whead = &port->write_pool;
if (port == NULL) {
printk(KERN_ERR "gs_configure:port is NULL\n");
return;
}
if (!config) {
gs_debug("gs_configure: Deconfigure\n");
dev->configured = SERIAL_UNCONFIGURED;
gs_reset_config(dev);
return;
}
dev->dev_config = config;
if (dev->dev_in_ep == NULL || dev->dev_out_ep == NULL ||
(dev->dev_notify_ep == NULL)) {
printk(KERN_ERR "gs_configure : cannot find endpoints\n");
ret = -ENODEV;
goto reset_config;
}
if (usb_msm_get_speed() == USB_SPEED_HIGH) {
usb_configure_endpoint(dev->dev_in_ep, &dev->gs_hs_bulkin_desc);
usb_configure_endpoint(dev->dev_out_ep,
&dev->gs_hs_bulkout_desc);
usb_configure_endpoint(dev->dev_notify_ep,
&dev->gs_hs_notifyin_desc);
} else {
usb_configure_endpoint(dev->dev_in_ep, &dev->gs_fs_bulkin_desc);
usb_configure_endpoint(dev->dev_out_ep,
&dev->gs_fs_bulkout_desc);
usb_configure_endpoint(dev->dev_notify_ep,
&dev->gs_fs_notifyin_desc);
}
usb_ept_enable(dev->dev_in_ep, 1);
usb_ept_enable(dev->dev_out_ep, 1);
usb_ept_enable(dev->dev_notify_ep, 1);
gs_debug("gs_configure: endpoint sizes and buffers\n");
/* allocate and queue read requests */
ep = dev->dev_out_ep;
MaxPacketSize = usb_ept_get_max_packet(ep);
for (i = 0; i < read_q_size; i++) {
req = gs_alloc_req(ep, MaxPacketSize);
if (req) {
req->device = (void *)dev;
req->length = MaxPacketSize;
req->complete = gs_read_complete;
list_add_tail(&req->list, rhead);
gs_debug("gs_configure: queuing read request(%d)\n", i);
} else {
printk(KERN_ERR
"gs_configure: cannot allocate read request(%d)\n", i);
goto reset_config;
}
}
/* allocate write requests, and put on free list */
ep = dev->dev_in_ep;
MaxPacketSize = usb_ept_get_max_packet(ep);
for (i = 0; i < write_q_size; i++) {
req = gs_alloc_req(ep, MaxPacketSize);
if (req) {
req->device = (void *)dev;
req->length = MaxPacketSize;
req->complete = gs_write_complete;
list_add_tail(&req->list, whead);
} else {
printk(KERN_ERR
"gs_configure: cannot allocate write request(%d)\n", i);
goto reset_config;
}
}
ep = dev->dev_notify_ep;
MaxPacketSize = usb_ept_get_max_packet(ep);
for (i = 0; i < GS_DEFAULT_INT_REQ; ++i) {
struct gs_reqbuf *bh = &dev->statusreqbuf;
dev->notify_req = req = gs_alloc_req(ep, 0);
if (req) {
req->device = (void *)dev;
req->buf = bh->buf;
req->length = MaxPacketSize;
req->complete = gs_status_complete;
}
}
if (port->port_open_count) {
unsigned long flags;
spin_lock_irqsave(&port->port_lock, flags);
started = gs_start_rx(dev);
spin_unlock_irqrestore(&port->port_lock, flags);
if (started)
tty_wakeup(port->port_tty);
}
dev->configured = SERIAL_CONFIGURED;
return;
reset_config:
printk(KERN_ERR "gs_configure(end): error, calling gs_reset_config\n");
gs_reset_config(dev);
return;
}
static unsigned gs_start_rx(struct gs_dev *dev)
{
struct gs_port *port = dev->dev_port[0];
struct list_head *pool = &port->read_pool;
unsigned ret = 0;
struct usb_endpoint *ep = dev->dev_out_ep;
unsigned started = 0;
while (!list_empty(pool)) {
struct usb_request *req;
struct tty_struct *tty;
tty = port->port_tty;
if (!tty) {
printk(KERN_ERR "%s: tty is null\n", __func__);
break;
}
req = list_entry(pool->next, struct usb_request, list);
list_del(&req->list);
spin_unlock(&port->port_lock);
ret = usb_ept_queue_xfer(ep, req);
spin_lock(&port->port_lock);
if (ret) {
list_add(&req->list, pool);
break;
}
started++;
}
return started;
}
/*
* gs_reset_config
*
* Mark the device as not configured, disable all endpoints,
* which forces completion of pending I/O and frees queued
* requests, and free the remaining write requests on the
* free list.
*
* The device lock must be held when calling this function.
*/
static void gs_reset_config(struct gs_dev *dev)
{
struct gs_port *port;
struct usb_request *req;
unsigned long flags;
if (dev == NULL) {
printk(KERN_ERR "gs_reset_config: NULL device pointer\n");
return;
}
port = dev->dev_port[0];
if (dev->dev_out_ep)
usb_free_endpoint_all_req(dev->dev_out_ep);
if (dev->dev_in_ep)
usb_free_endpoint_all_req(dev->dev_in_ep);
if (dev->dev_notify_ep)
usb_free_endpoint_all_req(dev->dev_notify_ep);
spin_lock_irqsave(&port->port_lock, flags);
dev->dev_config = GS_NO_CONFIG_ID;
/* free write requests on the free list */
while (!list_empty(&port->write_pool)) {
req = list_entry(port->write_pool.next,
struct usb_request, list);
list_del(&req->list);
gs_free_req(dev->dev_in_ep, req);
}
/* free read requests from read pool */
while (!list_empty(&port->read_pool)) {
req = list_entry(port->read_pool.next,
struct usb_request, list);
list_del(&req->list);
gs_free_req(dev->dev_out_ep, req);
}
/* free read requests from read queue */
while (!list_empty(&port->read_queue)) {
req = list_entry(port->read_queue.next,
struct usb_request, list);
list_del(&req->list);
gs_free_req(dev->dev_out_ep, req);
}
spin_unlock_irqrestore(&port->port_lock, flags);
}
/*
* gs_alloc_req
*
* Allocate a usb_request and its buffer. Returns a pointer to the
* usb_request or NULL if there is an error.
*/
static struct usb_request *gs_alloc_req(struct usb_endpoint *ep,
unsigned int len)
{
struct usb_request *req;
if (ep == NULL)
return NULL;
req = usb_ept_alloc_req(ep, len);
return req;
}
/*
* gs_free_req
*
* Free a usb_request and its buffer.
*/
static void gs_free_req(struct usb_endpoint *ep, struct usb_request *req)
{
if (ep != NULL && req != NULL)
usb_ept_free_req(ep, req);
}
/*
* gs_alloc_ports
*
* Allocate all ports and set the gs_dev struct to point to them.
* Return 0 if successful, or a negative error number.
*
* The device lock is normally held when calling this function.
*/
static int gs_alloc_ports(struct gs_dev *dev, gfp_t kmalloc_flags)
{
int i;
struct gs_port *port;
if (dev == NULL)
return -EIO;
for (i = 0; i < GS_NUM_PORTS; i++) {
port = kzalloc(sizeof(struct gs_port), kmalloc_flags);
if (port == NULL)
return -ENOMEM;
INIT_WORK(&port->push_work, gs_rx_push);
INIT_LIST_HEAD(&port->read_pool);
INIT_LIST_HEAD(&port->read_queue);
INIT_LIST_HEAD(&port->write_pool);
port->msr = 0;
port->prev_msr = 0;
port->mcr = 0;
port->port_dev = dev;
port->port_num = i;
port->port_line_coding.dwDTERate =
cpu_to_le32(GS_DEFAULT_DTE_RATE);
port->port_line_coding.bCharFormat = GS_DEFAULT_CHAR_FORMAT;
port->port_line_coding.bParityType = GS_DEFAULT_PARITY;
port->port_line_coding.bDataBits = GS_DEFAULT_DATA_BITS;
spin_lock_init(&port->port_lock);
mutex_init(&port->mutex_lock);
init_waitqueue_head(&port->port_write_wait);
dev->dev_port[i] = port;
}
return 0;
}
/*
* gs_free_ports
*
* Free all closed ports. Open ports are disconnected by
* freeing their write buffers, setting their device pointers
* and the pointers to them in the device to NULL. These
* ports will be freed when closed.
*
* The device lock is normally held when calling this function.
*/
static void gs_free_ports(struct gs_dev *dev)
{
int i;
unsigned long flags;
struct gs_port *port;
if (dev == NULL)
return;
for (i = 0; i < GS_NUM_PORTS; i++) {
port = dev->dev_port[i];
if (port != NULL) {
dev->dev_port[i] = NULL;
spin_lock_irqsave(&port->port_lock, flags);
if (port->port_write_buf != NULL) {
gs_buf_free(port->port_write_buf);
port->port_write_buf = NULL;
}
if (port->port_open_count > 0 || port->port_in_use) {
port->port_dev = NULL;
wake_up_interruptible(&port->port_write_wait);
if (port->port_tty) {
wake_up_interruptible
(&port->port_tty->read_wait);
wake_up_interruptible
(&port->port_tty->write_wait);
}
spin_unlock_irqrestore(&port->port_lock, flags);
} else {
spin_unlock_irqrestore(&port->port_lock, flags);
kfree(port);
}
}
}
}
/* Circular Buffer */
/*
* gs_buf_alloc
*
* Allocate a circular buffer and all associated memory.
*/
static struct gs_buf *gs_buf_alloc(unsigned int size, gfp_t kmalloc_flags)
{
struct gs_buf *gb;
if (size == 0)
return NULL;
gb = kmalloc(sizeof(struct gs_buf), kmalloc_flags);
if (gb == NULL)
return NULL;
gb->buf_buf = kmalloc(size, kmalloc_flags);
if (gb->buf_buf == NULL) {
kfree(gb);
return NULL;
}
gb->buf_size = size;
gb->buf_get = gb->buf_put = gb->buf_buf;
return gb;
}
/*
* gs_buf_free
*
* Free the buffer and all associated memory.
*/
void gs_buf_free(struct gs_buf *gb)
{
if (gb) {
kfree(gb->buf_buf);
kfree(gb);
}
}
/*
* gs_buf_clear
*
* Clear out all data in the circular buffer.
*/
void gs_buf_clear(struct gs_buf *gb)
{
if (gb != NULL)
gb->buf_get = gb->buf_put;
/* equivalent to a get of all data available */
}
/*
* gs_buf_data_avail
*
* Return the number of bytes of data available in the circular
* buffer.
*/
unsigned int gs_buf_data_avail(struct gs_buf *gb)
{
if (gb != NULL)
return (gb->buf_size + gb->buf_put - gb->buf_get)
% gb->buf_size;
else
return 0;
}
/*
* gs_buf_space_avail
*
* Return the number of bytes of space available in the circular
* buffer.
*/
unsigned int gs_buf_space_avail(struct gs_buf *gb)
{
if (gb != NULL)
return (gb->buf_size + gb->buf_get - gb->buf_put - 1)
% gb->buf_size;
else
return 0;
}
/*
* gs_buf_put
*
* Copy data data from a user buffer and put it into the circular buffer.
* Restrict to the amount of space available.
*
* Return the number of bytes copied.
*/
unsigned int gs_buf_put(struct gs_buf *gb, const char *buf, unsigned int count)
{
unsigned int len;
if (gb == NULL)
return 0;
len = gs_buf_space_avail(gb);
if (count > len)
count = len;
if (count == 0)
return 0;
len = gb->buf_buf + gb->buf_size - gb->buf_put;
if (count > len) {
memcpy(gb->buf_put, buf, len);
memcpy(gb->buf_buf, buf + len, count - len);
gb->buf_put = gb->buf_buf + count - len;
} else {
memcpy(gb->buf_put, buf, count);
if (count < len)
gb->buf_put += count;
else /* count == len */
gb->buf_put = gb->buf_buf;
}
return count;
}
/*
* gs_buf_get
*
* Get data from the circular buffer and copy to the given buffer.
* Restrict to the amount of data available.
*
* Return the number of bytes copied.
*/
unsigned int gs_buf_get(struct gs_buf *gb, char *buf, unsigned int count)
{
unsigned int len;
if (gb == NULL)
return 0;
len = gs_buf_data_avail(gb);
if (count > len)
count = len;
if (count == 0)
return 0;
len = gb->buf_buf + gb->buf_size - gb->buf_get;
if (count > len) {
memcpy(buf, gb->buf_get, len);
memcpy(buf + len, gb->buf_buf, count - len);
gb->buf_get = gb->buf_buf + count - len;
} else {
memcpy(buf, gb->buf_get, count);
if (count < len)
gb->buf_get += count;
else /* count == len */
gb->buf_get = gb->buf_buf;
}
return count;
}
/*
* gs_tiocmget
*/
static int gs_tiocmget(struct tty_struct *tty, struct file *file)
{
struct gs_port *port;
unsigned int mcr, msr;
unsigned int result = 0;
struct gs_dev *dev = gs_devices[tty->index];
if (dev == NULL)
return -EIO;
port = dev->dev_port[0];
if (port == NULL)
return -EIO;
mutex_lock(&port->mutex_lock);
mcr = port->mcr;
msr = port->msr;
result = ((mcr & MCR_RTS) ? TIOCM_RTS : 0)
| ((mcr & MCR_DTR) ? TIOCM_DTR : 0)
| ((mcr & MCR_LOOP) ? TIOCM_LOOP : 0)
| ((msr & MSR_CD) ? TIOCM_CD : 0)
| ((msr & MSR_RI) ? TIOCM_RI : 0)
| ((msr & MSR_DSR) ? TIOCM_DSR : 0)
| ((msr & MSR_CTS) ? TIOCM_CTS : 0);
mutex_unlock(&port->mutex_lock);
return result;
}
/*
* gs_tiocmset
*/
static int gs_tiocmset(struct tty_struct *tty, struct file *file,
unsigned int set, unsigned int clear)
{
struct gs_port *port;
unsigned int mcr;
unsigned int msr;
struct gs_dev *dev = gs_devices[tty->index];
if (dev == NULL)
return -EIO;
port = dev->dev_port[0];
if (port == NULL)
return -EIO;
mcr = port->mcr;
msr = port->msr;
if (dev->configured != SERIAL_CONFIGURED)
return -EIO;
set &= TIOCM_DSR | TIOCM_RI | TIOCM_CD | TIOCM_CTS;
if (set & TIOCM_DSR)
msr |= MSR_DSR;
if (set & TIOCM_RI)
msr |= MSR_RI;
if (set & TIOCM_CD)
msr |= MSR_CD;
if (set & TIOCM_CTS)
msr |= MSR_CTS;
clear &= TIOCM_DSR | TIOCM_RI | TIOCM_CD | TIOCM_CTS;
if (clear & TIOCM_RI)
msr &= ~MSR_RI;
if (clear & TIOCM_DSR)
msr &= ~MSR_DSR;
if (clear & TIOCM_CD)
msr &= ~MSR_CD;
if (clear & TIOCM_CTS)
msr &= ~MSR_CTS;
mutex_lock(&port->mutex_lock);
port->mcr = mcr;
port->msr = msr;
if (port->prev_msr != port->msr) {
send_notify_data(dev->dev_notify_ep, dev->notify_req);
port->prev_msr = port->msr;
}
mutex_unlock(&port->mutex_lock);
return 0;
}