| /* | 
 |  *  linux/kernel/signal.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 |  * | 
 |  *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson | 
 |  * | 
 |  *  2003-06-02  Jim Houston - Concurrent Computer Corp. | 
 |  *		Changes to use preallocated sigqueue structures | 
 |  *		to allow signals to be sent reliably. | 
 |  */ | 
 |  | 
 | #include <linux/slab.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/tty.h> | 
 | #include <linux/binfmts.h> | 
 | #include <linux/security.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/signalfd.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/tracehook.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/freezer.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/nsproxy.h> | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/signal.h> | 
 |  | 
 | #include <asm/param.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/unistd.h> | 
 | #include <asm/siginfo.h> | 
 | #include "audit.h"	/* audit_signal_info() */ | 
 |  | 
 | /* | 
 |  * SLAB caches for signal bits. | 
 |  */ | 
 |  | 
 | static struct kmem_cache *sigqueue_cachep; | 
 |  | 
 | int print_fatal_signals __read_mostly; | 
 |  | 
 | static void __user *sig_handler(struct task_struct *t, int sig) | 
 | { | 
 | 	return t->sighand->action[sig - 1].sa.sa_handler; | 
 | } | 
 |  | 
 | static int sig_handler_ignored(void __user *handler, int sig) | 
 | { | 
 | 	/* Is it explicitly or implicitly ignored? */ | 
 | 	return handler == SIG_IGN || | 
 | 		(handler == SIG_DFL && sig_kernel_ignore(sig)); | 
 | } | 
 |  | 
 | static int sig_task_ignored(struct task_struct *t, int sig, | 
 | 		int from_ancestor_ns) | 
 | { | 
 | 	void __user *handler; | 
 |  | 
 | 	handler = sig_handler(t, sig); | 
 |  | 
 | 	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && | 
 | 			handler == SIG_DFL && !from_ancestor_ns) | 
 | 		return 1; | 
 |  | 
 | 	return sig_handler_ignored(handler, sig); | 
 | } | 
 |  | 
 | static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) | 
 | { | 
 | 	/* | 
 | 	 * Blocked signals are never ignored, since the | 
 | 	 * signal handler may change by the time it is | 
 | 	 * unblocked. | 
 | 	 */ | 
 | 	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) | 
 | 		return 0; | 
 |  | 
 | 	if (!sig_task_ignored(t, sig, from_ancestor_ns)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Tracers may want to know about even ignored signals. | 
 | 	 */ | 
 | 	return !tracehook_consider_ignored_signal(t, sig); | 
 | } | 
 |  | 
 | /* | 
 |  * Re-calculate pending state from the set of locally pending | 
 |  * signals, globally pending signals, and blocked signals. | 
 |  */ | 
 | static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) | 
 | { | 
 | 	unsigned long ready; | 
 | 	long i; | 
 |  | 
 | 	switch (_NSIG_WORDS) { | 
 | 	default: | 
 | 		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) | 
 | 			ready |= signal->sig[i] &~ blocked->sig[i]; | 
 | 		break; | 
 |  | 
 | 	case 4: ready  = signal->sig[3] &~ blocked->sig[3]; | 
 | 		ready |= signal->sig[2] &~ blocked->sig[2]; | 
 | 		ready |= signal->sig[1] &~ blocked->sig[1]; | 
 | 		ready |= signal->sig[0] &~ blocked->sig[0]; | 
 | 		break; | 
 |  | 
 | 	case 2: ready  = signal->sig[1] &~ blocked->sig[1]; | 
 | 		ready |= signal->sig[0] &~ blocked->sig[0]; | 
 | 		break; | 
 |  | 
 | 	case 1: ready  = signal->sig[0] &~ blocked->sig[0]; | 
 | 	} | 
 | 	return ready !=	0; | 
 | } | 
 |  | 
 | #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) | 
 |  | 
 | static int recalc_sigpending_tsk(struct task_struct *t) | 
 | { | 
 | 	if ((t->group_stop & GROUP_STOP_PENDING) || | 
 | 	    PENDING(&t->pending, &t->blocked) || | 
 | 	    PENDING(&t->signal->shared_pending, &t->blocked)) { | 
 | 		set_tsk_thread_flag(t, TIF_SIGPENDING); | 
 | 		return 1; | 
 | 	} | 
 | 	/* | 
 | 	 * We must never clear the flag in another thread, or in current | 
 | 	 * when it's possible the current syscall is returning -ERESTART*. | 
 | 	 * So we don't clear it here, and only callers who know they should do. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. | 
 |  * This is superfluous when called on current, the wakeup is a harmless no-op. | 
 |  */ | 
 | void recalc_sigpending_and_wake(struct task_struct *t) | 
 | { | 
 | 	if (recalc_sigpending_tsk(t)) | 
 | 		signal_wake_up(t, 0); | 
 | } | 
 |  | 
 | void recalc_sigpending(void) | 
 | { | 
 | 	if (unlikely(tracehook_force_sigpending())) | 
 | 		set_thread_flag(TIF_SIGPENDING); | 
 | 	else if (!recalc_sigpending_tsk(current) && !freezing(current)) | 
 | 		clear_thread_flag(TIF_SIGPENDING); | 
 |  | 
 | } | 
 |  | 
 | /* Given the mask, find the first available signal that should be serviced. */ | 
 |  | 
 | #define SYNCHRONOUS_MASK \ | 
 | 	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \ | 
 | 	 sigmask(SIGTRAP) | sigmask(SIGFPE)) | 
 |  | 
 | int next_signal(struct sigpending *pending, sigset_t *mask) | 
 | { | 
 | 	unsigned long i, *s, *m, x; | 
 | 	int sig = 0; | 
 |  | 
 | 	s = pending->signal.sig; | 
 | 	m = mask->sig; | 
 |  | 
 | 	/* | 
 | 	 * Handle the first word specially: it contains the | 
 | 	 * synchronous signals that need to be dequeued first. | 
 | 	 */ | 
 | 	x = *s &~ *m; | 
 | 	if (x) { | 
 | 		if (x & SYNCHRONOUS_MASK) | 
 | 			x &= SYNCHRONOUS_MASK; | 
 | 		sig = ffz(~x) + 1; | 
 | 		return sig; | 
 | 	} | 
 |  | 
 | 	switch (_NSIG_WORDS) { | 
 | 	default: | 
 | 		for (i = 1; i < _NSIG_WORDS; ++i) { | 
 | 			x = *++s &~ *++m; | 
 | 			if (!x) | 
 | 				continue; | 
 | 			sig = ffz(~x) + i*_NSIG_BPW + 1; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case 2: | 
 | 		x = s[1] &~ m[1]; | 
 | 		if (!x) | 
 | 			break; | 
 | 		sig = ffz(~x) + _NSIG_BPW + 1; | 
 | 		break; | 
 |  | 
 | 	case 1: | 
 | 		/* Nothing to do */ | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return sig; | 
 | } | 
 |  | 
 | static inline void print_dropped_signal(int sig) | 
 | { | 
 | 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); | 
 |  | 
 | 	if (!print_fatal_signals) | 
 | 		return; | 
 |  | 
 | 	if (!__ratelimit(&ratelimit_state)) | 
 | 		return; | 
 |  | 
 | 	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n", | 
 | 				current->comm, current->pid, sig); | 
 | } | 
 |  | 
 | /** | 
 |  * task_clear_group_stop_trapping - clear group stop trapping bit | 
 |  * @task: target task | 
 |  * | 
 |  * If GROUP_STOP_TRAPPING is set, a ptracer is waiting for us.  Clear it | 
 |  * and wake up the ptracer.  Note that we don't need any further locking. | 
 |  * @task->siglock guarantees that @task->parent points to the ptracer. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Must be called with @task->sighand->siglock held. | 
 |  */ | 
 | static void task_clear_group_stop_trapping(struct task_struct *task) | 
 | { | 
 | 	if (unlikely(task->group_stop & GROUP_STOP_TRAPPING)) { | 
 | 		task->group_stop &= ~GROUP_STOP_TRAPPING; | 
 | 		__wake_up_sync_key(&task->parent->signal->wait_chldexit, | 
 | 				   TASK_UNINTERRUPTIBLE, 1, task); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * task_clear_group_stop_pending - clear pending group stop | 
 |  * @task: target task | 
 |  * | 
 |  * Clear group stop states for @task. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Must be called with @task->sighand->siglock held. | 
 |  */ | 
 | void task_clear_group_stop_pending(struct task_struct *task) | 
 | { | 
 | 	task->group_stop &= ~(GROUP_STOP_PENDING | GROUP_STOP_CONSUME | | 
 | 			      GROUP_STOP_DEQUEUED); | 
 | } | 
 |  | 
 | /** | 
 |  * task_participate_group_stop - participate in a group stop | 
 |  * @task: task participating in a group stop | 
 |  * | 
 |  * @task has GROUP_STOP_PENDING set and is participating in a group stop. | 
 |  * Group stop states are cleared and the group stop count is consumed if | 
 |  * %GROUP_STOP_CONSUME was set.  If the consumption completes the group | 
 |  * stop, the appropriate %SIGNAL_* flags are set. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Must be called with @task->sighand->siglock held. | 
 |  * | 
 |  * RETURNS: | 
 |  * %true if group stop completion should be notified to the parent, %false | 
 |  * otherwise. | 
 |  */ | 
 | static bool task_participate_group_stop(struct task_struct *task) | 
 | { | 
 | 	struct signal_struct *sig = task->signal; | 
 | 	bool consume = task->group_stop & GROUP_STOP_CONSUME; | 
 |  | 
 | 	WARN_ON_ONCE(!(task->group_stop & GROUP_STOP_PENDING)); | 
 |  | 
 | 	task_clear_group_stop_pending(task); | 
 |  | 
 | 	if (!consume) | 
 | 		return false; | 
 |  | 
 | 	if (!WARN_ON_ONCE(sig->group_stop_count == 0)) | 
 | 		sig->group_stop_count--; | 
 |  | 
 | 	/* | 
 | 	 * Tell the caller to notify completion iff we are entering into a | 
 | 	 * fresh group stop.  Read comment in do_signal_stop() for details. | 
 | 	 */ | 
 | 	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) { | 
 | 		sig->flags = SIGNAL_STOP_STOPPED; | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * allocate a new signal queue record | 
 |  * - this may be called without locks if and only if t == current, otherwise an | 
 |  *   appropriate lock must be held to stop the target task from exiting | 
 |  */ | 
 | static struct sigqueue * | 
 | __sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit) | 
 | { | 
 | 	struct sigqueue *q = NULL; | 
 | 	struct user_struct *user; | 
 |  | 
 | 	/* | 
 | 	 * Protect access to @t credentials. This can go away when all | 
 | 	 * callers hold rcu read lock. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	user = get_uid(__task_cred(t)->user); | 
 | 	atomic_inc(&user->sigpending); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (override_rlimit || | 
 | 	    atomic_read(&user->sigpending) <= | 
 | 			task_rlimit(t, RLIMIT_SIGPENDING)) { | 
 | 		q = kmem_cache_alloc(sigqueue_cachep, flags); | 
 | 	} else { | 
 | 		print_dropped_signal(sig); | 
 | 	} | 
 |  | 
 | 	if (unlikely(q == NULL)) { | 
 | 		atomic_dec(&user->sigpending); | 
 | 		free_uid(user); | 
 | 	} else { | 
 | 		INIT_LIST_HEAD(&q->list); | 
 | 		q->flags = 0; | 
 | 		q->user = user; | 
 | 	} | 
 |  | 
 | 	return q; | 
 | } | 
 |  | 
 | static void __sigqueue_free(struct sigqueue *q) | 
 | { | 
 | 	if (q->flags & SIGQUEUE_PREALLOC) | 
 | 		return; | 
 | 	atomic_dec(&q->user->sigpending); | 
 | 	free_uid(q->user); | 
 | 	kmem_cache_free(sigqueue_cachep, q); | 
 | } | 
 |  | 
 | void flush_sigqueue(struct sigpending *queue) | 
 | { | 
 | 	struct sigqueue *q; | 
 |  | 
 | 	sigemptyset(&queue->signal); | 
 | 	while (!list_empty(&queue->list)) { | 
 | 		q = list_entry(queue->list.next, struct sigqueue , list); | 
 | 		list_del_init(&q->list); | 
 | 		__sigqueue_free(q); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Flush all pending signals for a task. | 
 |  */ | 
 | void __flush_signals(struct task_struct *t) | 
 | { | 
 | 	clear_tsk_thread_flag(t, TIF_SIGPENDING); | 
 | 	flush_sigqueue(&t->pending); | 
 | 	flush_sigqueue(&t->signal->shared_pending); | 
 | } | 
 |  | 
 | void flush_signals(struct task_struct *t) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&t->sighand->siglock, flags); | 
 | 	__flush_signals(t); | 
 | 	spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
 | } | 
 |  | 
 | static void __flush_itimer_signals(struct sigpending *pending) | 
 | { | 
 | 	sigset_t signal, retain; | 
 | 	struct sigqueue *q, *n; | 
 |  | 
 | 	signal = pending->signal; | 
 | 	sigemptyset(&retain); | 
 |  | 
 | 	list_for_each_entry_safe(q, n, &pending->list, list) { | 
 | 		int sig = q->info.si_signo; | 
 |  | 
 | 		if (likely(q->info.si_code != SI_TIMER)) { | 
 | 			sigaddset(&retain, sig); | 
 | 		} else { | 
 | 			sigdelset(&signal, sig); | 
 | 			list_del_init(&q->list); | 
 | 			__sigqueue_free(q); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	sigorsets(&pending->signal, &signal, &retain); | 
 | } | 
 |  | 
 | void flush_itimer_signals(void) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&tsk->sighand->siglock, flags); | 
 | 	__flush_itimer_signals(&tsk->pending); | 
 | 	__flush_itimer_signals(&tsk->signal->shared_pending); | 
 | 	spin_unlock_irqrestore(&tsk->sighand->siglock, flags); | 
 | } | 
 |  | 
 | void ignore_signals(struct task_struct *t) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < _NSIG; ++i) | 
 | 		t->sighand->action[i].sa.sa_handler = SIG_IGN; | 
 |  | 
 | 	flush_signals(t); | 
 | } | 
 |  | 
 | /* | 
 |  * Flush all handlers for a task. | 
 |  */ | 
 |  | 
 | void | 
 | flush_signal_handlers(struct task_struct *t, int force_default) | 
 | { | 
 | 	int i; | 
 | 	struct k_sigaction *ka = &t->sighand->action[0]; | 
 | 	for (i = _NSIG ; i != 0 ; i--) { | 
 | 		if (force_default || ka->sa.sa_handler != SIG_IGN) | 
 | 			ka->sa.sa_handler = SIG_DFL; | 
 | 		ka->sa.sa_flags = 0; | 
 | 		sigemptyset(&ka->sa.sa_mask); | 
 | 		ka++; | 
 | 	} | 
 | } | 
 |  | 
 | int unhandled_signal(struct task_struct *tsk, int sig) | 
 | { | 
 | 	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; | 
 | 	if (is_global_init(tsk)) | 
 | 		return 1; | 
 | 	if (handler != SIG_IGN && handler != SIG_DFL) | 
 | 		return 0; | 
 | 	return !tracehook_consider_fatal_signal(tsk, sig); | 
 | } | 
 |  | 
 | /* | 
 |  * Notify the system that a driver wants to block all signals for this | 
 |  * process, and wants to be notified if any signals at all were to be | 
 |  * sent/acted upon.  If the notifier routine returns non-zero, then the | 
 |  * signal will be acted upon after all.  If the notifier routine returns 0, | 
 |  * then then signal will be blocked.  Only one block per process is | 
 |  * allowed.  priv is a pointer to private data that the notifier routine | 
 |  * can use to determine if the signal should be blocked or not. | 
 |  */ | 
 | void | 
 | block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(¤t->sighand->siglock, flags); | 
 | 	current->notifier_mask = mask; | 
 | 	current->notifier_data = priv; | 
 | 	current->notifier = notifier; | 
 | 	spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
 | } | 
 |  | 
 | /* Notify the system that blocking has ended. */ | 
 |  | 
 | void | 
 | unblock_all_signals(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(¤t->sighand->siglock, flags); | 
 | 	current->notifier = NULL; | 
 | 	current->notifier_data = NULL; | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irqrestore(¤t->sighand->siglock, flags); | 
 | } | 
 |  | 
 | static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) | 
 | { | 
 | 	struct sigqueue *q, *first = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Collect the siginfo appropriate to this signal.  Check if | 
 | 	 * there is another siginfo for the same signal. | 
 | 	*/ | 
 | 	list_for_each_entry(q, &list->list, list) { | 
 | 		if (q->info.si_signo == sig) { | 
 | 			if (first) | 
 | 				goto still_pending; | 
 | 			first = q; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	sigdelset(&list->signal, sig); | 
 |  | 
 | 	if (first) { | 
 | still_pending: | 
 | 		list_del_init(&first->list); | 
 | 		copy_siginfo(info, &first->info); | 
 | 		__sigqueue_free(first); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Ok, it wasn't in the queue.  This must be | 
 | 		 * a fast-pathed signal or we must have been | 
 | 		 * out of queue space.  So zero out the info. | 
 | 		 */ | 
 | 		info->si_signo = sig; | 
 | 		info->si_errno = 0; | 
 | 		info->si_code = SI_USER; | 
 | 		info->si_pid = 0; | 
 | 		info->si_uid = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, | 
 | 			siginfo_t *info) | 
 | { | 
 | 	int sig = next_signal(pending, mask); | 
 |  | 
 | 	if (sig) { | 
 | 		if (current->notifier) { | 
 | 			if (sigismember(current->notifier_mask, sig)) { | 
 | 				if (!(current->notifier)(current->notifier_data)) { | 
 | 					clear_thread_flag(TIF_SIGPENDING); | 
 | 					return 0; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		collect_signal(sig, pending, info); | 
 | 	} | 
 |  | 
 | 	return sig; | 
 | } | 
 |  | 
 | /* | 
 |  * Dequeue a signal and return the element to the caller, which is | 
 |  * expected to free it. | 
 |  * | 
 |  * All callers have to hold the siglock. | 
 |  */ | 
 | int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) | 
 | { | 
 | 	int signr; | 
 |  | 
 | 	/* We only dequeue private signals from ourselves, we don't let | 
 | 	 * signalfd steal them | 
 | 	 */ | 
 | 	signr = __dequeue_signal(&tsk->pending, mask, info); | 
 | 	if (!signr) { | 
 | 		signr = __dequeue_signal(&tsk->signal->shared_pending, | 
 | 					 mask, info); | 
 | 		/* | 
 | 		 * itimer signal ? | 
 | 		 * | 
 | 		 * itimers are process shared and we restart periodic | 
 | 		 * itimers in the signal delivery path to prevent DoS | 
 | 		 * attacks in the high resolution timer case. This is | 
 | 		 * compliant with the old way of self-restarting | 
 | 		 * itimers, as the SIGALRM is a legacy signal and only | 
 | 		 * queued once. Changing the restart behaviour to | 
 | 		 * restart the timer in the signal dequeue path is | 
 | 		 * reducing the timer noise on heavy loaded !highres | 
 | 		 * systems too. | 
 | 		 */ | 
 | 		if (unlikely(signr == SIGALRM)) { | 
 | 			struct hrtimer *tmr = &tsk->signal->real_timer; | 
 |  | 
 | 			if (!hrtimer_is_queued(tmr) && | 
 | 			    tsk->signal->it_real_incr.tv64 != 0) { | 
 | 				hrtimer_forward(tmr, tmr->base->get_time(), | 
 | 						tsk->signal->it_real_incr); | 
 | 				hrtimer_restart(tmr); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	recalc_sigpending(); | 
 | 	if (!signr) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(sig_kernel_stop(signr))) { | 
 | 		/* | 
 | 		 * Set a marker that we have dequeued a stop signal.  Our | 
 | 		 * caller might release the siglock and then the pending | 
 | 		 * stop signal it is about to process is no longer in the | 
 | 		 * pending bitmasks, but must still be cleared by a SIGCONT | 
 | 		 * (and overruled by a SIGKILL).  So those cases clear this | 
 | 		 * shared flag after we've set it.  Note that this flag may | 
 | 		 * remain set after the signal we return is ignored or | 
 | 		 * handled.  That doesn't matter because its only purpose | 
 | 		 * is to alert stop-signal processing code when another | 
 | 		 * processor has come along and cleared the flag. | 
 | 		 */ | 
 | 		current->group_stop |= GROUP_STOP_DEQUEUED; | 
 | 	} | 
 | 	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { | 
 | 		/* | 
 | 		 * Release the siglock to ensure proper locking order | 
 | 		 * of timer locks outside of siglocks.  Note, we leave | 
 | 		 * irqs disabled here, since the posix-timers code is | 
 | 		 * about to disable them again anyway. | 
 | 		 */ | 
 | 		spin_unlock(&tsk->sighand->siglock); | 
 | 		do_schedule_next_timer(info); | 
 | 		spin_lock(&tsk->sighand->siglock); | 
 | 	} | 
 | 	return signr; | 
 | } | 
 |  | 
 | /* | 
 |  * Tell a process that it has a new active signal.. | 
 |  * | 
 |  * NOTE! we rely on the previous spin_lock to | 
 |  * lock interrupts for us! We can only be called with | 
 |  * "siglock" held, and the local interrupt must | 
 |  * have been disabled when that got acquired! | 
 |  * | 
 |  * No need to set need_resched since signal event passing | 
 |  * goes through ->blocked | 
 |  */ | 
 | void signal_wake_up(struct task_struct *t, int resume) | 
 | { | 
 | 	unsigned int mask; | 
 |  | 
 | 	set_tsk_thread_flag(t, TIF_SIGPENDING); | 
 |  | 
 | 	/* | 
 | 	 * For SIGKILL, we want to wake it up in the stopped/traced/killable | 
 | 	 * case. We don't check t->state here because there is a race with it | 
 | 	 * executing another processor and just now entering stopped state. | 
 | 	 * By using wake_up_state, we ensure the process will wake up and | 
 | 	 * handle its death signal. | 
 | 	 */ | 
 | 	mask = TASK_INTERRUPTIBLE; | 
 | 	if (resume) | 
 | 		mask |= TASK_WAKEKILL; | 
 | 	if (!wake_up_state(t, mask)) | 
 | 		kick_process(t); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove signals in mask from the pending set and queue. | 
 |  * Returns 1 if any signals were found. | 
 |  * | 
 |  * All callers must be holding the siglock. | 
 |  * | 
 |  * This version takes a sigset mask and looks at all signals, | 
 |  * not just those in the first mask word. | 
 |  */ | 
 | static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) | 
 | { | 
 | 	struct sigqueue *q, *n; | 
 | 	sigset_t m; | 
 |  | 
 | 	sigandsets(&m, mask, &s->signal); | 
 | 	if (sigisemptyset(&m)) | 
 | 		return 0; | 
 |  | 
 | 	sigandnsets(&s->signal, &s->signal, mask); | 
 | 	list_for_each_entry_safe(q, n, &s->list, list) { | 
 | 		if (sigismember(mask, q->info.si_signo)) { | 
 | 			list_del_init(&q->list); | 
 | 			__sigqueue_free(q); | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | /* | 
 |  * Remove signals in mask from the pending set and queue. | 
 |  * Returns 1 if any signals were found. | 
 |  * | 
 |  * All callers must be holding the siglock. | 
 |  */ | 
 | static int rm_from_queue(unsigned long mask, struct sigpending *s) | 
 | { | 
 | 	struct sigqueue *q, *n; | 
 |  | 
 | 	if (!sigtestsetmask(&s->signal, mask)) | 
 | 		return 0; | 
 |  | 
 | 	sigdelsetmask(&s->signal, mask); | 
 | 	list_for_each_entry_safe(q, n, &s->list, list) { | 
 | 		if (q->info.si_signo < SIGRTMIN && | 
 | 		    (mask & sigmask(q->info.si_signo))) { | 
 | 			list_del_init(&q->list); | 
 | 			__sigqueue_free(q); | 
 | 		} | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline int is_si_special(const struct siginfo *info) | 
 | { | 
 | 	return info <= SEND_SIG_FORCED; | 
 | } | 
 |  | 
 | static inline bool si_fromuser(const struct siginfo *info) | 
 | { | 
 | 	return info == SEND_SIG_NOINFO || | 
 | 		(!is_si_special(info) && SI_FROMUSER(info)); | 
 | } | 
 |  | 
 | /* | 
 |  * called with RCU read lock from check_kill_permission() | 
 |  */ | 
 | static int kill_ok_by_cred(struct task_struct *t) | 
 | { | 
 | 	const struct cred *cred = current_cred(); | 
 | 	const struct cred *tcred = __task_cred(t); | 
 |  | 
 | 	if (cred->user->user_ns == tcred->user->user_ns && | 
 | 	    (cred->euid == tcred->suid || | 
 | 	     cred->euid == tcred->uid || | 
 | 	     cred->uid  == tcred->suid || | 
 | 	     cred->uid  == tcred->uid)) | 
 | 		return 1; | 
 |  | 
 | 	if (ns_capable(tcred->user->user_ns, CAP_KILL)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Bad permissions for sending the signal | 
 |  * - the caller must hold the RCU read lock | 
 |  */ | 
 | static int check_kill_permission(int sig, struct siginfo *info, | 
 | 				 struct task_struct *t) | 
 | { | 
 | 	struct pid *sid; | 
 | 	int error; | 
 |  | 
 | 	if (!valid_signal(sig)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!si_fromuser(info)) | 
 | 		return 0; | 
 |  | 
 | 	error = audit_signal_info(sig, t); /* Let audit system see the signal */ | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	if (!same_thread_group(current, t) && | 
 | 	    !kill_ok_by_cred(t)) { | 
 | 		switch (sig) { | 
 | 		case SIGCONT: | 
 | 			sid = task_session(t); | 
 | 			/* | 
 | 			 * We don't return the error if sid == NULL. The | 
 | 			 * task was unhashed, the caller must notice this. | 
 | 			 */ | 
 | 			if (!sid || sid == task_session(current)) | 
 | 				break; | 
 | 		default: | 
 | 			return -EPERM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return security_task_kill(t, info, sig, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Handle magic process-wide effects of stop/continue signals. Unlike | 
 |  * the signal actions, these happen immediately at signal-generation | 
 |  * time regardless of blocking, ignoring, or handling.  This does the | 
 |  * actual continuing for SIGCONT, but not the actual stopping for stop | 
 |  * signals. The process stop is done as a signal action for SIG_DFL. | 
 |  * | 
 |  * Returns true if the signal should be actually delivered, otherwise | 
 |  * it should be dropped. | 
 |  */ | 
 | static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) | 
 | { | 
 | 	struct signal_struct *signal = p->signal; | 
 | 	struct task_struct *t; | 
 |  | 
 | 	if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { | 
 | 		/* | 
 | 		 * The process is in the middle of dying, nothing to do. | 
 | 		 */ | 
 | 	} else if (sig_kernel_stop(sig)) { | 
 | 		/* | 
 | 		 * This is a stop signal.  Remove SIGCONT from all queues. | 
 | 		 */ | 
 | 		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); | 
 | 		t = p; | 
 | 		do { | 
 | 			rm_from_queue(sigmask(SIGCONT), &t->pending); | 
 | 		} while_each_thread(p, t); | 
 | 	} else if (sig == SIGCONT) { | 
 | 		unsigned int why; | 
 | 		/* | 
 | 		 * Remove all stop signals from all queues, wake all threads. | 
 | 		 */ | 
 | 		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); | 
 | 		t = p; | 
 | 		do { | 
 | 			task_clear_group_stop_pending(t); | 
 | 			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); | 
 | 			wake_up_state(t, __TASK_STOPPED); | 
 | 		} while_each_thread(p, t); | 
 |  | 
 | 		/* | 
 | 		 * Notify the parent with CLD_CONTINUED if we were stopped. | 
 | 		 * | 
 | 		 * If we were in the middle of a group stop, we pretend it | 
 | 		 * was already finished, and then continued. Since SIGCHLD | 
 | 		 * doesn't queue we report only CLD_STOPPED, as if the next | 
 | 		 * CLD_CONTINUED was dropped. | 
 | 		 */ | 
 | 		why = 0; | 
 | 		if (signal->flags & SIGNAL_STOP_STOPPED) | 
 | 			why |= SIGNAL_CLD_CONTINUED; | 
 | 		else if (signal->group_stop_count) | 
 | 			why |= SIGNAL_CLD_STOPPED; | 
 |  | 
 | 		if (why) { | 
 | 			/* | 
 | 			 * The first thread which returns from do_signal_stop() | 
 | 			 * will take ->siglock, notice SIGNAL_CLD_MASK, and | 
 | 			 * notify its parent. See get_signal_to_deliver(). | 
 | 			 */ | 
 | 			signal->flags = why | SIGNAL_STOP_CONTINUED; | 
 | 			signal->group_stop_count = 0; | 
 | 			signal->group_exit_code = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return !sig_ignored(p, sig, from_ancestor_ns); | 
 | } | 
 |  | 
 | /* | 
 |  * Test if P wants to take SIG.  After we've checked all threads with this, | 
 |  * it's equivalent to finding no threads not blocking SIG.  Any threads not | 
 |  * blocking SIG were ruled out because they are not running and already | 
 |  * have pending signals.  Such threads will dequeue from the shared queue | 
 |  * as soon as they're available, so putting the signal on the shared queue | 
 |  * will be equivalent to sending it to one such thread. | 
 |  */ | 
 | static inline int wants_signal(int sig, struct task_struct *p) | 
 | { | 
 | 	if (sigismember(&p->blocked, sig)) | 
 | 		return 0; | 
 | 	if (p->flags & PF_EXITING) | 
 | 		return 0; | 
 | 	if (sig == SIGKILL) | 
 | 		return 1; | 
 | 	if (task_is_stopped_or_traced(p)) | 
 | 		return 0; | 
 | 	return task_curr(p) || !signal_pending(p); | 
 | } | 
 |  | 
 | static void complete_signal(int sig, struct task_struct *p, int group) | 
 | { | 
 | 	struct signal_struct *signal = p->signal; | 
 | 	struct task_struct *t; | 
 |  | 
 | 	/* | 
 | 	 * Now find a thread we can wake up to take the signal off the queue. | 
 | 	 * | 
 | 	 * If the main thread wants the signal, it gets first crack. | 
 | 	 * Probably the least surprising to the average bear. | 
 | 	 */ | 
 | 	if (wants_signal(sig, p)) | 
 | 		t = p; | 
 | 	else if (!group || thread_group_empty(p)) | 
 | 		/* | 
 | 		 * There is just one thread and it does not need to be woken. | 
 | 		 * It will dequeue unblocked signals before it runs again. | 
 | 		 */ | 
 | 		return; | 
 | 	else { | 
 | 		/* | 
 | 		 * Otherwise try to find a suitable thread. | 
 | 		 */ | 
 | 		t = signal->curr_target; | 
 | 		while (!wants_signal(sig, t)) { | 
 | 			t = next_thread(t); | 
 | 			if (t == signal->curr_target) | 
 | 				/* | 
 | 				 * No thread needs to be woken. | 
 | 				 * Any eligible threads will see | 
 | 				 * the signal in the queue soon. | 
 | 				 */ | 
 | 				return; | 
 | 		} | 
 | 		signal->curr_target = t; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Found a killable thread.  If the signal will be fatal, | 
 | 	 * then start taking the whole group down immediately. | 
 | 	 */ | 
 | 	if (sig_fatal(p, sig) && | 
 | 	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && | 
 | 	    !sigismember(&t->real_blocked, sig) && | 
 | 	    (sig == SIGKILL || | 
 | 	     !tracehook_consider_fatal_signal(t, sig))) { | 
 | 		/* | 
 | 		 * This signal will be fatal to the whole group. | 
 | 		 */ | 
 | 		if (!sig_kernel_coredump(sig)) { | 
 | 			/* | 
 | 			 * Start a group exit and wake everybody up. | 
 | 			 * This way we don't have other threads | 
 | 			 * running and doing things after a slower | 
 | 			 * thread has the fatal signal pending. | 
 | 			 */ | 
 | 			signal->flags = SIGNAL_GROUP_EXIT; | 
 | 			signal->group_exit_code = sig; | 
 | 			signal->group_stop_count = 0; | 
 | 			t = p; | 
 | 			do { | 
 | 				task_clear_group_stop_pending(t); | 
 | 				sigaddset(&t->pending.signal, SIGKILL); | 
 | 				signal_wake_up(t, 1); | 
 | 			} while_each_thread(p, t); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The signal is already in the shared-pending queue. | 
 | 	 * Tell the chosen thread to wake up and dequeue it. | 
 | 	 */ | 
 | 	signal_wake_up(t, sig == SIGKILL); | 
 | 	return; | 
 | } | 
 |  | 
 | static inline int legacy_queue(struct sigpending *signals, int sig) | 
 | { | 
 | 	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); | 
 | } | 
 |  | 
 | static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, | 
 | 			int group, int from_ancestor_ns) | 
 | { | 
 | 	struct sigpending *pending; | 
 | 	struct sigqueue *q; | 
 | 	int override_rlimit; | 
 |  | 
 | 	trace_signal_generate(sig, info, t); | 
 |  | 
 | 	assert_spin_locked(&t->sighand->siglock); | 
 |  | 
 | 	if (!prepare_signal(sig, t, from_ancestor_ns)) | 
 | 		return 0; | 
 |  | 
 | 	pending = group ? &t->signal->shared_pending : &t->pending; | 
 | 	/* | 
 | 	 * Short-circuit ignored signals and support queuing | 
 | 	 * exactly one non-rt signal, so that we can get more | 
 | 	 * detailed information about the cause of the signal. | 
 | 	 */ | 
 | 	if (legacy_queue(pending, sig)) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * fast-pathed signals for kernel-internal things like SIGSTOP | 
 | 	 * or SIGKILL. | 
 | 	 */ | 
 | 	if (info == SEND_SIG_FORCED) | 
 | 		goto out_set; | 
 |  | 
 | 	/* | 
 | 	 * Real-time signals must be queued if sent by sigqueue, or | 
 | 	 * some other real-time mechanism.  It is implementation | 
 | 	 * defined whether kill() does so.  We attempt to do so, on | 
 | 	 * the principle of least surprise, but since kill is not | 
 | 	 * allowed to fail with EAGAIN when low on memory we just | 
 | 	 * make sure at least one signal gets delivered and don't | 
 | 	 * pass on the info struct. | 
 | 	 */ | 
 | 	if (sig < SIGRTMIN) | 
 | 		override_rlimit = (is_si_special(info) || info->si_code >= 0); | 
 | 	else | 
 | 		override_rlimit = 0; | 
 |  | 
 | 	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, | 
 | 		override_rlimit); | 
 | 	if (q) { | 
 | 		list_add_tail(&q->list, &pending->list); | 
 | 		switch ((unsigned long) info) { | 
 | 		case (unsigned long) SEND_SIG_NOINFO: | 
 | 			q->info.si_signo = sig; | 
 | 			q->info.si_errno = 0; | 
 | 			q->info.si_code = SI_USER; | 
 | 			q->info.si_pid = task_tgid_nr_ns(current, | 
 | 							task_active_pid_ns(t)); | 
 | 			q->info.si_uid = current_uid(); | 
 | 			break; | 
 | 		case (unsigned long) SEND_SIG_PRIV: | 
 | 			q->info.si_signo = sig; | 
 | 			q->info.si_errno = 0; | 
 | 			q->info.si_code = SI_KERNEL; | 
 | 			q->info.si_pid = 0; | 
 | 			q->info.si_uid = 0; | 
 | 			break; | 
 | 		default: | 
 | 			copy_siginfo(&q->info, info); | 
 | 			if (from_ancestor_ns) | 
 | 				q->info.si_pid = 0; | 
 | 			break; | 
 | 		} | 
 | 	} else if (!is_si_special(info)) { | 
 | 		if (sig >= SIGRTMIN && info->si_code != SI_USER) { | 
 | 			/* | 
 | 			 * Queue overflow, abort.  We may abort if the | 
 | 			 * signal was rt and sent by user using something | 
 | 			 * other than kill(). | 
 | 			 */ | 
 | 			trace_signal_overflow_fail(sig, group, info); | 
 | 			return -EAGAIN; | 
 | 		} else { | 
 | 			/* | 
 | 			 * This is a silent loss of information.  We still | 
 | 			 * send the signal, but the *info bits are lost. | 
 | 			 */ | 
 | 			trace_signal_lose_info(sig, group, info); | 
 | 		} | 
 | 	} | 
 |  | 
 | out_set: | 
 | 	signalfd_notify(t, sig); | 
 | 	sigaddset(&pending->signal, sig); | 
 | 	complete_signal(sig, t, group); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int send_signal(int sig, struct siginfo *info, struct task_struct *t, | 
 | 			int group) | 
 | { | 
 | 	int from_ancestor_ns = 0; | 
 |  | 
 | #ifdef CONFIG_PID_NS | 
 | 	from_ancestor_ns = si_fromuser(info) && | 
 | 			   !task_pid_nr_ns(current, task_active_pid_ns(t)); | 
 | #endif | 
 |  | 
 | 	return __send_signal(sig, info, t, group, from_ancestor_ns); | 
 | } | 
 |  | 
 | static void print_fatal_signal(struct pt_regs *regs, int signr) | 
 | { | 
 | 	printk("%s/%d: potentially unexpected fatal signal %d.\n", | 
 | 		current->comm, task_pid_nr(current), signr); | 
 |  | 
 | #if defined(__i386__) && !defined(__arch_um__) | 
 | 	printk("code at %08lx: ", regs->ip); | 
 | 	{ | 
 | 		int i; | 
 | 		for (i = 0; i < 16; i++) { | 
 | 			unsigned char insn; | 
 |  | 
 | 			if (get_user(insn, (unsigned char *)(regs->ip + i))) | 
 | 				break; | 
 | 			printk("%02x ", insn); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	printk("\n"); | 
 | 	preempt_disable(); | 
 | 	show_regs(regs); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static int __init setup_print_fatal_signals(char *str) | 
 | { | 
 | 	get_option (&str, &print_fatal_signals); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("print-fatal-signals=", setup_print_fatal_signals); | 
 |  | 
 | int | 
 | __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
 | { | 
 | 	return send_signal(sig, info, p, 1); | 
 | } | 
 |  | 
 | static int | 
 | specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
 | { | 
 | 	return send_signal(sig, info, t, 0); | 
 | } | 
 |  | 
 | int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, | 
 | 			bool group) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = -ESRCH; | 
 |  | 
 | 	if (lock_task_sighand(p, &flags)) { | 
 | 		ret = send_signal(sig, info, p, group); | 
 | 		unlock_task_sighand(p, &flags); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Force a signal that the process can't ignore: if necessary | 
 |  * we unblock the signal and change any SIG_IGN to SIG_DFL. | 
 |  * | 
 |  * Note: If we unblock the signal, we always reset it to SIG_DFL, | 
 |  * since we do not want to have a signal handler that was blocked | 
 |  * be invoked when user space had explicitly blocked it. | 
 |  * | 
 |  * We don't want to have recursive SIGSEGV's etc, for example, | 
 |  * that is why we also clear SIGNAL_UNKILLABLE. | 
 |  */ | 
 | int | 
 | force_sig_info(int sig, struct siginfo *info, struct task_struct *t) | 
 | { | 
 | 	unsigned long int flags; | 
 | 	int ret, blocked, ignored; | 
 | 	struct k_sigaction *action; | 
 |  | 
 | 	spin_lock_irqsave(&t->sighand->siglock, flags); | 
 | 	action = &t->sighand->action[sig-1]; | 
 | 	ignored = action->sa.sa_handler == SIG_IGN; | 
 | 	blocked = sigismember(&t->blocked, sig); | 
 | 	if (blocked || ignored) { | 
 | 		action->sa.sa_handler = SIG_DFL; | 
 | 		if (blocked) { | 
 | 			sigdelset(&t->blocked, sig); | 
 | 			recalc_sigpending_and_wake(t); | 
 | 		} | 
 | 	} | 
 | 	if (action->sa.sa_handler == SIG_DFL) | 
 | 		t->signal->flags &= ~SIGNAL_UNKILLABLE; | 
 | 	ret = specific_send_sig_info(sig, info, t); | 
 | 	spin_unlock_irqrestore(&t->sighand->siglock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Nuke all other threads in the group. | 
 |  */ | 
 | int zap_other_threads(struct task_struct *p) | 
 | { | 
 | 	struct task_struct *t = p; | 
 | 	int count = 0; | 
 |  | 
 | 	p->signal->group_stop_count = 0; | 
 |  | 
 | 	while_each_thread(p, t) { | 
 | 		task_clear_group_stop_pending(t); | 
 | 		count++; | 
 |  | 
 | 		/* Don't bother with already dead threads */ | 
 | 		if (t->exit_state) | 
 | 			continue; | 
 | 		sigaddset(&t->pending.signal, SIGKILL); | 
 | 		signal_wake_up(t, 1); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, | 
 | 					   unsigned long *flags) | 
 | { | 
 | 	struct sighand_struct *sighand; | 
 |  | 
 | 	for (;;) { | 
 | 		local_irq_save(*flags); | 
 | 		rcu_read_lock(); | 
 | 		sighand = rcu_dereference(tsk->sighand); | 
 | 		if (unlikely(sighand == NULL)) { | 
 | 			rcu_read_unlock(); | 
 | 			local_irq_restore(*flags); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		spin_lock(&sighand->siglock); | 
 | 		if (likely(sighand == tsk->sighand)) { | 
 | 			rcu_read_unlock(); | 
 | 			break; | 
 | 		} | 
 | 		spin_unlock(&sighand->siglock); | 
 | 		rcu_read_unlock(); | 
 | 		local_irq_restore(*flags); | 
 | 	} | 
 |  | 
 | 	return sighand; | 
 | } | 
 |  | 
 | /* | 
 |  * send signal info to all the members of a group | 
 |  */ | 
 | int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	ret = check_kill_permission(sig, info, p); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	if (!ret && sig) | 
 | 		ret = do_send_sig_info(sig, info, p, true); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * __kill_pgrp_info() sends a signal to a process group: this is what the tty | 
 |  * control characters do (^C, ^Z etc) | 
 |  * - the caller must hold at least a readlock on tasklist_lock | 
 |  */ | 
 | int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) | 
 | { | 
 | 	struct task_struct *p = NULL; | 
 | 	int retval, success; | 
 |  | 
 | 	success = 0; | 
 | 	retval = -ESRCH; | 
 | 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) { | 
 | 		int err = group_send_sig_info(sig, info, p); | 
 | 		success |= !err; | 
 | 		retval = err; | 
 | 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p); | 
 | 	return success ? 0 : retval; | 
 | } | 
 |  | 
 | int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) | 
 | { | 
 | 	int error = -ESRCH; | 
 | 	struct task_struct *p; | 
 |  | 
 | 	rcu_read_lock(); | 
 | retry: | 
 | 	p = pid_task(pid, PIDTYPE_PID); | 
 | 	if (p) { | 
 | 		error = group_send_sig_info(sig, info, p); | 
 | 		if (unlikely(error == -ESRCH)) | 
 | 			/* | 
 | 			 * The task was unhashed in between, try again. | 
 | 			 * If it is dead, pid_task() will return NULL, | 
 | 			 * if we race with de_thread() it will find the | 
 | 			 * new leader. | 
 | 			 */ | 
 | 			goto retry; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | int kill_proc_info(int sig, struct siginfo *info, pid_t pid) | 
 | { | 
 | 	int error; | 
 | 	rcu_read_lock(); | 
 | 	error = kill_pid_info(sig, info, find_vpid(pid)); | 
 | 	rcu_read_unlock(); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* like kill_pid_info(), but doesn't use uid/euid of "current" */ | 
 | int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, | 
 | 		      uid_t uid, uid_t euid, u32 secid) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	struct task_struct *p; | 
 | 	const struct cred *pcred; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!valid_signal(sig)) | 
 | 		return ret; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	p = pid_task(pid, PIDTYPE_PID); | 
 | 	if (!p) { | 
 | 		ret = -ESRCH; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	pcred = __task_cred(p); | 
 | 	if (si_fromuser(info) && | 
 | 	    euid != pcred->suid && euid != pcred->uid && | 
 | 	    uid  != pcred->suid && uid  != pcred->uid) { | 
 | 		ret = -EPERM; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	ret = security_task_kill(p, info, sig, secid); | 
 | 	if (ret) | 
 | 		goto out_unlock; | 
 |  | 
 | 	if (sig) { | 
 | 		if (lock_task_sighand(p, &flags)) { | 
 | 			ret = __send_signal(sig, info, p, 1, 0); | 
 | 			unlock_task_sighand(p, &flags); | 
 | 		} else | 
 | 			ret = -ESRCH; | 
 | 	} | 
 | out_unlock: | 
 | 	rcu_read_unlock(); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); | 
 |  | 
 | /* | 
 |  * kill_something_info() interprets pid in interesting ways just like kill(2). | 
 |  * | 
 |  * POSIX specifies that kill(-1,sig) is unspecified, but what we have | 
 |  * is probably wrong.  Should make it like BSD or SYSV. | 
 |  */ | 
 |  | 
 | static int kill_something_info(int sig, struct siginfo *info, pid_t pid) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (pid > 0) { | 
 | 		rcu_read_lock(); | 
 | 		ret = kill_pid_info(sig, info, find_vpid(pid)); | 
 | 		rcu_read_unlock(); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	if (pid != -1) { | 
 | 		ret = __kill_pgrp_info(sig, info, | 
 | 				pid ? find_vpid(-pid) : task_pgrp(current)); | 
 | 	} else { | 
 | 		int retval = 0, count = 0; | 
 | 		struct task_struct * p; | 
 |  | 
 | 		for_each_process(p) { | 
 | 			if (task_pid_vnr(p) > 1 && | 
 | 					!same_thread_group(p, current)) { | 
 | 				int err = group_send_sig_info(sig, info, p); | 
 | 				++count; | 
 | 				if (err != -EPERM) | 
 | 					retval = err; | 
 | 			} | 
 | 		} | 
 | 		ret = count ? retval : -ESRCH; | 
 | 	} | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * These are for backward compatibility with the rest of the kernel source. | 
 |  */ | 
 |  | 
 | int send_sig_info(int sig, struct siginfo *info, struct task_struct *p) | 
 | { | 
 | 	/* | 
 | 	 * Make sure legacy kernel users don't send in bad values | 
 | 	 * (normal paths check this in check_kill_permission). | 
 | 	 */ | 
 | 	if (!valid_signal(sig)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_send_sig_info(sig, info, p, false); | 
 | } | 
 |  | 
 | #define __si_special(priv) \ | 
 | 	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) | 
 |  | 
 | int | 
 | send_sig(int sig, struct task_struct *p, int priv) | 
 | { | 
 | 	return send_sig_info(sig, __si_special(priv), p); | 
 | } | 
 |  | 
 | void | 
 | force_sig(int sig, struct task_struct *p) | 
 | { | 
 | 	force_sig_info(sig, SEND_SIG_PRIV, p); | 
 | } | 
 |  | 
 | /* | 
 |  * When things go south during signal handling, we | 
 |  * will force a SIGSEGV. And if the signal that caused | 
 |  * the problem was already a SIGSEGV, we'll want to | 
 |  * make sure we don't even try to deliver the signal.. | 
 |  */ | 
 | int | 
 | force_sigsegv(int sig, struct task_struct *p) | 
 | { | 
 | 	if (sig == SIGSEGV) { | 
 | 		unsigned long flags; | 
 | 		spin_lock_irqsave(&p->sighand->siglock, flags); | 
 | 		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; | 
 | 		spin_unlock_irqrestore(&p->sighand->siglock, flags); | 
 | 	} | 
 | 	force_sig(SIGSEGV, p); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kill_pgrp(struct pid *pid, int sig, int priv) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	read_lock(&tasklist_lock); | 
 | 	ret = __kill_pgrp_info(sig, __si_special(priv), pid); | 
 | 	read_unlock(&tasklist_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(kill_pgrp); | 
 |  | 
 | int kill_pid(struct pid *pid, int sig, int priv) | 
 | { | 
 | 	return kill_pid_info(sig, __si_special(priv), pid); | 
 | } | 
 | EXPORT_SYMBOL(kill_pid); | 
 |  | 
 | /* | 
 |  * These functions support sending signals using preallocated sigqueue | 
 |  * structures.  This is needed "because realtime applications cannot | 
 |  * afford to lose notifications of asynchronous events, like timer | 
 |  * expirations or I/O completions".  In the case of POSIX Timers | 
 |  * we allocate the sigqueue structure from the timer_create.  If this | 
 |  * allocation fails we are able to report the failure to the application | 
 |  * with an EAGAIN error. | 
 |  */ | 
 | struct sigqueue *sigqueue_alloc(void) | 
 | { | 
 | 	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0); | 
 |  | 
 | 	if (q) | 
 | 		q->flags |= SIGQUEUE_PREALLOC; | 
 |  | 
 | 	return q; | 
 | } | 
 |  | 
 | void sigqueue_free(struct sigqueue *q) | 
 | { | 
 | 	unsigned long flags; | 
 | 	spinlock_t *lock = ¤t->sighand->siglock; | 
 |  | 
 | 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
 | 	/* | 
 | 	 * We must hold ->siglock while testing q->list | 
 | 	 * to serialize with collect_signal() or with | 
 | 	 * __exit_signal()->flush_sigqueue(). | 
 | 	 */ | 
 | 	spin_lock_irqsave(lock, flags); | 
 | 	q->flags &= ~SIGQUEUE_PREALLOC; | 
 | 	/* | 
 | 	 * If it is queued it will be freed when dequeued, | 
 | 	 * like the "regular" sigqueue. | 
 | 	 */ | 
 | 	if (!list_empty(&q->list)) | 
 | 		q = NULL; | 
 | 	spin_unlock_irqrestore(lock, flags); | 
 |  | 
 | 	if (q) | 
 | 		__sigqueue_free(q); | 
 | } | 
 |  | 
 | int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) | 
 | { | 
 | 	int sig = q->info.si_signo; | 
 | 	struct sigpending *pending; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); | 
 |  | 
 | 	ret = -1; | 
 | 	if (!likely(lock_task_sighand(t, &flags))) | 
 | 		goto ret; | 
 |  | 
 | 	ret = 1; /* the signal is ignored */ | 
 | 	if (!prepare_signal(sig, t, 0)) | 
 | 		goto out; | 
 |  | 
 | 	ret = 0; | 
 | 	if (unlikely(!list_empty(&q->list))) { | 
 | 		/* | 
 | 		 * If an SI_TIMER entry is already queue just increment | 
 | 		 * the overrun count. | 
 | 		 */ | 
 | 		BUG_ON(q->info.si_code != SI_TIMER); | 
 | 		q->info.si_overrun++; | 
 | 		goto out; | 
 | 	} | 
 | 	q->info.si_overrun = 0; | 
 |  | 
 | 	signalfd_notify(t, sig); | 
 | 	pending = group ? &t->signal->shared_pending : &t->pending; | 
 | 	list_add_tail(&q->list, &pending->list); | 
 | 	sigaddset(&pending->signal, sig); | 
 | 	complete_signal(sig, t, group); | 
 | out: | 
 | 	unlock_task_sighand(t, &flags); | 
 | ret: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Let a parent know about the death of a child. | 
 |  * For a stopped/continued status change, use do_notify_parent_cldstop instead. | 
 |  * | 
 |  * Returns -1 if our parent ignored us and so we've switched to | 
 |  * self-reaping, or else @sig. | 
 |  */ | 
 | int do_notify_parent(struct task_struct *tsk, int sig) | 
 | { | 
 | 	struct siginfo info; | 
 | 	unsigned long flags; | 
 | 	struct sighand_struct *psig; | 
 | 	int ret = sig; | 
 |  | 
 | 	BUG_ON(sig == -1); | 
 |  | 
 |  	/* do_notify_parent_cldstop should have been called instead.  */ | 
 |  	BUG_ON(task_is_stopped_or_traced(tsk)); | 
 |  | 
 | 	BUG_ON(!task_ptrace(tsk) && | 
 | 	       (tsk->group_leader != tsk || !thread_group_empty(tsk))); | 
 |  | 
 | 	info.si_signo = sig; | 
 | 	info.si_errno = 0; | 
 | 	/* | 
 | 	 * we are under tasklist_lock here so our parent is tied to | 
 | 	 * us and cannot exit and release its namespace. | 
 | 	 * | 
 | 	 * the only it can is to switch its nsproxy with sys_unshare, | 
 | 	 * bu uncharing pid namespaces is not allowed, so we'll always | 
 | 	 * see relevant namespace | 
 | 	 * | 
 | 	 * write_lock() currently calls preempt_disable() which is the | 
 | 	 * same as rcu_read_lock(), but according to Oleg, this is not | 
 | 	 * correct to rely on this | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); | 
 | 	info.si_uid = __task_cred(tsk)->uid; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, | 
 | 				tsk->signal->utime)); | 
 | 	info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, | 
 | 				tsk->signal->stime)); | 
 |  | 
 | 	info.si_status = tsk->exit_code & 0x7f; | 
 | 	if (tsk->exit_code & 0x80) | 
 | 		info.si_code = CLD_DUMPED; | 
 | 	else if (tsk->exit_code & 0x7f) | 
 | 		info.si_code = CLD_KILLED; | 
 | 	else { | 
 | 		info.si_code = CLD_EXITED; | 
 | 		info.si_status = tsk->exit_code >> 8; | 
 | 	} | 
 |  | 
 | 	psig = tsk->parent->sighand; | 
 | 	spin_lock_irqsave(&psig->siglock, flags); | 
 | 	if (!task_ptrace(tsk) && sig == SIGCHLD && | 
 | 	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | 
 | 	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { | 
 | 		/* | 
 | 		 * We are exiting and our parent doesn't care.  POSIX.1 | 
 | 		 * defines special semantics for setting SIGCHLD to SIG_IGN | 
 | 		 * or setting the SA_NOCLDWAIT flag: we should be reaped | 
 | 		 * automatically and not left for our parent's wait4 call. | 
 | 		 * Rather than having the parent do it as a magic kind of | 
 | 		 * signal handler, we just set this to tell do_exit that we | 
 | 		 * can be cleaned up without becoming a zombie.  Note that | 
 | 		 * we still call __wake_up_parent in this case, because a | 
 | 		 * blocked sys_wait4 might now return -ECHILD. | 
 | 		 * | 
 | 		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT | 
 | 		 * is implementation-defined: we do (if you don't want | 
 | 		 * it, just use SIG_IGN instead). | 
 | 		 */ | 
 | 		ret = tsk->exit_signal = -1; | 
 | 		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) | 
 | 			sig = -1; | 
 | 	} | 
 | 	if (valid_signal(sig) && sig > 0) | 
 | 		__group_send_sig_info(sig, &info, tsk->parent); | 
 | 	__wake_up_parent(tsk, tsk->parent); | 
 | 	spin_unlock_irqrestore(&psig->siglock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * do_notify_parent_cldstop - notify parent of stopped/continued state change | 
 |  * @tsk: task reporting the state change | 
 |  * @for_ptracer: the notification is for ptracer | 
 |  * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report | 
 |  * | 
 |  * Notify @tsk's parent that the stopped/continued state has changed.  If | 
 |  * @for_ptracer is %false, @tsk's group leader notifies to its real parent. | 
 |  * If %true, @tsk reports to @tsk->parent which should be the ptracer. | 
 |  * | 
 |  * CONTEXT: | 
 |  * Must be called with tasklist_lock at least read locked. | 
 |  */ | 
 | static void do_notify_parent_cldstop(struct task_struct *tsk, | 
 | 				     bool for_ptracer, int why) | 
 | { | 
 | 	struct siginfo info; | 
 | 	unsigned long flags; | 
 | 	struct task_struct *parent; | 
 | 	struct sighand_struct *sighand; | 
 |  | 
 | 	if (for_ptracer) { | 
 | 		parent = tsk->parent; | 
 | 	} else { | 
 | 		tsk = tsk->group_leader; | 
 | 		parent = tsk->real_parent; | 
 | 	} | 
 |  | 
 | 	info.si_signo = SIGCHLD; | 
 | 	info.si_errno = 0; | 
 | 	/* | 
 | 	 * see comment in do_notify_parent() about the following 4 lines | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); | 
 | 	info.si_uid = __task_cred(tsk)->uid; | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	info.si_utime = cputime_to_clock_t(tsk->utime); | 
 | 	info.si_stime = cputime_to_clock_t(tsk->stime); | 
 |  | 
 |  	info.si_code = why; | 
 |  	switch (why) { | 
 |  	case CLD_CONTINUED: | 
 |  		info.si_status = SIGCONT; | 
 |  		break; | 
 |  	case CLD_STOPPED: | 
 |  		info.si_status = tsk->signal->group_exit_code & 0x7f; | 
 |  		break; | 
 |  	case CLD_TRAPPED: | 
 |  		info.si_status = tsk->exit_code & 0x7f; | 
 |  		break; | 
 |  	default: | 
 |  		BUG(); | 
 |  	} | 
 |  | 
 | 	sighand = parent->sighand; | 
 | 	spin_lock_irqsave(&sighand->siglock, flags); | 
 | 	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && | 
 | 	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) | 
 | 		__group_send_sig_info(SIGCHLD, &info, parent); | 
 | 	/* | 
 | 	 * Even if SIGCHLD is not generated, we must wake up wait4 calls. | 
 | 	 */ | 
 | 	__wake_up_parent(tsk, parent); | 
 | 	spin_unlock_irqrestore(&sighand->siglock, flags); | 
 | } | 
 |  | 
 | static inline int may_ptrace_stop(void) | 
 | { | 
 | 	if (!likely(task_ptrace(current))) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Are we in the middle of do_coredump? | 
 | 	 * If so and our tracer is also part of the coredump stopping | 
 | 	 * is a deadlock situation, and pointless because our tracer | 
 | 	 * is dead so don't allow us to stop. | 
 | 	 * If SIGKILL was already sent before the caller unlocked | 
 | 	 * ->siglock we must see ->core_state != NULL. Otherwise it | 
 | 	 * is safe to enter schedule(). | 
 | 	 */ | 
 | 	if (unlikely(current->mm->core_state) && | 
 | 	    unlikely(current->mm == current->parent->mm)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Return non-zero if there is a SIGKILL that should be waking us up. | 
 |  * Called with the siglock held. | 
 |  */ | 
 | static int sigkill_pending(struct task_struct *tsk) | 
 | { | 
 | 	return	sigismember(&tsk->pending.signal, SIGKILL) || | 
 | 		sigismember(&tsk->signal->shared_pending.signal, SIGKILL); | 
 | } | 
 |  | 
 | /* | 
 |  * Test whether the target task of the usual cldstop notification - the | 
 |  * real_parent of @child - is in the same group as the ptracer. | 
 |  */ | 
 | static bool real_parent_is_ptracer(struct task_struct *child) | 
 | { | 
 | 	return same_thread_group(child->parent, child->real_parent); | 
 | } | 
 |  | 
 | /* | 
 |  * This must be called with current->sighand->siglock held. | 
 |  * | 
 |  * This should be the path for all ptrace stops. | 
 |  * We always set current->last_siginfo while stopped here. | 
 |  * That makes it a way to test a stopped process for | 
 |  * being ptrace-stopped vs being job-control-stopped. | 
 |  * | 
 |  * If we actually decide not to stop at all because the tracer | 
 |  * is gone, we keep current->exit_code unless clear_code. | 
 |  */ | 
 | static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info) | 
 | 	__releases(¤t->sighand->siglock) | 
 | 	__acquires(¤t->sighand->siglock) | 
 | { | 
 | 	bool gstop_done = false; | 
 |  | 
 | 	if (arch_ptrace_stop_needed(exit_code, info)) { | 
 | 		/* | 
 | 		 * The arch code has something special to do before a | 
 | 		 * ptrace stop.  This is allowed to block, e.g. for faults | 
 | 		 * on user stack pages.  We can't keep the siglock while | 
 | 		 * calling arch_ptrace_stop, so we must release it now. | 
 | 		 * To preserve proper semantics, we must do this before | 
 | 		 * any signal bookkeeping like checking group_stop_count. | 
 | 		 * Meanwhile, a SIGKILL could come in before we retake the | 
 | 		 * siglock.  That must prevent us from sleeping in TASK_TRACED. | 
 | 		 * So after regaining the lock, we must check for SIGKILL. | 
 | 		 */ | 
 | 		spin_unlock_irq(¤t->sighand->siglock); | 
 | 		arch_ptrace_stop(exit_code, info); | 
 | 		spin_lock_irq(¤t->sighand->siglock); | 
 | 		if (sigkill_pending(current)) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If @why is CLD_STOPPED, we're trapping to participate in a group | 
 | 	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered | 
 | 	 * while siglock was released for the arch hook, PENDING could be | 
 | 	 * clear now.  We act as if SIGCONT is received after TASK_TRACED | 
 | 	 * is entered - ignore it. | 
 | 	 */ | 
 | 	if (why == CLD_STOPPED && (current->group_stop & GROUP_STOP_PENDING)) | 
 | 		gstop_done = task_participate_group_stop(current); | 
 |  | 
 | 	current->last_siginfo = info; | 
 | 	current->exit_code = exit_code; | 
 |  | 
 | 	/* | 
 | 	 * TRACED should be visible before TRAPPING is cleared; otherwise, | 
 | 	 * the tracer might fail do_wait(). | 
 | 	 */ | 
 | 	set_current_state(TASK_TRACED); | 
 |  | 
 | 	/* | 
 | 	 * We're committing to trapping.  Clearing GROUP_STOP_TRAPPING and | 
 | 	 * transition to TASK_TRACED should be atomic with respect to | 
 | 	 * siglock.  This hsould be done after the arch hook as siglock is | 
 | 	 * released and regrabbed across it. | 
 | 	 */ | 
 | 	task_clear_group_stop_trapping(current); | 
 |  | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	read_lock(&tasklist_lock); | 
 | 	if (may_ptrace_stop()) { | 
 | 		/* | 
 | 		 * Notify parents of the stop. | 
 | 		 * | 
 | 		 * While ptraced, there are two parents - the ptracer and | 
 | 		 * the real_parent of the group_leader.  The ptracer should | 
 | 		 * know about every stop while the real parent is only | 
 | 		 * interested in the completion of group stop.  The states | 
 | 		 * for the two don't interact with each other.  Notify | 
 | 		 * separately unless they're gonna be duplicates. | 
 | 		 */ | 
 | 		do_notify_parent_cldstop(current, true, why); | 
 | 		if (gstop_done && !real_parent_is_ptracer(current)) | 
 | 			do_notify_parent_cldstop(current, false, why); | 
 |  | 
 | 		/* | 
 | 		 * Don't want to allow preemption here, because | 
 | 		 * sys_ptrace() needs this task to be inactive. | 
 | 		 * | 
 | 		 * XXX: implement read_unlock_no_resched(). | 
 | 		 */ | 
 | 		preempt_disable(); | 
 | 		read_unlock(&tasklist_lock); | 
 | 		preempt_enable_no_resched(); | 
 | 		schedule(); | 
 | 	} else { | 
 | 		/* | 
 | 		 * By the time we got the lock, our tracer went away. | 
 | 		 * Don't drop the lock yet, another tracer may come. | 
 | 		 * | 
 | 		 * If @gstop_done, the ptracer went away between group stop | 
 | 		 * completion and here.  During detach, it would have set | 
 | 		 * GROUP_STOP_PENDING on us and we'll re-enter TASK_STOPPED | 
 | 		 * in do_signal_stop() on return, so notifying the real | 
 | 		 * parent of the group stop completion is enough. | 
 | 		 */ | 
 | 		if (gstop_done) | 
 | 			do_notify_parent_cldstop(current, false, why); | 
 |  | 
 | 		__set_current_state(TASK_RUNNING); | 
 | 		if (clear_code) | 
 | 			current->exit_code = 0; | 
 | 		read_unlock(&tasklist_lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * While in TASK_TRACED, we were considered "frozen enough". | 
 | 	 * Now that we woke up, it's crucial if we're supposed to be | 
 | 	 * frozen that we freeze now before running anything substantial. | 
 | 	 */ | 
 | 	try_to_freeze(); | 
 |  | 
 | 	/* | 
 | 	 * We are back.  Now reacquire the siglock before touching | 
 | 	 * last_siginfo, so that we are sure to have synchronized with | 
 | 	 * any signal-sending on another CPU that wants to examine it. | 
 | 	 */ | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	current->last_siginfo = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Queued signals ignored us while we were stopped for tracing. | 
 | 	 * So check for any that we should take before resuming user mode. | 
 | 	 * This sets TIF_SIGPENDING, but never clears it. | 
 | 	 */ | 
 | 	recalc_sigpending_tsk(current); | 
 | } | 
 |  | 
 | void ptrace_notify(int exit_code) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); | 
 |  | 
 | 	memset(&info, 0, sizeof info); | 
 | 	info.si_signo = SIGTRAP; | 
 | 	info.si_code = exit_code; | 
 | 	info.si_pid = task_pid_vnr(current); | 
 | 	info.si_uid = current_uid(); | 
 |  | 
 | 	/* Let the debugger run.  */ | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	ptrace_stop(exit_code, CLD_TRAPPED, 1, &info); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | } | 
 |  | 
 | /* | 
 |  * This performs the stopping for SIGSTOP and other stop signals. | 
 |  * We have to stop all threads in the thread group. | 
 |  * Returns non-zero if we've actually stopped and released the siglock. | 
 |  * Returns zero if we didn't stop and still hold the siglock. | 
 |  */ | 
 | static int do_signal_stop(int signr) | 
 | { | 
 | 	struct signal_struct *sig = current->signal; | 
 |  | 
 | 	if (!(current->group_stop & GROUP_STOP_PENDING)) { | 
 | 		unsigned int gstop = GROUP_STOP_PENDING | GROUP_STOP_CONSUME; | 
 | 		struct task_struct *t; | 
 |  | 
 | 		/* signr will be recorded in task->group_stop for retries */ | 
 | 		WARN_ON_ONCE(signr & ~GROUP_STOP_SIGMASK); | 
 |  | 
 | 		if (!likely(current->group_stop & GROUP_STOP_DEQUEUED) || | 
 | 		    unlikely(signal_group_exit(sig))) | 
 | 			return 0; | 
 | 		/* | 
 | 		 * There is no group stop already in progress.  We must | 
 | 		 * initiate one now. | 
 | 		 * | 
 | 		 * While ptraced, a task may be resumed while group stop is | 
 | 		 * still in effect and then receive a stop signal and | 
 | 		 * initiate another group stop.  This deviates from the | 
 | 		 * usual behavior as two consecutive stop signals can't | 
 | 		 * cause two group stops when !ptraced.  That is why we | 
 | 		 * also check !task_is_stopped(t) below. | 
 | 		 * | 
 | 		 * The condition can be distinguished by testing whether | 
 | 		 * SIGNAL_STOP_STOPPED is already set.  Don't generate | 
 | 		 * group_exit_code in such case. | 
 | 		 * | 
 | 		 * This is not necessary for SIGNAL_STOP_CONTINUED because | 
 | 		 * an intervening stop signal is required to cause two | 
 | 		 * continued events regardless of ptrace. | 
 | 		 */ | 
 | 		if (!(sig->flags & SIGNAL_STOP_STOPPED)) | 
 | 			sig->group_exit_code = signr; | 
 | 		else | 
 | 			WARN_ON_ONCE(!task_ptrace(current)); | 
 |  | 
 | 		current->group_stop &= ~GROUP_STOP_SIGMASK; | 
 | 		current->group_stop |= signr | gstop; | 
 | 		sig->group_stop_count = 1; | 
 | 		for (t = next_thread(current); t != current; | 
 | 		     t = next_thread(t)) { | 
 | 			t->group_stop &= ~GROUP_STOP_SIGMASK; | 
 | 			/* | 
 | 			 * Setting state to TASK_STOPPED for a group | 
 | 			 * stop is always done with the siglock held, | 
 | 			 * so this check has no races. | 
 | 			 */ | 
 | 			if (!(t->flags & PF_EXITING) && !task_is_stopped(t)) { | 
 | 				t->group_stop |= signr | gstop; | 
 | 				sig->group_stop_count++; | 
 | 				signal_wake_up(t, 0); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | retry: | 
 | 	if (likely(!task_ptrace(current))) { | 
 | 		int notify = 0; | 
 |  | 
 | 		/* | 
 | 		 * If there are no other threads in the group, or if there | 
 | 		 * is a group stop in progress and we are the last to stop, | 
 | 		 * report to the parent. | 
 | 		 */ | 
 | 		if (task_participate_group_stop(current)) | 
 | 			notify = CLD_STOPPED; | 
 |  | 
 | 		__set_current_state(TASK_STOPPED); | 
 | 		spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 		/* | 
 | 		 * Notify the parent of the group stop completion.  Because | 
 | 		 * we're not holding either the siglock or tasklist_lock | 
 | 		 * here, ptracer may attach inbetween; however, this is for | 
 | 		 * group stop and should always be delivered to the real | 
 | 		 * parent of the group leader.  The new ptracer will get | 
 | 		 * its notification when this task transitions into | 
 | 		 * TASK_TRACED. | 
 | 		 */ | 
 | 		if (notify) { | 
 | 			read_lock(&tasklist_lock); | 
 | 			do_notify_parent_cldstop(current, false, notify); | 
 | 			read_unlock(&tasklist_lock); | 
 | 		} | 
 |  | 
 | 		/* Now we don't run again until woken by SIGCONT or SIGKILL */ | 
 | 		schedule(); | 
 |  | 
 | 		spin_lock_irq(¤t->sighand->siglock); | 
 | 	} else { | 
 | 		ptrace_stop(current->group_stop & GROUP_STOP_SIGMASK, | 
 | 			    CLD_STOPPED, 0, NULL); | 
 | 		current->exit_code = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * GROUP_STOP_PENDING could be set if another group stop has | 
 | 	 * started since being woken up or ptrace wants us to transit | 
 | 	 * between TASK_STOPPED and TRACED.  Retry group stop. | 
 | 	 */ | 
 | 	if (current->group_stop & GROUP_STOP_PENDING) { | 
 | 		WARN_ON_ONCE(!(current->group_stop & GROUP_STOP_SIGMASK)); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* PTRACE_ATTACH might have raced with task killing, clear trapping */ | 
 | 	task_clear_group_stop_trapping(current); | 
 |  | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	tracehook_finish_jctl(); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int ptrace_signal(int signr, siginfo_t *info, | 
 | 			 struct pt_regs *regs, void *cookie) | 
 | { | 
 | 	if (!task_ptrace(current)) | 
 | 		return signr; | 
 |  | 
 | 	ptrace_signal_deliver(regs, cookie); | 
 |  | 
 | 	/* Let the debugger run.  */ | 
 | 	ptrace_stop(signr, CLD_TRAPPED, 0, info); | 
 |  | 
 | 	/* We're back.  Did the debugger cancel the sig?  */ | 
 | 	signr = current->exit_code; | 
 | 	if (signr == 0) | 
 | 		return signr; | 
 |  | 
 | 	current->exit_code = 0; | 
 |  | 
 | 	/* | 
 | 	 * Update the siginfo structure if the signal has | 
 | 	 * changed.  If the debugger wanted something | 
 | 	 * specific in the siginfo structure then it should | 
 | 	 * have updated *info via PTRACE_SETSIGINFO. | 
 | 	 */ | 
 | 	if (signr != info->si_signo) { | 
 | 		info->si_signo = signr; | 
 | 		info->si_errno = 0; | 
 | 		info->si_code = SI_USER; | 
 | 		info->si_pid = task_pid_vnr(current->parent); | 
 | 		info->si_uid = task_uid(current->parent); | 
 | 	} | 
 |  | 
 | 	/* If the (new) signal is now blocked, requeue it.  */ | 
 | 	if (sigismember(¤t->blocked, signr)) { | 
 | 		specific_send_sig_info(signr, info, current); | 
 | 		signr = 0; | 
 | 	} | 
 |  | 
 | 	return signr; | 
 | } | 
 |  | 
 | int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, | 
 | 			  struct pt_regs *regs, void *cookie) | 
 | { | 
 | 	struct sighand_struct *sighand = current->sighand; | 
 | 	struct signal_struct *signal = current->signal; | 
 | 	int signr; | 
 |  | 
 | relock: | 
 | 	/* | 
 | 	 * We'll jump back here after any time we were stopped in TASK_STOPPED. | 
 | 	 * While in TASK_STOPPED, we were considered "frozen enough". | 
 | 	 * Now that we woke up, it's crucial if we're supposed to be | 
 | 	 * frozen that we freeze now before running anything substantial. | 
 | 	 */ | 
 | 	try_to_freeze(); | 
 |  | 
 | 	spin_lock_irq(&sighand->siglock); | 
 | 	/* | 
 | 	 * Every stopped thread goes here after wakeup. Check to see if | 
 | 	 * we should notify the parent, prepare_signal(SIGCONT) encodes | 
 | 	 * the CLD_ si_code into SIGNAL_CLD_MASK bits. | 
 | 	 */ | 
 | 	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { | 
 | 		struct task_struct *leader; | 
 | 		int why; | 
 |  | 
 | 		if (signal->flags & SIGNAL_CLD_CONTINUED) | 
 | 			why = CLD_CONTINUED; | 
 | 		else | 
 | 			why = CLD_STOPPED; | 
 |  | 
 | 		signal->flags &= ~SIGNAL_CLD_MASK; | 
 |  | 
 | 		spin_unlock_irq(&sighand->siglock); | 
 |  | 
 | 		/* | 
 | 		 * Notify the parent that we're continuing.  This event is | 
 | 		 * always per-process and doesn't make whole lot of sense | 
 | 		 * for ptracers, who shouldn't consume the state via | 
 | 		 * wait(2) either, but, for backward compatibility, notify | 
 | 		 * the ptracer of the group leader too unless it's gonna be | 
 | 		 * a duplicate. | 
 | 		 */ | 
 | 		read_lock(&tasklist_lock); | 
 |  | 
 | 		do_notify_parent_cldstop(current, false, why); | 
 |  | 
 | 		leader = current->group_leader; | 
 | 		if (task_ptrace(leader) && !real_parent_is_ptracer(leader)) | 
 | 			do_notify_parent_cldstop(leader, true, why); | 
 |  | 
 | 		read_unlock(&tasklist_lock); | 
 |  | 
 | 		goto relock; | 
 | 	} | 
 |  | 
 | 	for (;;) { | 
 | 		struct k_sigaction *ka; | 
 | 		/* | 
 | 		 * Tracing can induce an artificial signal and choose sigaction. | 
 | 		 * The return value in @signr determines the default action, | 
 | 		 * but @info->si_signo is the signal number we will report. | 
 | 		 */ | 
 | 		signr = tracehook_get_signal(current, regs, info, return_ka); | 
 | 		if (unlikely(signr < 0)) | 
 | 			goto relock; | 
 | 		if (unlikely(signr != 0)) | 
 | 			ka = return_ka; | 
 | 		else { | 
 | 			if (unlikely(current->group_stop & | 
 | 				     GROUP_STOP_PENDING) && do_signal_stop(0)) | 
 | 				goto relock; | 
 |  | 
 | 			signr = dequeue_signal(current, ¤t->blocked, | 
 | 					       info); | 
 |  | 
 | 			if (!signr) | 
 | 				break; /* will return 0 */ | 
 |  | 
 | 			if (signr != SIGKILL) { | 
 | 				signr = ptrace_signal(signr, info, | 
 | 						      regs, cookie); | 
 | 				if (!signr) | 
 | 					continue; | 
 | 			} | 
 |  | 
 | 			ka = &sighand->action[signr-1]; | 
 | 		} | 
 |  | 
 | 		/* Trace actually delivered signals. */ | 
 | 		trace_signal_deliver(signr, info, ka); | 
 |  | 
 | 		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */ | 
 | 			continue; | 
 | 		if (ka->sa.sa_handler != SIG_DFL) { | 
 | 			/* Run the handler.  */ | 
 | 			*return_ka = *ka; | 
 |  | 
 | 			if (ka->sa.sa_flags & SA_ONESHOT) | 
 | 				ka->sa.sa_handler = SIG_DFL; | 
 |  | 
 | 			break; /* will return non-zero "signr" value */ | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now we are doing the default action for this signal. | 
 | 		 */ | 
 | 		if (sig_kernel_ignore(signr)) /* Default is nothing. */ | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Global init gets no signals it doesn't want. | 
 | 		 * Container-init gets no signals it doesn't want from same | 
 | 		 * container. | 
 | 		 * | 
 | 		 * Note that if global/container-init sees a sig_kernel_only() | 
 | 		 * signal here, the signal must have been generated internally | 
 | 		 * or must have come from an ancestor namespace. In either | 
 | 		 * case, the signal cannot be dropped. | 
 | 		 */ | 
 | 		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && | 
 | 				!sig_kernel_only(signr)) | 
 | 			continue; | 
 |  | 
 | 		if (sig_kernel_stop(signr)) { | 
 | 			/* | 
 | 			 * The default action is to stop all threads in | 
 | 			 * the thread group.  The job control signals | 
 | 			 * do nothing in an orphaned pgrp, but SIGSTOP | 
 | 			 * always works.  Note that siglock needs to be | 
 | 			 * dropped during the call to is_orphaned_pgrp() | 
 | 			 * because of lock ordering with tasklist_lock. | 
 | 			 * This allows an intervening SIGCONT to be posted. | 
 | 			 * We need to check for that and bail out if necessary. | 
 | 			 */ | 
 | 			if (signr != SIGSTOP) { | 
 | 				spin_unlock_irq(&sighand->siglock); | 
 |  | 
 | 				/* signals can be posted during this window */ | 
 |  | 
 | 				if (is_current_pgrp_orphaned()) | 
 | 					goto relock; | 
 |  | 
 | 				spin_lock_irq(&sighand->siglock); | 
 | 			} | 
 |  | 
 | 			if (likely(do_signal_stop(info->si_signo))) { | 
 | 				/* It released the siglock.  */ | 
 | 				goto relock; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We didn't actually stop, due to a race | 
 | 			 * with SIGCONT or something like that. | 
 | 			 */ | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		spin_unlock_irq(&sighand->siglock); | 
 |  | 
 | 		/* | 
 | 		 * Anything else is fatal, maybe with a core dump. | 
 | 		 */ | 
 | 		current->flags |= PF_SIGNALED; | 
 |  | 
 | 		if (sig_kernel_coredump(signr)) { | 
 | 			if (print_fatal_signals) | 
 | 				print_fatal_signal(regs, info->si_signo); | 
 | 			/* | 
 | 			 * If it was able to dump core, this kills all | 
 | 			 * other threads in the group and synchronizes with | 
 | 			 * their demise.  If we lost the race with another | 
 | 			 * thread getting here, it set group_exit_code | 
 | 			 * first and our do_group_exit call below will use | 
 | 			 * that value and ignore the one we pass it. | 
 | 			 */ | 
 | 			do_coredump(info->si_signo, info->si_signo, regs); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Death signals, no core dump. | 
 | 		 */ | 
 | 		do_group_exit(info->si_signo); | 
 | 		/* NOTREACHED */ | 
 | 	} | 
 | 	spin_unlock_irq(&sighand->siglock); | 
 | 	return signr; | 
 | } | 
 |  | 
 | /* | 
 |  * It could be that complete_signal() picked us to notify about the | 
 |  * group-wide signal. Other threads should be notified now to take | 
 |  * the shared signals in @which since we will not. | 
 |  */ | 
 | static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which) | 
 | { | 
 | 	sigset_t retarget; | 
 | 	struct task_struct *t; | 
 |  | 
 | 	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which); | 
 | 	if (sigisemptyset(&retarget)) | 
 | 		return; | 
 |  | 
 | 	t = tsk; | 
 | 	while_each_thread(tsk, t) { | 
 | 		if (t->flags & PF_EXITING) | 
 | 			continue; | 
 |  | 
 | 		if (!has_pending_signals(&retarget, &t->blocked)) | 
 | 			continue; | 
 | 		/* Remove the signals this thread can handle. */ | 
 | 		sigandsets(&retarget, &retarget, &t->blocked); | 
 |  | 
 | 		if (!signal_pending(t)) | 
 | 			signal_wake_up(t, 0); | 
 |  | 
 | 		if (sigisemptyset(&retarget)) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | void exit_signals(struct task_struct *tsk) | 
 | { | 
 | 	int group_stop = 0; | 
 | 	sigset_t unblocked; | 
 |  | 
 | 	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { | 
 | 		tsk->flags |= PF_EXITING; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock_irq(&tsk->sighand->siglock); | 
 | 	/* | 
 | 	 * From now this task is not visible for group-wide signals, | 
 | 	 * see wants_signal(), do_signal_stop(). | 
 | 	 */ | 
 | 	tsk->flags |= PF_EXITING; | 
 | 	if (!signal_pending(tsk)) | 
 | 		goto out; | 
 |  | 
 | 	unblocked = tsk->blocked; | 
 | 	signotset(&unblocked); | 
 | 	retarget_shared_pending(tsk, &unblocked); | 
 |  | 
 | 	if (unlikely(tsk->group_stop & GROUP_STOP_PENDING) && | 
 | 	    task_participate_group_stop(tsk)) | 
 | 		group_stop = CLD_STOPPED; | 
 | out: | 
 | 	spin_unlock_irq(&tsk->sighand->siglock); | 
 |  | 
 | 	/* | 
 | 	 * If group stop has completed, deliver the notification.  This | 
 | 	 * should always go to the real parent of the group leader. | 
 | 	 */ | 
 | 	if (unlikely(group_stop)) { | 
 | 		read_lock(&tasklist_lock); | 
 | 		do_notify_parent_cldstop(tsk, false, group_stop); | 
 | 		read_unlock(&tasklist_lock); | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(recalc_sigpending); | 
 | EXPORT_SYMBOL_GPL(dequeue_signal); | 
 | EXPORT_SYMBOL(flush_signals); | 
 | EXPORT_SYMBOL(force_sig); | 
 | EXPORT_SYMBOL(send_sig); | 
 | EXPORT_SYMBOL(send_sig_info); | 
 | EXPORT_SYMBOL(sigprocmask); | 
 | EXPORT_SYMBOL(block_all_signals); | 
 | EXPORT_SYMBOL(unblock_all_signals); | 
 |  | 
 |  | 
 | /* | 
 |  * System call entry points. | 
 |  */ | 
 |  | 
 | /** | 
 |  *  sys_restart_syscall - restart a system call | 
 |  */ | 
 | SYSCALL_DEFINE0(restart_syscall) | 
 | { | 
 | 	struct restart_block *restart = ¤t_thread_info()->restart_block; | 
 | 	return restart->fn(restart); | 
 | } | 
 |  | 
 | long do_no_restart_syscall(struct restart_block *param) | 
 | { | 
 | 	return -EINTR; | 
 | } | 
 |  | 
 | static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset) | 
 | { | 
 | 	if (signal_pending(tsk) && !thread_group_empty(tsk)) { | 
 | 		sigset_t newblocked; | 
 | 		/* A set of now blocked but previously unblocked signals. */ | 
 | 		sigandnsets(&newblocked, newset, ¤t->blocked); | 
 | 		retarget_shared_pending(tsk, &newblocked); | 
 | 	} | 
 | 	tsk->blocked = *newset; | 
 | 	recalc_sigpending(); | 
 | } | 
 |  | 
 | /** | 
 |  * set_current_blocked - change current->blocked mask | 
 |  * @newset: new mask | 
 |  * | 
 |  * It is wrong to change ->blocked directly, this helper should be used | 
 |  * to ensure the process can't miss a shared signal we are going to block. | 
 |  */ | 
 | void set_current_blocked(const sigset_t *newset) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 |  | 
 | 	spin_lock_irq(&tsk->sighand->siglock); | 
 | 	__set_task_blocked(tsk, newset); | 
 | 	spin_unlock_irq(&tsk->sighand->siglock); | 
 | } | 
 |  | 
 | /* | 
 |  * This is also useful for kernel threads that want to temporarily | 
 |  * (or permanently) block certain signals. | 
 |  * | 
 |  * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel | 
 |  * interface happily blocks "unblockable" signals like SIGKILL | 
 |  * and friends. | 
 |  */ | 
 | int sigprocmask(int how, sigset_t *set, sigset_t *oldset) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	sigset_t newset; | 
 |  | 
 | 	/* Lockless, only current can change ->blocked, never from irq */ | 
 | 	if (oldset) | 
 | 		*oldset = tsk->blocked; | 
 |  | 
 | 	switch (how) { | 
 | 	case SIG_BLOCK: | 
 | 		sigorsets(&newset, &tsk->blocked, set); | 
 | 		break; | 
 | 	case SIG_UNBLOCK: | 
 | 		sigandnsets(&newset, &tsk->blocked, set); | 
 | 		break; | 
 | 	case SIG_SETMASK: | 
 | 		newset = *set; | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	set_current_blocked(&newset); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *  sys_rt_sigprocmask - change the list of currently blocked signals | 
 |  *  @how: whether to add, remove, or set signals | 
 |  *  @nset: stores pending signals | 
 |  *  @oset: previous value of signal mask if non-null | 
 |  *  @sigsetsize: size of sigset_t type | 
 |  */ | 
 | SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset, | 
 | 		sigset_t __user *, oset, size_t, sigsetsize) | 
 | { | 
 | 	sigset_t old_set, new_set; | 
 | 	int error; | 
 |  | 
 | 	/* XXX: Don't preclude handling different sized sigset_t's.  */ | 
 | 	if (sigsetsize != sizeof(sigset_t)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	old_set = current->blocked; | 
 |  | 
 | 	if (nset) { | 
 | 		if (copy_from_user(&new_set, nset, sizeof(sigset_t))) | 
 | 			return -EFAULT; | 
 | 		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
 |  | 
 | 		error = sigprocmask(how, &new_set, NULL); | 
 | 		if (error) | 
 | 			return error; | 
 | 	} | 
 |  | 
 | 	if (oset) { | 
 | 		if (copy_to_user(oset, &old_set, sizeof(sigset_t))) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | long do_sigpending(void __user *set, unsigned long sigsetsize) | 
 | { | 
 | 	long error = -EINVAL; | 
 | 	sigset_t pending; | 
 |  | 
 | 	if (sigsetsize > sizeof(sigset_t)) | 
 | 		goto out; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	sigorsets(&pending, ¤t->pending.signal, | 
 | 		  ¤t->signal->shared_pending.signal); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	/* Outside the lock because only this thread touches it.  */ | 
 | 	sigandsets(&pending, ¤t->blocked, &pending); | 
 |  | 
 | 	error = -EFAULT; | 
 | 	if (!copy_to_user(set, &pending, sigsetsize)) | 
 | 		error = 0; | 
 |  | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /** | 
 |  *  sys_rt_sigpending - examine a pending signal that has been raised | 
 |  *			while blocked | 
 |  *  @set: stores pending signals | 
 |  *  @sigsetsize: size of sigset_t type or larger | 
 |  */ | 
 | SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) | 
 | { | 
 | 	return do_sigpending(set, sigsetsize); | 
 | } | 
 |  | 
 | #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER | 
 |  | 
 | int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) | 
 | 		return -EFAULT; | 
 | 	if (from->si_code < 0) | 
 | 		return __copy_to_user(to, from, sizeof(siginfo_t)) | 
 | 			? -EFAULT : 0; | 
 | 	/* | 
 | 	 * If you change siginfo_t structure, please be sure | 
 | 	 * this code is fixed accordingly. | 
 | 	 * Please remember to update the signalfd_copyinfo() function | 
 | 	 * inside fs/signalfd.c too, in case siginfo_t changes. | 
 | 	 * It should never copy any pad contained in the structure | 
 | 	 * to avoid security leaks, but must copy the generic | 
 | 	 * 3 ints plus the relevant union member. | 
 | 	 */ | 
 | 	err = __put_user(from->si_signo, &to->si_signo); | 
 | 	err |= __put_user(from->si_errno, &to->si_errno); | 
 | 	err |= __put_user((short)from->si_code, &to->si_code); | 
 | 	switch (from->si_code & __SI_MASK) { | 
 | 	case __SI_KILL: | 
 | 		err |= __put_user(from->si_pid, &to->si_pid); | 
 | 		err |= __put_user(from->si_uid, &to->si_uid); | 
 | 		break; | 
 | 	case __SI_TIMER: | 
 | 		 err |= __put_user(from->si_tid, &to->si_tid); | 
 | 		 err |= __put_user(from->si_overrun, &to->si_overrun); | 
 | 		 err |= __put_user(from->si_ptr, &to->si_ptr); | 
 | 		break; | 
 | 	case __SI_POLL: | 
 | 		err |= __put_user(from->si_band, &to->si_band); | 
 | 		err |= __put_user(from->si_fd, &to->si_fd); | 
 | 		break; | 
 | 	case __SI_FAULT: | 
 | 		err |= __put_user(from->si_addr, &to->si_addr); | 
 | #ifdef __ARCH_SI_TRAPNO | 
 | 		err |= __put_user(from->si_trapno, &to->si_trapno); | 
 | #endif | 
 | #ifdef BUS_MCEERR_AO | 
 | 		/* | 
 | 		 * Other callers might not initialize the si_lsb field, | 
 | 		 * so check explicitly for the right codes here. | 
 | 		 */ | 
 | 		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO) | 
 | 			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb); | 
 | #endif | 
 | 		break; | 
 | 	case __SI_CHLD: | 
 | 		err |= __put_user(from->si_pid, &to->si_pid); | 
 | 		err |= __put_user(from->si_uid, &to->si_uid); | 
 | 		err |= __put_user(from->si_status, &to->si_status); | 
 | 		err |= __put_user(from->si_utime, &to->si_utime); | 
 | 		err |= __put_user(from->si_stime, &to->si_stime); | 
 | 		break; | 
 | 	case __SI_RT: /* This is not generated by the kernel as of now. */ | 
 | 	case __SI_MESGQ: /* But this is */ | 
 | 		err |= __put_user(from->si_pid, &to->si_pid); | 
 | 		err |= __put_user(from->si_uid, &to->si_uid); | 
 | 		err |= __put_user(from->si_ptr, &to->si_ptr); | 
 | 		break; | 
 | 	default: /* this is just in case for now ... */ | 
 | 		err |= __put_user(from->si_pid, &to->si_pid); | 
 | 		err |= __put_user(from->si_uid, &to->si_uid); | 
 | 		break; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /** | 
 |  *  do_sigtimedwait - wait for queued signals specified in @which | 
 |  *  @which: queued signals to wait for | 
 |  *  @info: if non-null, the signal's siginfo is returned here | 
 |  *  @ts: upper bound on process time suspension | 
 |  */ | 
 | int do_sigtimedwait(const sigset_t *which, siginfo_t *info, | 
 | 			const struct timespec *ts) | 
 | { | 
 | 	struct task_struct *tsk = current; | 
 | 	long timeout = MAX_SCHEDULE_TIMEOUT; | 
 | 	sigset_t mask = *which; | 
 | 	int sig; | 
 |  | 
 | 	if (ts) { | 
 | 		if (!timespec_valid(ts)) | 
 | 			return -EINVAL; | 
 | 		timeout = timespec_to_jiffies(ts); | 
 | 		/* | 
 | 		 * We can be close to the next tick, add another one | 
 | 		 * to ensure we will wait at least the time asked for. | 
 | 		 */ | 
 | 		if (ts->tv_sec || ts->tv_nsec) | 
 | 			timeout++; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Invert the set of allowed signals to get those we want to block. | 
 | 	 */ | 
 | 	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
 | 	signotset(&mask); | 
 |  | 
 | 	spin_lock_irq(&tsk->sighand->siglock); | 
 | 	sig = dequeue_signal(tsk, &mask, info); | 
 | 	if (!sig && timeout) { | 
 | 		/* | 
 | 		 * None ready, temporarily unblock those we're interested | 
 | 		 * while we are sleeping in so that we'll be awakened when | 
 | 		 * they arrive. Unblocking is always fine, we can avoid | 
 | 		 * set_current_blocked(). | 
 | 		 */ | 
 | 		tsk->real_blocked = tsk->blocked; | 
 | 		sigandsets(&tsk->blocked, &tsk->blocked, &mask); | 
 | 		recalc_sigpending(); | 
 | 		spin_unlock_irq(&tsk->sighand->siglock); | 
 |  | 
 | 		timeout = schedule_timeout_interruptible(timeout); | 
 |  | 
 | 		spin_lock_irq(&tsk->sighand->siglock); | 
 | 		__set_task_blocked(tsk, &tsk->real_blocked); | 
 | 		siginitset(&tsk->real_blocked, 0); | 
 | 		sig = dequeue_signal(tsk, &mask, info); | 
 | 	} | 
 | 	spin_unlock_irq(&tsk->sighand->siglock); | 
 |  | 
 | 	if (sig) | 
 | 		return sig; | 
 | 	return timeout ? -EINTR : -EAGAIN; | 
 | } | 
 |  | 
 | /** | 
 |  *  sys_rt_sigtimedwait - synchronously wait for queued signals specified | 
 |  *			in @uthese | 
 |  *  @uthese: queued signals to wait for | 
 |  *  @uinfo: if non-null, the signal's siginfo is returned here | 
 |  *  @uts: upper bound on process time suspension | 
 |  *  @sigsetsize: size of sigset_t type | 
 |  */ | 
 | SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, | 
 | 		siginfo_t __user *, uinfo, const struct timespec __user *, uts, | 
 | 		size_t, sigsetsize) | 
 | { | 
 | 	sigset_t these; | 
 | 	struct timespec ts; | 
 | 	siginfo_t info; | 
 | 	int ret; | 
 |  | 
 | 	/* XXX: Don't preclude handling different sized sigset_t's.  */ | 
 | 	if (sigsetsize != sizeof(sigset_t)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&these, uthese, sizeof(these))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (uts) { | 
 | 		if (copy_from_user(&ts, uts, sizeof(ts))) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL); | 
 |  | 
 | 	if (ret > 0 && uinfo) { | 
 | 		if (copy_siginfo_to_user(uinfo, &info)) | 
 | 			ret = -EFAULT; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *  sys_kill - send a signal to a process | 
 |  *  @pid: the PID of the process | 
 |  *  @sig: signal to be sent | 
 |  */ | 
 | SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) | 
 | { | 
 | 	struct siginfo info; | 
 |  | 
 | 	info.si_signo = sig; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = SI_USER; | 
 | 	info.si_pid = task_tgid_vnr(current); | 
 | 	info.si_uid = current_uid(); | 
 |  | 
 | 	return kill_something_info(sig, &info, pid); | 
 | } | 
 |  | 
 | static int | 
 | do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) | 
 | { | 
 | 	struct task_struct *p; | 
 | 	int error = -ESRCH; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	p = find_task_by_vpid(pid); | 
 | 	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { | 
 | 		error = check_kill_permission(sig, info, p); | 
 | 		/* | 
 | 		 * The null signal is a permissions and process existence | 
 | 		 * probe.  No signal is actually delivered. | 
 | 		 */ | 
 | 		if (!error && sig) { | 
 | 			error = do_send_sig_info(sig, info, p, false); | 
 | 			/* | 
 | 			 * If lock_task_sighand() failed we pretend the task | 
 | 			 * dies after receiving the signal. The window is tiny, | 
 | 			 * and the signal is private anyway. | 
 | 			 */ | 
 | 			if (unlikely(error == -ESRCH)) | 
 | 				error = 0; | 
 | 		} | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int do_tkill(pid_t tgid, pid_t pid, int sig) | 
 | { | 
 | 	struct siginfo info; | 
 |  | 
 | 	info.si_signo = sig; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = SI_TKILL; | 
 | 	info.si_pid = task_tgid_vnr(current); | 
 | 	info.si_uid = current_uid(); | 
 |  | 
 | 	return do_send_specific(tgid, pid, sig, &info); | 
 | } | 
 |  | 
 | /** | 
 |  *  sys_tgkill - send signal to one specific thread | 
 |  *  @tgid: the thread group ID of the thread | 
 |  *  @pid: the PID of the thread | 
 |  *  @sig: signal to be sent | 
 |  * | 
 |  *  This syscall also checks the @tgid and returns -ESRCH even if the PID | 
 |  *  exists but it's not belonging to the target process anymore. This | 
 |  *  method solves the problem of threads exiting and PIDs getting reused. | 
 |  */ | 
 | SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) | 
 | { | 
 | 	/* This is only valid for single tasks */ | 
 | 	if (pid <= 0 || tgid <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_tkill(tgid, pid, sig); | 
 | } | 
 |  | 
 | /** | 
 |  *  sys_tkill - send signal to one specific task | 
 |  *  @pid: the PID of the task | 
 |  *  @sig: signal to be sent | 
 |  * | 
 |  *  Send a signal to only one task, even if it's a CLONE_THREAD task. | 
 |  */ | 
 | SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) | 
 | { | 
 | 	/* This is only valid for single tasks */ | 
 | 	if (pid <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return do_tkill(0, pid, sig); | 
 | } | 
 |  | 
 | /** | 
 |  *  sys_rt_sigqueueinfo - send signal information to a signal | 
 |  *  @pid: the PID of the thread | 
 |  *  @sig: signal to be sent | 
 |  *  @uinfo: signal info to be sent | 
 |  */ | 
 | SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, | 
 | 		siginfo_t __user *, uinfo) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* Not even root can pretend to send signals from the kernel. | 
 | 	 * Nor can they impersonate a kill()/tgkill(), which adds source info. | 
 | 	 */ | 
 | 	if (info.si_code >= 0 || info.si_code == SI_TKILL) { | 
 | 		/* We used to allow any < 0 si_code */ | 
 | 		WARN_ON_ONCE(info.si_code < 0); | 
 | 		return -EPERM; | 
 | 	} | 
 | 	info.si_signo = sig; | 
 |  | 
 | 	/* POSIX.1b doesn't mention process groups.  */ | 
 | 	return kill_proc_info(sig, &info, pid); | 
 | } | 
 |  | 
 | long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) | 
 | { | 
 | 	/* This is only valid for single tasks */ | 
 | 	if (pid <= 0 || tgid <= 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Not even root can pretend to send signals from the kernel. | 
 | 	 * Nor can they impersonate a kill()/tgkill(), which adds source info. | 
 | 	 */ | 
 | 	if (info->si_code >= 0 || info->si_code == SI_TKILL) { | 
 | 		/* We used to allow any < 0 si_code */ | 
 | 		WARN_ON_ONCE(info->si_code < 0); | 
 | 		return -EPERM; | 
 | 	} | 
 | 	info->si_signo = sig; | 
 |  | 
 | 	return do_send_specific(tgid, pid, sig, info); | 
 | } | 
 |  | 
 | SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, | 
 | 		siginfo_t __user *, uinfo) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); | 
 | } | 
 |  | 
 | int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) | 
 | { | 
 | 	struct task_struct *t = current; | 
 | 	struct k_sigaction *k; | 
 | 	sigset_t mask; | 
 |  | 
 | 	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) | 
 | 		return -EINVAL; | 
 |  | 
 | 	k = &t->sighand->action[sig-1]; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	if (oact) | 
 | 		*oact = *k; | 
 |  | 
 | 	if (act) { | 
 | 		sigdelsetmask(&act->sa.sa_mask, | 
 | 			      sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
 | 		*k = *act; | 
 | 		/* | 
 | 		 * POSIX 3.3.1.3: | 
 | 		 *  "Setting a signal action to SIG_IGN for a signal that is | 
 | 		 *   pending shall cause the pending signal to be discarded, | 
 | 		 *   whether or not it is blocked." | 
 | 		 * | 
 | 		 *  "Setting a signal action to SIG_DFL for a signal that is | 
 | 		 *   pending and whose default action is to ignore the signal | 
 | 		 *   (for example, SIGCHLD), shall cause the pending signal to | 
 | 		 *   be discarded, whether or not it is blocked" | 
 | 		 */ | 
 | 		if (sig_handler_ignored(sig_handler(t, sig), sig)) { | 
 | 			sigemptyset(&mask); | 
 | 			sigaddset(&mask, sig); | 
 | 			rm_from_queue_full(&mask, &t->signal->shared_pending); | 
 | 			do { | 
 | 				rm_from_queue_full(&mask, &t->pending); | 
 | 				t = next_thread(t); | 
 | 			} while (t != current); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int  | 
 | do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) | 
 | { | 
 | 	stack_t oss; | 
 | 	int error; | 
 |  | 
 | 	oss.ss_sp = (void __user *) current->sas_ss_sp; | 
 | 	oss.ss_size = current->sas_ss_size; | 
 | 	oss.ss_flags = sas_ss_flags(sp); | 
 |  | 
 | 	if (uss) { | 
 | 		void __user *ss_sp; | 
 | 		size_t ss_size; | 
 | 		int ss_flags; | 
 |  | 
 | 		error = -EFAULT; | 
 | 		if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) | 
 | 			goto out; | 
 | 		error = __get_user(ss_sp, &uss->ss_sp) | | 
 | 			__get_user(ss_flags, &uss->ss_flags) | | 
 | 			__get_user(ss_size, &uss->ss_size); | 
 | 		if (error) | 
 | 			goto out; | 
 |  | 
 | 		error = -EPERM; | 
 | 		if (on_sig_stack(sp)) | 
 | 			goto out; | 
 |  | 
 | 		error = -EINVAL; | 
 | 		/* | 
 | 		 * Note - this code used to test ss_flags incorrectly: | 
 | 		 *  	  old code may have been written using ss_flags==0 | 
 | 		 *	  to mean ss_flags==SS_ONSTACK (as this was the only | 
 | 		 *	  way that worked) - this fix preserves that older | 
 | 		 *	  mechanism. | 
 | 		 */ | 
 | 		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) | 
 | 			goto out; | 
 |  | 
 | 		if (ss_flags == SS_DISABLE) { | 
 | 			ss_size = 0; | 
 | 			ss_sp = NULL; | 
 | 		} else { | 
 | 			error = -ENOMEM; | 
 | 			if (ss_size < MINSIGSTKSZ) | 
 | 				goto out; | 
 | 		} | 
 |  | 
 | 		current->sas_ss_sp = (unsigned long) ss_sp; | 
 | 		current->sas_ss_size = ss_size; | 
 | 	} | 
 |  | 
 | 	error = 0; | 
 | 	if (uoss) { | 
 | 		error = -EFAULT; | 
 | 		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) | 
 | 			goto out; | 
 | 		error = __put_user(oss.ss_sp, &uoss->ss_sp) | | 
 | 			__put_user(oss.ss_size, &uoss->ss_size) | | 
 | 			__put_user(oss.ss_flags, &uoss->ss_flags); | 
 | 	} | 
 |  | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_SIGPENDING | 
 |  | 
 | /** | 
 |  *  sys_sigpending - examine pending signals | 
 |  *  @set: where mask of pending signal is returned | 
 |  */ | 
 | SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) | 
 | { | 
 | 	return do_sigpending(set, sizeof(*set)); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_SIGPROCMASK | 
 | /** | 
 |  *  sys_sigprocmask - examine and change blocked signals | 
 |  *  @how: whether to add, remove, or set signals | 
 |  *  @nset: signals to add or remove (if non-null) | 
 |  *  @oset: previous value of signal mask if non-null | 
 |  * | 
 |  * Some platforms have their own version with special arguments; | 
 |  * others support only sys_rt_sigprocmask. | 
 |  */ | 
 |  | 
 | SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset, | 
 | 		old_sigset_t __user *, oset) | 
 | { | 
 | 	old_sigset_t old_set, new_set; | 
 | 	sigset_t new_blocked; | 
 |  | 
 | 	old_set = current->blocked.sig[0]; | 
 |  | 
 | 	if (nset) { | 
 | 		if (copy_from_user(&new_set, nset, sizeof(*nset))) | 
 | 			return -EFAULT; | 
 | 		new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); | 
 |  | 
 | 		new_blocked = current->blocked; | 
 |  | 
 | 		switch (how) { | 
 | 		case SIG_BLOCK: | 
 | 			sigaddsetmask(&new_blocked, new_set); | 
 | 			break; | 
 | 		case SIG_UNBLOCK: | 
 | 			sigdelsetmask(&new_blocked, new_set); | 
 | 			break; | 
 | 		case SIG_SETMASK: | 
 | 			new_blocked.sig[0] = new_set; | 
 | 			break; | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		set_current_blocked(&new_blocked); | 
 | 	} | 
 |  | 
 | 	if (oset) { | 
 | 		if (copy_to_user(oset, &old_set, sizeof(*oset))) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 | #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_RT_SIGACTION | 
 | /** | 
 |  *  sys_rt_sigaction - alter an action taken by a process | 
 |  *  @sig: signal to be sent | 
 |  *  @act: new sigaction | 
 |  *  @oact: used to save the previous sigaction | 
 |  *  @sigsetsize: size of sigset_t type | 
 |  */ | 
 | SYSCALL_DEFINE4(rt_sigaction, int, sig, | 
 | 		const struct sigaction __user *, act, | 
 | 		struct sigaction __user *, oact, | 
 | 		size_t, sigsetsize) | 
 | { | 
 | 	struct k_sigaction new_sa, old_sa; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	/* XXX: Don't preclude handling different sized sigset_t's.  */ | 
 | 	if (sigsetsize != sizeof(sigset_t)) | 
 | 		goto out; | 
 |  | 
 | 	if (act) { | 
 | 		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) | 
 | 			return -EFAULT; | 
 | 	} | 
 |  | 
 | 	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); | 
 |  | 
 | 	if (!ret && oact) { | 
 | 		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) | 
 | 			return -EFAULT; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 | #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_SGETMASK | 
 |  | 
 | /* | 
 |  * For backwards compatibility.  Functionality superseded by sigprocmask. | 
 |  */ | 
 | SYSCALL_DEFINE0(sgetmask) | 
 | { | 
 | 	/* SMP safe */ | 
 | 	return current->blocked.sig[0]; | 
 | } | 
 |  | 
 | SYSCALL_DEFINE1(ssetmask, int, newmask) | 
 | { | 
 | 	int old; | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	old = current->blocked.sig[0]; | 
 |  | 
 | 	siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| | 
 | 						  sigmask(SIGSTOP))); | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	return old; | 
 | } | 
 | #endif /* __ARCH_WANT_SGETMASK */ | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_SIGNAL | 
 | /* | 
 |  * For backwards compatibility.  Functionality superseded by sigaction. | 
 |  */ | 
 | SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) | 
 | { | 
 | 	struct k_sigaction new_sa, old_sa; | 
 | 	int ret; | 
 |  | 
 | 	new_sa.sa.sa_handler = handler; | 
 | 	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; | 
 | 	sigemptyset(&new_sa.sa.sa_mask); | 
 |  | 
 | 	ret = do_sigaction(sig, &new_sa, &old_sa); | 
 |  | 
 | 	return ret ? ret : (unsigned long)old_sa.sa.sa_handler; | 
 | } | 
 | #endif /* __ARCH_WANT_SYS_SIGNAL */ | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_PAUSE | 
 |  | 
 | SYSCALL_DEFINE0(pause) | 
 | { | 
 | 	while (!signal_pending(current)) { | 
 | 		current->state = TASK_INTERRUPTIBLE; | 
 | 		schedule(); | 
 | 	} | 
 | 	return -ERESTARTNOHAND; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND | 
 | /** | 
 |  *  sys_rt_sigsuspend - replace the signal mask for a value with the | 
 |  *	@unewset value until a signal is received | 
 |  *  @unewset: new signal mask value | 
 |  *  @sigsetsize: size of sigset_t type | 
 |  */ | 
 | SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) | 
 | { | 
 | 	sigset_t newset; | 
 |  | 
 | 	/* XXX: Don't preclude handling different sized sigset_t's.  */ | 
 | 	if (sigsetsize != sizeof(sigset_t)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (copy_from_user(&newset, unewset, sizeof(newset))) | 
 | 		return -EFAULT; | 
 | 	sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); | 
 |  | 
 | 	spin_lock_irq(¤t->sighand->siglock); | 
 | 	current->saved_sigmask = current->blocked; | 
 | 	current->blocked = newset; | 
 | 	recalc_sigpending(); | 
 | 	spin_unlock_irq(¤t->sighand->siglock); | 
 |  | 
 | 	current->state = TASK_INTERRUPTIBLE; | 
 | 	schedule(); | 
 | 	set_restore_sigmask(); | 
 | 	return -ERESTARTNOHAND; | 
 | } | 
 | #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ | 
 |  | 
 | __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) | 
 | { | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void __init signals_init(void) | 
 | { | 
 | 	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KGDB_KDB | 
 | #include <linux/kdb.h> | 
 | /* | 
 |  * kdb_send_sig_info - Allows kdb to send signals without exposing | 
 |  * signal internals.  This function checks if the required locks are | 
 |  * available before calling the main signal code, to avoid kdb | 
 |  * deadlocks. | 
 |  */ | 
 | void | 
 | kdb_send_sig_info(struct task_struct *t, struct siginfo *info) | 
 | { | 
 | 	static struct task_struct *kdb_prev_t; | 
 | 	int sig, new_t; | 
 | 	if (!spin_trylock(&t->sighand->siglock)) { | 
 | 		kdb_printf("Can't do kill command now.\n" | 
 | 			   "The sigmask lock is held somewhere else in " | 
 | 			   "kernel, try again later\n"); | 
 | 		return; | 
 | 	} | 
 | 	spin_unlock(&t->sighand->siglock); | 
 | 	new_t = kdb_prev_t != t; | 
 | 	kdb_prev_t = t; | 
 | 	if (t->state != TASK_RUNNING && new_t) { | 
 | 		kdb_printf("Process is not RUNNING, sending a signal from " | 
 | 			   "kdb risks deadlock\n" | 
 | 			   "on the run queue locks. " | 
 | 			   "The signal has _not_ been sent.\n" | 
 | 			   "Reissue the kill command if you want to risk " | 
 | 			   "the deadlock.\n"); | 
 | 		return; | 
 | 	} | 
 | 	sig = info->si_signo; | 
 | 	if (send_sig_info(sig, info, t)) | 
 | 		kdb_printf("Fail to deliver Signal %d to process %d.\n", | 
 | 			   sig, t->pid); | 
 | 	else | 
 | 		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid); | 
 | } | 
 | #endif	/* CONFIG_KGDB_KDB */ |