|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 1998-2003 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com> | 
|  | * Copyright (C) 1999 VA Linux Systems | 
|  | * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> | 
|  | * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved. | 
|  | * | 
|  | * Routines used by ia64 machines with contiguous (or virtually contiguous) | 
|  | * memory. | 
|  | */ | 
|  | #include <linux/config.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  |  | 
|  | #include <asm/meminit.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/mca.h> | 
|  |  | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | static unsigned long num_dma_physpages; | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * show_mem - display a memory statistics summary | 
|  | * | 
|  | * Just walks the pages in the system and describes where they're allocated. | 
|  | */ | 
|  | void | 
|  | show_mem (void) | 
|  | { | 
|  | int i, total = 0, reserved = 0; | 
|  | int shared = 0, cached = 0; | 
|  |  | 
|  | printk("Mem-info:\n"); | 
|  | show_free_areas(); | 
|  |  | 
|  | printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | 
|  | i = max_mapnr; | 
|  | while (i-- > 0) { | 
|  | if (!pfn_valid(i)) | 
|  | continue; | 
|  | total++; | 
|  | if (PageReserved(mem_map+i)) | 
|  | reserved++; | 
|  | else if (PageSwapCache(mem_map+i)) | 
|  | cached++; | 
|  | else if (page_count(mem_map + i)) | 
|  | shared += page_count(mem_map + i) - 1; | 
|  | } | 
|  | printk("%d pages of RAM\n", total); | 
|  | printk("%d reserved pages\n", reserved); | 
|  | printk("%d pages shared\n", shared); | 
|  | printk("%d pages swap cached\n", cached); | 
|  | printk("%ld pages in page table cache\n", | 
|  | pgtable_quicklist_total_size()); | 
|  | } | 
|  |  | 
|  | /* physical address where the bootmem map is located */ | 
|  | unsigned long bootmap_start; | 
|  |  | 
|  | /** | 
|  | * find_max_pfn - adjust the maximum page number callback | 
|  | * @start: start of range | 
|  | * @end: end of range | 
|  | * @arg: address of pointer to global max_pfn variable | 
|  | * | 
|  | * Passed as a callback function to efi_memmap_walk() to determine the highest | 
|  | * available page frame number in the system. | 
|  | */ | 
|  | int | 
|  | find_max_pfn (unsigned long start, unsigned long end, void *arg) | 
|  | { | 
|  | unsigned long *max_pfnp = arg, pfn; | 
|  |  | 
|  | pfn = (PAGE_ALIGN(end - 1) - PAGE_OFFSET) >> PAGE_SHIFT; | 
|  | if (pfn > *max_pfnp) | 
|  | *max_pfnp = pfn; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_bootmap_location - callback to find a memory area for the bootmap | 
|  | * @start: start of region | 
|  | * @end: end of region | 
|  | * @arg: unused callback data | 
|  | * | 
|  | * Find a place to put the bootmap and return its starting address in | 
|  | * bootmap_start.  This address must be page-aligned. | 
|  | */ | 
|  | int | 
|  | find_bootmap_location (unsigned long start, unsigned long end, void *arg) | 
|  | { | 
|  | unsigned long needed = *(unsigned long *)arg; | 
|  | unsigned long range_start, range_end, free_start; | 
|  | int i; | 
|  |  | 
|  | #if IGNORE_PFN0 | 
|  | if (start == PAGE_OFFSET) { | 
|  | start += PAGE_SIZE; | 
|  | if (start >= end) | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | free_start = PAGE_OFFSET; | 
|  |  | 
|  | for (i = 0; i < num_rsvd_regions; i++) { | 
|  | range_start = max(start, free_start); | 
|  | range_end   = min(end, rsvd_region[i].start & PAGE_MASK); | 
|  |  | 
|  | free_start = PAGE_ALIGN(rsvd_region[i].end); | 
|  |  | 
|  | if (range_end <= range_start) | 
|  | continue; /* skip over empty range */ | 
|  |  | 
|  | if (range_end - range_start >= needed) { | 
|  | bootmap_start = __pa(range_start); | 
|  | return -1;	/* done */ | 
|  | } | 
|  |  | 
|  | /* nothing more available in this segment */ | 
|  | if (range_end == end) | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_memory - setup memory map | 
|  | * | 
|  | * Walk the EFI memory map and find usable memory for the system, taking | 
|  | * into account reserved areas. | 
|  | */ | 
|  | void | 
|  | find_memory (void) | 
|  | { | 
|  | unsigned long bootmap_size; | 
|  |  | 
|  | reserve_memory(); | 
|  |  | 
|  | /* first find highest page frame number */ | 
|  | max_pfn = 0; | 
|  | efi_memmap_walk(find_max_pfn, &max_pfn); | 
|  |  | 
|  | /* how many bytes to cover all the pages */ | 
|  | bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT; | 
|  |  | 
|  | /* look for a location to hold the bootmap */ | 
|  | bootmap_start = ~0UL; | 
|  | efi_memmap_walk(find_bootmap_location, &bootmap_size); | 
|  | if (bootmap_start == ~0UL) | 
|  | panic("Cannot find %ld bytes for bootmap\n", bootmap_size); | 
|  |  | 
|  | bootmap_size = init_bootmem(bootmap_start >> PAGE_SHIFT, max_pfn); | 
|  |  | 
|  | /* Free all available memory, then mark bootmem-map as being in use. */ | 
|  | efi_memmap_walk(filter_rsvd_memory, free_bootmem); | 
|  | reserve_bootmem(bootmap_start, bootmap_size); | 
|  |  | 
|  | find_initrd(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /** | 
|  | * per_cpu_init - setup per-cpu variables | 
|  | * | 
|  | * Allocate and setup per-cpu data areas. | 
|  | */ | 
|  | void * | 
|  | per_cpu_init (void) | 
|  | { | 
|  | void *cpu_data; | 
|  | int cpu; | 
|  |  | 
|  | /* | 
|  | * get_free_pages() cannot be used before cpu_init() done.  BSP | 
|  | * allocates "NR_CPUS" pages for all CPUs to avoid that AP calls | 
|  | * get_zeroed_page(). | 
|  | */ | 
|  | if (smp_processor_id() == 0) { | 
|  | cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * NR_CPUS, | 
|  | PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | memcpy(cpu_data, __phys_per_cpu_start, __per_cpu_end - __per_cpu_start); | 
|  | __per_cpu_offset[cpu] = (char *) cpu_data - __per_cpu_start; | 
|  | cpu_data += PERCPU_PAGE_SIZE; | 
|  | per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; | 
|  | } | 
|  | } | 
|  | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static int | 
|  | count_pages (u64 start, u64 end, void *arg) | 
|  | { | 
|  | unsigned long *count = arg; | 
|  |  | 
|  | *count += (end - start) >> PAGE_SHIFT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | static int | 
|  | count_dma_pages (u64 start, u64 end, void *arg) | 
|  | { | 
|  | unsigned long *count = arg; | 
|  |  | 
|  | if (start < MAX_DMA_ADDRESS) | 
|  | *count += (min(end, MAX_DMA_ADDRESS) - start) >> PAGE_SHIFT; | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set up the page tables. | 
|  | */ | 
|  |  | 
|  | void | 
|  | paging_init (void) | 
|  | { | 
|  | unsigned long max_dma; | 
|  | unsigned long zones_size[MAX_NR_ZONES]; | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | unsigned long zholes_size[MAX_NR_ZONES]; | 
|  | unsigned long max_gap; | 
|  | #endif | 
|  |  | 
|  | /* initialize mem_map[] */ | 
|  |  | 
|  | memset(zones_size, 0, sizeof(zones_size)); | 
|  |  | 
|  | num_physpages = 0; | 
|  | efi_memmap_walk(count_pages, &num_physpages); | 
|  |  | 
|  | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
|  |  | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | memset(zholes_size, 0, sizeof(zholes_size)); | 
|  |  | 
|  | num_dma_physpages = 0; | 
|  | efi_memmap_walk(count_dma_pages, &num_dma_physpages); | 
|  |  | 
|  | if (max_low_pfn < max_dma) { | 
|  | zones_size[ZONE_DMA] = max_low_pfn; | 
|  | zholes_size[ZONE_DMA] = max_low_pfn - num_dma_physpages; | 
|  | } else { | 
|  | zones_size[ZONE_DMA] = max_dma; | 
|  | zholes_size[ZONE_DMA] = max_dma - num_dma_physpages; | 
|  | if (num_physpages > num_dma_physpages) { | 
|  | zones_size[ZONE_NORMAL] = max_low_pfn - max_dma; | 
|  | zholes_size[ZONE_NORMAL] = | 
|  | ((max_low_pfn - max_dma) - | 
|  | (num_physpages - num_dma_physpages)); | 
|  | } | 
|  | } | 
|  |  | 
|  | max_gap = 0; | 
|  | efi_memmap_walk(find_largest_hole, (u64 *)&max_gap); | 
|  | if (max_gap < LARGE_GAP) { | 
|  | vmem_map = (struct page *) 0; | 
|  | free_area_init_node(0, &contig_page_data, zones_size, 0, | 
|  | zholes_size); | 
|  | } else { | 
|  | unsigned long map_size; | 
|  |  | 
|  | /* allocate virtual_mem_map */ | 
|  |  | 
|  | map_size = PAGE_ALIGN(max_low_pfn * sizeof(struct page)); | 
|  | vmalloc_end -= map_size; | 
|  | vmem_map = (struct page *) vmalloc_end; | 
|  | efi_memmap_walk(create_mem_map_page_table, NULL); | 
|  |  | 
|  | NODE_DATA(0)->node_mem_map = vmem_map; | 
|  | free_area_init_node(0, &contig_page_data, zones_size, | 
|  | 0, zholes_size); | 
|  |  | 
|  | printk("Virtual mem_map starts at 0x%p\n", mem_map); | 
|  | } | 
|  | #else /* !CONFIG_VIRTUAL_MEM_MAP */ | 
|  | if (max_low_pfn < max_dma) | 
|  | zones_size[ZONE_DMA] = max_low_pfn; | 
|  | else { | 
|  | zones_size[ZONE_DMA] = max_dma; | 
|  | zones_size[ZONE_NORMAL] = max_low_pfn - max_dma; | 
|  | } | 
|  | free_area_init(zones_size); | 
|  | #endif /* !CONFIG_VIRTUAL_MEM_MAP */ | 
|  | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); | 
|  | } |