|  | /* | 
|  | * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved. | 
|  | * Copyright (c) 2001 Intel Corp. | 
|  | * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> | 
|  | * Copyright (c) 2002 NEC Corp. | 
|  | * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> | 
|  | * Copyright (c) 2004 Silicon Graphics, Inc | 
|  | *	Russ Anderson <rja@sgi.com> | 
|  | *	Jesse Barnes <jbarnes@sgi.com> | 
|  | *	Jack Steiner <steiner@sgi.com> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Platform initialization for Discontig Memory | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/meminit.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | /* | 
|  | * Track per-node information needed to setup the boot memory allocator, the | 
|  | * per-node areas, and the real VM. | 
|  | */ | 
|  | struct early_node_data { | 
|  | struct ia64_node_data *node_data; | 
|  | pg_data_t *pgdat; | 
|  | unsigned long pernode_addr; | 
|  | unsigned long pernode_size; | 
|  | struct bootmem_data bootmem_data; | 
|  | unsigned long num_physpages; | 
|  | unsigned long num_dma_physpages; | 
|  | unsigned long min_pfn; | 
|  | unsigned long max_pfn; | 
|  | }; | 
|  |  | 
|  | static struct early_node_data mem_data[MAX_NUMNODES] __initdata; | 
|  |  | 
|  | /** | 
|  | * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node | 
|  | * | 
|  | * This function will move nodes with only CPUs (no memory) | 
|  | * to a node with memory which is at the minimum numa_slit distance. | 
|  | * Any reassigments will result in the compression of the nodes | 
|  | * and renumbering the nid values where appropriate. | 
|  | * The static declarations below are to avoid large stack size which | 
|  | * makes the code not re-entrant. | 
|  | */ | 
|  | static void __init reassign_cpu_only_nodes(void) | 
|  | { | 
|  | struct node_memblk_s *p; | 
|  | int i, j, k, nnode, nid, cpu, cpunid, pxm; | 
|  | u8 cslit, slit; | 
|  | static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata; | 
|  | static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata; | 
|  | static int node_flip[MAX_NUMNODES] __initdata; | 
|  | static int old_nid_map[NR_CPUS] __initdata; | 
|  |  | 
|  | for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) | 
|  | if (!test_bit(p->nid, (void *) nodes_with_mem)) { | 
|  | set_bit(p->nid, (void *) nodes_with_mem); | 
|  | nnode++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All nids with memory. | 
|  | */ | 
|  | if (nnode == num_online_nodes()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Change nids and attempt to migrate CPU-only nodes | 
|  | * to the best numa_slit (closest neighbor) possible. | 
|  | * For reassigned CPU nodes a nid can't be arrived at | 
|  | * until after this loop because the target nid's new | 
|  | * identity might not have been established yet. So | 
|  | * new nid values are fabricated above num_online_nodes() and | 
|  | * mapped back later to their true value. | 
|  | */ | 
|  | /* MCD - This code is a bit complicated, but may be unnecessary now. | 
|  | * We can now handle much more interesting node-numbering. | 
|  | * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES | 
|  | * and that there be no holes in the numbering 0..numnodes | 
|  | * has become simply 0 <= nid <= MAX_NUMNODES. | 
|  | */ | 
|  | nid = 0; | 
|  | for_each_online_node(i)  { | 
|  | if (test_bit(i, (void *) nodes_with_mem)) { | 
|  | /* | 
|  | * Save original nid value for numa_slit | 
|  | * fixup and node_cpuid reassignments. | 
|  | */ | 
|  | node_flip[nid] = i; | 
|  |  | 
|  | if (i == nid) { | 
|  | nid++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) | 
|  | if (p->nid == i) | 
|  | p->nid = nid; | 
|  |  | 
|  | cpunid = nid; | 
|  | nid++; | 
|  | } else | 
|  | cpunid = MAX_NUMNODES; | 
|  |  | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | if (node_cpuid[cpu].nid == i) { | 
|  | /* | 
|  | * For nodes not being reassigned just | 
|  | * fix the cpu's nid and reverse pxm map | 
|  | */ | 
|  | if (cpunid < MAX_NUMNODES) { | 
|  | pxm = nid_to_pxm_map[i]; | 
|  | pxm_to_nid_map[pxm] = | 
|  | node_cpuid[cpu].nid = cpunid; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For nodes being reassigned, find best node by | 
|  | * numa_slit information and then make a temporary | 
|  | * nid value based on current nid and num_online_nodes(). | 
|  | */ | 
|  | slit = 0xff; | 
|  | k = 2*num_online_nodes(); | 
|  | for_each_online_node(j) { | 
|  | if (i == j) | 
|  | continue; | 
|  | else if (test_bit(j, (void *) nodes_with_mem)) { | 
|  | cslit = numa_slit[i * num_online_nodes() + j]; | 
|  | if (cslit < slit) { | 
|  | k = num_online_nodes() + j; | 
|  | slit = cslit; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* save old nid map so we can update the pxm */ | 
|  | old_nid_map[cpu] = node_cpuid[cpu].nid; | 
|  | node_cpuid[cpu].nid = k; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fixup temporary nid values for CPU-only nodes. | 
|  | */ | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | if (node_cpuid[cpu].nid == (2*num_online_nodes())) { | 
|  | pxm = nid_to_pxm_map[old_nid_map[cpu]]; | 
|  | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1; | 
|  | } else { | 
|  | for (i = 0; i < nnode; i++) { | 
|  | if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes())) | 
|  | continue; | 
|  |  | 
|  | pxm = nid_to_pxm_map[old_nid_map[cpu]]; | 
|  | pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fix numa_slit by compressing from larger | 
|  | * nid array to reduced nid array. | 
|  | */ | 
|  | for (i = 0; i < nnode; i++) | 
|  | for (j = 0; j < nnode; j++) | 
|  | numa_slit_fix[i * nnode + j] = | 
|  | numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]]; | 
|  |  | 
|  | memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit)); | 
|  |  | 
|  | nodes_clear(node_online_map); | 
|  | for (i = 0; i < nnode; i++) | 
|  | node_set_online(i); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To prevent cache aliasing effects, align per-node structures so that they | 
|  | * start at addresses that are strided by node number. | 
|  | */ | 
|  | #define NODEDATA_ALIGN(addr, node)						\ | 
|  | ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE) | 
|  |  | 
|  | /** | 
|  | * build_node_maps - callback to setup bootmem structs for each node | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @node: node where this range resides | 
|  | * | 
|  | * We allocate a struct bootmem_data for each piece of memory that we wish to | 
|  | * treat as a virtually contiguous block (i.e. each node). Each such block | 
|  | * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down | 
|  | * if necessary.  Any non-existent pages will simply be part of the virtual | 
|  | * memmap.  We also update min_low_pfn and max_low_pfn here as we receive | 
|  | * memory ranges from the caller. | 
|  | */ | 
|  | static int __init build_node_maps(unsigned long start, unsigned long len, | 
|  | int node) | 
|  | { | 
|  | unsigned long cstart, epfn, end = start + len; | 
|  | struct bootmem_data *bdp = &mem_data[node].bootmem_data; | 
|  |  | 
|  | epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; | 
|  | cstart = GRANULEROUNDDOWN(start); | 
|  |  | 
|  | if (!bdp->node_low_pfn) { | 
|  | bdp->node_boot_start = cstart; | 
|  | bdp->node_low_pfn = epfn; | 
|  | } else { | 
|  | bdp->node_boot_start = min(cstart, bdp->node_boot_start); | 
|  | bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); | 
|  | } | 
|  |  | 
|  | min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT); | 
|  | max_low_pfn = max(max_low_pfn, bdp->node_low_pfn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * early_nr_phys_cpus_node - return number of physical cpus on a given node | 
|  | * @node: node to check | 
|  | * | 
|  | * Count the number of physical cpus on @node.  These are cpus that actually | 
|  | * exist.  We can't use nr_cpus_node() yet because | 
|  | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | 
|  | * called yet. | 
|  | */ | 
|  | static int early_nr_phys_cpus_node(int node) | 
|  | { | 
|  | int cpu, n = 0; | 
|  |  | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | if (node == node_cpuid[cpu].nid) | 
|  | if ((cpu == 0) || node_cpuid[cpu].phys_id) | 
|  | n++; | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * early_nr_cpus_node - return number of cpus on a given node | 
|  | * @node: node to check | 
|  | * | 
|  | * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because | 
|  | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | 
|  | * called yet.  Note that node 0 will also count all non-existent cpus. | 
|  | */ | 
|  | static int early_nr_cpus_node(int node) | 
|  | { | 
|  | int cpu, n = 0; | 
|  |  | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) | 
|  | if (node == node_cpuid[cpu].nid) | 
|  | n++; | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_pernode_space - allocate memory for memory map and per-node structures | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @node: node where this range resides | 
|  | * | 
|  | * This routine reserves space for the per-cpu data struct, the list of | 
|  | * pg_data_ts and the per-node data struct.  Each node will have something like | 
|  | * the following in the first chunk of addr. space large enough to hold it. | 
|  | * | 
|  | *    ________________________ | 
|  | *   |                        | | 
|  | *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first | 
|  | *   |    PERCPU_PAGE_SIZE *  |     start and length big enough | 
|  | *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus. | 
|  | *   |------------------------| | 
|  | *   |   local pg_data_t *    | | 
|  | *   |------------------------| | 
|  | *   |  local ia64_node_data  | | 
|  | *   |------------------------| | 
|  | *   |          ???           | | 
|  | *   |________________________| | 
|  | * | 
|  | * Once this space has been set aside, the bootmem maps are initialized.  We | 
|  | * could probably move the allocation of the per-cpu and ia64_node_data space | 
|  | * outside of this function and use alloc_bootmem_node(), but doing it here | 
|  | * is straightforward and we get the alignments we want so... | 
|  | */ | 
|  | static int __init find_pernode_space(unsigned long start, unsigned long len, | 
|  | int node) | 
|  | { | 
|  | unsigned long epfn, cpu, cpus, phys_cpus; | 
|  | unsigned long pernodesize = 0, pernode, pages, mapsize; | 
|  | void *cpu_data; | 
|  | struct bootmem_data *bdp = &mem_data[node].bootmem_data; | 
|  |  | 
|  | epfn = (start + len) >> PAGE_SHIFT; | 
|  |  | 
|  | pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); | 
|  | mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Make sure this memory falls within this node's usable memory | 
|  | * since we may have thrown some away in build_maps(). | 
|  | */ | 
|  | if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) | 
|  | return 0; | 
|  |  | 
|  | /* Don't setup this node's local space twice... */ | 
|  | if (mem_data[node].pernode_addr) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Calculate total size needed, incl. what's necessary | 
|  | * for good alignment and alias prevention. | 
|  | */ | 
|  | cpus = early_nr_cpus_node(node); | 
|  | phys_cpus = early_nr_phys_cpus_node(node); | 
|  | pernodesize += PERCPU_PAGE_SIZE * cpus; | 
|  | pernodesize += node * L1_CACHE_BYTES; | 
|  | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  | pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | 
|  | pernodesize = PAGE_ALIGN(pernodesize); | 
|  | pernode = NODEDATA_ALIGN(start, node); | 
|  |  | 
|  | /* Is this range big enough for what we want to store here? */ | 
|  | if (start + len > (pernode + pernodesize + mapsize)) { | 
|  | mem_data[node].pernode_addr = pernode; | 
|  | mem_data[node].pernode_size = pernodesize; | 
|  | memset(__va(pernode), 0, pernodesize); | 
|  |  | 
|  | cpu_data = (void *)pernode; | 
|  | pernode += PERCPU_PAGE_SIZE * cpus; | 
|  | pernode += node * L1_CACHE_BYTES; | 
|  |  | 
|  | mem_data[node].pgdat = __va(pernode); | 
|  | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  |  | 
|  | mem_data[node].node_data = __va(pernode); | 
|  | pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | 
|  |  | 
|  | mem_data[node].pgdat->bdata = bdp; | 
|  | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  |  | 
|  | /* | 
|  | * Copy the static per-cpu data into the region we | 
|  | * just set aside and then setup __per_cpu_offset | 
|  | * for each CPU on this node. | 
|  | */ | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | if (node == node_cpuid[cpu].nid) { | 
|  | memcpy(__va(cpu_data), __phys_per_cpu_start, | 
|  | __per_cpu_end - __per_cpu_start); | 
|  | __per_cpu_offset[cpu] = (char*)__va(cpu_data) - | 
|  | __per_cpu_start; | 
|  | cpu_data += PERCPU_PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_node_bootmem - free bootmem allocator memory for use | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @node: node where this range resides | 
|  | * | 
|  | * Simply calls the bootmem allocator to free the specified ranged from | 
|  | * the given pg_data_t's bdata struct.  After this function has been called | 
|  | * for all the entries in the EFI memory map, the bootmem allocator will | 
|  | * be ready to service allocation requests. | 
|  | */ | 
|  | static int __init free_node_bootmem(unsigned long start, unsigned long len, | 
|  | int node) | 
|  | { | 
|  | free_bootmem_node(mem_data[node].pgdat, start, len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * reserve_pernode_space - reserve memory for per-node space | 
|  | * | 
|  | * Reserve the space used by the bootmem maps & per-node space in the boot | 
|  | * allocator so that when we actually create the real mem maps we don't | 
|  | * use their memory. | 
|  | */ | 
|  | static void __init reserve_pernode_space(void) | 
|  | { | 
|  | unsigned long base, size, pages; | 
|  | struct bootmem_data *bdp; | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | pg_data_t *pdp = mem_data[node].pgdat; | 
|  |  | 
|  | bdp = pdp->bdata; | 
|  |  | 
|  | /* First the bootmem_map itself */ | 
|  | pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); | 
|  | size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | 
|  | base = __pa(bdp->node_bootmem_map); | 
|  | reserve_bootmem_node(pdp, base, size); | 
|  |  | 
|  | /* Now the per-node space */ | 
|  | size = mem_data[node].pernode_size; | 
|  | base = __pa(mem_data[node].pernode_addr); | 
|  | reserve_bootmem_node(pdp, base, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * initialize_pernode_data - fixup per-cpu & per-node pointers | 
|  | * | 
|  | * Each node's per-node area has a copy of the global pg_data_t list, so | 
|  | * we copy that to each node here, as well as setting the per-cpu pointer | 
|  | * to the local node data structure.  The active_cpus field of the per-node | 
|  | * structure gets setup by the platform_cpu_init() function later. | 
|  | */ | 
|  | static void __init initialize_pernode_data(void) | 
|  | { | 
|  | int cpu, node; | 
|  | pg_data_t *pgdat_list[MAX_NUMNODES]; | 
|  |  | 
|  | for_each_online_node(node) | 
|  | pgdat_list[node] = mem_data[node].pgdat; | 
|  |  | 
|  | /* Copy the pg_data_t list to each node and init the node field */ | 
|  | for_each_online_node(node) { | 
|  | memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, | 
|  | sizeof(pgdat_list)); | 
|  | } | 
|  |  | 
|  | /* Set the node_data pointer for each per-cpu struct */ | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | node = node_cpuid[cpu].nid; | 
|  | per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_memory - walk the EFI memory map and setup the bootmem allocator | 
|  | * | 
|  | * Called early in boot to setup the bootmem allocator, and to | 
|  | * allocate the per-cpu and per-node structures. | 
|  | */ | 
|  | void __init find_memory(void) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | reserve_memory(); | 
|  |  | 
|  | if (num_online_nodes() == 0) { | 
|  | printk(KERN_ERR "node info missing!\n"); | 
|  | node_set_online(0); | 
|  | } | 
|  |  | 
|  | min_low_pfn = -1; | 
|  | max_low_pfn = 0; | 
|  |  | 
|  | if (num_online_nodes() > 1) | 
|  | reassign_cpu_only_nodes(); | 
|  |  | 
|  | /* These actually end up getting called by call_pernode_memory() */ | 
|  | efi_memmap_walk(filter_rsvd_memory, build_node_maps); | 
|  | efi_memmap_walk(filter_rsvd_memory, find_pernode_space); | 
|  |  | 
|  | /* | 
|  | * Initialize the boot memory maps in reverse order since that's | 
|  | * what the bootmem allocator expects | 
|  | */ | 
|  | for (node = MAX_NUMNODES - 1; node >= 0; node--) { | 
|  | unsigned long pernode, pernodesize, map; | 
|  | struct bootmem_data *bdp; | 
|  |  | 
|  | if (!node_online(node)) | 
|  | continue; | 
|  |  | 
|  | bdp = &mem_data[node].bootmem_data; | 
|  | pernode = mem_data[node].pernode_addr; | 
|  | pernodesize = mem_data[node].pernode_size; | 
|  | map = pernode + pernodesize; | 
|  |  | 
|  | /* Sanity check... */ | 
|  | if (!pernode) | 
|  | panic("pernode space for node %d " | 
|  | "could not be allocated!", node); | 
|  |  | 
|  | init_bootmem_node(mem_data[node].pgdat, | 
|  | map>>PAGE_SHIFT, | 
|  | bdp->node_boot_start>>PAGE_SHIFT, | 
|  | bdp->node_low_pfn); | 
|  | } | 
|  |  | 
|  | efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); | 
|  |  | 
|  | reserve_pernode_space(); | 
|  | initialize_pernode_data(); | 
|  |  | 
|  | max_pfn = max_low_pfn; | 
|  |  | 
|  | find_initrd(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * per_cpu_init - setup per-cpu variables | 
|  | * | 
|  | * find_pernode_space() does most of this already, we just need to set | 
|  | * local_per_cpu_offset | 
|  | */ | 
|  | void *per_cpu_init(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (smp_processor_id() == 0) { | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | per_cpu(local_per_cpu_offset, cpu) = | 
|  | __per_cpu_offset[cpu]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * show_mem - give short summary of memory stats | 
|  | * | 
|  | * Shows a simple page count of reserved and used pages in the system. | 
|  | * For discontig machines, it does this on a per-pgdat basis. | 
|  | */ | 
|  | void show_mem(void) | 
|  | { | 
|  | int i, total_reserved = 0; | 
|  | int total_shared = 0, total_cached = 0; | 
|  | unsigned long total_present = 0; | 
|  | pg_data_t *pgdat; | 
|  |  | 
|  | printk("Mem-info:\n"); | 
|  | show_free_areas(); | 
|  | printk("Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); | 
|  | for_each_pgdat(pgdat) { | 
|  | unsigned long present = pgdat->node_present_pages; | 
|  | int shared = 0, cached = 0, reserved = 0; | 
|  | printk("Node ID: %d\n", pgdat->node_id); | 
|  | for(i = 0; i < pgdat->node_spanned_pages; i++) { | 
|  | if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) | 
|  | continue; | 
|  | if (PageReserved(pgdat->node_mem_map+i)) | 
|  | reserved++; | 
|  | else if (PageSwapCache(pgdat->node_mem_map+i)) | 
|  | cached++; | 
|  | else if (page_count(pgdat->node_mem_map+i)) | 
|  | shared += page_count(pgdat->node_mem_map+i)-1; | 
|  | } | 
|  | total_present += present; | 
|  | total_reserved += reserved; | 
|  | total_cached += cached; | 
|  | total_shared += shared; | 
|  | printk("\t%ld pages of RAM\n", present); | 
|  | printk("\t%d reserved pages\n", reserved); | 
|  | printk("\t%d pages shared\n", shared); | 
|  | printk("\t%d pages swap cached\n", cached); | 
|  | } | 
|  | printk("%ld pages of RAM\n", total_present); | 
|  | printk("%d reserved pages\n", total_reserved); | 
|  | printk("%d pages shared\n", total_shared); | 
|  | printk("%d pages swap cached\n", total_cached); | 
|  | printk("Total of %ld pages in page table cache\n", | 
|  | pgtable_quicklist_total_size()); | 
|  | printk("%d free buffer pages\n", nr_free_buffer_pages()); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * call_pernode_memory - use SRAT to call callback functions with node info | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @arg: function to call for each range | 
|  | * | 
|  | * efi_memmap_walk() knows nothing about layout of memory across nodes. Find | 
|  | * out to which node a block of memory belongs.  Ignore memory that we cannot | 
|  | * identify, and split blocks that run across multiple nodes. | 
|  | * | 
|  | * Take this opportunity to round the start address up and the end address | 
|  | * down to page boundaries. | 
|  | */ | 
|  | void call_pernode_memory(unsigned long start, unsigned long len, void *arg) | 
|  | { | 
|  | unsigned long rs, re, end = start + len; | 
|  | void (*func)(unsigned long, unsigned long, int); | 
|  | int i; | 
|  |  | 
|  | start = PAGE_ALIGN(start); | 
|  | end &= PAGE_MASK; | 
|  | if (start >= end) | 
|  | return; | 
|  |  | 
|  | func = arg; | 
|  |  | 
|  | if (!num_node_memblks) { | 
|  | /* No SRAT table, so assume one node (node 0) */ | 
|  | if (start < end) | 
|  | (*func)(start, end - start, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_node_memblks; i++) { | 
|  | rs = max(start, node_memblk[i].start_paddr); | 
|  | re = min(end, node_memblk[i].start_paddr + | 
|  | node_memblk[i].size); | 
|  |  | 
|  | if (rs < re) | 
|  | (*func)(rs, re - rs, node_memblk[i].nid); | 
|  |  | 
|  | if (re == end) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * count_node_pages - callback to build per-node memory info structures | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @node: node where this range resides | 
|  | * | 
|  | * Each node has it's own number of physical pages, DMAable pages, start, and | 
|  | * end page frame number.  This routine will be called by call_pernode_memory() | 
|  | * for each piece of usable memory and will setup these values for each node. | 
|  | * Very similar to build_maps(). | 
|  | */ | 
|  | static __init int count_node_pages(unsigned long start, unsigned long len, int node) | 
|  | { | 
|  | unsigned long end = start + len; | 
|  |  | 
|  | mem_data[node].num_physpages += len >> PAGE_SHIFT; | 
|  | if (start <= __pa(MAX_DMA_ADDRESS)) | 
|  | mem_data[node].num_dma_physpages += | 
|  | (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; | 
|  | start = GRANULEROUNDDOWN(start); | 
|  | start = ORDERROUNDDOWN(start); | 
|  | end = GRANULEROUNDUP(end); | 
|  | mem_data[node].max_pfn = max(mem_data[node].max_pfn, | 
|  | end >> PAGE_SHIFT); | 
|  | mem_data[node].min_pfn = min(mem_data[node].min_pfn, | 
|  | start >> PAGE_SHIFT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * paging_init - setup page tables | 
|  | * | 
|  | * paging_init() sets up the page tables for each node of the system and frees | 
|  | * the bootmem allocator memory for general use. | 
|  | */ | 
|  | void __init paging_init(void) | 
|  | { | 
|  | unsigned long max_dma; | 
|  | unsigned long zones_size[MAX_NR_ZONES]; | 
|  | unsigned long zholes_size[MAX_NR_ZONES]; | 
|  | unsigned long pfn_offset = 0; | 
|  | int node; | 
|  |  | 
|  | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
|  |  | 
|  | /* so min() will work in count_node_pages */ | 
|  | for_each_online_node(node) | 
|  | mem_data[node].min_pfn = ~0UL; | 
|  |  | 
|  | efi_memmap_walk(filter_rsvd_memory, count_node_pages); | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | memset(zones_size, 0, sizeof(zones_size)); | 
|  | memset(zholes_size, 0, sizeof(zholes_size)); | 
|  |  | 
|  | num_physpages += mem_data[node].num_physpages; | 
|  |  | 
|  | if (mem_data[node].min_pfn >= max_dma) { | 
|  | /* All of this node's memory is above ZONE_DMA */ | 
|  | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - | 
|  | mem_data[node].min_pfn; | 
|  | zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - | 
|  | mem_data[node].min_pfn - | 
|  | mem_data[node].num_physpages; | 
|  | } else if (mem_data[node].max_pfn < max_dma) { | 
|  | /* All of this node's memory is in ZONE_DMA */ | 
|  | zones_size[ZONE_DMA] = mem_data[node].max_pfn - | 
|  | mem_data[node].min_pfn; | 
|  | zholes_size[ZONE_DMA] = mem_data[node].max_pfn - | 
|  | mem_data[node].min_pfn - | 
|  | mem_data[node].num_dma_physpages; | 
|  | } else { | 
|  | /* This node has memory in both zones */ | 
|  | zones_size[ZONE_DMA] = max_dma - | 
|  | mem_data[node].min_pfn; | 
|  | zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - | 
|  | mem_data[node].num_dma_physpages; | 
|  | zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - | 
|  | max_dma; | 
|  | zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - | 
|  | (mem_data[node].num_physpages - | 
|  | mem_data[node].num_dma_physpages); | 
|  | } | 
|  |  | 
|  | if (node == 0) { | 
|  | vmalloc_end -= | 
|  | PAGE_ALIGN(max_low_pfn * sizeof(struct page)); | 
|  | vmem_map = (struct page *) vmalloc_end; | 
|  |  | 
|  | efi_memmap_walk(create_mem_map_page_table, NULL); | 
|  | printk("Virtual mem_map starts at 0x%p\n", vmem_map); | 
|  | } | 
|  |  | 
|  | pfn_offset = mem_data[node].min_pfn; | 
|  |  | 
|  | NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; | 
|  | free_area_init_node(node, NODE_DATA(node), zones_size, | 
|  | pfn_offset, zholes_size); | 
|  | } | 
|  |  | 
|  | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); | 
|  | } |