|  | /* bnx2x_cmn.c: Broadcom Everest network driver. | 
|  | * | 
|  | * Copyright (c) 2007-2011 Broadcom Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * Maintained by: Eilon Greenstein <eilong@broadcom.com> | 
|  | * Written by: Eliezer Tamir | 
|  | * Based on code from Michael Chan's bnx2 driver | 
|  | * UDP CSUM errata workaround by Arik Gendelman | 
|  | * Slowpath and fastpath rework by Vladislav Zolotarov | 
|  | * Statistics and Link management by Yitchak Gertner | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/ip.h> | 
|  | #include <net/ipv6.h> | 
|  | #include <net/ip6_checksum.h> | 
|  | #include <linux/firmware.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include "bnx2x_cmn.h" | 
|  |  | 
|  | #include "bnx2x_init.h" | 
|  |  | 
|  | static int bnx2x_setup_irqs(struct bnx2x *bp); | 
|  |  | 
|  | /** | 
|  | * bnx2x_bz_fp - zero content of the fastpath structure. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @index:	fastpath index to be zeroed | 
|  | * | 
|  | * Makes sure the contents of the bp->fp[index].napi is kept | 
|  | * intact. | 
|  | */ | 
|  | static inline void bnx2x_bz_fp(struct bnx2x *bp, int index) | 
|  | { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[index]; | 
|  | struct napi_struct orig_napi = fp->napi; | 
|  | /* bzero bnx2x_fastpath contents */ | 
|  | memset(fp, 0, sizeof(*fp)); | 
|  |  | 
|  | /* Restore the NAPI object as it has been already initialized */ | 
|  | fp->napi = orig_napi; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_move_fp - move content of the fastpath structure. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @from:	source FP index | 
|  | * @to:		destination FP index | 
|  | * | 
|  | * Makes sure the contents of the bp->fp[to].napi is kept | 
|  | * intact. | 
|  | */ | 
|  | static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to) | 
|  | { | 
|  | struct bnx2x_fastpath *from_fp = &bp->fp[from]; | 
|  | struct bnx2x_fastpath *to_fp = &bp->fp[to]; | 
|  | struct napi_struct orig_napi = to_fp->napi; | 
|  | /* Move bnx2x_fastpath contents */ | 
|  | memcpy(to_fp, from_fp, sizeof(*to_fp)); | 
|  | to_fp->index = to; | 
|  |  | 
|  | /* Restore the NAPI object as it has been already initialized */ | 
|  | to_fp->napi = orig_napi; | 
|  | } | 
|  |  | 
|  | /* free skb in the packet ring at pos idx | 
|  | * return idx of last bd freed | 
|  | */ | 
|  | static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
|  | u16 idx) | 
|  | { | 
|  | struct sw_tx_bd *tx_buf = &fp->tx_buf_ring[idx]; | 
|  | struct eth_tx_start_bd *tx_start_bd; | 
|  | struct eth_tx_bd *tx_data_bd; | 
|  | struct sk_buff *skb = tx_buf->skb; | 
|  | u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; | 
|  | int nbd; | 
|  |  | 
|  | /* prefetch skb end pointer to speedup dev_kfree_skb() */ | 
|  | prefetch(&skb->end); | 
|  |  | 
|  | DP(BNX2X_MSG_OFF, "pkt_idx %d  buff @(%p)->skb %p\n", | 
|  | idx, tx_buf, skb); | 
|  |  | 
|  | /* unmap first bd */ | 
|  | DP(BNX2X_MSG_OFF, "free bd_idx %d\n", bd_idx); | 
|  | tx_start_bd = &fp->tx_desc_ring[bd_idx].start_bd; | 
|  | dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), | 
|  | BD_UNMAP_LEN(tx_start_bd), DMA_TO_DEVICE); | 
|  |  | 
|  | nbd = le16_to_cpu(tx_start_bd->nbd) - 1; | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { | 
|  | BNX2X_ERR("BAD nbd!\n"); | 
|  | bnx2x_panic(); | 
|  | } | 
|  | #endif | 
|  | new_cons = nbd + tx_buf->first_bd; | 
|  |  | 
|  | /* Get the next bd */ | 
|  | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
|  |  | 
|  | /* Skip a parse bd... */ | 
|  | --nbd; | 
|  | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
|  |  | 
|  | /* ...and the TSO split header bd since they have no mapping */ | 
|  | if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { | 
|  | --nbd; | 
|  | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
|  | } | 
|  |  | 
|  | /* now free frags */ | 
|  | while (nbd > 0) { | 
|  |  | 
|  | DP(BNX2X_MSG_OFF, "free frag bd_idx %d\n", bd_idx); | 
|  | tx_data_bd = &fp->tx_desc_ring[bd_idx].reg_bd; | 
|  | dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), | 
|  | BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); | 
|  | if (--nbd) | 
|  | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | 
|  | } | 
|  |  | 
|  | /* release skb */ | 
|  | WARN_ON(!skb); | 
|  | dev_kfree_skb_any(skb); | 
|  | tx_buf->first_bd = 0; | 
|  | tx_buf->skb = NULL; | 
|  |  | 
|  | return new_cons; | 
|  | } | 
|  |  | 
|  | int bnx2x_tx_int(struct bnx2x_fastpath *fp) | 
|  | { | 
|  | struct bnx2x *bp = fp->bp; | 
|  | struct netdev_queue *txq; | 
|  | u16 hw_cons, sw_cons, bd_cons = fp->tx_bd_cons; | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) | 
|  | return -1; | 
|  | #endif | 
|  |  | 
|  | txq = netdev_get_tx_queue(bp->dev, fp->index); | 
|  | hw_cons = le16_to_cpu(*fp->tx_cons_sb); | 
|  | sw_cons = fp->tx_pkt_cons; | 
|  |  | 
|  | while (sw_cons != hw_cons) { | 
|  | u16 pkt_cons; | 
|  |  | 
|  | pkt_cons = TX_BD(sw_cons); | 
|  |  | 
|  | DP(NETIF_MSG_TX_DONE, "queue[%d]: hw_cons %u  sw_cons %u " | 
|  | " pkt_cons %u\n", | 
|  | fp->index, hw_cons, sw_cons, pkt_cons); | 
|  |  | 
|  | bd_cons = bnx2x_free_tx_pkt(bp, fp, pkt_cons); | 
|  | sw_cons++; | 
|  | } | 
|  |  | 
|  | fp->tx_pkt_cons = sw_cons; | 
|  | fp->tx_bd_cons = bd_cons; | 
|  |  | 
|  | /* Need to make the tx_bd_cons update visible to start_xmit() | 
|  | * before checking for netif_tx_queue_stopped().  Without the | 
|  | * memory barrier, there is a small possibility that | 
|  | * start_xmit() will miss it and cause the queue to be stopped | 
|  | * forever. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (unlikely(netif_tx_queue_stopped(txq))) { | 
|  | /* Taking tx_lock() is needed to prevent reenabling the queue | 
|  | * while it's empty. This could have happen if rx_action() gets | 
|  | * suspended in bnx2x_tx_int() after the condition before | 
|  | * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): | 
|  | * | 
|  | * stops the queue->sees fresh tx_bd_cons->releases the queue-> | 
|  | * sends some packets consuming the whole queue again-> | 
|  | * stops the queue | 
|  | */ | 
|  |  | 
|  | __netif_tx_lock(txq, smp_processor_id()); | 
|  |  | 
|  | if ((netif_tx_queue_stopped(txq)) && | 
|  | (bp->state == BNX2X_STATE_OPEN) && | 
|  | (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3)) | 
|  | netif_tx_wake_queue(txq); | 
|  |  | 
|  | __netif_tx_unlock(txq); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, | 
|  | u16 idx) | 
|  | { | 
|  | u16 last_max = fp->last_max_sge; | 
|  |  | 
|  | if (SUB_S16(idx, last_max) > 0) | 
|  | fp->last_max_sge = idx; | 
|  | } | 
|  |  | 
|  | static void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, | 
|  | struct eth_fast_path_rx_cqe *fp_cqe) | 
|  | { | 
|  | struct bnx2x *bp = fp->bp; | 
|  | u16 sge_len = SGE_PAGE_ALIGN(le16_to_cpu(fp_cqe->pkt_len) - | 
|  | le16_to_cpu(fp_cqe->len_on_bd)) >> | 
|  | SGE_PAGE_SHIFT; | 
|  | u16 last_max, last_elem, first_elem; | 
|  | u16 delta = 0; | 
|  | u16 i; | 
|  |  | 
|  | if (!sge_len) | 
|  | return; | 
|  |  | 
|  | /* First mark all used pages */ | 
|  | for (i = 0; i < sge_len; i++) | 
|  | SGE_MASK_CLEAR_BIT(fp, | 
|  | RX_SGE(le16_to_cpu(fp_cqe->sgl_or_raw_data.sgl[i]))); | 
|  |  | 
|  | DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", | 
|  | sge_len - 1, le16_to_cpu(fp_cqe->sgl_or_raw_data.sgl[sge_len - 1])); | 
|  |  | 
|  | /* Here we assume that the last SGE index is the biggest */ | 
|  | prefetch((void *)(fp->sge_mask)); | 
|  | bnx2x_update_last_max_sge(fp, | 
|  | le16_to_cpu(fp_cqe->sgl_or_raw_data.sgl[sge_len - 1])); | 
|  |  | 
|  | last_max = RX_SGE(fp->last_max_sge); | 
|  | last_elem = last_max >> RX_SGE_MASK_ELEM_SHIFT; | 
|  | first_elem = RX_SGE(fp->rx_sge_prod) >> RX_SGE_MASK_ELEM_SHIFT; | 
|  |  | 
|  | /* If ring is not full */ | 
|  | if (last_elem + 1 != first_elem) | 
|  | last_elem++; | 
|  |  | 
|  | /* Now update the prod */ | 
|  | for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { | 
|  | if (likely(fp->sge_mask[i])) | 
|  | break; | 
|  |  | 
|  | fp->sge_mask[i] = RX_SGE_MASK_ELEM_ONE_MASK; | 
|  | delta += RX_SGE_MASK_ELEM_SZ; | 
|  | } | 
|  |  | 
|  | if (delta > 0) { | 
|  | fp->rx_sge_prod += delta; | 
|  | /* clear page-end entries */ | 
|  | bnx2x_clear_sge_mask_next_elems(fp); | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_RX_STATUS, | 
|  | "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n", | 
|  | fp->last_max_sge, fp->rx_sge_prod); | 
|  | } | 
|  |  | 
|  | static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, | 
|  | struct sk_buff *skb, u16 cons, u16 prod) | 
|  | { | 
|  | struct bnx2x *bp = fp->bp; | 
|  | struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; | 
|  | struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; | 
|  | struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; | 
|  | dma_addr_t mapping; | 
|  |  | 
|  | /* move empty skb from pool to prod and map it */ | 
|  | prod_rx_buf->skb = fp->tpa_pool[queue].skb; | 
|  | mapping = dma_map_single(&bp->pdev->dev, fp->tpa_pool[queue].skb->data, | 
|  | fp->rx_buf_size, DMA_FROM_DEVICE); | 
|  | dma_unmap_addr_set(prod_rx_buf, mapping, mapping); | 
|  |  | 
|  | /* move partial skb from cons to pool (don't unmap yet) */ | 
|  | fp->tpa_pool[queue] = *cons_rx_buf; | 
|  |  | 
|  | /* mark bin state as start - print error if current state != stop */ | 
|  | if (fp->tpa_state[queue] != BNX2X_TPA_STOP) | 
|  | BNX2X_ERR("start of bin not in stop [%d]\n", queue); | 
|  |  | 
|  | fp->tpa_state[queue] = BNX2X_TPA_START; | 
|  |  | 
|  | /* point prod_bd to new skb */ | 
|  | prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
|  | prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | fp->tpa_queue_used |= (1 << queue); | 
|  | #ifdef _ASM_GENERIC_INT_L64_H | 
|  | DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n", | 
|  | #else | 
|  | DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", | 
|  | #endif | 
|  | fp->tpa_queue_used); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Timestamp option length allowed for TPA aggregation: | 
|  | * | 
|  | *		nop nop kind length echo val | 
|  | */ | 
|  | #define TPA_TSTAMP_OPT_LEN	12 | 
|  | /** | 
|  | * bnx2x_set_lro_mss - calculate the approximate value of the MSS | 
|  | * | 
|  | * @bp:			driver handle | 
|  | * @parsing_flags:	parsing flags from the START CQE | 
|  | * @len_on_bd:		total length of the first packet for the | 
|  | *			aggregation. | 
|  | * | 
|  | * Approximate value of the MSS for this aggregation calculated using | 
|  | * the first packet of it. | 
|  | */ | 
|  | static inline u16 bnx2x_set_lro_mss(struct bnx2x *bp, u16 parsing_flags, | 
|  | u16 len_on_bd) | 
|  | { | 
|  | /* TPA arrgregation won't have an IP options and TCP options | 
|  | * other than timestamp. | 
|  | */ | 
|  | u16 hdrs_len = ETH_HLEN + sizeof(struct iphdr) + sizeof(struct tcphdr); | 
|  |  | 
|  |  | 
|  | /* Check if there was a TCP timestamp, if there is it's will | 
|  | * always be 12 bytes length: nop nop kind length echo val. | 
|  | * | 
|  | * Otherwise FW would close the aggregation. | 
|  | */ | 
|  | if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG) | 
|  | hdrs_len += TPA_TSTAMP_OPT_LEN; | 
|  |  | 
|  | return len_on_bd - hdrs_len; | 
|  | } | 
|  |  | 
|  | static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
|  | struct sk_buff *skb, | 
|  | struct eth_fast_path_rx_cqe *fp_cqe, | 
|  | u16 cqe_idx, u16 parsing_flags) | 
|  | { | 
|  | struct sw_rx_page *rx_pg, old_rx_pg; | 
|  | u16 len_on_bd = le16_to_cpu(fp_cqe->len_on_bd); | 
|  | u32 i, frag_len, frag_size, pages; | 
|  | int err; | 
|  | int j; | 
|  |  | 
|  | frag_size = le16_to_cpu(fp_cqe->pkt_len) - len_on_bd; | 
|  | pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; | 
|  |  | 
|  | /* This is needed in order to enable forwarding support */ | 
|  | if (frag_size) | 
|  | skb_shinfo(skb)->gso_size = bnx2x_set_lro_mss(bp, parsing_flags, | 
|  | len_on_bd); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (pages > min_t(u32, 8, MAX_SKB_FRAGS)*SGE_PAGE_SIZE*PAGES_PER_SGE) { | 
|  | BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", | 
|  | pages, cqe_idx); | 
|  | BNX2X_ERR("fp_cqe->pkt_len = %d  fp_cqe->len_on_bd = %d\n", | 
|  | fp_cqe->pkt_len, len_on_bd); | 
|  | bnx2x_panic(); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Run through the SGL and compose the fragmented skb */ | 
|  | for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { | 
|  | u16 sge_idx = | 
|  | RX_SGE(le16_to_cpu(fp_cqe->sgl_or_raw_data.sgl[j])); | 
|  |  | 
|  | /* FW gives the indices of the SGE as if the ring is an array | 
|  | (meaning that "next" element will consume 2 indices) */ | 
|  | frag_len = min(frag_size, (u32)(SGE_PAGE_SIZE*PAGES_PER_SGE)); | 
|  | rx_pg = &fp->rx_page_ring[sge_idx]; | 
|  | old_rx_pg = *rx_pg; | 
|  |  | 
|  | /* If we fail to allocate a substitute page, we simply stop | 
|  | where we are and drop the whole packet */ | 
|  | err = bnx2x_alloc_rx_sge(bp, fp, sge_idx); | 
|  | if (unlikely(err)) { | 
|  | fp->eth_q_stats.rx_skb_alloc_failed++; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Unmap the page as we r going to pass it to the stack */ | 
|  | dma_unmap_page(&bp->pdev->dev, | 
|  | dma_unmap_addr(&old_rx_pg, mapping), | 
|  | SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE); | 
|  |  | 
|  | /* Add one frag and update the appropriate fields in the skb */ | 
|  | skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); | 
|  |  | 
|  | skb->data_len += frag_len; | 
|  | skb->truesize += frag_len; | 
|  | skb->len += frag_len; | 
|  |  | 
|  | frag_size -= frag_len; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, | 
|  | u16 queue, int pad, int len, union eth_rx_cqe *cqe, | 
|  | u16 cqe_idx) | 
|  | { | 
|  | struct sw_rx_bd *rx_buf = &fp->tpa_pool[queue]; | 
|  | struct sk_buff *skb = rx_buf->skb; | 
|  | /* alloc new skb */ | 
|  | struct sk_buff *new_skb = netdev_alloc_skb(bp->dev, fp->rx_buf_size); | 
|  |  | 
|  | /* Unmap skb in the pool anyway, as we are going to change | 
|  | pool entry status to BNX2X_TPA_STOP even if new skb allocation | 
|  | fails. */ | 
|  | dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), | 
|  | fp->rx_buf_size, DMA_FROM_DEVICE); | 
|  |  | 
|  | if (likely(new_skb)) { | 
|  | /* fix ip xsum and give it to the stack */ | 
|  | /* (no need to map the new skb) */ | 
|  | u16 parsing_flags = | 
|  | le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags); | 
|  |  | 
|  | prefetch(skb); | 
|  | prefetch(((char *)(skb)) + L1_CACHE_BYTES); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (pad + len > fp->rx_buf_size) { | 
|  | BNX2X_ERR("skb_put is about to fail...  " | 
|  | "pad %d  len %d  rx_buf_size %d\n", | 
|  | pad, len, fp->rx_buf_size); | 
|  | bnx2x_panic(); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | skb_reserve(skb, pad); | 
|  | skb_put(skb, len); | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, bp->dev); | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  |  | 
|  | { | 
|  | struct iphdr *iph; | 
|  |  | 
|  | iph = (struct iphdr *)skb->data; | 
|  | iph->check = 0; | 
|  | iph->check = ip_fast_csum((u8 *)iph, iph->ihl); | 
|  | } | 
|  |  | 
|  | if (!bnx2x_fill_frag_skb(bp, fp, skb, | 
|  | &cqe->fast_path_cqe, cqe_idx, | 
|  | parsing_flags)) { | 
|  | if (parsing_flags & PARSING_FLAGS_VLAN) | 
|  | __vlan_hwaccel_put_tag(skb, | 
|  | le16_to_cpu(cqe->fast_path_cqe. | 
|  | vlan_tag)); | 
|  | napi_gro_receive(&fp->napi, skb); | 
|  | } else { | 
|  | DP(NETIF_MSG_RX_STATUS, "Failed to allocate new pages" | 
|  | " - dropping packet!\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* put new skb in bin */ | 
|  | fp->tpa_pool[queue].skb = new_skb; | 
|  |  | 
|  | } else { | 
|  | /* else drop the packet and keep the buffer in the bin */ | 
|  | DP(NETIF_MSG_RX_STATUS, | 
|  | "Failed to allocate new skb - dropping packet!\n"); | 
|  | fp->eth_q_stats.rx_skb_alloc_failed++; | 
|  | } | 
|  |  | 
|  | fp->tpa_state[queue] = BNX2X_TPA_STOP; | 
|  | } | 
|  |  | 
|  | /* Set Toeplitz hash value in the skb using the value from the | 
|  | * CQE (calculated by HW). | 
|  | */ | 
|  | static inline void bnx2x_set_skb_rxhash(struct bnx2x *bp, union eth_rx_cqe *cqe, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | /* Set Toeplitz hash from CQE */ | 
|  | if ((bp->dev->features & NETIF_F_RXHASH) && | 
|  | (cqe->fast_path_cqe.status_flags & | 
|  | ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) | 
|  | skb->rxhash = | 
|  | le32_to_cpu(cqe->fast_path_cqe.rss_hash_result); | 
|  | } | 
|  |  | 
|  | int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) | 
|  | { | 
|  | struct bnx2x *bp = fp->bp; | 
|  | u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; | 
|  | u16 hw_comp_cons, sw_comp_cons, sw_comp_prod; | 
|  | int rx_pkt = 0; | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | /* CQ "next element" is of the size of the regular element, | 
|  | that's why it's ok here */ | 
|  | hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb); | 
|  | if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT) | 
|  | hw_comp_cons++; | 
|  |  | 
|  | bd_cons = fp->rx_bd_cons; | 
|  | bd_prod = fp->rx_bd_prod; | 
|  | bd_prod_fw = bd_prod; | 
|  | sw_comp_cons = fp->rx_comp_cons; | 
|  | sw_comp_prod = fp->rx_comp_prod; | 
|  |  | 
|  | /* Memory barrier necessary as speculative reads of the rx | 
|  | * buffer can be ahead of the index in the status block | 
|  | */ | 
|  | rmb(); | 
|  |  | 
|  | DP(NETIF_MSG_RX_STATUS, | 
|  | "queue[%d]:  hw_comp_cons %u  sw_comp_cons %u\n", | 
|  | fp->index, hw_comp_cons, sw_comp_cons); | 
|  |  | 
|  | while (sw_comp_cons != hw_comp_cons) { | 
|  | struct sw_rx_bd *rx_buf = NULL; | 
|  | struct sk_buff *skb; | 
|  | union eth_rx_cqe *cqe; | 
|  | u8 cqe_fp_flags; | 
|  | u16 len, pad; | 
|  |  | 
|  | comp_ring_cons = RCQ_BD(sw_comp_cons); | 
|  | bd_prod = RX_BD(bd_prod); | 
|  | bd_cons = RX_BD(bd_cons); | 
|  |  | 
|  | /* Prefetch the page containing the BD descriptor | 
|  | at producer's index. It will be needed when new skb is | 
|  | allocated */ | 
|  | prefetch((void *)(PAGE_ALIGN((unsigned long) | 
|  | (&fp->rx_desc_ring[bd_prod])) - | 
|  | PAGE_SIZE + 1)); | 
|  |  | 
|  | cqe = &fp->rx_comp_ring[comp_ring_cons]; | 
|  | cqe_fp_flags = cqe->fast_path_cqe.type_error_flags; | 
|  |  | 
|  | DP(NETIF_MSG_RX_STATUS, "CQE type %x  err %x  status %x" | 
|  | "  queue %x  vlan %x  len %u\n", CQE_TYPE(cqe_fp_flags), | 
|  | cqe_fp_flags, cqe->fast_path_cqe.status_flags, | 
|  | le32_to_cpu(cqe->fast_path_cqe.rss_hash_result), | 
|  | le16_to_cpu(cqe->fast_path_cqe.vlan_tag), | 
|  | le16_to_cpu(cqe->fast_path_cqe.pkt_len)); | 
|  |  | 
|  | /* is this a slowpath msg? */ | 
|  | if (unlikely(CQE_TYPE(cqe_fp_flags))) { | 
|  | bnx2x_sp_event(fp, cqe); | 
|  | goto next_cqe; | 
|  |  | 
|  | /* this is an rx packet */ | 
|  | } else { | 
|  | rx_buf = &fp->rx_buf_ring[bd_cons]; | 
|  | skb = rx_buf->skb; | 
|  | prefetch(skb); | 
|  | len = le16_to_cpu(cqe->fast_path_cqe.pkt_len); | 
|  | pad = cqe->fast_path_cqe.placement_offset; | 
|  |  | 
|  | /* - If CQE is marked both TPA_START and TPA_END it is | 
|  | *   a non-TPA CQE. | 
|  | * - FP CQE will always have either TPA_START or/and | 
|  | *   TPA_STOP flags set. | 
|  | */ | 
|  | if ((!fp->disable_tpa) && | 
|  | (TPA_TYPE(cqe_fp_flags) != | 
|  | (TPA_TYPE_START | TPA_TYPE_END))) { | 
|  | u16 queue = cqe->fast_path_cqe.queue_index; | 
|  |  | 
|  | if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_START) { | 
|  | DP(NETIF_MSG_RX_STATUS, | 
|  | "calling tpa_start on queue %d\n", | 
|  | queue); | 
|  |  | 
|  | bnx2x_tpa_start(fp, queue, skb, | 
|  | bd_cons, bd_prod); | 
|  |  | 
|  | /* Set Toeplitz hash for an LRO skb */ | 
|  | bnx2x_set_skb_rxhash(bp, cqe, skb); | 
|  |  | 
|  | goto next_rx; | 
|  | } else { /* TPA_STOP */ | 
|  | DP(NETIF_MSG_RX_STATUS, | 
|  | "calling tpa_stop on queue %d\n", | 
|  | queue); | 
|  |  | 
|  | if (!BNX2X_RX_SUM_FIX(cqe)) | 
|  | BNX2X_ERR("STOP on none TCP " | 
|  | "data\n"); | 
|  |  | 
|  | /* This is a size of the linear data | 
|  | on this skb */ | 
|  | len = le16_to_cpu(cqe->fast_path_cqe. | 
|  | len_on_bd); | 
|  | bnx2x_tpa_stop(bp, fp, queue, pad, | 
|  | len, cqe, comp_ring_cons); | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (bp->panic) | 
|  | return 0; | 
|  | #endif | 
|  |  | 
|  | bnx2x_update_sge_prod(fp, | 
|  | &cqe->fast_path_cqe); | 
|  | goto next_cqe; | 
|  | } | 
|  | } | 
|  |  | 
|  | dma_sync_single_for_device(&bp->pdev->dev, | 
|  | dma_unmap_addr(rx_buf, mapping), | 
|  | pad + RX_COPY_THRESH, | 
|  | DMA_FROM_DEVICE); | 
|  | prefetch(((char *)(skb)) + L1_CACHE_BYTES); | 
|  |  | 
|  | /* is this an error packet? */ | 
|  | if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { | 
|  | DP(NETIF_MSG_RX_ERR, | 
|  | "ERROR  flags %x  rx packet %u\n", | 
|  | cqe_fp_flags, sw_comp_cons); | 
|  | fp->eth_q_stats.rx_err_discard_pkt++; | 
|  | goto reuse_rx; | 
|  | } | 
|  |  | 
|  | /* Since we don't have a jumbo ring | 
|  | * copy small packets if mtu > 1500 | 
|  | */ | 
|  | if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && | 
|  | (len <= RX_COPY_THRESH)) { | 
|  | struct sk_buff *new_skb; | 
|  |  | 
|  | new_skb = netdev_alloc_skb(bp->dev, | 
|  | len + pad); | 
|  | if (new_skb == NULL) { | 
|  | DP(NETIF_MSG_RX_ERR, | 
|  | "ERROR  packet dropped " | 
|  | "because of alloc failure\n"); | 
|  | fp->eth_q_stats.rx_skb_alloc_failed++; | 
|  | goto reuse_rx; | 
|  | } | 
|  |  | 
|  | /* aligned copy */ | 
|  | skb_copy_from_linear_data_offset(skb, pad, | 
|  | new_skb->data + pad, len); | 
|  | skb_reserve(new_skb, pad); | 
|  | skb_put(new_skb, len); | 
|  |  | 
|  | bnx2x_reuse_rx_skb(fp, bd_cons, bd_prod); | 
|  |  | 
|  | skb = new_skb; | 
|  |  | 
|  | } else | 
|  | if (likely(bnx2x_alloc_rx_skb(bp, fp, bd_prod) == 0)) { | 
|  | dma_unmap_single(&bp->pdev->dev, | 
|  | dma_unmap_addr(rx_buf, mapping), | 
|  | fp->rx_buf_size, | 
|  | DMA_FROM_DEVICE); | 
|  | skb_reserve(skb, pad); | 
|  | skb_put(skb, len); | 
|  |  | 
|  | } else { | 
|  | DP(NETIF_MSG_RX_ERR, | 
|  | "ERROR  packet dropped because " | 
|  | "of alloc failure\n"); | 
|  | fp->eth_q_stats.rx_skb_alloc_failed++; | 
|  | reuse_rx: | 
|  | bnx2x_reuse_rx_skb(fp, bd_cons, bd_prod); | 
|  | goto next_rx; | 
|  | } | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, bp->dev); | 
|  |  | 
|  | /* Set Toeplitz hash for a none-LRO skb */ | 
|  | bnx2x_set_skb_rxhash(bp, cqe, skb); | 
|  |  | 
|  | skb_checksum_none_assert(skb); | 
|  |  | 
|  | if (bp->dev->features & NETIF_F_RXCSUM) { | 
|  | if (likely(BNX2X_RX_CSUM_OK(cqe))) | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | else | 
|  | fp->eth_q_stats.hw_csum_err++; | 
|  | } | 
|  | } | 
|  |  | 
|  | skb_record_rx_queue(skb, fp->index); | 
|  |  | 
|  | if (le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) & | 
|  | PARSING_FLAGS_VLAN) | 
|  | __vlan_hwaccel_put_tag(skb, | 
|  | le16_to_cpu(cqe->fast_path_cqe.vlan_tag)); | 
|  | napi_gro_receive(&fp->napi, skb); | 
|  |  | 
|  |  | 
|  | next_rx: | 
|  | rx_buf->skb = NULL; | 
|  |  | 
|  | bd_cons = NEXT_RX_IDX(bd_cons); | 
|  | bd_prod = NEXT_RX_IDX(bd_prod); | 
|  | bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); | 
|  | rx_pkt++; | 
|  | next_cqe: | 
|  | sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); | 
|  | sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); | 
|  |  | 
|  | if (rx_pkt == budget) | 
|  | break; | 
|  | } /* while */ | 
|  |  | 
|  | fp->rx_bd_cons = bd_cons; | 
|  | fp->rx_bd_prod = bd_prod_fw; | 
|  | fp->rx_comp_cons = sw_comp_cons; | 
|  | fp->rx_comp_prod = sw_comp_prod; | 
|  |  | 
|  | /* Update producers */ | 
|  | bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, | 
|  | fp->rx_sge_prod); | 
|  |  | 
|  | fp->rx_pkt += rx_pkt; | 
|  | fp->rx_calls++; | 
|  |  | 
|  | return rx_pkt; | 
|  | } | 
|  |  | 
|  | static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) | 
|  | { | 
|  | struct bnx2x_fastpath *fp = fp_cookie; | 
|  | struct bnx2x *bp = fp->bp; | 
|  |  | 
|  | /* Return here if interrupt is disabled */ | 
|  | if (unlikely(atomic_read(&bp->intr_sem) != 0)) { | 
|  | DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | DP(BNX2X_MSG_FP, "got an MSI-X interrupt on IDX:SB " | 
|  | "[fp %d fw_sd %d igusb %d]\n", | 
|  | fp->index, fp->fw_sb_id, fp->igu_sb_id); | 
|  | bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) | 
|  | return IRQ_HANDLED; | 
|  | #endif | 
|  |  | 
|  | /* Handle Rx and Tx according to MSI-X vector */ | 
|  | prefetch(fp->rx_cons_sb); | 
|  | prefetch(fp->tx_cons_sb); | 
|  | prefetch(&fp->sb_running_index[SM_RX_ID]); | 
|  | napi_schedule(&bnx2x_fp(bp, fp->index, napi)); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* HW Lock for shared dual port PHYs */ | 
|  | void bnx2x_acquire_phy_lock(struct bnx2x *bp) | 
|  | { | 
|  | mutex_lock(&bp->port.phy_mutex); | 
|  |  | 
|  | if (bp->port.need_hw_lock) | 
|  | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); | 
|  | } | 
|  |  | 
|  | void bnx2x_release_phy_lock(struct bnx2x *bp) | 
|  | { | 
|  | if (bp->port.need_hw_lock) | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); | 
|  |  | 
|  | mutex_unlock(&bp->port.phy_mutex); | 
|  | } | 
|  |  | 
|  | /* calculates MF speed according to current linespeed and MF configuration */ | 
|  | u16 bnx2x_get_mf_speed(struct bnx2x *bp) | 
|  | { | 
|  | u16 line_speed = bp->link_vars.line_speed; | 
|  | if (IS_MF(bp)) { | 
|  | u16 maxCfg = bnx2x_extract_max_cfg(bp, | 
|  | bp->mf_config[BP_VN(bp)]); | 
|  |  | 
|  | /* Calculate the current MAX line speed limit for the MF | 
|  | * devices | 
|  | */ | 
|  | if (IS_MF_SI(bp)) | 
|  | line_speed = (line_speed * maxCfg) / 100; | 
|  | else { /* SD mode */ | 
|  | u16 vn_max_rate = maxCfg * 100; | 
|  |  | 
|  | if (vn_max_rate < line_speed) | 
|  | line_speed = vn_max_rate; | 
|  | } | 
|  | } | 
|  |  | 
|  | return line_speed; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_fill_report_data - fill link report data to report | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @data:	link state to update | 
|  | * | 
|  | * It uses a none-atomic bit operations because is called under the mutex. | 
|  | */ | 
|  | static inline void bnx2x_fill_report_data(struct bnx2x *bp, | 
|  | struct bnx2x_link_report_data *data) | 
|  | { | 
|  | u16 line_speed = bnx2x_get_mf_speed(bp); | 
|  |  | 
|  | memset(data, 0, sizeof(*data)); | 
|  |  | 
|  | /* Fill the report data: efective line speed */ | 
|  | data->line_speed = line_speed; | 
|  |  | 
|  | /* Link is down */ | 
|  | if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS)) | 
|  | __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
|  | &data->link_report_flags); | 
|  |  | 
|  | /* Full DUPLEX */ | 
|  | if (bp->link_vars.duplex == DUPLEX_FULL) | 
|  | __set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags); | 
|  |  | 
|  | /* Rx Flow Control is ON */ | 
|  | if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) | 
|  | __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags); | 
|  |  | 
|  | /* Tx Flow Control is ON */ | 
|  | if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX) | 
|  | __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_link_report - report link status to OS. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * | 
|  | * Calls the __bnx2x_link_report() under the same locking scheme | 
|  | * as a link/PHY state managing code to ensure a consistent link | 
|  | * reporting. | 
|  | */ | 
|  |  | 
|  | void bnx2x_link_report(struct bnx2x *bp) | 
|  | { | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | __bnx2x_link_report(bp); | 
|  | bnx2x_release_phy_lock(bp); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __bnx2x_link_report - report link status to OS. | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * | 
|  | * None atomic inmlementation. | 
|  | * Should be called under the phy_lock. | 
|  | */ | 
|  | void __bnx2x_link_report(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_link_report_data cur_data; | 
|  |  | 
|  | /* reread mf_cfg */ | 
|  | if (!CHIP_IS_E1(bp)) | 
|  | bnx2x_read_mf_cfg(bp); | 
|  |  | 
|  | /* Read the current link report info */ | 
|  | bnx2x_fill_report_data(bp, &cur_data); | 
|  |  | 
|  | /* Don't report link down or exactly the same link status twice */ | 
|  | if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) || | 
|  | (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
|  | &bp->last_reported_link.link_report_flags) && | 
|  | test_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
|  | &cur_data.link_report_flags))) | 
|  | return; | 
|  |  | 
|  | bp->link_cnt++; | 
|  |  | 
|  | /* We are going to report a new link parameters now - | 
|  | * remember the current data for the next time. | 
|  | */ | 
|  | memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data)); | 
|  |  | 
|  | if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
|  | &cur_data.link_report_flags)) { | 
|  | netif_carrier_off(bp->dev); | 
|  | netdev_err(bp->dev, "NIC Link is Down\n"); | 
|  | return; | 
|  | } else { | 
|  | netif_carrier_on(bp->dev); | 
|  | netdev_info(bp->dev, "NIC Link is Up, "); | 
|  | pr_cont("%d Mbps ", cur_data.line_speed); | 
|  |  | 
|  | if (test_and_clear_bit(BNX2X_LINK_REPORT_FD, | 
|  | &cur_data.link_report_flags)) | 
|  | pr_cont("full duplex"); | 
|  | else | 
|  | pr_cont("half duplex"); | 
|  |  | 
|  | /* Handle the FC at the end so that only these flags would be | 
|  | * possibly set. This way we may easily check if there is no FC | 
|  | * enabled. | 
|  | */ | 
|  | if (cur_data.link_report_flags) { | 
|  | if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON, | 
|  | &cur_data.link_report_flags)) { | 
|  | pr_cont(", receive "); | 
|  | if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON, | 
|  | &cur_data.link_report_flags)) | 
|  | pr_cont("& transmit "); | 
|  | } else { | 
|  | pr_cont(", transmit "); | 
|  | } | 
|  | pr_cont("flow control ON"); | 
|  | } | 
|  | pr_cont("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_init_rx_rings(struct bnx2x *bp) | 
|  | { | 
|  | int func = BP_FUNC(bp); | 
|  | int max_agg_queues = CHIP_IS_E1(bp) ? ETH_MAX_AGGREGATION_QUEUES_E1 : | 
|  | ETH_MAX_AGGREGATION_QUEUES_E1H; | 
|  | u16 ring_prod; | 
|  | int i, j; | 
|  |  | 
|  | /* Allocate TPA resources */ | 
|  | for_each_rx_queue(bp, j) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[j]; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size); | 
|  |  | 
|  | if (!fp->disable_tpa) { | 
|  | /* Fill the per-aggregation pool */ | 
|  | for (i = 0; i < max_agg_queues; i++) { | 
|  | fp->tpa_pool[i].skb = | 
|  | netdev_alloc_skb(bp->dev, fp->rx_buf_size); | 
|  | if (!fp->tpa_pool[i].skb) { | 
|  | BNX2X_ERR("Failed to allocate TPA " | 
|  | "skb pool for queue[%d] - " | 
|  | "disabling TPA on this " | 
|  | "queue!\n", j); | 
|  | bnx2x_free_tpa_pool(bp, fp, i); | 
|  | fp->disable_tpa = 1; | 
|  | break; | 
|  | } | 
|  | dma_unmap_addr_set((struct sw_rx_bd *) | 
|  | &bp->fp->tpa_pool[i], | 
|  | mapping, 0); | 
|  | fp->tpa_state[i] = BNX2X_TPA_STOP; | 
|  | } | 
|  |  | 
|  | /* "next page" elements initialization */ | 
|  | bnx2x_set_next_page_sgl(fp); | 
|  |  | 
|  | /* set SGEs bit mask */ | 
|  | bnx2x_init_sge_ring_bit_mask(fp); | 
|  |  | 
|  | /* Allocate SGEs and initialize the ring elements */ | 
|  | for (i = 0, ring_prod = 0; | 
|  | i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { | 
|  |  | 
|  | if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) { | 
|  | BNX2X_ERR("was only able to allocate " | 
|  | "%d rx sges\n", i); | 
|  | BNX2X_ERR("disabling TPA for" | 
|  | " queue[%d]\n", j); | 
|  | /* Cleanup already allocated elements */ | 
|  | bnx2x_free_rx_sge_range(bp, | 
|  | fp, ring_prod); | 
|  | bnx2x_free_tpa_pool(bp, | 
|  | fp, max_agg_queues); | 
|  | fp->disable_tpa = 1; | 
|  | ring_prod = 0; | 
|  | break; | 
|  | } | 
|  | ring_prod = NEXT_SGE_IDX(ring_prod); | 
|  | } | 
|  |  | 
|  | fp->rx_sge_prod = ring_prod; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_rx_queue(bp, j) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[j]; | 
|  |  | 
|  | fp->rx_bd_cons = 0; | 
|  |  | 
|  | /* Activate BD ring */ | 
|  | /* Warning! | 
|  | * this will generate an interrupt (to the TSTORM) | 
|  | * must only be done after chip is initialized | 
|  | */ | 
|  | bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod, | 
|  | fp->rx_sge_prod); | 
|  |  | 
|  | if (j != 0) | 
|  | continue; | 
|  |  | 
|  | if (!CHIP_IS_E2(bp)) { | 
|  | REG_WR(bp, BAR_USTRORM_INTMEM + | 
|  | USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), | 
|  | U64_LO(fp->rx_comp_mapping)); | 
|  | REG_WR(bp, BAR_USTRORM_INTMEM + | 
|  | USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, | 
|  | U64_HI(fp->rx_comp_mapping)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_free_tx_skbs(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_tx_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  |  | 
|  | u16 bd_cons = fp->tx_bd_cons; | 
|  | u16 sw_prod = fp->tx_pkt_prod; | 
|  | u16 sw_cons = fp->tx_pkt_cons; | 
|  |  | 
|  | while (sw_cons != sw_prod) { | 
|  | bd_cons = bnx2x_free_tx_pkt(bp, fp, TX_BD(sw_cons)); | 
|  | sw_cons++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp) | 
|  | { | 
|  | struct bnx2x *bp = fp->bp; | 
|  | int i; | 
|  |  | 
|  | /* ring wasn't allocated */ | 
|  | if (fp->rx_buf_ring == NULL) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < NUM_RX_BD; i++) { | 
|  | struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; | 
|  | struct sk_buff *skb = rx_buf->skb; | 
|  |  | 
|  | if (skb == NULL) | 
|  | continue; | 
|  |  | 
|  | dma_unmap_single(&bp->pdev->dev, | 
|  | dma_unmap_addr(rx_buf, mapping), | 
|  | fp->rx_buf_size, DMA_FROM_DEVICE); | 
|  |  | 
|  | rx_buf->skb = NULL; | 
|  | dev_kfree_skb(skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_free_rx_skbs(struct bnx2x *bp) | 
|  | { | 
|  | int j; | 
|  |  | 
|  | for_each_rx_queue(bp, j) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[j]; | 
|  |  | 
|  | bnx2x_free_rx_bds(fp); | 
|  |  | 
|  | if (!fp->disable_tpa) | 
|  | bnx2x_free_tpa_pool(bp, fp, CHIP_IS_E1(bp) ? | 
|  | ETH_MAX_AGGREGATION_QUEUES_E1 : | 
|  | ETH_MAX_AGGREGATION_QUEUES_E1H); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_free_skbs(struct bnx2x *bp) | 
|  | { | 
|  | bnx2x_free_tx_skbs(bp); | 
|  | bnx2x_free_rx_skbs(bp); | 
|  | } | 
|  |  | 
|  | void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value) | 
|  | { | 
|  | /* load old values */ | 
|  | u32 mf_cfg = bp->mf_config[BP_VN(bp)]; | 
|  |  | 
|  | if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) { | 
|  | /* leave all but MAX value */ | 
|  | mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK; | 
|  |  | 
|  | /* set new MAX value */ | 
|  | mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT) | 
|  | & FUNC_MF_CFG_MAX_BW_MASK; | 
|  |  | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_free_msix_irqs(struct bnx2x *bp) | 
|  | { | 
|  | int i, offset = 1; | 
|  |  | 
|  | free_irq(bp->msix_table[0].vector, bp->dev); | 
|  | DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", | 
|  | bp->msix_table[0].vector); | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | offset++; | 
|  | #endif | 
|  | for_each_eth_queue(bp, i) { | 
|  | DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq  " | 
|  | "state %x\n", i, bp->msix_table[i + offset].vector, | 
|  | bnx2x_fp(bp, i, state)); | 
|  |  | 
|  | free_irq(bp->msix_table[i + offset].vector, &bp->fp[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_free_irq(struct bnx2x *bp) | 
|  | { | 
|  | if (bp->flags & USING_MSIX_FLAG) | 
|  | bnx2x_free_msix_irqs(bp); | 
|  | else if (bp->flags & USING_MSI_FLAG) | 
|  | free_irq(bp->pdev->irq, bp->dev); | 
|  | else | 
|  | free_irq(bp->pdev->irq, bp->dev); | 
|  | } | 
|  |  | 
|  | int bnx2x_enable_msix(struct bnx2x *bp) | 
|  | { | 
|  | int msix_vec = 0, i, rc, req_cnt; | 
|  |  | 
|  | bp->msix_table[msix_vec].entry = msix_vec; | 
|  | DP(NETIF_MSG_IFUP, "msix_table[0].entry = %d (slowpath)\n", | 
|  | bp->msix_table[0].entry); | 
|  | msix_vec++; | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | bp->msix_table[msix_vec].entry = msix_vec; | 
|  | DP(NETIF_MSG_IFUP, "msix_table[%d].entry = %d (CNIC)\n", | 
|  | bp->msix_table[msix_vec].entry, bp->msix_table[msix_vec].entry); | 
|  | msix_vec++; | 
|  | #endif | 
|  | for_each_eth_queue(bp, i) { | 
|  | bp->msix_table[msix_vec].entry = msix_vec; | 
|  | DP(NETIF_MSG_IFUP, "msix_table[%d].entry = %d " | 
|  | "(fastpath #%u)\n", msix_vec, msix_vec, i); | 
|  | msix_vec++; | 
|  | } | 
|  |  | 
|  | req_cnt = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_CONTEXT_USE + 1; | 
|  |  | 
|  | rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], req_cnt); | 
|  |  | 
|  | /* | 
|  | * reconfigure number of tx/rx queues according to available | 
|  | * MSI-X vectors | 
|  | */ | 
|  | if (rc >= BNX2X_MIN_MSIX_VEC_CNT) { | 
|  | /* how less vectors we will have? */ | 
|  | int diff = req_cnt - rc; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "Trying to use less MSI-X vectors: %d\n", rc); | 
|  |  | 
|  | rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc); | 
|  |  | 
|  | if (rc) { | 
|  | DP(NETIF_MSG_IFUP, | 
|  | "MSI-X is not attainable  rc %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  | /* | 
|  | * decrease number of queues by number of unallocated entries | 
|  | */ | 
|  | bp->num_queues -= diff; | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "New queue configuration set: %d\n", | 
|  | bp->num_queues); | 
|  | } else if (rc) { | 
|  | /* fall to INTx if not enough memory */ | 
|  | if (rc == -ENOMEM) | 
|  | bp->flags |= DISABLE_MSI_FLAG; | 
|  | DP(NETIF_MSG_IFUP, "MSI-X is not attainable  rc %d\n", rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | bp->flags |= USING_MSIX_FLAG; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_req_msix_irqs(struct bnx2x *bp) | 
|  | { | 
|  | int i, rc, offset = 1; | 
|  |  | 
|  | rc = request_irq(bp->msix_table[0].vector, bnx2x_msix_sp_int, 0, | 
|  | bp->dev->name, bp->dev); | 
|  | if (rc) { | 
|  | BNX2X_ERR("request sp irq failed\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | offset++; | 
|  | #endif | 
|  | for_each_eth_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  | snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", | 
|  | bp->dev->name, i); | 
|  |  | 
|  | rc = request_irq(bp->msix_table[offset].vector, | 
|  | bnx2x_msix_fp_int, 0, fp->name, fp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("request fp #%d irq failed  rc %d\n", i, rc); | 
|  | bnx2x_free_msix_irqs(bp); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | offset++; | 
|  | fp->state = BNX2X_FP_STATE_IRQ; | 
|  | } | 
|  |  | 
|  | i = BNX2X_NUM_ETH_QUEUES(bp); | 
|  | offset = 1 + CNIC_CONTEXT_USE; | 
|  | netdev_info(bp->dev, "using MSI-X  IRQs: sp %d  fp[%d] %d" | 
|  | " ... fp[%d] %d\n", | 
|  | bp->msix_table[0].vector, | 
|  | 0, bp->msix_table[offset].vector, | 
|  | i - 1, bp->msix_table[offset + i - 1].vector); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bnx2x_enable_msi(struct bnx2x *bp) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = pci_enable_msi(bp->pdev); | 
|  | if (rc) { | 
|  | DP(NETIF_MSG_IFUP, "MSI is not attainable\n"); | 
|  | return -1; | 
|  | } | 
|  | bp->flags |= USING_MSI_FLAG; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_req_irq(struct bnx2x *bp) | 
|  | { | 
|  | unsigned long flags; | 
|  | int rc; | 
|  |  | 
|  | if (bp->flags & USING_MSI_FLAG) | 
|  | flags = 0; | 
|  | else | 
|  | flags = IRQF_SHARED; | 
|  |  | 
|  | rc = request_irq(bp->pdev->irq, bnx2x_interrupt, flags, | 
|  | bp->dev->name, bp->dev); | 
|  | if (!rc) | 
|  | bnx2x_fp(bp, 0, state) = BNX2X_FP_STATE_IRQ; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void bnx2x_napi_enable(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_napi_queue(bp, i) | 
|  | napi_enable(&bnx2x_fp(bp, i, napi)); | 
|  | } | 
|  |  | 
|  | static void bnx2x_napi_disable(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_napi_queue(bp, i) | 
|  | napi_disable(&bnx2x_fp(bp, i, napi)); | 
|  | } | 
|  |  | 
|  | void bnx2x_netif_start(struct bnx2x *bp) | 
|  | { | 
|  | int intr_sem; | 
|  |  | 
|  | intr_sem = atomic_dec_and_test(&bp->intr_sem); | 
|  | smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */ | 
|  |  | 
|  | if (intr_sem) { | 
|  | if (netif_running(bp->dev)) { | 
|  | bnx2x_napi_enable(bp); | 
|  | bnx2x_int_enable(bp); | 
|  | if (bp->state == BNX2X_STATE_OPEN) | 
|  | netif_tx_wake_all_queues(bp->dev); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) | 
|  | { | 
|  | bnx2x_int_disable_sync(bp, disable_hw); | 
|  | bnx2x_napi_disable(bp); | 
|  | netif_tx_disable(bp->dev); | 
|  | } | 
|  |  | 
|  | u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb) | 
|  | { | 
|  | #ifdef BCM_CNIC | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | if (NO_FCOE(bp)) | 
|  | return skb_tx_hash(dev, skb); | 
|  | else { | 
|  | struct ethhdr *hdr = (struct ethhdr *)skb->data; | 
|  | u16 ether_type = ntohs(hdr->h_proto); | 
|  |  | 
|  | /* Skip VLAN tag if present */ | 
|  | if (ether_type == ETH_P_8021Q) { | 
|  | struct vlan_ethhdr *vhdr = | 
|  | (struct vlan_ethhdr *)skb->data; | 
|  |  | 
|  | ether_type = ntohs(vhdr->h_vlan_encapsulated_proto); | 
|  | } | 
|  |  | 
|  | /* If ethertype is FCoE or FIP - use FCoE ring */ | 
|  | if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP)) | 
|  | return bnx2x_fcoe(bp, index); | 
|  | } | 
|  | #endif | 
|  | /* Select a none-FCoE queue:  if FCoE is enabled, exclude FCoE L2 ring | 
|  | */ | 
|  | return __skb_tx_hash(dev, skb, | 
|  | dev->real_num_tx_queues - FCOE_CONTEXT_USE); | 
|  | } | 
|  |  | 
|  | void bnx2x_set_num_queues(struct bnx2x *bp) | 
|  | { | 
|  | switch (bp->multi_mode) { | 
|  | case ETH_RSS_MODE_DISABLED: | 
|  | bp->num_queues = 1; | 
|  | break; | 
|  | case ETH_RSS_MODE_REGULAR: | 
|  | bp->num_queues = bnx2x_calc_num_queues(bp); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | bp->num_queues = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Add special queues */ | 
|  | bp->num_queues += NONE_ETH_CONTEXT_USE; | 
|  | } | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | static inline void bnx2x_set_fcoe_eth_macs(struct bnx2x *bp) | 
|  | { | 
|  | if (!NO_FCOE(bp)) { | 
|  | if (!IS_MF_SD(bp)) | 
|  | bnx2x_set_fip_eth_mac_addr(bp, 1); | 
|  | bnx2x_set_all_enode_macs(bp, 1); | 
|  | bp->flags |= FCOE_MACS_SET; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void bnx2x_release_firmware(struct bnx2x *bp) | 
|  | { | 
|  | kfree(bp->init_ops_offsets); | 
|  | kfree(bp->init_ops); | 
|  | kfree(bp->init_data); | 
|  | release_firmware(bp->firmware); | 
|  | } | 
|  |  | 
|  | static inline int bnx2x_set_real_num_queues(struct bnx2x *bp) | 
|  | { | 
|  | int rc, num = bp->num_queues; | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | if (NO_FCOE(bp)) | 
|  | num -= FCOE_CONTEXT_USE; | 
|  |  | 
|  | #endif | 
|  | netif_set_real_num_tx_queues(bp->dev, num); | 
|  | rc = netif_set_real_num_rx_queues(bp->dev, num); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static inline void bnx2x_set_rx_buf_size(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_queue(bp, i) { | 
|  | struct bnx2x_fastpath *fp = &bp->fp[i]; | 
|  |  | 
|  | /* Always use a mini-jumbo MTU for the FCoE L2 ring */ | 
|  | if (IS_FCOE_IDX(i)) | 
|  | /* | 
|  | * Although there are no IP frames expected to arrive to | 
|  | * this ring we still want to add an | 
|  | * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer | 
|  | * overrun attack. | 
|  | */ | 
|  | fp->rx_buf_size = | 
|  | BNX2X_FCOE_MINI_JUMBO_MTU + ETH_OVREHEAD + | 
|  | BNX2X_RX_ALIGN + IP_HEADER_ALIGNMENT_PADDING; | 
|  | else | 
|  | fp->rx_buf_size = | 
|  | bp->dev->mtu + ETH_OVREHEAD + BNX2X_RX_ALIGN + | 
|  | IP_HEADER_ALIGNMENT_PADDING; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* must be called with rtnl_lock */ | 
|  | int bnx2x_nic_load(struct bnx2x *bp, int load_mode) | 
|  | { | 
|  | u32 load_code; | 
|  | int i, rc; | 
|  |  | 
|  | /* Set init arrays */ | 
|  | rc = bnx2x_init_firmware(bp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Error loading firmware\n"); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) | 
|  | return -EPERM; | 
|  | #endif | 
|  |  | 
|  | bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; | 
|  |  | 
|  | /* Set the initial link reported state to link down */ | 
|  | bnx2x_acquire_phy_lock(bp); | 
|  | memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link)); | 
|  | __set_bit(BNX2X_LINK_REPORT_LINK_DOWN, | 
|  | &bp->last_reported_link.link_report_flags); | 
|  | bnx2x_release_phy_lock(bp); | 
|  |  | 
|  | /* must be called before memory allocation and HW init */ | 
|  | bnx2x_ilt_set_info(bp); | 
|  |  | 
|  | /* zero fastpath structures preserving invariants like napi which are | 
|  | * allocated only once | 
|  | */ | 
|  | for_each_queue(bp, i) | 
|  | bnx2x_bz_fp(bp, i); | 
|  |  | 
|  | /* Set the receive queues buffer size */ | 
|  | bnx2x_set_rx_buf_size(bp); | 
|  |  | 
|  | for_each_queue(bp, i) | 
|  | bnx2x_fp(bp, i, disable_tpa) = | 
|  | ((bp->flags & TPA_ENABLE_FLAG) == 0); | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | /* We don't want TPA on FCoE L2 ring */ | 
|  | bnx2x_fcoe(bp, disable_tpa) = 1; | 
|  | #endif | 
|  |  | 
|  | if (bnx2x_alloc_mem(bp)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* As long as bnx2x_alloc_mem() may possibly update | 
|  | * bp->num_queues, bnx2x_set_real_num_queues() should always | 
|  | * come after it. | 
|  | */ | 
|  | rc = bnx2x_set_real_num_queues(bp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Unable to set real_num_queues\n"); | 
|  | goto load_error0; | 
|  | } | 
|  |  | 
|  | bnx2x_napi_enable(bp); | 
|  |  | 
|  | /* Send LOAD_REQUEST command to MCP | 
|  | Returns the type of LOAD command: | 
|  | if it is the first port to be initialized | 
|  | common blocks should be initialized, otherwise - not | 
|  | */ | 
|  | if (!BP_NOMCP(bp)) { | 
|  | load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0); | 
|  | if (!load_code) { | 
|  | BNX2X_ERR("MCP response failure, aborting\n"); | 
|  | rc = -EBUSY; | 
|  | goto load_error1; | 
|  | } | 
|  | if (load_code == FW_MSG_CODE_DRV_LOAD_REFUSED) { | 
|  | rc = -EBUSY; /* other port in diagnostic mode */ | 
|  | goto load_error1; | 
|  | } | 
|  |  | 
|  | } else { | 
|  | int path = BP_PATH(bp); | 
|  | int port = BP_PORT(bp); | 
|  |  | 
|  | DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n", | 
|  | path, load_count[path][0], load_count[path][1], | 
|  | load_count[path][2]); | 
|  | load_count[path][0]++; | 
|  | load_count[path][1 + port]++; | 
|  | DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n", | 
|  | path, load_count[path][0], load_count[path][1], | 
|  | load_count[path][2]); | 
|  | if (load_count[path][0] == 1) | 
|  | load_code = FW_MSG_CODE_DRV_LOAD_COMMON; | 
|  | else if (load_count[path][1 + port] == 1) | 
|  | load_code = FW_MSG_CODE_DRV_LOAD_PORT; | 
|  | else | 
|  | load_code = FW_MSG_CODE_DRV_LOAD_FUNCTION; | 
|  | } | 
|  |  | 
|  | if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || | 
|  | (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) || | 
|  | (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) | 
|  | bp->port.pmf = 1; | 
|  | else | 
|  | bp->port.pmf = 0; | 
|  | DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); | 
|  |  | 
|  | /* Initialize HW */ | 
|  | rc = bnx2x_init_hw(bp, load_code); | 
|  | if (rc) { | 
|  | BNX2X_ERR("HW init failed, aborting\n"); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
|  | goto load_error2; | 
|  | } | 
|  |  | 
|  | /* Connect to IRQs */ | 
|  | rc = bnx2x_setup_irqs(bp); | 
|  | if (rc) { | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
|  | goto load_error2; | 
|  | } | 
|  |  | 
|  | /* Setup NIC internals and enable interrupts */ | 
|  | bnx2x_nic_init(bp, load_code); | 
|  |  | 
|  | if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || | 
|  | (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) && | 
|  | (bp->common.shmem2_base)) | 
|  | SHMEM2_WR(bp, dcc_support, | 
|  | (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | | 
|  | SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); | 
|  |  | 
|  | /* Send LOAD_DONE command to MCP */ | 
|  | if (!BP_NOMCP(bp)) { | 
|  | load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0); | 
|  | if (!load_code) { | 
|  | BNX2X_ERR("MCP response failure, aborting\n"); | 
|  | rc = -EBUSY; | 
|  | goto load_error3; | 
|  | } | 
|  | } | 
|  |  | 
|  | bnx2x_dcbx_init(bp); | 
|  |  | 
|  | bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; | 
|  |  | 
|  | rc = bnx2x_func_start(bp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Function start failed!\n"); | 
|  | #ifndef BNX2X_STOP_ON_ERROR | 
|  | goto load_error3; | 
|  | #else | 
|  | bp->panic = 1; | 
|  | return -EBUSY; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | rc = bnx2x_setup_client(bp, &bp->fp[0], 1 /* Leading */); | 
|  | if (rc) { | 
|  | BNX2X_ERR("Setup leading failed!\n"); | 
|  | #ifndef BNX2X_STOP_ON_ERROR | 
|  | goto load_error3; | 
|  | #else | 
|  | bp->panic = 1; | 
|  | return -EBUSY; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (!CHIP_IS_E1(bp) && | 
|  | (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED)) { | 
|  | DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); | 
|  | bp->flags |= MF_FUNC_DIS; | 
|  | } | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | /* Enable Timer scan */ | 
|  | REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 1); | 
|  | #endif | 
|  |  | 
|  | for_each_nondefault_queue(bp, i) { | 
|  | rc = bnx2x_setup_client(bp, &bp->fp[i], 0); | 
|  | if (rc) | 
|  | #ifdef BCM_CNIC | 
|  | goto load_error4; | 
|  | #else | 
|  | goto load_error3; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Now when Clients are configured we are ready to work */ | 
|  | bp->state = BNX2X_STATE_OPEN; | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | bnx2x_set_fcoe_eth_macs(bp); | 
|  | #endif | 
|  |  | 
|  | bnx2x_set_eth_mac(bp, 1); | 
|  |  | 
|  | /* Clear MC configuration */ | 
|  | if (CHIP_IS_E1(bp)) | 
|  | bnx2x_invalidate_e1_mc_list(bp); | 
|  | else | 
|  | bnx2x_invalidate_e1h_mc_list(bp); | 
|  |  | 
|  | /* Clear UC lists configuration */ | 
|  | bnx2x_invalidate_uc_list(bp); | 
|  |  | 
|  | if (bp->pending_max) { | 
|  | bnx2x_update_max_mf_config(bp, bp->pending_max); | 
|  | bp->pending_max = 0; | 
|  | } | 
|  |  | 
|  | if (bp->port.pmf) | 
|  | bnx2x_initial_phy_init(bp, load_mode); | 
|  |  | 
|  | /* Initialize Rx filtering */ | 
|  | bnx2x_set_rx_mode(bp->dev); | 
|  |  | 
|  | /* Start fast path */ | 
|  | switch (load_mode) { | 
|  | case LOAD_NORMAL: | 
|  | /* Tx queue should be only reenabled */ | 
|  | netif_tx_wake_all_queues(bp->dev); | 
|  | /* Initialize the receive filter. */ | 
|  | break; | 
|  |  | 
|  | case LOAD_OPEN: | 
|  | netif_tx_start_all_queues(bp->dev); | 
|  | smp_mb__after_clear_bit(); | 
|  | break; | 
|  |  | 
|  | case LOAD_DIAG: | 
|  | bp->state = BNX2X_STATE_DIAG; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!bp->port.pmf) | 
|  | bnx2x__link_status_update(bp); | 
|  |  | 
|  | /* start the timer */ | 
|  | mod_timer(&bp->timer, jiffies + bp->current_interval); | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | bnx2x_setup_cnic_irq_info(bp); | 
|  | if (bp->state == BNX2X_STATE_OPEN) | 
|  | bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); | 
|  | #endif | 
|  | bnx2x_inc_load_cnt(bp); | 
|  |  | 
|  | bnx2x_release_firmware(bp); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | load_error4: | 
|  | /* Disable Timer scan */ | 
|  | REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 0); | 
|  | #endif | 
|  | load_error3: | 
|  | bnx2x_int_disable_sync(bp, 1); | 
|  |  | 
|  | /* Free SKBs, SGEs, TPA pool and driver internals */ | 
|  | bnx2x_free_skbs(bp); | 
|  | for_each_rx_queue(bp, i) | 
|  | bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | 
|  |  | 
|  | /* Release IRQs */ | 
|  | bnx2x_free_irq(bp); | 
|  | load_error2: | 
|  | if (!BP_NOMCP(bp)) { | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0); | 
|  | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0); | 
|  | } | 
|  |  | 
|  | bp->port.pmf = 0; | 
|  | load_error1: | 
|  | bnx2x_napi_disable(bp); | 
|  | load_error0: | 
|  | bnx2x_free_mem(bp); | 
|  |  | 
|  | bnx2x_release_firmware(bp); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* must be called with rtnl_lock */ | 
|  | int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (bp->state == BNX2X_STATE_CLOSED) { | 
|  | /* Interface has been removed - nothing to recover */ | 
|  | bp->recovery_state = BNX2X_RECOVERY_DONE; | 
|  | bp->is_leader = 0; | 
|  | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESERVED_08); | 
|  | smp_wmb(); | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | #ifdef BCM_CNIC | 
|  | bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); | 
|  | #endif | 
|  | bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; | 
|  |  | 
|  | /* Set "drop all" */ | 
|  | bp->rx_mode = BNX2X_RX_MODE_NONE; | 
|  | bnx2x_set_storm_rx_mode(bp); | 
|  |  | 
|  | /* Stop Tx */ | 
|  | bnx2x_tx_disable(bp); | 
|  |  | 
|  | del_timer_sync(&bp->timer); | 
|  |  | 
|  | SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb, | 
|  | (DRV_PULSE_ALWAYS_ALIVE | bp->fw_drv_pulse_wr_seq)); | 
|  |  | 
|  | bnx2x_stats_handle(bp, STATS_EVENT_STOP); | 
|  |  | 
|  | /* Cleanup the chip if needed */ | 
|  | if (unload_mode != UNLOAD_RECOVERY) | 
|  | bnx2x_chip_cleanup(bp, unload_mode); | 
|  | else { | 
|  | /* Disable HW interrupts, NAPI and Tx */ | 
|  | bnx2x_netif_stop(bp, 1); | 
|  |  | 
|  | /* Release IRQs */ | 
|  | bnx2x_free_irq(bp); | 
|  | } | 
|  |  | 
|  | bp->port.pmf = 0; | 
|  |  | 
|  | /* Free SKBs, SGEs, TPA pool and driver internals */ | 
|  | bnx2x_free_skbs(bp); | 
|  | for_each_rx_queue(bp, i) | 
|  | bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | 
|  |  | 
|  | bnx2x_free_mem(bp); | 
|  |  | 
|  | bp->state = BNX2X_STATE_CLOSED; | 
|  |  | 
|  | /* The last driver must disable a "close the gate" if there is no | 
|  | * parity attention or "process kill" pending. | 
|  | */ | 
|  | if ((!bnx2x_dec_load_cnt(bp)) && (!bnx2x_chk_parity_attn(bp)) && | 
|  | bnx2x_reset_is_done(bp)) | 
|  | bnx2x_disable_close_the_gate(bp); | 
|  |  | 
|  | /* Reset MCP mail box sequence if there is on going recovery */ | 
|  | if (unload_mode == UNLOAD_RECOVERY) | 
|  | bp->fw_seq = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) | 
|  | { | 
|  | u16 pmcsr; | 
|  |  | 
|  | /* If there is no power capability, silently succeed */ | 
|  | if (!bp->pm_cap) { | 
|  | DP(NETIF_MSG_HW, "No power capability. Breaking.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); | 
|  |  | 
|  | switch (state) { | 
|  | case PCI_D0: | 
|  | pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, | 
|  | ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | | 
|  | PCI_PM_CTRL_PME_STATUS)); | 
|  |  | 
|  | if (pmcsr & PCI_PM_CTRL_STATE_MASK) | 
|  | /* delay required during transition out of D3hot */ | 
|  | msleep(20); | 
|  | break; | 
|  |  | 
|  | case PCI_D3hot: | 
|  | /* If there are other clients above don't | 
|  | shut down the power */ | 
|  | if (atomic_read(&bp->pdev->enable_cnt) != 1) | 
|  | return 0; | 
|  | /* Don't shut down the power for emulation and FPGA */ | 
|  | if (CHIP_REV_IS_SLOW(bp)) | 
|  | return 0; | 
|  |  | 
|  | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | 
|  | pmcsr |= 3; | 
|  |  | 
|  | if (bp->wol) | 
|  | pmcsr |= PCI_PM_CTRL_PME_ENABLE; | 
|  |  | 
|  | pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, | 
|  | pmcsr); | 
|  |  | 
|  | /* No more memory access after this point until | 
|  | * device is brought back to D0. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * net_device service functions | 
|  | */ | 
|  | int bnx2x_poll(struct napi_struct *napi, int budget) | 
|  | { | 
|  | int work_done = 0; | 
|  | struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, | 
|  | napi); | 
|  | struct bnx2x *bp = fp->bp; | 
|  |  | 
|  | while (1) { | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) { | 
|  | napi_complete(napi); | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (bnx2x_has_tx_work(fp)) | 
|  | bnx2x_tx_int(fp); | 
|  |  | 
|  | if (bnx2x_has_rx_work(fp)) { | 
|  | work_done += bnx2x_rx_int(fp, budget - work_done); | 
|  |  | 
|  | /* must not complete if we consumed full budget */ | 
|  | if (work_done >= budget) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Fall out from the NAPI loop if needed */ | 
|  | if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | 
|  | #ifdef BCM_CNIC | 
|  | /* No need to update SB for FCoE L2 ring as long as | 
|  | * it's connected to the default SB and the SB | 
|  | * has been updated when NAPI was scheduled. | 
|  | */ | 
|  | if (IS_FCOE_FP(fp)) { | 
|  | napi_complete(napi); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bnx2x_update_fpsb_idx(fp); | 
|  | /* bnx2x_has_rx_work() reads the status block, | 
|  | * thus we need to ensure that status block indices | 
|  | * have been actually read (bnx2x_update_fpsb_idx) | 
|  | * prior to this check (bnx2x_has_rx_work) so that | 
|  | * we won't write the "newer" value of the status block | 
|  | * to IGU (if there was a DMA right after | 
|  | * bnx2x_has_rx_work and if there is no rmb, the memory | 
|  | * reading (bnx2x_update_fpsb_idx) may be postponed | 
|  | * to right before bnx2x_ack_sb). In this case there | 
|  | * will never be another interrupt until there is | 
|  | * another update of the status block, while there | 
|  | * is still unhandled work. | 
|  | */ | 
|  | rmb(); | 
|  |  | 
|  | if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | 
|  | napi_complete(napi); | 
|  | /* Re-enable interrupts */ | 
|  | DP(NETIF_MSG_HW, | 
|  | "Update index to %d\n", fp->fp_hc_idx); | 
|  | bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, | 
|  | le16_to_cpu(fp->fp_hc_idx), | 
|  | IGU_INT_ENABLE, 1); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return work_done; | 
|  | } | 
|  |  | 
|  | /* we split the first BD into headers and data BDs | 
|  | * to ease the pain of our fellow microcode engineers | 
|  | * we use one mapping for both BDs | 
|  | * So far this has only been observed to happen | 
|  | * in Other Operating Systems(TM) | 
|  | */ | 
|  | static noinline u16 bnx2x_tx_split(struct bnx2x *bp, | 
|  | struct bnx2x_fastpath *fp, | 
|  | struct sw_tx_bd *tx_buf, | 
|  | struct eth_tx_start_bd **tx_bd, u16 hlen, | 
|  | u16 bd_prod, int nbd) | 
|  | { | 
|  | struct eth_tx_start_bd *h_tx_bd = *tx_bd; | 
|  | struct eth_tx_bd *d_tx_bd; | 
|  | dma_addr_t mapping; | 
|  | int old_len = le16_to_cpu(h_tx_bd->nbytes); | 
|  |  | 
|  | /* first fix first BD */ | 
|  | h_tx_bd->nbd = cpu_to_le16(nbd); | 
|  | h_tx_bd->nbytes = cpu_to_le16(hlen); | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d " | 
|  | "(%x:%x) nbd %d\n", h_tx_bd->nbytes, h_tx_bd->addr_hi, | 
|  | h_tx_bd->addr_lo, h_tx_bd->nbd); | 
|  |  | 
|  | /* now get a new data BD | 
|  | * (after the pbd) and fill it */ | 
|  | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
|  | d_tx_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | 
|  |  | 
|  | mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), | 
|  | le32_to_cpu(h_tx_bd->addr_lo)) + hlen; | 
|  |  | 
|  | d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
|  | d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
|  | d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); | 
|  |  | 
|  | /* this marks the BD as one that has no individual mapping */ | 
|  | tx_buf->flags |= BNX2X_TSO_SPLIT_BD; | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, | 
|  | "TSO split data size is %d (%x:%x)\n", | 
|  | d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); | 
|  |  | 
|  | /* update tx_bd */ | 
|  | *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; | 
|  |  | 
|  | return bd_prod; | 
|  | } | 
|  |  | 
|  | static inline u16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) | 
|  | { | 
|  | if (fix > 0) | 
|  | csum = (u16) ~csum_fold(csum_sub(csum, | 
|  | csum_partial(t_header - fix, fix, 0))); | 
|  |  | 
|  | else if (fix < 0) | 
|  | csum = (u16) ~csum_fold(csum_add(csum, | 
|  | csum_partial(t_header, -fix, 0))); | 
|  |  | 
|  | return swab16(csum); | 
|  | } | 
|  |  | 
|  | static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) | 
|  | { | 
|  | u32 rc; | 
|  |  | 
|  | if (skb->ip_summed != CHECKSUM_PARTIAL) | 
|  | rc = XMIT_PLAIN; | 
|  |  | 
|  | else { | 
|  | if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) { | 
|  | rc = XMIT_CSUM_V6; | 
|  | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | 
|  | rc |= XMIT_CSUM_TCP; | 
|  |  | 
|  | } else { | 
|  | rc = XMIT_CSUM_V4; | 
|  | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | 
|  | rc |= XMIT_CSUM_TCP; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (skb_is_gso_v6(skb)) | 
|  | rc |= XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6; | 
|  | else if (skb_is_gso(skb)) | 
|  | rc |= XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) | 
|  | /* check if packet requires linearization (packet is too fragmented) | 
|  | no need to check fragmentation if page size > 8K (there will be no | 
|  | violation to FW restrictions) */ | 
|  | static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, | 
|  | u32 xmit_type) | 
|  | { | 
|  | int to_copy = 0; | 
|  | int hlen = 0; | 
|  | int first_bd_sz = 0; | 
|  |  | 
|  | /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ | 
|  | if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { | 
|  |  | 
|  | if (xmit_type & XMIT_GSO) { | 
|  | unsigned short lso_mss = skb_shinfo(skb)->gso_size; | 
|  | /* Check if LSO packet needs to be copied: | 
|  | 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ | 
|  | int wnd_size = MAX_FETCH_BD - 3; | 
|  | /* Number of windows to check */ | 
|  | int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; | 
|  | int wnd_idx = 0; | 
|  | int frag_idx = 0; | 
|  | u32 wnd_sum = 0; | 
|  |  | 
|  | /* Headers length */ | 
|  | hlen = (int)(skb_transport_header(skb) - skb->data) + | 
|  | tcp_hdrlen(skb); | 
|  |  | 
|  | /* Amount of data (w/o headers) on linear part of SKB*/ | 
|  | first_bd_sz = skb_headlen(skb) - hlen; | 
|  |  | 
|  | wnd_sum  = first_bd_sz; | 
|  |  | 
|  | /* Calculate the first sum - it's special */ | 
|  | for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) | 
|  | wnd_sum += | 
|  | skb_shinfo(skb)->frags[frag_idx].size; | 
|  |  | 
|  | /* If there was data on linear skb data - check it */ | 
|  | if (first_bd_sz > 0) { | 
|  | if (unlikely(wnd_sum < lso_mss)) { | 
|  | to_copy = 1; | 
|  | goto exit_lbl; | 
|  | } | 
|  |  | 
|  | wnd_sum -= first_bd_sz; | 
|  | } | 
|  |  | 
|  | /* Others are easier: run through the frag list and | 
|  | check all windows */ | 
|  | for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { | 
|  | wnd_sum += | 
|  | skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1].size; | 
|  |  | 
|  | if (unlikely(wnd_sum < lso_mss)) { | 
|  | to_copy = 1; | 
|  | break; | 
|  | } | 
|  | wnd_sum -= | 
|  | skb_shinfo(skb)->frags[wnd_idx].size; | 
|  | } | 
|  | } else { | 
|  | /* in non-LSO too fragmented packet should always | 
|  | be linearized */ | 
|  | to_copy = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | exit_lbl: | 
|  | if (unlikely(to_copy)) | 
|  | DP(NETIF_MSG_TX_QUEUED, | 
|  | "Linearization IS REQUIRED for %s packet. " | 
|  | "num_frags %d  hlen %d  first_bd_sz %d\n", | 
|  | (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", | 
|  | skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); | 
|  |  | 
|  | return to_copy; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data, | 
|  | u32 xmit_type) | 
|  | { | 
|  | *parsing_data |= (skb_shinfo(skb)->gso_size << | 
|  | ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) & | 
|  | ETH_TX_PARSE_BD_E2_LSO_MSS; | 
|  | if ((xmit_type & XMIT_GSO_V6) && | 
|  | (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6)) | 
|  | *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_set_pbd_gso - update PBD in GSO case. | 
|  | * | 
|  | * @skb:	packet skb | 
|  | * @pbd:	parse BD | 
|  | * @xmit_type:	xmit flags | 
|  | */ | 
|  | static inline void bnx2x_set_pbd_gso(struct sk_buff *skb, | 
|  | struct eth_tx_parse_bd_e1x *pbd, | 
|  | u32 xmit_type) | 
|  | { | 
|  | pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); | 
|  | pbd->tcp_send_seq = swab32(tcp_hdr(skb)->seq); | 
|  | pbd->tcp_flags = pbd_tcp_flags(skb); | 
|  |  | 
|  | if (xmit_type & XMIT_GSO_V4) { | 
|  | pbd->ip_id = swab16(ip_hdr(skb)->id); | 
|  | pbd->tcp_pseudo_csum = | 
|  | swab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, | 
|  | ip_hdr(skb)->daddr, | 
|  | 0, IPPROTO_TCP, 0)); | 
|  |  | 
|  | } else | 
|  | pbd->tcp_pseudo_csum = | 
|  | swab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
|  | &ipv6_hdr(skb)->daddr, | 
|  | 0, IPPROTO_TCP, 0)); | 
|  |  | 
|  | pbd->global_data |= ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length | 
|  | * | 
|  | * @bp:			driver handle | 
|  | * @skb:		packet skb | 
|  | * @parsing_data:	data to be updated | 
|  | * @xmit_type:		xmit flags | 
|  | * | 
|  | * 57712 related | 
|  | */ | 
|  | static inline  u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb, | 
|  | u32 *parsing_data, u32 xmit_type) | 
|  | { | 
|  | *parsing_data |= | 
|  | ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) << | 
|  | ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W_SHIFT) & | 
|  | ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W; | 
|  |  | 
|  | if (xmit_type & XMIT_CSUM_TCP) { | 
|  | *parsing_data |= ((tcp_hdrlen(skb) / 4) << | 
|  | ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) & | 
|  | ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW; | 
|  |  | 
|  | return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data; | 
|  | } else | 
|  | /* We support checksum offload for TCP and UDP only. | 
|  | * No need to pass the UDP header length - it's a constant. | 
|  | */ | 
|  | return skb_transport_header(skb) + | 
|  | sizeof(struct udphdr) - skb->data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bnx2x_set_pbd_csum - update PBD with checksum and return header length | 
|  | * | 
|  | * @bp:		driver handle | 
|  | * @skb:	packet skb | 
|  | * @pbd:	parse BD to be updated | 
|  | * @xmit_type:	xmit flags | 
|  | */ | 
|  | static inline u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb, | 
|  | struct eth_tx_parse_bd_e1x *pbd, | 
|  | u32 xmit_type) | 
|  | { | 
|  | u8 hlen = (skb_network_header(skb) - skb->data) >> 1; | 
|  |  | 
|  | /* for now NS flag is not used in Linux */ | 
|  | pbd->global_data = | 
|  | (hlen | ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << | 
|  | ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT)); | 
|  |  | 
|  | pbd->ip_hlen_w = (skb_transport_header(skb) - | 
|  | skb_network_header(skb)) >> 1; | 
|  |  | 
|  | hlen += pbd->ip_hlen_w; | 
|  |  | 
|  | /* We support checksum offload for TCP and UDP only */ | 
|  | if (xmit_type & XMIT_CSUM_TCP) | 
|  | hlen += tcp_hdrlen(skb) / 2; | 
|  | else | 
|  | hlen += sizeof(struct udphdr) / 2; | 
|  |  | 
|  | pbd->total_hlen_w = cpu_to_le16(hlen); | 
|  | hlen = hlen*2; | 
|  |  | 
|  | if (xmit_type & XMIT_CSUM_TCP) { | 
|  | pbd->tcp_pseudo_csum = swab16(tcp_hdr(skb)->check); | 
|  |  | 
|  | } else { | 
|  | s8 fix = SKB_CS_OFF(skb); /* signed! */ | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, | 
|  | "hlen %d  fix %d  csum before fix %x\n", | 
|  | le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb)); | 
|  |  | 
|  | /* HW bug: fixup the CSUM */ | 
|  | pbd->tcp_pseudo_csum = | 
|  | bnx2x_csum_fix(skb_transport_header(skb), | 
|  | SKB_CS(skb), fix); | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", | 
|  | pbd->tcp_pseudo_csum); | 
|  | } | 
|  |  | 
|  | return hlen; | 
|  | } | 
|  |  | 
|  | /* called with netif_tx_lock | 
|  | * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call | 
|  | * netif_wake_queue() | 
|  | */ | 
|  | netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | struct bnx2x_fastpath *fp; | 
|  | struct netdev_queue *txq; | 
|  | struct sw_tx_bd *tx_buf; | 
|  | struct eth_tx_start_bd *tx_start_bd; | 
|  | struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; | 
|  | struct eth_tx_parse_bd_e1x *pbd_e1x = NULL; | 
|  | struct eth_tx_parse_bd_e2 *pbd_e2 = NULL; | 
|  | u32 pbd_e2_parsing_data = 0; | 
|  | u16 pkt_prod, bd_prod; | 
|  | int nbd, fp_index; | 
|  | dma_addr_t mapping; | 
|  | u32 xmit_type = bnx2x_xmit_type(bp, skb); | 
|  | int i; | 
|  | u8 hlen = 0; | 
|  | __le16 pkt_size = 0; | 
|  | struct ethhdr *eth; | 
|  | u8 mac_type = UNICAST_ADDRESS; | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (unlikely(bp->panic)) | 
|  | return NETDEV_TX_BUSY; | 
|  | #endif | 
|  |  | 
|  | fp_index = skb_get_queue_mapping(skb); | 
|  | txq = netdev_get_tx_queue(dev, fp_index); | 
|  |  | 
|  | fp = &bp->fp[fp_index]; | 
|  |  | 
|  | if (unlikely(bnx2x_tx_avail(fp) < (skb_shinfo(skb)->nr_frags + 3))) { | 
|  | fp->eth_q_stats.driver_xoff++; | 
|  | netif_tx_stop_queue(txq); | 
|  | BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, "queue[%d]: SKB: summed %x  protocol %x  " | 
|  | "protocol(%x,%x) gso type %x  xmit_type %x\n", | 
|  | fp_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, | 
|  | ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type); | 
|  |  | 
|  | eth = (struct ethhdr *)skb->data; | 
|  |  | 
|  | /* set flag according to packet type (UNICAST_ADDRESS is default)*/ | 
|  | if (unlikely(is_multicast_ether_addr(eth->h_dest))) { | 
|  | if (is_broadcast_ether_addr(eth->h_dest)) | 
|  | mac_type = BROADCAST_ADDRESS; | 
|  | else | 
|  | mac_type = MULTICAST_ADDRESS; | 
|  | } | 
|  |  | 
|  | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) | 
|  | /* First, check if we need to linearize the skb (due to FW | 
|  | restrictions). No need to check fragmentation if page size > 8K | 
|  | (there will be no violation to FW restrictions) */ | 
|  | if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { | 
|  | /* Statistics of linearization */ | 
|  | bp->lin_cnt++; | 
|  | if (skb_linearize(skb) != 0) { | 
|  | DP(NETIF_MSG_TX_QUEUED, "SKB linearization failed - " | 
|  | "silently dropping this SKB\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | Please read carefully. First we use one BD which we mark as start, | 
|  | then we have a parsing info BD (used for TSO or xsum), | 
|  | and only then we have the rest of the TSO BDs. | 
|  | (don't forget to mark the last one as last, | 
|  | and to unmap only AFTER you write to the BD ...) | 
|  | And above all, all pdb sizes are in words - NOT DWORDS! | 
|  | */ | 
|  |  | 
|  | pkt_prod = fp->tx_pkt_prod++; | 
|  | bd_prod = TX_BD(fp->tx_bd_prod); | 
|  |  | 
|  | /* get a tx_buf and first BD */ | 
|  | tx_buf = &fp->tx_buf_ring[TX_BD(pkt_prod)]; | 
|  | tx_start_bd = &fp->tx_desc_ring[bd_prod].start_bd; | 
|  |  | 
|  | tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; | 
|  | SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_ETH_ADDR_TYPE, | 
|  | mac_type); | 
|  |  | 
|  | /* header nbd */ | 
|  | SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_HDR_NBDS, 1); | 
|  |  | 
|  | /* remember the first BD of the packet */ | 
|  | tx_buf->first_bd = fp->tx_bd_prod; | 
|  | tx_buf->skb = skb; | 
|  | tx_buf->flags = 0; | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, | 
|  | "sending pkt %u @%p  next_idx %u  bd %u @%p\n", | 
|  | pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); | 
|  |  | 
|  | if (vlan_tx_tag_present(skb)) { | 
|  | tx_start_bd->vlan_or_ethertype = | 
|  | cpu_to_le16(vlan_tx_tag_get(skb)); | 
|  | tx_start_bd->bd_flags.as_bitfield |= | 
|  | (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT); | 
|  | } else | 
|  | tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod); | 
|  |  | 
|  | /* turn on parsing and get a BD */ | 
|  | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
|  |  | 
|  | if (xmit_type & XMIT_CSUM) { | 
|  | tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; | 
|  |  | 
|  | if (xmit_type & XMIT_CSUM_V4) | 
|  | tx_start_bd->bd_flags.as_bitfield |= | 
|  | ETH_TX_BD_FLAGS_IP_CSUM; | 
|  | else | 
|  | tx_start_bd->bd_flags.as_bitfield |= | 
|  | ETH_TX_BD_FLAGS_IPV6; | 
|  |  | 
|  | if (!(xmit_type & XMIT_CSUM_TCP)) | 
|  | tx_start_bd->bd_flags.as_bitfield |= | 
|  | ETH_TX_BD_FLAGS_IS_UDP; | 
|  | } | 
|  |  | 
|  | if (CHIP_IS_E2(bp)) { | 
|  | pbd_e2 = &fp->tx_desc_ring[bd_prod].parse_bd_e2; | 
|  | memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2)); | 
|  | /* Set PBD in checksum offload case */ | 
|  | if (xmit_type & XMIT_CSUM) | 
|  | hlen = bnx2x_set_pbd_csum_e2(bp, skb, | 
|  | &pbd_e2_parsing_data, | 
|  | xmit_type); | 
|  | } else { | 
|  | pbd_e1x = &fp->tx_desc_ring[bd_prod].parse_bd_e1x; | 
|  | memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x)); | 
|  | /* Set PBD in checksum offload case */ | 
|  | if (xmit_type & XMIT_CSUM) | 
|  | hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Map skb linear data for DMA */ | 
|  | mapping = dma_map_single(&bp->pdev->dev, skb->data, | 
|  | skb_headlen(skb), DMA_TO_DEVICE); | 
|  |  | 
|  | /* Setup the data pointer of the first BD of the packet */ | 
|  | tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
|  | tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
|  | nbd = skb_shinfo(skb)->nr_frags + 2; /* start_bd + pbd + frags */ | 
|  | tx_start_bd->nbd = cpu_to_le16(nbd); | 
|  | tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); | 
|  | pkt_size = tx_start_bd->nbytes; | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, "first bd @%p  addr (%x:%x)  nbd %d" | 
|  | "  nbytes %d  flags %x  vlan %x\n", | 
|  | tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, | 
|  | le16_to_cpu(tx_start_bd->nbd), le16_to_cpu(tx_start_bd->nbytes), | 
|  | tx_start_bd->bd_flags.as_bitfield, | 
|  | le16_to_cpu(tx_start_bd->vlan_or_ethertype)); | 
|  |  | 
|  | if (xmit_type & XMIT_GSO) { | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, | 
|  | "TSO packet len %d  hlen %d  total len %d  tso size %d\n", | 
|  | skb->len, hlen, skb_headlen(skb), | 
|  | skb_shinfo(skb)->gso_size); | 
|  |  | 
|  | tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; | 
|  |  | 
|  | if (unlikely(skb_headlen(skb) > hlen)) | 
|  | bd_prod = bnx2x_tx_split(bp, fp, tx_buf, &tx_start_bd, | 
|  | hlen, bd_prod, ++nbd); | 
|  | if (CHIP_IS_E2(bp)) | 
|  | bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data, | 
|  | xmit_type); | 
|  | else | 
|  | bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type); | 
|  | } | 
|  |  | 
|  | /* Set the PBD's parsing_data field if not zero | 
|  | * (for the chips newer than 57711). | 
|  | */ | 
|  | if (pbd_e2_parsing_data) | 
|  | pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data); | 
|  |  | 
|  | tx_data_bd = (struct eth_tx_bd *)tx_start_bd; | 
|  |  | 
|  | /* Handle fragmented skb */ | 
|  | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | 
|  | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
|  |  | 
|  | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
|  | tx_data_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | 
|  | if (total_pkt_bd == NULL) | 
|  | total_pkt_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | 
|  |  | 
|  | mapping = dma_map_page(&bp->pdev->dev, frag->page, | 
|  | frag->page_offset, | 
|  | frag->size, DMA_TO_DEVICE); | 
|  |  | 
|  | tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | 
|  | tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | 
|  | tx_data_bd->nbytes = cpu_to_le16(frag->size); | 
|  | le16_add_cpu(&pkt_size, frag->size); | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, | 
|  | "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n", | 
|  | i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, | 
|  | le16_to_cpu(tx_data_bd->nbytes)); | 
|  | } | 
|  |  | 
|  | DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); | 
|  |  | 
|  | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | 
|  |  | 
|  | /* now send a tx doorbell, counting the next BD | 
|  | * if the packet contains or ends with it | 
|  | */ | 
|  | if (TX_BD_POFF(bd_prod) < nbd) | 
|  | nbd++; | 
|  |  | 
|  | if (total_pkt_bd != NULL) | 
|  | total_pkt_bd->total_pkt_bytes = pkt_size; | 
|  |  | 
|  | if (pbd_e1x) | 
|  | DP(NETIF_MSG_TX_QUEUED, | 
|  | "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u" | 
|  | "  tcp_flags %x  xsum %x  seq %u  hlen %u\n", | 
|  | pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w, | 
|  | pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags, | 
|  | pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq, | 
|  | le16_to_cpu(pbd_e1x->total_hlen_w)); | 
|  | if (pbd_e2) | 
|  | DP(NETIF_MSG_TX_QUEUED, | 
|  | "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n", | 
|  | pbd_e2, pbd_e2->dst_mac_addr_hi, pbd_e2->dst_mac_addr_mid, | 
|  | pbd_e2->dst_mac_addr_lo, pbd_e2->src_mac_addr_hi, | 
|  | pbd_e2->src_mac_addr_mid, pbd_e2->src_mac_addr_lo, | 
|  | pbd_e2->parsing_data); | 
|  | DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod); | 
|  |  | 
|  | /* | 
|  | * Make sure that the BD data is updated before updating the producer | 
|  | * since FW might read the BD right after the producer is updated. | 
|  | * This is only applicable for weak-ordered memory model archs such | 
|  | * as IA-64. The following barrier is also mandatory since FW will | 
|  | * assumes packets must have BDs. | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | fp->tx_db.data.prod += nbd; | 
|  | barrier(); | 
|  |  | 
|  | DOORBELL(bp, fp->cid, fp->tx_db.raw); | 
|  |  | 
|  | mmiowb(); | 
|  |  | 
|  | fp->tx_bd_prod += nbd; | 
|  |  | 
|  | if (unlikely(bnx2x_tx_avail(fp) < MAX_SKB_FRAGS + 3)) { | 
|  | netif_tx_stop_queue(txq); | 
|  |  | 
|  | /* paired memory barrier is in bnx2x_tx_int(), we have to keep | 
|  | * ordering of set_bit() in netif_tx_stop_queue() and read of | 
|  | * fp->bd_tx_cons */ | 
|  | smp_mb(); | 
|  |  | 
|  | fp->eth_q_stats.driver_xoff++; | 
|  | if (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3) | 
|  | netif_tx_wake_queue(txq); | 
|  | } | 
|  | fp->tx_pkt++; | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /* called with rtnl_lock */ | 
|  | int bnx2x_change_mac_addr(struct net_device *dev, void *p) | 
|  | { | 
|  | struct sockaddr *addr = p; | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | if (!is_valid_ether_addr((u8 *)(addr->sa_data))) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | 
|  | if (netif_running(dev)) | 
|  | bnx2x_set_eth_mac(bp, 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index) | 
|  | { | 
|  | union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk); | 
|  | struct bnx2x_fastpath *fp = &bp->fp[fp_index]; | 
|  |  | 
|  | /* Common */ | 
|  | #ifdef BCM_CNIC | 
|  | if (IS_FCOE_IDX(fp_index)) { | 
|  | memset(sb, 0, sizeof(union host_hc_status_block)); | 
|  | fp->status_blk_mapping = 0; | 
|  |  | 
|  | } else { | 
|  | #endif | 
|  | /* status blocks */ | 
|  | if (CHIP_IS_E2(bp)) | 
|  | BNX2X_PCI_FREE(sb->e2_sb, | 
|  | bnx2x_fp(bp, fp_index, | 
|  | status_blk_mapping), | 
|  | sizeof(struct host_hc_status_block_e2)); | 
|  | else | 
|  | BNX2X_PCI_FREE(sb->e1x_sb, | 
|  | bnx2x_fp(bp, fp_index, | 
|  | status_blk_mapping), | 
|  | sizeof(struct host_hc_status_block_e1x)); | 
|  | #ifdef BCM_CNIC | 
|  | } | 
|  | #endif | 
|  | /* Rx */ | 
|  | if (!skip_rx_queue(bp, fp_index)) { | 
|  | bnx2x_free_rx_bds(fp); | 
|  |  | 
|  | /* fastpath rx rings: rx_buf rx_desc rx_comp */ | 
|  | BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring)); | 
|  | BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring), | 
|  | bnx2x_fp(bp, fp_index, rx_desc_mapping), | 
|  | sizeof(struct eth_rx_bd) * NUM_RX_BD); | 
|  |  | 
|  | BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring), | 
|  | bnx2x_fp(bp, fp_index, rx_comp_mapping), | 
|  | sizeof(struct eth_fast_path_rx_cqe) * | 
|  | NUM_RCQ_BD); | 
|  |  | 
|  | /* SGE ring */ | 
|  | BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring)); | 
|  | BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring), | 
|  | bnx2x_fp(bp, fp_index, rx_sge_mapping), | 
|  | BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); | 
|  | } | 
|  |  | 
|  | /* Tx */ | 
|  | if (!skip_tx_queue(bp, fp_index)) { | 
|  | /* fastpath tx rings: tx_buf tx_desc */ | 
|  | BNX2X_FREE(bnx2x_fp(bp, fp_index, tx_buf_ring)); | 
|  | BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, tx_desc_ring), | 
|  | bnx2x_fp(bp, fp_index, tx_desc_mapping), | 
|  | sizeof(union eth_tx_bd_types) * NUM_TX_BD); | 
|  | } | 
|  | /* end of fastpath */ | 
|  | } | 
|  |  | 
|  | void bnx2x_free_fp_mem(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  | for_each_queue(bp, i) | 
|  | bnx2x_free_fp_mem_at(bp, i); | 
|  | } | 
|  |  | 
|  | static inline void set_sb_shortcuts(struct bnx2x *bp, int index) | 
|  | { | 
|  | union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk); | 
|  | if (CHIP_IS_E2(bp)) { | 
|  | bnx2x_fp(bp, index, sb_index_values) = | 
|  | (__le16 *)status_blk.e2_sb->sb.index_values; | 
|  | bnx2x_fp(bp, index, sb_running_index) = | 
|  | (__le16 *)status_blk.e2_sb->sb.running_index; | 
|  | } else { | 
|  | bnx2x_fp(bp, index, sb_index_values) = | 
|  | (__le16 *)status_blk.e1x_sb->sb.index_values; | 
|  | bnx2x_fp(bp, index, sb_running_index) = | 
|  | (__le16 *)status_blk.e1x_sb->sb.running_index; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index) | 
|  | { | 
|  | union host_hc_status_block *sb; | 
|  | struct bnx2x_fastpath *fp = &bp->fp[index]; | 
|  | int ring_size = 0; | 
|  |  | 
|  | /* if rx_ring_size specified - use it */ | 
|  | int rx_ring_size = bp->rx_ring_size ? bp->rx_ring_size : | 
|  | MAX_RX_AVAIL/bp->num_queues; | 
|  |  | 
|  | /* allocate at least number of buffers required by FW */ | 
|  | rx_ring_size = max_t(int, fp->disable_tpa ? MIN_RX_SIZE_NONTPA : | 
|  | MIN_RX_SIZE_TPA, | 
|  | rx_ring_size); | 
|  |  | 
|  | bnx2x_fp(bp, index, bp) = bp; | 
|  | bnx2x_fp(bp, index, index) = index; | 
|  |  | 
|  | /* Common */ | 
|  | sb = &bnx2x_fp(bp, index, status_blk); | 
|  | #ifdef BCM_CNIC | 
|  | if (!IS_FCOE_IDX(index)) { | 
|  | #endif | 
|  | /* status blocks */ | 
|  | if (CHIP_IS_E2(bp)) | 
|  | BNX2X_PCI_ALLOC(sb->e2_sb, | 
|  | &bnx2x_fp(bp, index, status_blk_mapping), | 
|  | sizeof(struct host_hc_status_block_e2)); | 
|  | else | 
|  | BNX2X_PCI_ALLOC(sb->e1x_sb, | 
|  | &bnx2x_fp(bp, index, status_blk_mapping), | 
|  | sizeof(struct host_hc_status_block_e1x)); | 
|  | #ifdef BCM_CNIC | 
|  | } | 
|  | #endif | 
|  | set_sb_shortcuts(bp, index); | 
|  |  | 
|  | /* Tx */ | 
|  | if (!skip_tx_queue(bp, index)) { | 
|  | /* fastpath tx rings: tx_buf tx_desc */ | 
|  | BNX2X_ALLOC(bnx2x_fp(bp, index, tx_buf_ring), | 
|  | sizeof(struct sw_tx_bd) * NUM_TX_BD); | 
|  | BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, tx_desc_ring), | 
|  | &bnx2x_fp(bp, index, tx_desc_mapping), | 
|  | sizeof(union eth_tx_bd_types) * NUM_TX_BD); | 
|  | } | 
|  |  | 
|  | /* Rx */ | 
|  | if (!skip_rx_queue(bp, index)) { | 
|  | /* fastpath rx rings: rx_buf rx_desc rx_comp */ | 
|  | BNX2X_ALLOC(bnx2x_fp(bp, index, rx_buf_ring), | 
|  | sizeof(struct sw_rx_bd) * NUM_RX_BD); | 
|  | BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_desc_ring), | 
|  | &bnx2x_fp(bp, index, rx_desc_mapping), | 
|  | sizeof(struct eth_rx_bd) * NUM_RX_BD); | 
|  |  | 
|  | BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_comp_ring), | 
|  | &bnx2x_fp(bp, index, rx_comp_mapping), | 
|  | sizeof(struct eth_fast_path_rx_cqe) * | 
|  | NUM_RCQ_BD); | 
|  |  | 
|  | /* SGE ring */ | 
|  | BNX2X_ALLOC(bnx2x_fp(bp, index, rx_page_ring), | 
|  | sizeof(struct sw_rx_page) * NUM_RX_SGE); | 
|  | BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_sge_ring), | 
|  | &bnx2x_fp(bp, index, rx_sge_mapping), | 
|  | BCM_PAGE_SIZE * NUM_RX_SGE_PAGES); | 
|  | /* RX BD ring */ | 
|  | bnx2x_set_next_page_rx_bd(fp); | 
|  |  | 
|  | /* CQ ring */ | 
|  | bnx2x_set_next_page_rx_cq(fp); | 
|  |  | 
|  | /* BDs */ | 
|  | ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size); | 
|  | if (ring_size < rx_ring_size) | 
|  | goto alloc_mem_err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | /* handles low memory cases */ | 
|  | alloc_mem_err: | 
|  | BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n", | 
|  | index, ring_size); | 
|  | /* FW will drop all packets if queue is not big enough, | 
|  | * In these cases we disable the queue | 
|  | * Min size diferent for TPA and non-TPA queues | 
|  | */ | 
|  | if (ring_size < (fp->disable_tpa ? | 
|  | MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) { | 
|  | /* release memory allocated for this queue */ | 
|  | bnx2x_free_fp_mem_at(bp, index); | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bnx2x_alloc_fp_mem(struct bnx2x *bp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /** | 
|  | * 1. Allocate FP for leading - fatal if error | 
|  | * 2. {CNIC} Allocate FCoE FP - fatal if error | 
|  | * 3. Allocate RSS - fix number of queues if error | 
|  | */ | 
|  |  | 
|  | /* leading */ | 
|  | if (bnx2x_alloc_fp_mem_at(bp, 0)) | 
|  | return -ENOMEM; | 
|  | #ifdef BCM_CNIC | 
|  | /* FCoE */ | 
|  | if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX)) | 
|  | return -ENOMEM; | 
|  | #endif | 
|  | /* RSS */ | 
|  | for_each_nondefault_eth_queue(bp, i) | 
|  | if (bnx2x_alloc_fp_mem_at(bp, i)) | 
|  | break; | 
|  |  | 
|  | /* handle memory failures */ | 
|  | if (i != BNX2X_NUM_ETH_QUEUES(bp)) { | 
|  | int delta = BNX2X_NUM_ETH_QUEUES(bp) - i; | 
|  |  | 
|  | WARN_ON(delta < 0); | 
|  | #ifdef BCM_CNIC | 
|  | /** | 
|  | * move non eth FPs next to last eth FP | 
|  | * must be done in that order | 
|  | * FCOE_IDX < FWD_IDX < OOO_IDX | 
|  | */ | 
|  |  | 
|  | /* move FCoE fp */ | 
|  | bnx2x_move_fp(bp, FCOE_IDX, FCOE_IDX - delta); | 
|  | #endif | 
|  | bp->num_queues -= delta; | 
|  | BNX2X_ERR("Adjusted num of queues from %d to %d\n", | 
|  | bp->num_queues + delta, bp->num_queues); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bnx2x_setup_irqs(struct bnx2x *bp) | 
|  | { | 
|  | int rc = 0; | 
|  | if (bp->flags & USING_MSIX_FLAG) { | 
|  | rc = bnx2x_req_msix_irqs(bp); | 
|  | if (rc) | 
|  | return rc; | 
|  | } else { | 
|  | bnx2x_ack_int(bp); | 
|  | rc = bnx2x_req_irq(bp); | 
|  | if (rc) { | 
|  | BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc); | 
|  | return rc; | 
|  | } | 
|  | if (bp->flags & USING_MSI_FLAG) { | 
|  | bp->dev->irq = bp->pdev->irq; | 
|  | netdev_info(bp->dev, "using MSI  IRQ %d\n", | 
|  | bp->pdev->irq); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bnx2x_free_mem_bp(struct bnx2x *bp) | 
|  | { | 
|  | kfree(bp->fp); | 
|  | kfree(bp->msix_table); | 
|  | kfree(bp->ilt); | 
|  | } | 
|  |  | 
|  | int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp) | 
|  | { | 
|  | struct bnx2x_fastpath *fp; | 
|  | struct msix_entry *tbl; | 
|  | struct bnx2x_ilt *ilt; | 
|  |  | 
|  | /* fp array */ | 
|  | fp = kzalloc(L2_FP_COUNT(bp->l2_cid_count)*sizeof(*fp), GFP_KERNEL); | 
|  | if (!fp) | 
|  | goto alloc_err; | 
|  | bp->fp = fp; | 
|  |  | 
|  | /* msix table */ | 
|  | tbl = kzalloc((FP_SB_COUNT(bp->l2_cid_count) + 1) * sizeof(*tbl), | 
|  | GFP_KERNEL); | 
|  | if (!tbl) | 
|  | goto alloc_err; | 
|  | bp->msix_table = tbl; | 
|  |  | 
|  | /* ilt */ | 
|  | ilt = kzalloc(sizeof(*ilt), GFP_KERNEL); | 
|  | if (!ilt) | 
|  | goto alloc_err; | 
|  | bp->ilt = ilt; | 
|  |  | 
|  | return 0; | 
|  | alloc_err: | 
|  | bnx2x_free_mem_bp(bp); | 
|  | return -ENOMEM; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int bnx2x_reload_if_running(struct net_device *dev) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | if (unlikely(!netif_running(dev))) | 
|  | return 0; | 
|  |  | 
|  | bnx2x_nic_unload(bp, UNLOAD_NORMAL); | 
|  | return bnx2x_nic_load(bp, LOAD_NORMAL); | 
|  | } | 
|  |  | 
|  | /* called with rtnl_lock */ | 
|  | int bnx2x_change_mtu(struct net_device *dev, int new_mtu) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | 
|  | printk(KERN_ERR "Handling parity error recovery. Try again later\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || | 
|  | ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* This does not race with packet allocation | 
|  | * because the actual alloc size is | 
|  | * only updated as part of load | 
|  | */ | 
|  | dev->mtu = new_mtu; | 
|  |  | 
|  | return bnx2x_reload_if_running(dev); | 
|  | } | 
|  |  | 
|  | u32 bnx2x_fix_features(struct net_device *dev, u32 features) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | /* TPA requires Rx CSUM offloading */ | 
|  | if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) | 
|  | features &= ~NETIF_F_LRO; | 
|  |  | 
|  | return features; | 
|  | } | 
|  |  | 
|  | int bnx2x_set_features(struct net_device *dev, u32 features) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  | u32 flags = bp->flags; | 
|  | bool bnx2x_reload = false; | 
|  |  | 
|  | if (features & NETIF_F_LRO) | 
|  | flags |= TPA_ENABLE_FLAG; | 
|  | else | 
|  | flags &= ~TPA_ENABLE_FLAG; | 
|  |  | 
|  | if (features & NETIF_F_LOOPBACK) { | 
|  | if (bp->link_params.loopback_mode != LOOPBACK_BMAC) { | 
|  | bp->link_params.loopback_mode = LOOPBACK_BMAC; | 
|  | bnx2x_reload = true; | 
|  | } | 
|  | } else { | 
|  | if (bp->link_params.loopback_mode != LOOPBACK_NONE) { | 
|  | bp->link_params.loopback_mode = LOOPBACK_NONE; | 
|  | bnx2x_reload = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flags ^ bp->flags) { | 
|  | bp->flags = flags; | 
|  | bnx2x_reload = true; | 
|  | } | 
|  |  | 
|  | if (bnx2x_reload) { | 
|  | if (bp->recovery_state == BNX2X_RECOVERY_DONE) | 
|  | return bnx2x_reload_if_running(dev); | 
|  | /* else: bnx2x_nic_load() will be called at end of recovery */ | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void bnx2x_tx_timeout(struct net_device *dev) | 
|  | { | 
|  | struct bnx2x *bp = netdev_priv(dev); | 
|  |  | 
|  | #ifdef BNX2X_STOP_ON_ERROR | 
|  | if (!bp->panic) | 
|  | bnx2x_panic(); | 
|  | #endif | 
|  | /* This allows the netif to be shutdown gracefully before resetting */ | 
|  | schedule_delayed_work(&bp->reset_task, 0); | 
|  | } | 
|  |  | 
|  | int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | struct net_device *dev = pci_get_drvdata(pdev); | 
|  | struct bnx2x *bp; | 
|  |  | 
|  | if (!dev) { | 
|  | dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | bp = netdev_priv(dev); | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | if (!netif_running(dev)) { | 
|  | rtnl_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | netif_device_detach(dev); | 
|  |  | 
|  | bnx2x_nic_unload(bp, UNLOAD_CLOSE); | 
|  |  | 
|  | bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); | 
|  |  | 
|  | rtnl_unlock(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bnx2x_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *dev = pci_get_drvdata(pdev); | 
|  | struct bnx2x *bp; | 
|  | int rc; | 
|  |  | 
|  | if (!dev) { | 
|  | dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | bp = netdev_priv(dev); | 
|  |  | 
|  | if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | 
|  | printk(KERN_ERR "Handling parity error recovery. Try again later\n"); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | rtnl_lock(); | 
|  |  | 
|  | pci_restore_state(pdev); | 
|  |  | 
|  | if (!netif_running(dev)) { | 
|  | rtnl_unlock(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bnx2x_set_power_state(bp, PCI_D0); | 
|  | netif_device_attach(dev); | 
|  |  | 
|  | /* Since the chip was reset, clear the FW sequence number */ | 
|  | bp->fw_seq = 0; | 
|  | rc = bnx2x_nic_load(bp, LOAD_OPEN); | 
|  |  | 
|  | rtnl_unlock(); | 
|  |  | 
|  | return rc; | 
|  | } |