|  | /* | 
|  | * This file is part of the Chelsio T4 Ethernet driver for Linux. | 
|  | * | 
|  | * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved. | 
|  | * | 
|  | * This software is available to you under a choice of one of two | 
|  | * licenses.  You may choose to be licensed under the terms of the GNU | 
|  | * General Public License (GPL) Version 2, available from the file | 
|  | * COPYING in the main directory of this source tree, or the | 
|  | * OpenIB.org BSD license below: | 
|  | * | 
|  | *     Redistribution and use in source and binary forms, with or | 
|  | *     without modification, are permitted provided that the following | 
|  | *     conditions are met: | 
|  | * | 
|  | *      - Redistributions of source code must retain the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer. | 
|  | * | 
|  | *      - Redistributions in binary form must reproduce the above | 
|  | *        copyright notice, this list of conditions and the following | 
|  | *        disclaimer in the documentation and/or other materials | 
|  | *        provided with the distribution. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
|  | * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
|  | * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
|  | * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
|  | * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
|  | * SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/if_vlan.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <net/ipv6.h> | 
|  | #include <net/tcp.h> | 
|  | #include "cxgb4.h" | 
|  | #include "t4_regs.h" | 
|  | #include "t4_msg.h" | 
|  | #include "t4fw_api.h" | 
|  |  | 
|  | /* | 
|  | * Rx buffer size.  We use largish buffers if possible but settle for single | 
|  | * pages under memory shortage. | 
|  | */ | 
|  | #if PAGE_SHIFT >= 16 | 
|  | # define FL_PG_ORDER 0 | 
|  | #else | 
|  | # define FL_PG_ORDER (16 - PAGE_SHIFT) | 
|  | #endif | 
|  |  | 
|  | /* RX_PULL_LEN should be <= RX_COPY_THRES */ | 
|  | #define RX_COPY_THRES    256 | 
|  | #define RX_PULL_LEN      128 | 
|  |  | 
|  | /* | 
|  | * Main body length for sk_buffs used for Rx Ethernet packets with fragments. | 
|  | * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room. | 
|  | */ | 
|  | #define RX_PKT_SKB_LEN   512 | 
|  |  | 
|  | /* Ethernet header padding prepended to RX_PKTs */ | 
|  | #define RX_PKT_PAD 2 | 
|  |  | 
|  | /* | 
|  | * Max number of Tx descriptors we clean up at a time.  Should be modest as | 
|  | * freeing skbs isn't cheap and it happens while holding locks.  We just need | 
|  | * to free packets faster than they arrive, we eventually catch up and keep | 
|  | * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES. | 
|  | */ | 
|  | #define MAX_TX_RECLAIM 16 | 
|  |  | 
|  | /* | 
|  | * Max number of Rx buffers we replenish at a time.  Again keep this modest, | 
|  | * allocating buffers isn't cheap either. | 
|  | */ | 
|  | #define MAX_RX_REFILL 16U | 
|  |  | 
|  | /* | 
|  | * Period of the Rx queue check timer.  This timer is infrequent as it has | 
|  | * something to do only when the system experiences severe memory shortage. | 
|  | */ | 
|  | #define RX_QCHECK_PERIOD (HZ / 2) | 
|  |  | 
|  | /* | 
|  | * Period of the Tx queue check timer. | 
|  | */ | 
|  | #define TX_QCHECK_PERIOD (HZ / 2) | 
|  |  | 
|  | /* | 
|  | * Max number of Tx descriptors to be reclaimed by the Tx timer. | 
|  | */ | 
|  | #define MAX_TIMER_TX_RECLAIM 100 | 
|  |  | 
|  | /* | 
|  | * Timer index used when backing off due to memory shortage. | 
|  | */ | 
|  | #define NOMEM_TMR_IDX (SGE_NTIMERS - 1) | 
|  |  | 
|  | /* | 
|  | * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will | 
|  | * attempt to refill it. | 
|  | */ | 
|  | #define FL_STARVE_THRES 4 | 
|  |  | 
|  | /* | 
|  | * Suspend an Ethernet Tx queue with fewer available descriptors than this. | 
|  | * This is the same as calc_tx_descs() for a TSO packet with | 
|  | * nr_frags == MAX_SKB_FRAGS. | 
|  | */ | 
|  | #define ETHTXQ_STOP_THRES \ | 
|  | (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8)) | 
|  |  | 
|  | /* | 
|  | * Suspension threshold for non-Ethernet Tx queues.  We require enough room | 
|  | * for a full sized WR. | 
|  | */ | 
|  | #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc)) | 
|  |  | 
|  | /* | 
|  | * Max Tx descriptor space we allow for an Ethernet packet to be inlined | 
|  | * into a WR. | 
|  | */ | 
|  | #define MAX_IMM_TX_PKT_LEN 128 | 
|  |  | 
|  | /* | 
|  | * Max size of a WR sent through a control Tx queue. | 
|  | */ | 
|  | #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN | 
|  |  | 
|  | enum { | 
|  | /* packet alignment in FL buffers */ | 
|  | FL_ALIGN = L1_CACHE_BYTES < 32 ? 32 : L1_CACHE_BYTES, | 
|  | /* egress status entry size */ | 
|  | STAT_LEN = L1_CACHE_BYTES > 64 ? 128 : 64 | 
|  | }; | 
|  |  | 
|  | struct tx_sw_desc {                /* SW state per Tx descriptor */ | 
|  | struct sk_buff *skb; | 
|  | struct ulptx_sgl *sgl; | 
|  | }; | 
|  |  | 
|  | struct rx_sw_desc {                /* SW state per Rx descriptor */ | 
|  | struct page *page; | 
|  | dma_addr_t dma_addr; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The low bits of rx_sw_desc.dma_addr have special meaning. | 
|  | */ | 
|  | enum { | 
|  | RX_LARGE_BUF    = 1 << 0, /* buffer is larger than PAGE_SIZE */ | 
|  | RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */ | 
|  | }; | 
|  |  | 
|  | static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d) | 
|  | { | 
|  | return d->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF); | 
|  | } | 
|  |  | 
|  | static inline bool is_buf_mapped(const struct rx_sw_desc *d) | 
|  | { | 
|  | return !(d->dma_addr & RX_UNMAPPED_BUF); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	txq_avail - return the number of available slots in a Tx queue | 
|  | *	@q: the Tx queue | 
|  | * | 
|  | *	Returns the number of descriptors in a Tx queue available to write new | 
|  | *	packets. | 
|  | */ | 
|  | static inline unsigned int txq_avail(const struct sge_txq *q) | 
|  | { | 
|  | return q->size - 1 - q->in_use; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	fl_cap - return the capacity of a free-buffer list | 
|  | *	@fl: the FL | 
|  | * | 
|  | *	Returns the capacity of a free-buffer list.  The capacity is less than | 
|  | *	the size because one descriptor needs to be left unpopulated, otherwise | 
|  | *	HW will think the FL is empty. | 
|  | */ | 
|  | static inline unsigned int fl_cap(const struct sge_fl *fl) | 
|  | { | 
|  | return fl->size - 8;   /* 1 descriptor = 8 buffers */ | 
|  | } | 
|  |  | 
|  | static inline bool fl_starving(const struct sge_fl *fl) | 
|  | { | 
|  | return fl->avail - fl->pend_cred <= FL_STARVE_THRES; | 
|  | } | 
|  |  | 
|  | static int map_skb(struct device *dev, const struct sk_buff *skb, | 
|  | dma_addr_t *addr) | 
|  | { | 
|  | const skb_frag_t *fp, *end; | 
|  | const struct skb_shared_info *si; | 
|  |  | 
|  | *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, *addr)) | 
|  | goto out_err; | 
|  |  | 
|  | si = skb_shinfo(skb); | 
|  | end = &si->frags[si->nr_frags]; | 
|  |  | 
|  | for (fp = si->frags; fp < end; fp++) { | 
|  | *++addr = dma_map_page(dev, fp->page, fp->page_offset, fp->size, | 
|  | DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(dev, *addr)) | 
|  | goto unwind; | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | unwind: | 
|  | while (fp-- > si->frags) | 
|  | dma_unmap_page(dev, *--addr, fp->size, DMA_TO_DEVICE); | 
|  |  | 
|  | dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE); | 
|  | out_err: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NEED_DMA_MAP_STATE | 
|  | static void unmap_skb(struct device *dev, const struct sk_buff *skb, | 
|  | const dma_addr_t *addr) | 
|  | { | 
|  | const skb_frag_t *fp, *end; | 
|  | const struct skb_shared_info *si; | 
|  |  | 
|  | dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE); | 
|  |  | 
|  | si = skb_shinfo(skb); | 
|  | end = &si->frags[si->nr_frags]; | 
|  | for (fp = si->frags; fp < end; fp++) | 
|  | dma_unmap_page(dev, *addr++, fp->size, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	deferred_unmap_destructor - unmap a packet when it is freed | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	This is the packet destructor used for Tx packets that need to remain | 
|  | *	mapped until they are freed rather than until their Tx descriptors are | 
|  | *	freed. | 
|  | */ | 
|  | static void deferred_unmap_destructor(struct sk_buff *skb) | 
|  | { | 
|  | unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void unmap_sgl(struct device *dev, const struct sk_buff *skb, | 
|  | const struct ulptx_sgl *sgl, const struct sge_txq *q) | 
|  | { | 
|  | const struct ulptx_sge_pair *p; | 
|  | unsigned int nfrags = skb_shinfo(skb)->nr_frags; | 
|  |  | 
|  | if (likely(skb_headlen(skb))) | 
|  | dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), | 
|  | DMA_TO_DEVICE); | 
|  | else { | 
|  | dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0), | 
|  | DMA_TO_DEVICE); | 
|  | nfrags--; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the complexity below is because of the possibility of a wrap-around | 
|  | * in the middle of an SGL | 
|  | */ | 
|  | for (p = sgl->sge; nfrags >= 2; nfrags -= 2) { | 
|  | if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) { | 
|  | unmap:			dma_unmap_page(dev, be64_to_cpu(p->addr[0]), | 
|  | ntohl(p->len[0]), DMA_TO_DEVICE); | 
|  | dma_unmap_page(dev, be64_to_cpu(p->addr[1]), | 
|  | ntohl(p->len[1]), DMA_TO_DEVICE); | 
|  | p++; | 
|  | } else if ((u8 *)p == (u8 *)q->stat) { | 
|  | p = (const struct ulptx_sge_pair *)q->desc; | 
|  | goto unmap; | 
|  | } else if ((u8 *)p + 8 == (u8 *)q->stat) { | 
|  | const __be64 *addr = (const __be64 *)q->desc; | 
|  |  | 
|  | dma_unmap_page(dev, be64_to_cpu(addr[0]), | 
|  | ntohl(p->len[0]), DMA_TO_DEVICE); | 
|  | dma_unmap_page(dev, be64_to_cpu(addr[1]), | 
|  | ntohl(p->len[1]), DMA_TO_DEVICE); | 
|  | p = (const struct ulptx_sge_pair *)&addr[2]; | 
|  | } else { | 
|  | const __be64 *addr = (const __be64 *)q->desc; | 
|  |  | 
|  | dma_unmap_page(dev, be64_to_cpu(p->addr[0]), | 
|  | ntohl(p->len[0]), DMA_TO_DEVICE); | 
|  | dma_unmap_page(dev, be64_to_cpu(addr[0]), | 
|  | ntohl(p->len[1]), DMA_TO_DEVICE); | 
|  | p = (const struct ulptx_sge_pair *)&addr[1]; | 
|  | } | 
|  | } | 
|  | if (nfrags) { | 
|  | __be64 addr; | 
|  |  | 
|  | if ((u8 *)p == (u8 *)q->stat) | 
|  | p = (const struct ulptx_sge_pair *)q->desc; | 
|  | addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] : | 
|  | *(const __be64 *)q->desc; | 
|  | dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]), | 
|  | DMA_TO_DEVICE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	free_tx_desc - reclaims Tx descriptors and their buffers | 
|  | *	@adapter: the adapter | 
|  | *	@q: the Tx queue to reclaim descriptors from | 
|  | *	@n: the number of descriptors to reclaim | 
|  | *	@unmap: whether the buffers should be unmapped for DMA | 
|  | * | 
|  | *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated | 
|  | *	Tx buffers.  Called with the Tx queue lock held. | 
|  | */ | 
|  | static void free_tx_desc(struct adapter *adap, struct sge_txq *q, | 
|  | unsigned int n, bool unmap) | 
|  | { | 
|  | struct tx_sw_desc *d; | 
|  | unsigned int cidx = q->cidx; | 
|  | struct device *dev = adap->pdev_dev; | 
|  |  | 
|  | d = &q->sdesc[cidx]; | 
|  | while (n--) { | 
|  | if (d->skb) {                       /* an SGL is present */ | 
|  | if (unmap) | 
|  | unmap_sgl(dev, d->skb, d->sgl, q); | 
|  | kfree_skb(d->skb); | 
|  | d->skb = NULL; | 
|  | } | 
|  | ++d; | 
|  | if (++cidx == q->size) { | 
|  | cidx = 0; | 
|  | d = q->sdesc; | 
|  | } | 
|  | } | 
|  | q->cidx = cidx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the number of reclaimable descriptors in a Tx queue. | 
|  | */ | 
|  | static inline int reclaimable(const struct sge_txq *q) | 
|  | { | 
|  | int hw_cidx = ntohs(q->stat->cidx); | 
|  | hw_cidx -= q->cidx; | 
|  | return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	reclaim_completed_tx - reclaims completed Tx descriptors | 
|  | *	@adap: the adapter | 
|  | *	@q: the Tx queue to reclaim completed descriptors from | 
|  | *	@unmap: whether the buffers should be unmapped for DMA | 
|  | * | 
|  | *	Reclaims Tx descriptors that the SGE has indicated it has processed, | 
|  | *	and frees the associated buffers if possible.  Called with the Tx | 
|  | *	queue locked. | 
|  | */ | 
|  | static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q, | 
|  | bool unmap) | 
|  | { | 
|  | int avail = reclaimable(q); | 
|  |  | 
|  | if (avail) { | 
|  | /* | 
|  | * Limit the amount of clean up work we do at a time to keep | 
|  | * the Tx lock hold time O(1). | 
|  | */ | 
|  | if (avail > MAX_TX_RECLAIM) | 
|  | avail = MAX_TX_RECLAIM; | 
|  |  | 
|  | free_tx_desc(adap, q, avail, unmap); | 
|  | q->in_use -= avail; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int get_buf_size(const struct rx_sw_desc *d) | 
|  | { | 
|  | #if FL_PG_ORDER > 0 | 
|  | return (d->dma_addr & RX_LARGE_BUF) ? (PAGE_SIZE << FL_PG_ORDER) : | 
|  | PAGE_SIZE; | 
|  | #else | 
|  | return PAGE_SIZE; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	free_rx_bufs - free the Rx buffers on an SGE free list | 
|  | *	@adap: the adapter | 
|  | *	@q: the SGE free list to free buffers from | 
|  | *	@n: how many buffers to free | 
|  | * | 
|  | *	Release the next @n buffers on an SGE free-buffer Rx queue.   The | 
|  | *	buffers must be made inaccessible to HW before calling this function. | 
|  | */ | 
|  | static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n) | 
|  | { | 
|  | while (n--) { | 
|  | struct rx_sw_desc *d = &q->sdesc[q->cidx]; | 
|  |  | 
|  | if (is_buf_mapped(d)) | 
|  | dma_unmap_page(adap->pdev_dev, get_buf_addr(d), | 
|  | get_buf_size(d), PCI_DMA_FROMDEVICE); | 
|  | put_page(d->page); | 
|  | d->page = NULL; | 
|  | if (++q->cidx == q->size) | 
|  | q->cidx = 0; | 
|  | q->avail--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list | 
|  | *	@adap: the adapter | 
|  | *	@q: the SGE free list | 
|  | * | 
|  | *	Unmap the current buffer on an SGE free-buffer Rx queue.   The | 
|  | *	buffer must be made inaccessible to HW before calling this function. | 
|  | * | 
|  | *	This is similar to @free_rx_bufs above but does not free the buffer. | 
|  | *	Do note that the FL still loses any further access to the buffer. | 
|  | */ | 
|  | static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q) | 
|  | { | 
|  | struct rx_sw_desc *d = &q->sdesc[q->cidx]; | 
|  |  | 
|  | if (is_buf_mapped(d)) | 
|  | dma_unmap_page(adap->pdev_dev, get_buf_addr(d), | 
|  | get_buf_size(d), PCI_DMA_FROMDEVICE); | 
|  | d->page = NULL; | 
|  | if (++q->cidx == q->size) | 
|  | q->cidx = 0; | 
|  | q->avail--; | 
|  | } | 
|  |  | 
|  | static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) | 
|  | { | 
|  | if (q->pend_cred >= 8) { | 
|  | wmb(); | 
|  | t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), DBPRIO | | 
|  | QID(q->cntxt_id) | PIDX(q->pend_cred / 8)); | 
|  | q->pend_cred &= 7; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg, | 
|  | dma_addr_t mapping) | 
|  | { | 
|  | sd->page = pg; | 
|  | sd->dma_addr = mapping;      /* includes size low bits */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	refill_fl - refill an SGE Rx buffer ring | 
|  | *	@adap: the adapter | 
|  | *	@q: the ring to refill | 
|  | *	@n: the number of new buffers to allocate | 
|  | *	@gfp: the gfp flags for the allocations | 
|  | * | 
|  | *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers, | 
|  | *	allocated with the supplied gfp flags.  The caller must assure that | 
|  | *	@n does not exceed the queue's capacity.  If afterwards the queue is | 
|  | *	found critically low mark it as starving in the bitmap of starving FLs. | 
|  | * | 
|  | *	Returns the number of buffers allocated. | 
|  | */ | 
|  | static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct page *pg; | 
|  | dma_addr_t mapping; | 
|  | unsigned int cred = q->avail; | 
|  | __be64 *d = &q->desc[q->pidx]; | 
|  | struct rx_sw_desc *sd = &q->sdesc[q->pidx]; | 
|  |  | 
|  | gfp |= __GFP_NOWARN;         /* failures are expected */ | 
|  |  | 
|  | #if FL_PG_ORDER > 0 | 
|  | /* | 
|  | * Prefer large buffers | 
|  | */ | 
|  | while (n) { | 
|  | pg = alloc_pages(gfp | __GFP_COMP, FL_PG_ORDER); | 
|  | if (unlikely(!pg)) { | 
|  | q->large_alloc_failed++; | 
|  | break;       /* fall back to single pages */ | 
|  | } | 
|  |  | 
|  | mapping = dma_map_page(adap->pdev_dev, pg, 0, | 
|  | PAGE_SIZE << FL_PG_ORDER, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { | 
|  | __free_pages(pg, FL_PG_ORDER); | 
|  | goto out;   /* do not try small pages for this error */ | 
|  | } | 
|  | mapping |= RX_LARGE_BUF; | 
|  | *d++ = cpu_to_be64(mapping); | 
|  |  | 
|  | set_rx_sw_desc(sd, pg, mapping); | 
|  | sd++; | 
|  |  | 
|  | q->avail++; | 
|  | if (++q->pidx == q->size) { | 
|  | q->pidx = 0; | 
|  | sd = q->sdesc; | 
|  | d = q->desc; | 
|  | } | 
|  | n--; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | while (n--) { | 
|  | pg = __netdev_alloc_page(adap->port[0], gfp); | 
|  | if (unlikely(!pg)) { | 
|  | q->alloc_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) { | 
|  | netdev_free_page(adap->port[0], pg); | 
|  | goto out; | 
|  | } | 
|  | *d++ = cpu_to_be64(mapping); | 
|  |  | 
|  | set_rx_sw_desc(sd, pg, mapping); | 
|  | sd++; | 
|  |  | 
|  | q->avail++; | 
|  | if (++q->pidx == q->size) { | 
|  | q->pidx = 0; | 
|  | sd = q->sdesc; | 
|  | d = q->desc; | 
|  | } | 
|  | } | 
|  |  | 
|  | out:	cred = q->avail - cred; | 
|  | q->pend_cred += cred; | 
|  | ring_fl_db(adap, q); | 
|  |  | 
|  | if (unlikely(fl_starving(q))) { | 
|  | smp_wmb(); | 
|  | set_bit(q->cntxt_id - adap->sge.egr_start, | 
|  | adap->sge.starving_fl); | 
|  | } | 
|  |  | 
|  | return cred; | 
|  | } | 
|  |  | 
|  | static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) | 
|  | { | 
|  | refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail), | 
|  | GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	alloc_ring - allocate resources for an SGE descriptor ring | 
|  | *	@dev: the PCI device's core device | 
|  | *	@nelem: the number of descriptors | 
|  | *	@elem_size: the size of each descriptor | 
|  | *	@sw_size: the size of the SW state associated with each ring element | 
|  | *	@phys: the physical address of the allocated ring | 
|  | *	@metadata: address of the array holding the SW state for the ring | 
|  | *	@stat_size: extra space in HW ring for status information | 
|  | *	@node: preferred node for memory allocations | 
|  | * | 
|  | *	Allocates resources for an SGE descriptor ring, such as Tx queues, | 
|  | *	free buffer lists, or response queues.  Each SGE ring requires | 
|  | *	space for its HW descriptors plus, optionally, space for the SW state | 
|  | *	associated with each HW entry (the metadata).  The function returns | 
|  | *	three values: the virtual address for the HW ring (the return value | 
|  | *	of the function), the bus address of the HW ring, and the address | 
|  | *	of the SW ring. | 
|  | */ | 
|  | static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size, | 
|  | size_t sw_size, dma_addr_t *phys, void *metadata, | 
|  | size_t stat_size, int node) | 
|  | { | 
|  | size_t len = nelem * elem_size + stat_size; | 
|  | void *s = NULL; | 
|  | void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL); | 
|  |  | 
|  | if (!p) | 
|  | return NULL; | 
|  | if (sw_size) { | 
|  | s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node); | 
|  |  | 
|  | if (!s) { | 
|  | dma_free_coherent(dev, len, p, *phys); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | if (metadata) | 
|  | *(void **)metadata = s; | 
|  | memset(p, 0, len); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	sgl_len - calculates the size of an SGL of the given capacity | 
|  | *	@n: the number of SGL entries | 
|  | * | 
|  | *	Calculates the number of flits needed for a scatter/gather list that | 
|  | *	can hold the given number of entries. | 
|  | */ | 
|  | static inline unsigned int sgl_len(unsigned int n) | 
|  | { | 
|  | n--; | 
|  | return (3 * n) / 2 + (n & 1) + 2; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	flits_to_desc - returns the num of Tx descriptors for the given flits | 
|  | *	@n: the number of flits | 
|  | * | 
|  | *	Returns the number of Tx descriptors needed for the supplied number | 
|  | *	of flits. | 
|  | */ | 
|  | static inline unsigned int flits_to_desc(unsigned int n) | 
|  | { | 
|  | BUG_ON(n > SGE_MAX_WR_LEN / 8); | 
|  | return DIV_ROUND_UP(n, 8); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	is_eth_imm - can an Ethernet packet be sent as immediate data? | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Returns whether an Ethernet packet is small enough to fit as | 
|  | *	immediate data. | 
|  | */ | 
|  | static inline int is_eth_imm(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->len <= MAX_IMM_TX_PKT_LEN - sizeof(struct cpl_tx_pkt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	calc_tx_flits - calculate the number of flits for a packet Tx WR | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Returns the number of flits needed for a Tx WR for the given Ethernet | 
|  | *	packet, including the needed WR and CPL headers. | 
|  | */ | 
|  | static inline unsigned int calc_tx_flits(const struct sk_buff *skb) | 
|  | { | 
|  | unsigned int flits; | 
|  |  | 
|  | if (is_eth_imm(skb)) | 
|  | return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt), 8); | 
|  |  | 
|  | flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4; | 
|  | if (skb_shinfo(skb)->gso_size) | 
|  | flits += 2; | 
|  | return flits; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	calc_tx_descs - calculate the number of Tx descriptors for a packet | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Returns the number of Tx descriptors needed for the given Ethernet | 
|  | *	packet, including the needed WR and CPL headers. | 
|  | */ | 
|  | static inline unsigned int calc_tx_descs(const struct sk_buff *skb) | 
|  | { | 
|  | return flits_to_desc(calc_tx_flits(skb)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	write_sgl - populate a scatter/gather list for a packet | 
|  | *	@skb: the packet | 
|  | *	@q: the Tx queue we are writing into | 
|  | *	@sgl: starting location for writing the SGL | 
|  | *	@end: points right after the end of the SGL | 
|  | *	@start: start offset into skb main-body data to include in the SGL | 
|  | *	@addr: the list of bus addresses for the SGL elements | 
|  | * | 
|  | *	Generates a gather list for the buffers that make up a packet. | 
|  | *	The caller must provide adequate space for the SGL that will be written. | 
|  | *	The SGL includes all of the packet's page fragments and the data in its | 
|  | *	main body except for the first @start bytes.  @sgl must be 16-byte | 
|  | *	aligned and within a Tx descriptor with available space.  @end points | 
|  | *	right after the end of the SGL but does not account for any potential | 
|  | *	wrap around, i.e., @end > @sgl. | 
|  | */ | 
|  | static void write_sgl(const struct sk_buff *skb, struct sge_txq *q, | 
|  | struct ulptx_sgl *sgl, u64 *end, unsigned int start, | 
|  | const dma_addr_t *addr) | 
|  | { | 
|  | unsigned int i, len; | 
|  | struct ulptx_sge_pair *to; | 
|  | const struct skb_shared_info *si = skb_shinfo(skb); | 
|  | unsigned int nfrags = si->nr_frags; | 
|  | struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1]; | 
|  |  | 
|  | len = skb_headlen(skb) - start; | 
|  | if (likely(len)) { | 
|  | sgl->len0 = htonl(len); | 
|  | sgl->addr0 = cpu_to_be64(addr[0] + start); | 
|  | nfrags++; | 
|  | } else { | 
|  | sgl->len0 = htonl(si->frags[0].size); | 
|  | sgl->addr0 = cpu_to_be64(addr[1]); | 
|  | } | 
|  |  | 
|  | sgl->cmd_nsge = htonl(ULPTX_CMD(ULP_TX_SC_DSGL) | ULPTX_NSGE(nfrags)); | 
|  | if (likely(--nfrags == 0)) | 
|  | return; | 
|  | /* | 
|  | * Most of the complexity below deals with the possibility we hit the | 
|  | * end of the queue in the middle of writing the SGL.  For this case | 
|  | * only we create the SGL in a temporary buffer and then copy it. | 
|  | */ | 
|  | to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; | 
|  |  | 
|  | for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) { | 
|  | to->len[0] = cpu_to_be32(si->frags[i].size); | 
|  | to->len[1] = cpu_to_be32(si->frags[++i].size); | 
|  | to->addr[0] = cpu_to_be64(addr[i]); | 
|  | to->addr[1] = cpu_to_be64(addr[++i]); | 
|  | } | 
|  | if (nfrags) { | 
|  | to->len[0] = cpu_to_be32(si->frags[i].size); | 
|  | to->len[1] = cpu_to_be32(0); | 
|  | to->addr[0] = cpu_to_be64(addr[i + 1]); | 
|  | } | 
|  | if (unlikely((u8 *)end > (u8 *)q->stat)) { | 
|  | unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1; | 
|  |  | 
|  | if (likely(part0)) | 
|  | memcpy(sgl->sge, buf, part0); | 
|  | part1 = (u8 *)end - (u8 *)q->stat; | 
|  | memcpy(q->desc, (u8 *)buf + part0, part1); | 
|  | end = (void *)q->desc + part1; | 
|  | } | 
|  | if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */ | 
|  | *(u64 *)end = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ring_tx_db - check and potentially ring a Tx queue's doorbell | 
|  | *	@adap: the adapter | 
|  | *	@q: the Tx queue | 
|  | *	@n: number of new descriptors to give to HW | 
|  | * | 
|  | *	Ring the doorbel for a Tx queue. | 
|  | */ | 
|  | static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n) | 
|  | { | 
|  | wmb();            /* write descriptors before telling HW */ | 
|  | t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL), | 
|  | QID(q->cntxt_id) | PIDX(n)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	inline_tx_skb - inline a packet's data into Tx descriptors | 
|  | *	@skb: the packet | 
|  | *	@q: the Tx queue where the packet will be inlined | 
|  | *	@pos: starting position in the Tx queue where to inline the packet | 
|  | * | 
|  | *	Inline a packet's contents directly into Tx descriptors, starting at | 
|  | *	the given position within the Tx DMA ring. | 
|  | *	Most of the complexity of this operation is dealing with wrap arounds | 
|  | *	in the middle of the packet we want to inline. | 
|  | */ | 
|  | static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q, | 
|  | void *pos) | 
|  | { | 
|  | u64 *p; | 
|  | int left = (void *)q->stat - pos; | 
|  |  | 
|  | if (likely(skb->len <= left)) { | 
|  | if (likely(!skb->data_len)) | 
|  | skb_copy_from_linear_data(skb, pos, skb->len); | 
|  | else | 
|  | skb_copy_bits(skb, 0, pos, skb->len); | 
|  | pos += skb->len; | 
|  | } else { | 
|  | skb_copy_bits(skb, 0, pos, left); | 
|  | skb_copy_bits(skb, left, q->desc, skb->len - left); | 
|  | pos = (void *)q->desc + (skb->len - left); | 
|  | } | 
|  |  | 
|  | /* 0-pad to multiple of 16 */ | 
|  | p = PTR_ALIGN(pos, 8); | 
|  | if ((uintptr_t)p & 8) | 
|  | *p = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out what HW csum a packet wants and return the appropriate control | 
|  | * bits. | 
|  | */ | 
|  | static u64 hwcsum(const struct sk_buff *skb) | 
|  | { | 
|  | int csum_type; | 
|  | const struct iphdr *iph = ip_hdr(skb); | 
|  |  | 
|  | if (iph->version == 4) { | 
|  | if (iph->protocol == IPPROTO_TCP) | 
|  | csum_type = TX_CSUM_TCPIP; | 
|  | else if (iph->protocol == IPPROTO_UDP) | 
|  | csum_type = TX_CSUM_UDPIP; | 
|  | else { | 
|  | nocsum:			/* | 
|  | * unknown protocol, disable HW csum | 
|  | * and hope a bad packet is detected | 
|  | */ | 
|  | return TXPKT_L4CSUM_DIS; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * this doesn't work with extension headers | 
|  | */ | 
|  | const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph; | 
|  |  | 
|  | if (ip6h->nexthdr == IPPROTO_TCP) | 
|  | csum_type = TX_CSUM_TCPIP6; | 
|  | else if (ip6h->nexthdr == IPPROTO_UDP) | 
|  | csum_type = TX_CSUM_UDPIP6; | 
|  | else | 
|  | goto nocsum; | 
|  | } | 
|  |  | 
|  | if (likely(csum_type >= TX_CSUM_TCPIP)) | 
|  | return TXPKT_CSUM_TYPE(csum_type) | | 
|  | TXPKT_IPHDR_LEN(skb_network_header_len(skb)) | | 
|  | TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN); | 
|  | else { | 
|  | int start = skb_transport_offset(skb); | 
|  |  | 
|  | return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) | | 
|  | TXPKT_CSUM_LOC(start + skb->csum_offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void eth_txq_stop(struct sge_eth_txq *q) | 
|  | { | 
|  | netif_tx_stop_queue(q->txq); | 
|  | q->q.stops++; | 
|  | } | 
|  |  | 
|  | static inline void txq_advance(struct sge_txq *q, unsigned int n) | 
|  | { | 
|  | q->in_use += n; | 
|  | q->pidx += n; | 
|  | if (q->pidx >= q->size) | 
|  | q->pidx -= q->size; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	t4_eth_xmit - add a packet to an Ethernet Tx queue | 
|  | *	@skb: the packet | 
|  | *	@dev: the egress net device | 
|  | * | 
|  | *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled. | 
|  | */ | 
|  | netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev) | 
|  | { | 
|  | u32 wr_mid; | 
|  | u64 cntrl, *end; | 
|  | int qidx, credits; | 
|  | unsigned int flits, ndesc; | 
|  | struct adapter *adap; | 
|  | struct sge_eth_txq *q; | 
|  | const struct port_info *pi; | 
|  | struct fw_eth_tx_pkt_wr *wr; | 
|  | struct cpl_tx_pkt_core *cpl; | 
|  | const struct skb_shared_info *ssi; | 
|  | dma_addr_t addr[MAX_SKB_FRAGS + 1]; | 
|  |  | 
|  | /* | 
|  | * The chip min packet length is 10 octets but play safe and reject | 
|  | * anything shorter than an Ethernet header. | 
|  | */ | 
|  | if (unlikely(skb->len < ETH_HLEN)) { | 
|  | out_free:	dev_kfree_skb(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | pi = netdev_priv(dev); | 
|  | adap = pi->adapter; | 
|  | qidx = skb_get_queue_mapping(skb); | 
|  | q = &adap->sge.ethtxq[qidx + pi->first_qset]; | 
|  |  | 
|  | reclaim_completed_tx(adap, &q->q, true); | 
|  |  | 
|  | flits = calc_tx_flits(skb); | 
|  | ndesc = flits_to_desc(flits); | 
|  | credits = txq_avail(&q->q) - ndesc; | 
|  |  | 
|  | if (unlikely(credits < 0)) { | 
|  | eth_txq_stop(q); | 
|  | dev_err(adap->pdev_dev, | 
|  | "%s: Tx ring %u full while queue awake!\n", | 
|  | dev->name, qidx); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | if (!is_eth_imm(skb) && | 
|  | unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) { | 
|  | q->mapping_err++; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | wr_mid = FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); | 
|  | if (unlikely(credits < ETHTXQ_STOP_THRES)) { | 
|  | eth_txq_stop(q); | 
|  | wr_mid |= FW_WR_EQUEQ | FW_WR_EQUIQ; | 
|  | } | 
|  |  | 
|  | wr = (void *)&q->q.desc[q->q.pidx]; | 
|  | wr->equiq_to_len16 = htonl(wr_mid); | 
|  | wr->r3 = cpu_to_be64(0); | 
|  | end = (u64 *)wr + flits; | 
|  |  | 
|  | ssi = skb_shinfo(skb); | 
|  | if (ssi->gso_size) { | 
|  | struct cpl_tx_pkt_lso *lso = (void *)wr; | 
|  | bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0; | 
|  | int l3hdr_len = skb_network_header_len(skb); | 
|  | int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN; | 
|  |  | 
|  | wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | | 
|  | FW_WR_IMMDLEN(sizeof(*lso))); | 
|  | lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) | | 
|  | LSO_FIRST_SLICE | LSO_LAST_SLICE | | 
|  | LSO_IPV6(v6) | | 
|  | LSO_ETHHDR_LEN(eth_xtra_len / 4) | | 
|  | LSO_IPHDR_LEN(l3hdr_len / 4) | | 
|  | LSO_TCPHDR_LEN(tcp_hdr(skb)->doff)); | 
|  | lso->c.ipid_ofst = htons(0); | 
|  | lso->c.mss = htons(ssi->gso_size); | 
|  | lso->c.seqno_offset = htonl(0); | 
|  | lso->c.len = htonl(skb->len); | 
|  | cpl = (void *)(lso + 1); | 
|  | cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) | | 
|  | TXPKT_IPHDR_LEN(l3hdr_len) | | 
|  | TXPKT_ETHHDR_LEN(eth_xtra_len); | 
|  | q->tso++; | 
|  | q->tx_cso += ssi->gso_segs; | 
|  | } else { | 
|  | int len; | 
|  |  | 
|  | len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl); | 
|  | wr->op_immdlen = htonl(FW_WR_OP(FW_ETH_TX_PKT_WR) | | 
|  | FW_WR_IMMDLEN(len)); | 
|  | cpl = (void *)(wr + 1); | 
|  | if (skb->ip_summed == CHECKSUM_PARTIAL) { | 
|  | cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS; | 
|  | q->tx_cso++; | 
|  | } else | 
|  | cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS; | 
|  | } | 
|  |  | 
|  | if (vlan_tx_tag_present(skb)) { | 
|  | q->vlan_ins++; | 
|  | cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(vlan_tx_tag_get(skb)); | 
|  | } | 
|  |  | 
|  | cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) | | 
|  | TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn)); | 
|  | cpl->pack = htons(0); | 
|  | cpl->len = htons(skb->len); | 
|  | cpl->ctrl1 = cpu_to_be64(cntrl); | 
|  |  | 
|  | if (is_eth_imm(skb)) { | 
|  | inline_tx_skb(skb, &q->q, cpl + 1); | 
|  | dev_kfree_skb(skb); | 
|  | } else { | 
|  | int last_desc; | 
|  |  | 
|  | write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0, | 
|  | addr); | 
|  | skb_orphan(skb); | 
|  |  | 
|  | last_desc = q->q.pidx + ndesc - 1; | 
|  | if (last_desc >= q->q.size) | 
|  | last_desc -= q->q.size; | 
|  | q->q.sdesc[last_desc].skb = skb; | 
|  | q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); | 
|  | } | 
|  |  | 
|  | txq_advance(&q->q, ndesc); | 
|  |  | 
|  | ring_tx_db(adap, &q->q, ndesc); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs | 
|  | *	@q: the SGE control Tx queue | 
|  | * | 
|  | *	This is a variant of reclaim_completed_tx() that is used for Tx queues | 
|  | *	that send only immediate data (presently just the control queues) and | 
|  | *	thus do not have any sk_buffs to release. | 
|  | */ | 
|  | static inline void reclaim_completed_tx_imm(struct sge_txq *q) | 
|  | { | 
|  | int hw_cidx = ntohs(q->stat->cidx); | 
|  | int reclaim = hw_cidx - q->cidx; | 
|  |  | 
|  | if (reclaim < 0) | 
|  | reclaim += q->size; | 
|  |  | 
|  | q->in_use -= reclaim; | 
|  | q->cidx = hw_cidx; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	is_imm - check whether a packet can be sent as immediate data | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Returns true if a packet can be sent as a WR with immediate data. | 
|  | */ | 
|  | static inline int is_imm(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->len <= MAX_CTRL_WR_LEN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ctrlq_check_stop - check if a control queue is full and should stop | 
|  | *	@q: the queue | 
|  | *	@wr: most recent WR written to the queue | 
|  | * | 
|  | *	Check if a control queue has become full and should be stopped. | 
|  | *	We clean up control queue descriptors very lazily, only when we are out. | 
|  | *	If the queue is still full after reclaiming any completed descriptors | 
|  | *	we suspend it and have the last WR wake it up. | 
|  | */ | 
|  | static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr) | 
|  | { | 
|  | reclaim_completed_tx_imm(&q->q); | 
|  | if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { | 
|  | wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); | 
|  | q->q.stops++; | 
|  | q->full = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ctrl_xmit - send a packet through an SGE control Tx queue | 
|  | *	@q: the control queue | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Send a packet through an SGE control Tx queue.  Packets sent through | 
|  | *	a control queue must fit entirely as immediate data. | 
|  | */ | 
|  | static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb) | 
|  | { | 
|  | unsigned int ndesc; | 
|  | struct fw_wr_hdr *wr; | 
|  |  | 
|  | if (unlikely(!is_imm(skb))) { | 
|  | WARN_ON(1); | 
|  | dev_kfree_skb(skb); | 
|  | return NET_XMIT_DROP; | 
|  | } | 
|  |  | 
|  | ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc)); | 
|  | spin_lock(&q->sendq.lock); | 
|  |  | 
|  | if (unlikely(q->full)) { | 
|  | skb->priority = ndesc;                  /* save for restart */ | 
|  | __skb_queue_tail(&q->sendq, skb); | 
|  | spin_unlock(&q->sendq.lock); | 
|  | return NET_XMIT_CN; | 
|  | } | 
|  |  | 
|  | wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; | 
|  | inline_tx_skb(skb, &q->q, wr); | 
|  |  | 
|  | txq_advance(&q->q, ndesc); | 
|  | if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) | 
|  | ctrlq_check_stop(q, wr); | 
|  |  | 
|  | ring_tx_db(q->adap, &q->q, ndesc); | 
|  | spin_unlock(&q->sendq.lock); | 
|  |  | 
|  | kfree_skb(skb); | 
|  | return NET_XMIT_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	restart_ctrlq - restart a suspended control queue | 
|  | *	@data: the control queue to restart | 
|  | * | 
|  | *	Resumes transmission on a suspended Tx control queue. | 
|  | */ | 
|  | static void restart_ctrlq(unsigned long data) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | unsigned int written = 0; | 
|  | struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data; | 
|  |  | 
|  | spin_lock(&q->sendq.lock); | 
|  | reclaim_completed_tx_imm(&q->q); | 
|  | BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */ | 
|  |  | 
|  | while ((skb = __skb_dequeue(&q->sendq)) != NULL) { | 
|  | struct fw_wr_hdr *wr; | 
|  | unsigned int ndesc = skb->priority;     /* previously saved */ | 
|  |  | 
|  | /* | 
|  | * Write descriptors and free skbs outside the lock to limit | 
|  | * wait times.  q->full is still set so new skbs will be queued. | 
|  | */ | 
|  | spin_unlock(&q->sendq.lock); | 
|  |  | 
|  | wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; | 
|  | inline_tx_skb(skb, &q->q, wr); | 
|  | kfree_skb(skb); | 
|  |  | 
|  | written += ndesc; | 
|  | txq_advance(&q->q, ndesc); | 
|  | if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) { | 
|  | unsigned long old = q->q.stops; | 
|  |  | 
|  | ctrlq_check_stop(q, wr); | 
|  | if (q->q.stops != old) {          /* suspended anew */ | 
|  | spin_lock(&q->sendq.lock); | 
|  | goto ringdb; | 
|  | } | 
|  | } | 
|  | if (written > 16) { | 
|  | ring_tx_db(q->adap, &q->q, written); | 
|  | written = 0; | 
|  | } | 
|  | spin_lock(&q->sendq.lock); | 
|  | } | 
|  | q->full = 0; | 
|  | ringdb: if (written) | 
|  | ring_tx_db(q->adap, &q->q, written); | 
|  | spin_unlock(&q->sendq.lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	t4_mgmt_tx - send a management message | 
|  | *	@adap: the adapter | 
|  | *	@skb: the packet containing the management message | 
|  | * | 
|  | *	Send a management message through control queue 0. | 
|  | */ | 
|  | int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | local_bh_disable(); | 
|  | ret = ctrl_xmit(&adap->sge.ctrlq[0], skb); | 
|  | local_bh_enable(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	is_ofld_imm - check whether a packet can be sent as immediate data | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Returns true if a packet can be sent as an offload WR with immediate | 
|  | *	data.  We currently use the same limit as for Ethernet packets. | 
|  | */ | 
|  | static inline int is_ofld_imm(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->len <= MAX_IMM_TX_PKT_LEN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	calc_tx_flits_ofld - calculate # of flits for an offload packet | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Returns the number of flits needed for the given offload packet. | 
|  | *	These packets are already fully constructed and no additional headers | 
|  | *	will be added. | 
|  | */ | 
|  | static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb) | 
|  | { | 
|  | unsigned int flits, cnt; | 
|  |  | 
|  | if (is_ofld_imm(skb)) | 
|  | return DIV_ROUND_UP(skb->len, 8); | 
|  |  | 
|  | flits = skb_transport_offset(skb) / 8U;   /* headers */ | 
|  | cnt = skb_shinfo(skb)->nr_frags; | 
|  | if (skb->tail != skb->transport_header) | 
|  | cnt++; | 
|  | return flits + sgl_len(cnt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion | 
|  | *	@adap: the adapter | 
|  | *	@q: the queue to stop | 
|  | * | 
|  | *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting | 
|  | *	inability to map packets.  A periodic timer attempts to restart | 
|  | *	queues so marked. | 
|  | */ | 
|  | static void txq_stop_maperr(struct sge_ofld_txq *q) | 
|  | { | 
|  | q->mapping_err++; | 
|  | q->q.stops++; | 
|  | set_bit(q->q.cntxt_id - q->adap->sge.egr_start, | 
|  | q->adap->sge.txq_maperr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ofldtxq_stop - stop an offload Tx queue that has become full | 
|  | *	@q: the queue to stop | 
|  | *	@skb: the packet causing the queue to become full | 
|  | * | 
|  | *	Stops an offload Tx queue that has become full and modifies the packet | 
|  | *	being written to request a wakeup. | 
|  | */ | 
|  | static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb) | 
|  | { | 
|  | struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data; | 
|  |  | 
|  | wr->lo |= htonl(FW_WR_EQUEQ | FW_WR_EQUIQ); | 
|  | q->q.stops++; | 
|  | q->full = 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	service_ofldq - restart a suspended offload queue | 
|  | *	@q: the offload queue | 
|  | * | 
|  | *	Services an offload Tx queue by moving packets from its packet queue | 
|  | *	to the HW Tx ring.  The function starts and ends with the queue locked. | 
|  | */ | 
|  | static void service_ofldq(struct sge_ofld_txq *q) | 
|  | { | 
|  | u64 *pos; | 
|  | int credits; | 
|  | struct sk_buff *skb; | 
|  | unsigned int written = 0; | 
|  | unsigned int flits, ndesc; | 
|  |  | 
|  | while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) { | 
|  | /* | 
|  | * We drop the lock but leave skb on sendq, thus retaining | 
|  | * exclusive access to the state of the queue. | 
|  | */ | 
|  | spin_unlock(&q->sendq.lock); | 
|  |  | 
|  | reclaim_completed_tx(q->adap, &q->q, false); | 
|  |  | 
|  | flits = skb->priority;                /* previously saved */ | 
|  | ndesc = flits_to_desc(flits); | 
|  | credits = txq_avail(&q->q) - ndesc; | 
|  | BUG_ON(credits < 0); | 
|  | if (unlikely(credits < TXQ_STOP_THRES)) | 
|  | ofldtxq_stop(q, skb); | 
|  |  | 
|  | pos = (u64 *)&q->q.desc[q->q.pidx]; | 
|  | if (is_ofld_imm(skb)) | 
|  | inline_tx_skb(skb, &q->q, pos); | 
|  | else if (map_skb(q->adap->pdev_dev, skb, | 
|  | (dma_addr_t *)skb->head)) { | 
|  | txq_stop_maperr(q); | 
|  | spin_lock(&q->sendq.lock); | 
|  | break; | 
|  | } else { | 
|  | int last_desc, hdr_len = skb_transport_offset(skb); | 
|  |  | 
|  | memcpy(pos, skb->data, hdr_len); | 
|  | write_sgl(skb, &q->q, (void *)pos + hdr_len, | 
|  | pos + flits, hdr_len, | 
|  | (dma_addr_t *)skb->head); | 
|  | #ifdef CONFIG_NEED_DMA_MAP_STATE | 
|  | skb->dev = q->adap->port[0]; | 
|  | skb->destructor = deferred_unmap_destructor; | 
|  | #endif | 
|  | last_desc = q->q.pidx + ndesc - 1; | 
|  | if (last_desc >= q->q.size) | 
|  | last_desc -= q->q.size; | 
|  | q->q.sdesc[last_desc].skb = skb; | 
|  | } | 
|  |  | 
|  | txq_advance(&q->q, ndesc); | 
|  | written += ndesc; | 
|  | if (unlikely(written > 32)) { | 
|  | ring_tx_db(q->adap, &q->q, written); | 
|  | written = 0; | 
|  | } | 
|  |  | 
|  | spin_lock(&q->sendq.lock); | 
|  | __skb_unlink(skb, &q->sendq); | 
|  | if (is_ofld_imm(skb)) | 
|  | kfree_skb(skb); | 
|  | } | 
|  | if (likely(written)) | 
|  | ring_tx_db(q->adap, &q->q, written); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	ofld_xmit - send a packet through an offload queue | 
|  | *	@q: the Tx offload queue | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Send an offload packet through an SGE offload queue. | 
|  | */ | 
|  | static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb) | 
|  | { | 
|  | skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */ | 
|  | spin_lock(&q->sendq.lock); | 
|  | __skb_queue_tail(&q->sendq, skb); | 
|  | if (q->sendq.qlen == 1) | 
|  | service_ofldq(q); | 
|  | spin_unlock(&q->sendq.lock); | 
|  | return NET_XMIT_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	restart_ofldq - restart a suspended offload queue | 
|  | *	@data: the offload queue to restart | 
|  | * | 
|  | *	Resumes transmission on a suspended Tx offload queue. | 
|  | */ | 
|  | static void restart_ofldq(unsigned long data) | 
|  | { | 
|  | struct sge_ofld_txq *q = (struct sge_ofld_txq *)data; | 
|  |  | 
|  | spin_lock(&q->sendq.lock); | 
|  | q->full = 0;            /* the queue actually is completely empty now */ | 
|  | service_ofldq(q); | 
|  | spin_unlock(&q->sendq.lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	skb_txq - return the Tx queue an offload packet should use | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Returns the Tx queue an offload packet should use as indicated by bits | 
|  | *	1-15 in the packet's queue_mapping. | 
|  | */ | 
|  | static inline unsigned int skb_txq(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->queue_mapping >> 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	is_ctrl_pkt - return whether an offload packet is a control packet | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Returns whether an offload packet should use an OFLD or a CTRL | 
|  | *	Tx queue as indicated by bit 0 in the packet's queue_mapping. | 
|  | */ | 
|  | static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb) | 
|  | { | 
|  | return skb->queue_mapping & 1; | 
|  | } | 
|  |  | 
|  | static inline int ofld_send(struct adapter *adap, struct sk_buff *skb) | 
|  | { | 
|  | unsigned int idx = skb_txq(skb); | 
|  |  | 
|  | if (unlikely(is_ctrl_pkt(skb))) | 
|  | return ctrl_xmit(&adap->sge.ctrlq[idx], skb); | 
|  | return ofld_xmit(&adap->sge.ofldtxq[idx], skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	t4_ofld_send - send an offload packet | 
|  | *	@adap: the adapter | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Sends an offload packet.  We use the packet queue_mapping to select the | 
|  | *	appropriate Tx queue as follows: bit 0 indicates whether the packet | 
|  | *	should be sent as regular or control, bits 1-15 select the queue. | 
|  | */ | 
|  | int t4_ofld_send(struct adapter *adap, struct sk_buff *skb) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | local_bh_disable(); | 
|  | ret = ofld_send(adap, skb); | 
|  | local_bh_enable(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	cxgb4_ofld_send - send an offload packet | 
|  | *	@dev: the net device | 
|  | *	@skb: the packet | 
|  | * | 
|  | *	Sends an offload packet.  This is an exported version of @t4_ofld_send, | 
|  | *	intended for ULDs. | 
|  | */ | 
|  | int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb) | 
|  | { | 
|  | return t4_ofld_send(netdev2adap(dev), skb); | 
|  | } | 
|  | EXPORT_SYMBOL(cxgb4_ofld_send); | 
|  |  | 
|  | static inline void copy_frags(struct skb_shared_info *ssi, | 
|  | const struct pkt_gl *gl, unsigned int offset) | 
|  | { | 
|  | unsigned int n; | 
|  |  | 
|  | /* usually there's just one frag */ | 
|  | ssi->frags[0].page = gl->frags[0].page; | 
|  | ssi->frags[0].page_offset = gl->frags[0].page_offset + offset; | 
|  | ssi->frags[0].size = gl->frags[0].size - offset; | 
|  | ssi->nr_frags = gl->nfrags; | 
|  | n = gl->nfrags - 1; | 
|  | if (n) | 
|  | memcpy(&ssi->frags[1], &gl->frags[1], n * sizeof(skb_frag_t)); | 
|  |  | 
|  | /* get a reference to the last page, we don't own it */ | 
|  | get_page(gl->frags[n].page); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list | 
|  | *	@gl: the gather list | 
|  | *	@skb_len: size of sk_buff main body if it carries fragments | 
|  | *	@pull_len: amount of data to move to the sk_buff's main body | 
|  | * | 
|  | *	Builds an sk_buff from the given packet gather list.  Returns the | 
|  | *	sk_buff or %NULL if sk_buff allocation failed. | 
|  | */ | 
|  | struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl, | 
|  | unsigned int skb_len, unsigned int pull_len) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* | 
|  | * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer | 
|  | * size, which is expected since buffers are at least PAGE_SIZEd. | 
|  | * In this case packets up to RX_COPY_THRES have only one fragment. | 
|  | */ | 
|  | if (gl->tot_len <= RX_COPY_THRES) { | 
|  | skb = dev_alloc_skb(gl->tot_len); | 
|  | if (unlikely(!skb)) | 
|  | goto out; | 
|  | __skb_put(skb, gl->tot_len); | 
|  | skb_copy_to_linear_data(skb, gl->va, gl->tot_len); | 
|  | } else { | 
|  | skb = dev_alloc_skb(skb_len); | 
|  | if (unlikely(!skb)) | 
|  | goto out; | 
|  | __skb_put(skb, pull_len); | 
|  | skb_copy_to_linear_data(skb, gl->va, pull_len); | 
|  |  | 
|  | copy_frags(skb_shinfo(skb), gl, pull_len); | 
|  | skb->len = gl->tot_len; | 
|  | skb->data_len = skb->len - pull_len; | 
|  | skb->truesize += skb->data_len; | 
|  | } | 
|  | out:	return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(cxgb4_pktgl_to_skb); | 
|  |  | 
|  | /** | 
|  | *	t4_pktgl_free - free a packet gather list | 
|  | *	@gl: the gather list | 
|  | * | 
|  | *	Releases the pages of a packet gather list.  We do not own the last | 
|  | *	page on the list and do not free it. | 
|  | */ | 
|  | static void t4_pktgl_free(const struct pkt_gl *gl) | 
|  | { | 
|  | int n; | 
|  | const skb_frag_t *p; | 
|  |  | 
|  | for (p = gl->frags, n = gl->nfrags - 1; n--; p++) | 
|  | put_page(p->page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an MPS trace packet.  Give it an unused protocol number so it won't | 
|  | * be delivered to anyone and send it to the stack for capture. | 
|  | */ | 
|  | static noinline int handle_trace_pkt(struct adapter *adap, | 
|  | const struct pkt_gl *gl) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | struct cpl_trace_pkt *p; | 
|  |  | 
|  | skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN); | 
|  | if (unlikely(!skb)) { | 
|  | t4_pktgl_free(gl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | p = (struct cpl_trace_pkt *)skb->data; | 
|  | __skb_pull(skb, sizeof(*p)); | 
|  | skb_reset_mac_header(skb); | 
|  | skb->protocol = htons(0xffff); | 
|  | skb->dev = adap->port[0]; | 
|  | netif_receive_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl, | 
|  | const struct cpl_rx_pkt *pkt) | 
|  | { | 
|  | int ret; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = napi_get_frags(&rxq->rspq.napi); | 
|  | if (unlikely(!skb)) { | 
|  | t4_pktgl_free(gl); | 
|  | rxq->stats.rx_drops++; | 
|  | return; | 
|  | } | 
|  |  | 
|  | copy_frags(skb_shinfo(skb), gl, RX_PKT_PAD); | 
|  | skb->len = gl->tot_len - RX_PKT_PAD; | 
|  | skb->data_len = skb->len; | 
|  | skb->truesize += skb->data_len; | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | skb_record_rx_queue(skb, rxq->rspq.idx); | 
|  | if (rxq->rspq.netdev->features & NETIF_F_RXHASH) | 
|  | skb->rxhash = (__force u32)pkt->rsshdr.hash_val; | 
|  |  | 
|  | if (unlikely(pkt->vlan_ex)) { | 
|  | __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan)); | 
|  | rxq->stats.vlan_ex++; | 
|  | } | 
|  | ret = napi_gro_frags(&rxq->rspq.napi); | 
|  | if (ret == GRO_HELD) | 
|  | rxq->stats.lro_pkts++; | 
|  | else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE) | 
|  | rxq->stats.lro_merged++; | 
|  | rxq->stats.pkts++; | 
|  | rxq->stats.rx_cso++; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	t4_ethrx_handler - process an ingress ethernet packet | 
|  | *	@q: the response queue that received the packet | 
|  | *	@rsp: the response queue descriptor holding the RX_PKT message | 
|  | *	@si: the gather list of packet fragments | 
|  | * | 
|  | *	Process an ingress ethernet packet and deliver it to the stack. | 
|  | */ | 
|  | int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp, | 
|  | const struct pkt_gl *si) | 
|  | { | 
|  | bool csum_ok; | 
|  | struct sk_buff *skb; | 
|  | const struct cpl_rx_pkt *pkt; | 
|  | struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); | 
|  |  | 
|  | if (unlikely(*(u8 *)rsp == CPL_TRACE_PKT)) | 
|  | return handle_trace_pkt(q->adap, si); | 
|  |  | 
|  | pkt = (const struct cpl_rx_pkt *)rsp; | 
|  | csum_ok = pkt->csum_calc && !pkt->err_vec; | 
|  | if ((pkt->l2info & htonl(RXF_TCP)) && | 
|  | (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) { | 
|  | do_gro(rxq, si, pkt); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN); | 
|  | if (unlikely(!skb)) { | 
|  | t4_pktgl_free(si); | 
|  | rxq->stats.rx_drops++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __skb_pull(skb, RX_PKT_PAD);      /* remove ethernet header padding */ | 
|  | skb->protocol = eth_type_trans(skb, q->netdev); | 
|  | skb_record_rx_queue(skb, q->idx); | 
|  | if (skb->dev->features & NETIF_F_RXHASH) | 
|  | skb->rxhash = (__force u32)pkt->rsshdr.hash_val; | 
|  |  | 
|  | rxq->stats.pkts++; | 
|  |  | 
|  | if (csum_ok && (q->netdev->features & NETIF_F_RXCSUM) && | 
|  | (pkt->l2info & htonl(RXF_UDP | RXF_TCP))) { | 
|  | if (!pkt->ip_frag) { | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | rxq->stats.rx_cso++; | 
|  | } else if (pkt->l2info & htonl(RXF_IP)) { | 
|  | __sum16 c = (__force __sum16)pkt->csum; | 
|  | skb->csum = csum_unfold(c); | 
|  | skb->ip_summed = CHECKSUM_COMPLETE; | 
|  | rxq->stats.rx_cso++; | 
|  | } | 
|  | } else | 
|  | skb_checksum_none_assert(skb); | 
|  |  | 
|  | if (unlikely(pkt->vlan_ex)) { | 
|  | __vlan_hwaccel_put_tag(skb, ntohs(pkt->vlan)); | 
|  | rxq->stats.vlan_ex++; | 
|  | } | 
|  | netif_receive_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	restore_rx_bufs - put back a packet's Rx buffers | 
|  | *	@si: the packet gather list | 
|  | *	@q: the SGE free list | 
|  | *	@frags: number of FL buffers to restore | 
|  | * | 
|  | *	Puts back on an FL the Rx buffers associated with @si.  The buffers | 
|  | *	have already been unmapped and are left unmapped, we mark them so to | 
|  | *	prevent further unmapping attempts. | 
|  | * | 
|  | *	This function undoes a series of @unmap_rx_buf calls when we find out | 
|  | *	that the current packet can't be processed right away afterall and we | 
|  | *	need to come back to it later.  This is a very rare event and there's | 
|  | *	no effort to make this particularly efficient. | 
|  | */ | 
|  | static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q, | 
|  | int frags) | 
|  | { | 
|  | struct rx_sw_desc *d; | 
|  |  | 
|  | while (frags--) { | 
|  | if (q->cidx == 0) | 
|  | q->cidx = q->size - 1; | 
|  | else | 
|  | q->cidx--; | 
|  | d = &q->sdesc[q->cidx]; | 
|  | d->page = si->frags[frags].page; | 
|  | d->dma_addr |= RX_UNMAPPED_BUF; | 
|  | q->avail++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	is_new_response - check if a response is newly written | 
|  | *	@r: the response descriptor | 
|  | *	@q: the response queue | 
|  | * | 
|  | *	Returns true if a response descriptor contains a yet unprocessed | 
|  | *	response. | 
|  | */ | 
|  | static inline bool is_new_response(const struct rsp_ctrl *r, | 
|  | const struct sge_rspq *q) | 
|  | { | 
|  | return RSPD_GEN(r->type_gen) == q->gen; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	rspq_next - advance to the next entry in a response queue | 
|  | *	@q: the queue | 
|  | * | 
|  | *	Updates the state of a response queue to advance it to the next entry. | 
|  | */ | 
|  | static inline void rspq_next(struct sge_rspq *q) | 
|  | { | 
|  | q->cur_desc = (void *)q->cur_desc + q->iqe_len; | 
|  | if (unlikely(++q->cidx == q->size)) { | 
|  | q->cidx = 0; | 
|  | q->gen ^= 1; | 
|  | q->cur_desc = q->desc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	process_responses - process responses from an SGE response queue | 
|  | *	@q: the ingress queue to process | 
|  | *	@budget: how many responses can be processed in this round | 
|  | * | 
|  | *	Process responses from an SGE response queue up to the supplied budget. | 
|  | *	Responses include received packets as well as control messages from FW | 
|  | *	or HW. | 
|  | * | 
|  | *	Additionally choose the interrupt holdoff time for the next interrupt | 
|  | *	on this queue.  If the system is under memory shortage use a fairly | 
|  | *	long delay to help recovery. | 
|  | */ | 
|  | static int process_responses(struct sge_rspq *q, int budget) | 
|  | { | 
|  | int ret, rsp_type; | 
|  | int budget_left = budget; | 
|  | const struct rsp_ctrl *rc; | 
|  | struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); | 
|  |  | 
|  | while (likely(budget_left)) { | 
|  | rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); | 
|  | if (!is_new_response(rc, q)) | 
|  | break; | 
|  |  | 
|  | rmb(); | 
|  | rsp_type = RSPD_TYPE(rc->type_gen); | 
|  | if (likely(rsp_type == RSP_TYPE_FLBUF)) { | 
|  | skb_frag_t *fp; | 
|  | struct pkt_gl si; | 
|  | const struct rx_sw_desc *rsd; | 
|  | u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags; | 
|  |  | 
|  | if (len & RSPD_NEWBUF) { | 
|  | if (likely(q->offset > 0)) { | 
|  | free_rx_bufs(q->adap, &rxq->fl, 1); | 
|  | q->offset = 0; | 
|  | } | 
|  | len = RSPD_LEN(len); | 
|  | } | 
|  | si.tot_len = len; | 
|  |  | 
|  | /* gather packet fragments */ | 
|  | for (frags = 0, fp = si.frags; ; frags++, fp++) { | 
|  | rsd = &rxq->fl.sdesc[rxq->fl.cidx]; | 
|  | bufsz = get_buf_size(rsd); | 
|  | fp->page = rsd->page; | 
|  | fp->page_offset = q->offset; | 
|  | fp->size = min(bufsz, len); | 
|  | len -= fp->size; | 
|  | if (!len) | 
|  | break; | 
|  | unmap_rx_buf(q->adap, &rxq->fl); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Last buffer remains mapped so explicitly make it | 
|  | * coherent for CPU access. | 
|  | */ | 
|  | dma_sync_single_for_cpu(q->adap->pdev_dev, | 
|  | get_buf_addr(rsd), | 
|  | fp->size, DMA_FROM_DEVICE); | 
|  |  | 
|  | si.va = page_address(si.frags[0].page) + | 
|  | si.frags[0].page_offset; | 
|  | prefetch(si.va); | 
|  |  | 
|  | si.nfrags = frags + 1; | 
|  | ret = q->handler(q, q->cur_desc, &si); | 
|  | if (likely(ret == 0)) | 
|  | q->offset += ALIGN(fp->size, FL_ALIGN); | 
|  | else | 
|  | restore_rx_bufs(&si, &rxq->fl, frags); | 
|  | } else if (likely(rsp_type == RSP_TYPE_CPL)) { | 
|  | ret = q->handler(q, q->cur_desc, NULL); | 
|  | } else { | 
|  | ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); | 
|  | } | 
|  |  | 
|  | if (unlikely(ret)) { | 
|  | /* couldn't process descriptor, back off for recovery */ | 
|  | q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rspq_next(q); | 
|  | budget_left--; | 
|  | } | 
|  |  | 
|  | if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16) | 
|  | __refill_fl(q->adap, &rxq->fl); | 
|  | return budget - budget_left; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	napi_rx_handler - the NAPI handler for Rx processing | 
|  | *	@napi: the napi instance | 
|  | *	@budget: how many packets we can process in this round | 
|  | * | 
|  | *	Handler for new data events when using NAPI.  This does not need any | 
|  | *	locking or protection from interrupts as data interrupts are off at | 
|  | *	this point and other adapter interrupts do not interfere (the latter | 
|  | *	in not a concern at all with MSI-X as non-data interrupts then have | 
|  | *	a separate handler). | 
|  | */ | 
|  | static int napi_rx_handler(struct napi_struct *napi, int budget) | 
|  | { | 
|  | unsigned int params; | 
|  | struct sge_rspq *q = container_of(napi, struct sge_rspq, napi); | 
|  | int work_done = process_responses(q, budget); | 
|  |  | 
|  | if (likely(work_done < budget)) { | 
|  | napi_complete(napi); | 
|  | params = q->next_intr_params; | 
|  | q->next_intr_params = q->intr_params; | 
|  | } else | 
|  | params = QINTR_TIMER_IDX(7); | 
|  |  | 
|  | t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS), CIDXINC(work_done) | | 
|  | INGRESSQID((u32)q->cntxt_id) | SEINTARM(params)); | 
|  | return work_done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The MSI-X interrupt handler for an SGE response queue. | 
|  | */ | 
|  | irqreturn_t t4_sge_intr_msix(int irq, void *cookie) | 
|  | { | 
|  | struct sge_rspq *q = cookie; | 
|  |  | 
|  | napi_schedule(&q->napi); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the indirect interrupt entries in the interrupt queue and kick off | 
|  | * NAPI for each queue that has generated an entry. | 
|  | */ | 
|  | static unsigned int process_intrq(struct adapter *adap) | 
|  | { | 
|  | unsigned int credits; | 
|  | const struct rsp_ctrl *rc; | 
|  | struct sge_rspq *q = &adap->sge.intrq; | 
|  |  | 
|  | spin_lock(&adap->sge.intrq_lock); | 
|  | for (credits = 0; ; credits++) { | 
|  | rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc)); | 
|  | if (!is_new_response(rc, q)) | 
|  | break; | 
|  |  | 
|  | rmb(); | 
|  | if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) { | 
|  | unsigned int qid = ntohl(rc->pldbuflen_qid); | 
|  |  | 
|  | qid -= adap->sge.ingr_start; | 
|  | napi_schedule(&adap->sge.ingr_map[qid]->napi); | 
|  | } | 
|  |  | 
|  | rspq_next(q); | 
|  | } | 
|  |  | 
|  | t4_write_reg(adap, MYPF_REG(SGE_PF_GTS), CIDXINC(credits) | | 
|  | INGRESSQID(q->cntxt_id) | SEINTARM(q->intr_params)); | 
|  | spin_unlock(&adap->sge.intrq_lock); | 
|  | return credits; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The MSI interrupt handler, which handles data events from SGE response queues | 
|  | * as well as error and other async events as they all use the same MSI vector. | 
|  | */ | 
|  | static irqreturn_t t4_intr_msi(int irq, void *cookie) | 
|  | { | 
|  | struct adapter *adap = cookie; | 
|  |  | 
|  | t4_slow_intr_handler(adap); | 
|  | process_intrq(adap); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt handler for legacy INTx interrupts. | 
|  | * Handles data events from SGE response queues as well as error and other | 
|  | * async events as they all use the same interrupt line. | 
|  | */ | 
|  | static irqreturn_t t4_intr_intx(int irq, void *cookie) | 
|  | { | 
|  | struct adapter *adap = cookie; | 
|  |  | 
|  | t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI), 0); | 
|  | if (t4_slow_intr_handler(adap) | process_intrq(adap)) | 
|  | return IRQ_HANDLED; | 
|  | return IRQ_NONE;             /* probably shared interrupt */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	t4_intr_handler - select the top-level interrupt handler | 
|  | *	@adap: the adapter | 
|  | * | 
|  | *	Selects the top-level interrupt handler based on the type of interrupts | 
|  | *	(MSI-X, MSI, or INTx). | 
|  | */ | 
|  | irq_handler_t t4_intr_handler(struct adapter *adap) | 
|  | { | 
|  | if (adap->flags & USING_MSIX) | 
|  | return t4_sge_intr_msix; | 
|  | if (adap->flags & USING_MSI) | 
|  | return t4_intr_msi; | 
|  | return t4_intr_intx; | 
|  | } | 
|  |  | 
|  | static void sge_rx_timer_cb(unsigned long data) | 
|  | { | 
|  | unsigned long m; | 
|  | unsigned int i, cnt[2]; | 
|  | struct adapter *adap = (struct adapter *)data; | 
|  | struct sge *s = &adap->sge; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) | 
|  | for (m = s->starving_fl[i]; m; m &= m - 1) { | 
|  | struct sge_eth_rxq *rxq; | 
|  | unsigned int id = __ffs(m) + i * BITS_PER_LONG; | 
|  | struct sge_fl *fl = s->egr_map[id]; | 
|  |  | 
|  | clear_bit(id, s->starving_fl); | 
|  | smp_mb__after_clear_bit(); | 
|  |  | 
|  | if (fl_starving(fl)) { | 
|  | rxq = container_of(fl, struct sge_eth_rxq, fl); | 
|  | if (napi_reschedule(&rxq->rspq.napi)) | 
|  | fl->starving++; | 
|  | else | 
|  | set_bit(id, s->starving_fl); | 
|  | } | 
|  | } | 
|  |  | 
|  | t4_write_reg(adap, SGE_DEBUG_INDEX, 13); | 
|  | cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH); | 
|  | cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW); | 
|  |  | 
|  | for (i = 0; i < 2; i++) | 
|  | if (cnt[i] >= s->starve_thres) { | 
|  | if (s->idma_state[i] || cnt[i] == 0xffffffff) | 
|  | continue; | 
|  | s->idma_state[i] = 1; | 
|  | t4_write_reg(adap, SGE_DEBUG_INDEX, 11); | 
|  | m = t4_read_reg(adap, SGE_DEBUG_DATA_LOW) >> (i * 16); | 
|  | dev_warn(adap->pdev_dev, | 
|  | "SGE idma%u starvation detected for " | 
|  | "queue %lu\n", i, m & 0xffff); | 
|  | } else if (s->idma_state[i]) | 
|  | s->idma_state[i] = 0; | 
|  |  | 
|  | mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD); | 
|  | } | 
|  |  | 
|  | static void sge_tx_timer_cb(unsigned long data) | 
|  | { | 
|  | unsigned long m; | 
|  | unsigned int i, budget; | 
|  | struct adapter *adap = (struct adapter *)data; | 
|  | struct sge *s = &adap->sge; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(s->txq_maperr); i++) | 
|  | for (m = s->txq_maperr[i]; m; m &= m - 1) { | 
|  | unsigned long id = __ffs(m) + i * BITS_PER_LONG; | 
|  | struct sge_ofld_txq *txq = s->egr_map[id]; | 
|  |  | 
|  | clear_bit(id, s->txq_maperr); | 
|  | tasklet_schedule(&txq->qresume_tsk); | 
|  | } | 
|  |  | 
|  | budget = MAX_TIMER_TX_RECLAIM; | 
|  | i = s->ethtxq_rover; | 
|  | do { | 
|  | struct sge_eth_txq *q = &s->ethtxq[i]; | 
|  |  | 
|  | if (q->q.in_use && | 
|  | time_after_eq(jiffies, q->txq->trans_start + HZ / 100) && | 
|  | __netif_tx_trylock(q->txq)) { | 
|  | int avail = reclaimable(&q->q); | 
|  |  | 
|  | if (avail) { | 
|  | if (avail > budget) | 
|  | avail = budget; | 
|  |  | 
|  | free_tx_desc(adap, &q->q, avail, true); | 
|  | q->q.in_use -= avail; | 
|  | budget -= avail; | 
|  | } | 
|  | __netif_tx_unlock(q->txq); | 
|  | } | 
|  |  | 
|  | if (++i >= s->ethqsets) | 
|  | i = 0; | 
|  | } while (budget && i != s->ethtxq_rover); | 
|  | s->ethtxq_rover = i; | 
|  | mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2)); | 
|  | } | 
|  |  | 
|  | int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, | 
|  | struct net_device *dev, int intr_idx, | 
|  | struct sge_fl *fl, rspq_handler_t hnd) | 
|  | { | 
|  | int ret, flsz = 0; | 
|  | struct fw_iq_cmd c; | 
|  | struct port_info *pi = netdev_priv(dev); | 
|  |  | 
|  | /* Size needs to be multiple of 16, including status entry. */ | 
|  | iq->size = roundup(iq->size, 16); | 
|  |  | 
|  | iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0, | 
|  | &iq->phys_addr, NULL, 0, NUMA_NO_NODE); | 
|  | if (!iq->desc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.op_to_vfn = htonl(FW_CMD_OP(FW_IQ_CMD) | FW_CMD_REQUEST | | 
|  | FW_CMD_WRITE | FW_CMD_EXEC | | 
|  | FW_IQ_CMD_PFN(adap->fn) | FW_IQ_CMD_VFN(0)); | 
|  | c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC | FW_IQ_CMD_IQSTART(1) | | 
|  | FW_LEN16(c)); | 
|  | c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | | 
|  | FW_IQ_CMD_IQASYNCH(fwevtq) | FW_IQ_CMD_VIID(pi->viid) | | 
|  | FW_IQ_CMD_IQANDST(intr_idx < 0) | FW_IQ_CMD_IQANUD(1) | | 
|  | FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx : | 
|  | -intr_idx - 1)); | 
|  | c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH(pi->tx_chan) | | 
|  | FW_IQ_CMD_IQGTSMODE | | 
|  | FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) | | 
|  | FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4)); | 
|  | c.iqsize = htons(iq->size); | 
|  | c.iqaddr = cpu_to_be64(iq->phys_addr); | 
|  |  | 
|  | if (fl) { | 
|  | fl->size = roundup(fl->size, 8); | 
|  | fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64), | 
|  | sizeof(struct rx_sw_desc), &fl->addr, | 
|  | &fl->sdesc, STAT_LEN, NUMA_NO_NODE); | 
|  | if (!fl->desc) | 
|  | goto fl_nomem; | 
|  |  | 
|  | flsz = fl->size / 8 + STAT_LEN / sizeof(struct tx_desc); | 
|  | c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN | | 
|  | FW_IQ_CMD_FL0FETCHRO(1) | | 
|  | FW_IQ_CMD_FL0DATARO(1) | | 
|  | FW_IQ_CMD_FL0PADEN); | 
|  | c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN(2) | | 
|  | FW_IQ_CMD_FL0FBMAX(3)); | 
|  | c.fl0size = htons(flsz); | 
|  | c.fl0addr = cpu_to_be64(fl->addr); | 
|  | } | 
|  |  | 
|  | ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | netif_napi_add(dev, &iq->napi, napi_rx_handler, 64); | 
|  | iq->cur_desc = iq->desc; | 
|  | iq->cidx = 0; | 
|  | iq->gen = 1; | 
|  | iq->next_intr_params = iq->intr_params; | 
|  | iq->cntxt_id = ntohs(c.iqid); | 
|  | iq->abs_id = ntohs(c.physiqid); | 
|  | iq->size--;                           /* subtract status entry */ | 
|  | iq->adap = adap; | 
|  | iq->netdev = dev; | 
|  | iq->handler = hnd; | 
|  |  | 
|  | /* set offset to -1 to distinguish ingress queues without FL */ | 
|  | iq->offset = fl ? 0 : -1; | 
|  |  | 
|  | adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq; | 
|  |  | 
|  | if (fl) { | 
|  | fl->cntxt_id = ntohs(c.fl0id); | 
|  | fl->avail = fl->pend_cred = 0; | 
|  | fl->pidx = fl->cidx = 0; | 
|  | fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0; | 
|  | adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl; | 
|  | refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | fl_nomem: | 
|  | ret = -ENOMEM; | 
|  | err: | 
|  | if (iq->desc) { | 
|  | dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len, | 
|  | iq->desc, iq->phys_addr); | 
|  | iq->desc = NULL; | 
|  | } | 
|  | if (fl && fl->desc) { | 
|  | kfree(fl->sdesc); | 
|  | fl->sdesc = NULL; | 
|  | dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc), | 
|  | fl->desc, fl->addr); | 
|  | fl->desc = NULL; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id) | 
|  | { | 
|  | q->in_use = 0; | 
|  | q->cidx = q->pidx = 0; | 
|  | q->stops = q->restarts = 0; | 
|  | q->stat = (void *)&q->desc[q->size]; | 
|  | q->cntxt_id = id; | 
|  | adap->sge.egr_map[id - adap->sge.egr_start] = q; | 
|  | } | 
|  |  | 
|  | int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, | 
|  | struct net_device *dev, struct netdev_queue *netdevq, | 
|  | unsigned int iqid) | 
|  | { | 
|  | int ret, nentries; | 
|  | struct fw_eq_eth_cmd c; | 
|  | struct port_info *pi = netdev_priv(dev); | 
|  |  | 
|  | /* Add status entries */ | 
|  | nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); | 
|  |  | 
|  | txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, | 
|  | sizeof(struct tx_desc), sizeof(struct tx_sw_desc), | 
|  | &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN, | 
|  | netdev_queue_numa_node_read(netdevq)); | 
|  | if (!txq->q.desc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_ETH_CMD) | FW_CMD_REQUEST | | 
|  | FW_CMD_WRITE | FW_CMD_EXEC | | 
|  | FW_EQ_ETH_CMD_PFN(adap->fn) | FW_EQ_ETH_CMD_VFN(0)); | 
|  | c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC | | 
|  | FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c)); | 
|  | c.viid_pkd = htonl(FW_EQ_ETH_CMD_VIID(pi->viid)); | 
|  | c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) | | 
|  | FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) | | 
|  | FW_EQ_ETH_CMD_FETCHRO(1) | | 
|  | FW_EQ_ETH_CMD_IQID(iqid)); | 
|  | c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN(2) | | 
|  | FW_EQ_ETH_CMD_FBMAX(3) | | 
|  | FW_EQ_ETH_CMD_CIDXFTHRESH(5) | | 
|  | FW_EQ_ETH_CMD_EQSIZE(nentries)); | 
|  | c.eqaddr = cpu_to_be64(txq->q.phys_addr); | 
|  |  | 
|  | ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); | 
|  | if (ret) { | 
|  | kfree(txq->q.sdesc); | 
|  | txq->q.sdesc = NULL; | 
|  | dma_free_coherent(adap->pdev_dev, | 
|  | nentries * sizeof(struct tx_desc), | 
|  | txq->q.desc, txq->q.phys_addr); | 
|  | txq->q.desc = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_GET(ntohl(c.eqid_pkd))); | 
|  | txq->txq = netdevq; | 
|  | txq->tso = txq->tx_cso = txq->vlan_ins = 0; | 
|  | txq->mapping_err = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, | 
|  | struct net_device *dev, unsigned int iqid, | 
|  | unsigned int cmplqid) | 
|  | { | 
|  | int ret, nentries; | 
|  | struct fw_eq_ctrl_cmd c; | 
|  | struct port_info *pi = netdev_priv(dev); | 
|  |  | 
|  | /* Add status entries */ | 
|  | nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); | 
|  |  | 
|  | txq->q.desc = alloc_ring(adap->pdev_dev, nentries, | 
|  | sizeof(struct tx_desc), 0, &txq->q.phys_addr, | 
|  | NULL, 0, NUMA_NO_NODE); | 
|  | if (!txq->q.desc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST | | 
|  | FW_CMD_WRITE | FW_CMD_EXEC | | 
|  | FW_EQ_CTRL_CMD_PFN(adap->fn) | | 
|  | FW_EQ_CTRL_CMD_VFN(0)); | 
|  | c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC | | 
|  | FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c)); | 
|  | c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid)); | 
|  | c.physeqid_pkd = htonl(0); | 
|  | c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) | | 
|  | FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) | | 
|  | FW_EQ_CTRL_CMD_FETCHRO | | 
|  | FW_EQ_CTRL_CMD_IQID(iqid)); | 
|  | c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN(2) | | 
|  | FW_EQ_CTRL_CMD_FBMAX(3) | | 
|  | FW_EQ_CTRL_CMD_CIDXFTHRESH(5) | | 
|  | FW_EQ_CTRL_CMD_EQSIZE(nentries)); | 
|  | c.eqaddr = cpu_to_be64(txq->q.phys_addr); | 
|  |  | 
|  | ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); | 
|  | if (ret) { | 
|  | dma_free_coherent(adap->pdev_dev, | 
|  | nentries * sizeof(struct tx_desc), | 
|  | txq->q.desc, txq->q.phys_addr); | 
|  | txq->q.desc = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c.cmpliqid_eqid))); | 
|  | txq->adap = adap; | 
|  | skb_queue_head_init(&txq->sendq); | 
|  | tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq); | 
|  | txq->full = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq, | 
|  | struct net_device *dev, unsigned int iqid) | 
|  | { | 
|  | int ret, nentries; | 
|  | struct fw_eq_ofld_cmd c; | 
|  | struct port_info *pi = netdev_priv(dev); | 
|  |  | 
|  | /* Add status entries */ | 
|  | nentries = txq->q.size + STAT_LEN / sizeof(struct tx_desc); | 
|  |  | 
|  | txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size, | 
|  | sizeof(struct tx_desc), sizeof(struct tx_sw_desc), | 
|  | &txq->q.phys_addr, &txq->q.sdesc, STAT_LEN, | 
|  | NUMA_NO_NODE); | 
|  | if (!txq->q.desc) | 
|  | return -ENOMEM; | 
|  |  | 
|  | memset(&c, 0, sizeof(c)); | 
|  | c.op_to_vfn = htonl(FW_CMD_OP(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST | | 
|  | FW_CMD_WRITE | FW_CMD_EXEC | | 
|  | FW_EQ_OFLD_CMD_PFN(adap->fn) | | 
|  | FW_EQ_OFLD_CMD_VFN(0)); | 
|  | c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC | | 
|  | FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c)); | 
|  | c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) | | 
|  | FW_EQ_OFLD_CMD_PCIECHN(pi->tx_chan) | | 
|  | FW_EQ_OFLD_CMD_FETCHRO(1) | | 
|  | FW_EQ_OFLD_CMD_IQID(iqid)); | 
|  | c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN(2) | | 
|  | FW_EQ_OFLD_CMD_FBMAX(3) | | 
|  | FW_EQ_OFLD_CMD_CIDXFTHRESH(5) | | 
|  | FW_EQ_OFLD_CMD_EQSIZE(nentries)); | 
|  | c.eqaddr = cpu_to_be64(txq->q.phys_addr); | 
|  |  | 
|  | ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c); | 
|  | if (ret) { | 
|  | kfree(txq->q.sdesc); | 
|  | txq->q.sdesc = NULL; | 
|  | dma_free_coherent(adap->pdev_dev, | 
|  | nentries * sizeof(struct tx_desc), | 
|  | txq->q.desc, txq->q.phys_addr); | 
|  | txq->q.desc = NULL; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c.eqid_pkd))); | 
|  | txq->adap = adap; | 
|  | skb_queue_head_init(&txq->sendq); | 
|  | tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq); | 
|  | txq->full = 0; | 
|  | txq->mapping_err = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_txq(struct adapter *adap, struct sge_txq *q) | 
|  | { | 
|  | dma_free_coherent(adap->pdev_dev, | 
|  | q->size * sizeof(struct tx_desc) + STAT_LEN, | 
|  | q->desc, q->phys_addr); | 
|  | q->cntxt_id = 0; | 
|  | q->sdesc = NULL; | 
|  | q->desc = NULL; | 
|  | } | 
|  |  | 
|  | static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, | 
|  | struct sge_fl *fl) | 
|  | { | 
|  | unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; | 
|  |  | 
|  | adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL; | 
|  | t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP, | 
|  | rq->cntxt_id, fl_id, 0xffff); | 
|  | dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len, | 
|  | rq->desc, rq->phys_addr); | 
|  | netif_napi_del(&rq->napi); | 
|  | rq->netdev = NULL; | 
|  | rq->cntxt_id = rq->abs_id = 0; | 
|  | rq->desc = NULL; | 
|  |  | 
|  | if (fl) { | 
|  | free_rx_bufs(adap, fl, fl->avail); | 
|  | dma_free_coherent(adap->pdev_dev, fl->size * 8 + STAT_LEN, | 
|  | fl->desc, fl->addr); | 
|  | kfree(fl->sdesc); | 
|  | fl->sdesc = NULL; | 
|  | fl->cntxt_id = 0; | 
|  | fl->desc = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	t4_free_sge_resources - free SGE resources | 
|  | *	@adap: the adapter | 
|  | * | 
|  | *	Frees resources used by the SGE queue sets. | 
|  | */ | 
|  | void t4_free_sge_resources(struct adapter *adap) | 
|  | { | 
|  | int i; | 
|  | struct sge_eth_rxq *eq = adap->sge.ethrxq; | 
|  | struct sge_eth_txq *etq = adap->sge.ethtxq; | 
|  | struct sge_ofld_rxq *oq = adap->sge.ofldrxq; | 
|  |  | 
|  | /* clean up Ethernet Tx/Rx queues */ | 
|  | for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) { | 
|  | if (eq->rspq.desc) | 
|  | free_rspq_fl(adap, &eq->rspq, &eq->fl); | 
|  | if (etq->q.desc) { | 
|  | t4_eth_eq_free(adap, adap->fn, adap->fn, 0, | 
|  | etq->q.cntxt_id); | 
|  | free_tx_desc(adap, &etq->q, etq->q.in_use, true); | 
|  | kfree(etq->q.sdesc); | 
|  | free_txq(adap, &etq->q); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* clean up RDMA and iSCSI Rx queues */ | 
|  | for (i = 0; i < adap->sge.ofldqsets; i++, oq++) { | 
|  | if (oq->rspq.desc) | 
|  | free_rspq_fl(adap, &oq->rspq, &oq->fl); | 
|  | } | 
|  | for (i = 0, oq = adap->sge.rdmarxq; i < adap->sge.rdmaqs; i++, oq++) { | 
|  | if (oq->rspq.desc) | 
|  | free_rspq_fl(adap, &oq->rspq, &oq->fl); | 
|  | } | 
|  |  | 
|  | /* clean up offload Tx queues */ | 
|  | for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) { | 
|  | struct sge_ofld_txq *q = &adap->sge.ofldtxq[i]; | 
|  |  | 
|  | if (q->q.desc) { | 
|  | tasklet_kill(&q->qresume_tsk); | 
|  | t4_ofld_eq_free(adap, adap->fn, adap->fn, 0, | 
|  | q->q.cntxt_id); | 
|  | free_tx_desc(adap, &q->q, q->q.in_use, false); | 
|  | kfree(q->q.sdesc); | 
|  | __skb_queue_purge(&q->sendq); | 
|  | free_txq(adap, &q->q); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* clean up control Tx queues */ | 
|  | for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { | 
|  | struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; | 
|  |  | 
|  | if (cq->q.desc) { | 
|  | tasklet_kill(&cq->qresume_tsk); | 
|  | t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0, | 
|  | cq->q.cntxt_id); | 
|  | __skb_queue_purge(&cq->sendq); | 
|  | free_txq(adap, &cq->q); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (adap->sge.fw_evtq.desc) | 
|  | free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); | 
|  |  | 
|  | if (adap->sge.intrq.desc) | 
|  | free_rspq_fl(adap, &adap->sge.intrq, NULL); | 
|  |  | 
|  | /* clear the reverse egress queue map */ | 
|  | memset(adap->sge.egr_map, 0, sizeof(adap->sge.egr_map)); | 
|  | } | 
|  |  | 
|  | void t4_sge_start(struct adapter *adap) | 
|  | { | 
|  | adap->sge.ethtxq_rover = 0; | 
|  | mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD); | 
|  | mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	t4_sge_stop - disable SGE operation | 
|  | *	@adap: the adapter | 
|  | * | 
|  | *	Stop tasklets and timers associated with the DMA engine.  Note that | 
|  | *	this is effective only if measures have been taken to disable any HW | 
|  | *	events that may restart them. | 
|  | */ | 
|  | void t4_sge_stop(struct adapter *adap) | 
|  | { | 
|  | int i; | 
|  | struct sge *s = &adap->sge; | 
|  |  | 
|  | if (in_interrupt())  /* actions below require waiting */ | 
|  | return; | 
|  |  | 
|  | if (s->rx_timer.function) | 
|  | del_timer_sync(&s->rx_timer); | 
|  | if (s->tx_timer.function) | 
|  | del_timer_sync(&s->tx_timer); | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) { | 
|  | struct sge_ofld_txq *q = &s->ofldtxq[i]; | 
|  |  | 
|  | if (q->q.desc) | 
|  | tasklet_kill(&q->qresume_tsk); | 
|  | } | 
|  | for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) { | 
|  | struct sge_ctrl_txq *cq = &s->ctrlq[i]; | 
|  |  | 
|  | if (cq->q.desc) | 
|  | tasklet_kill(&cq->qresume_tsk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	t4_sge_init - initialize SGE | 
|  | *	@adap: the adapter | 
|  | * | 
|  | *	Performs SGE initialization needed every time after a chip reset. | 
|  | *	We do not initialize any of the queues here, instead the driver | 
|  | *	top-level must request them individually. | 
|  | */ | 
|  | void t4_sge_init(struct adapter *adap) | 
|  | { | 
|  | unsigned int i, v; | 
|  | struct sge *s = &adap->sge; | 
|  | unsigned int fl_align_log = ilog2(FL_ALIGN); | 
|  |  | 
|  | t4_set_reg_field(adap, SGE_CONTROL, PKTSHIFT_MASK | | 
|  | INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE, | 
|  | INGPADBOUNDARY(fl_align_log - 5) | PKTSHIFT(2) | | 
|  | RXPKTCPLMODE | | 
|  | (STAT_LEN == 128 ? EGRSTATUSPAGESIZE : 0)); | 
|  |  | 
|  | for (i = v = 0; i < 32; i += 4) | 
|  | v |= (PAGE_SHIFT - 10) << i; | 
|  | t4_write_reg(adap, SGE_HOST_PAGE_SIZE, v); | 
|  | t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, PAGE_SIZE); | 
|  | #if FL_PG_ORDER > 0 | 
|  | t4_write_reg(adap, SGE_FL_BUFFER_SIZE1, PAGE_SIZE << FL_PG_ORDER); | 
|  | #endif | 
|  | t4_write_reg(adap, SGE_INGRESS_RX_THRESHOLD, | 
|  | THRESHOLD_0(s->counter_val[0]) | | 
|  | THRESHOLD_1(s->counter_val[1]) | | 
|  | THRESHOLD_2(s->counter_val[2]) | | 
|  | THRESHOLD_3(s->counter_val[3])); | 
|  | t4_write_reg(adap, SGE_TIMER_VALUE_0_AND_1, | 
|  | TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[0])) | | 
|  | TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[1]))); | 
|  | t4_write_reg(adap, SGE_TIMER_VALUE_2_AND_3, | 
|  | TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[2])) | | 
|  | TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[3]))); | 
|  | t4_write_reg(adap, SGE_TIMER_VALUE_4_AND_5, | 
|  | TIMERVALUE0(us_to_core_ticks(adap, s->timer_val[4])) | | 
|  | TIMERVALUE1(us_to_core_ticks(adap, s->timer_val[5]))); | 
|  | setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap); | 
|  | setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap); | 
|  | s->starve_thres = core_ticks_per_usec(adap) * 1000000;  /* 1 s */ | 
|  | s->idma_state[0] = s->idma_state[1] = 0; | 
|  | spin_lock_init(&s->intrq_lock); | 
|  | } |