|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2011 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | 
|  | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | 
|  | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); | 
|  | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | 
|  | static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg); | 
|  | static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, | 
|  | u16 *data, bool read); | 
|  | static u32 e1000_get_phy_addr_for_hv_page(u32 page); | 
|  | static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, | 
|  | u16 *data, bool read); | 
|  |  | 
|  | /* Cable length tables */ | 
|  | static const u16 e1000_m88_cable_length_table[] = { | 
|  | 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; | 
|  | #define M88E1000_CABLE_LENGTH_TABLE_SIZE \ | 
|  | ARRAY_SIZE(e1000_m88_cable_length_table) | 
|  |  | 
|  | static const u16 e1000_igp_2_cable_length_table[] = { | 
|  | 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, | 
|  | 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, | 
|  | 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, | 
|  | 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, | 
|  | 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, | 
|  | 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, | 
|  | 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, | 
|  | 124}; | 
|  | #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \ | 
|  | ARRAY_SIZE(e1000_igp_2_cable_length_table) | 
|  |  | 
|  | #define BM_PHY_REG_PAGE(offset) \ | 
|  | ((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF)) | 
|  | #define BM_PHY_REG_NUM(offset) \ | 
|  | ((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\ | 
|  | (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\ | 
|  | ~MAX_PHY_REG_ADDRESS))) | 
|  |  | 
|  | #define HV_INTC_FC_PAGE_START             768 | 
|  | #define I82578_ADDR_REG                   29 | 
|  | #define I82577_ADDR_REG                   16 | 
|  | #define I82577_CFG_REG                    22 | 
|  | #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15) | 
|  | #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */ | 
|  | #define I82577_CTRL_REG                   23 | 
|  |  | 
|  | /* 82577 specific PHY registers */ | 
|  | #define I82577_PHY_CTRL_2            18 | 
|  | #define I82577_PHY_STATUS_2          26 | 
|  | #define I82577_PHY_DIAG_STATUS       31 | 
|  |  | 
|  | /* I82577 PHY Status 2 */ | 
|  | #define I82577_PHY_STATUS2_REV_POLARITY   0x0400 | 
|  | #define I82577_PHY_STATUS2_MDIX           0x0800 | 
|  | #define I82577_PHY_STATUS2_SPEED_MASK     0x0300 | 
|  | #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200 | 
|  |  | 
|  | /* I82577 PHY Control 2 */ | 
|  | #define I82577_PHY_CTRL2_AUTO_MDIX        0x0400 | 
|  | #define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200 | 
|  |  | 
|  | /* I82577 PHY Diagnostics Status */ | 
|  | #define I82577_DSTATUS_CABLE_LENGTH       0x03FC | 
|  | #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2 | 
|  |  | 
|  | /* BM PHY Copper Specific Control 1 */ | 
|  | #define BM_CS_CTRL1                       16 | 
|  |  | 
|  | #define HV_MUX_DATA_CTRL               PHY_REG(776, 16) | 
|  | #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400 | 
|  | #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004 | 
|  |  | 
|  | /** | 
|  | *  e1000e_check_reset_block_generic - Check if PHY reset is blocked | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Read the PHY management control register and check whether a PHY reset | 
|  | *  is blocked.  If a reset is not blocked return 0, otherwise | 
|  | *  return E1000_BLK_PHY_RESET (12). | 
|  | **/ | 
|  | s32 e1000e_check_reset_block_generic(struct e1000_hw *hw) | 
|  | { | 
|  | u32 manc; | 
|  |  | 
|  | manc = er32(MANC); | 
|  |  | 
|  | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | 
|  | E1000_BLK_PHY_RESET : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_phy_id - Retrieve the PHY ID and revision | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the PHY registers and stores the PHY ID and possibly the PHY | 
|  | *  revision in the hardware structure. | 
|  | **/ | 
|  | s32 e1000e_get_phy_id(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val = 0; | 
|  | u16 phy_id; | 
|  | u16 retry_count = 0; | 
|  |  | 
|  | if (!(phy->ops.read_reg)) | 
|  | goto out; | 
|  |  | 
|  | while (retry_count < 2) { | 
|  | ret_val = e1e_rphy(hw, PHY_ID1, &phy_id); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | phy->id = (u32)(phy_id << 16); | 
|  | udelay(20); | 
|  | ret_val = e1e_rphy(hw, PHY_ID2, &phy_id); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | phy->id |= (u32)(phy_id & PHY_REVISION_MASK); | 
|  | phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); | 
|  |  | 
|  | if (phy->id != 0 && phy->id != PHY_REVISION_MASK) | 
|  | goto out; | 
|  |  | 
|  | retry_count++; | 
|  | } | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_phy_reset_dsp - Reset PHY DSP | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reset the digital signal processor. | 
|  | **/ | 
|  | s32 e1000e_phy_reset_dsp(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_phy_reg_mdic - Read MDI control register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Reads the MDI control register in the PHY at offset and stores the | 
|  | *  information read to data. | 
|  | **/ | 
|  | s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | u32 i, mdic = 0; | 
|  |  | 
|  | if (offset > MAX_PHY_REG_ADDRESS) { | 
|  | e_dbg("PHY Address %d is out of range\n", offset); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up Op-code, Phy Address, and register offset in the MDI | 
|  | * Control register.  The MAC will take care of interfacing with the | 
|  | * PHY to retrieve the desired data. | 
|  | */ | 
|  | mdic = ((offset << E1000_MDIC_REG_SHIFT) | | 
|  | (phy->addr << E1000_MDIC_PHY_SHIFT) | | 
|  | (E1000_MDIC_OP_READ)); | 
|  |  | 
|  | ew32(MDIC, mdic); | 
|  |  | 
|  | /* | 
|  | * Poll the ready bit to see if the MDI read completed | 
|  | * Increasing the time out as testing showed failures with | 
|  | * the lower time out | 
|  | */ | 
|  | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | 
|  | udelay(50); | 
|  | mdic = er32(MDIC); | 
|  | if (mdic & E1000_MDIC_READY) | 
|  | break; | 
|  | } | 
|  | if (!(mdic & E1000_MDIC_READY)) { | 
|  | e_dbg("MDI Read did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (mdic & E1000_MDIC_ERROR) { | 
|  | e_dbg("MDI Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | *data = (u16) mdic; | 
|  |  | 
|  | /* | 
|  | * Allow some time after each MDIC transaction to avoid | 
|  | * reading duplicate data in the next MDIC transaction. | 
|  | */ | 
|  | if (hw->mac.type == e1000_pch2lan) | 
|  | udelay(100); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_phy_reg_mdic - Write MDI control register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write to register at offset | 
|  | * | 
|  | *  Writes data to MDI control register in the PHY at offset. | 
|  | **/ | 
|  | s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | u32 i, mdic = 0; | 
|  |  | 
|  | if (offset > MAX_PHY_REG_ADDRESS) { | 
|  | e_dbg("PHY Address %d is out of range\n", offset); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up Op-code, Phy Address, and register offset in the MDI | 
|  | * Control register.  The MAC will take care of interfacing with the | 
|  | * PHY to retrieve the desired data. | 
|  | */ | 
|  | mdic = (((u32)data) | | 
|  | (offset << E1000_MDIC_REG_SHIFT) | | 
|  | (phy->addr << E1000_MDIC_PHY_SHIFT) | | 
|  | (E1000_MDIC_OP_WRITE)); | 
|  |  | 
|  | ew32(MDIC, mdic); | 
|  |  | 
|  | /* | 
|  | * Poll the ready bit to see if the MDI read completed | 
|  | * Increasing the time out as testing showed failures with | 
|  | * the lower time out | 
|  | */ | 
|  | for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { | 
|  | udelay(50); | 
|  | mdic = er32(MDIC); | 
|  | if (mdic & E1000_MDIC_READY) | 
|  | break; | 
|  | } | 
|  | if (!(mdic & E1000_MDIC_READY)) { | 
|  | e_dbg("MDI Write did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (mdic & E1000_MDIC_ERROR) { | 
|  | e_dbg("MDI Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow some time after each MDIC transaction to avoid | 
|  | * reading duplicate data in the next MDIC transaction. | 
|  | */ | 
|  | if (hw->mac.type == e1000_pch2lan) | 
|  | udelay(100); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_phy_reg_m88 - Read m88 PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then reads the PHY register at offset | 
|  | *  and storing the retrieved information in data.  Release any acquired | 
|  | *  semaphores before exiting. | 
|  | **/ | 
|  | s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | 
|  | data); | 
|  |  | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_phy_reg_m88 - Write m88 PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then writes the data to PHY register | 
|  | *  at the offset.  Release any acquired semaphores before exiting. | 
|  | **/ | 
|  | s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | 
|  | data); | 
|  |  | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  __e1000e_read_phy_reg_igp - Read igp PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | *  @locked: semaphore has already been acquired or not | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then reads the PHY register at offset | 
|  | *  and stores the retrieved information in data.  Release any acquired | 
|  | *  semaphores before exiting. | 
|  | **/ | 
|  | static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data, | 
|  | bool locked) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | if (!locked) { | 
|  | if (!(hw->phy.ops.acquire)) | 
|  | goto out; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (offset > MAX_PHY_MULTI_PAGE_REG) { | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, | 
|  | IGP01E1000_PHY_PAGE_SELECT, | 
|  | (u16)offset); | 
|  | if (ret_val) | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | 
|  | data); | 
|  |  | 
|  | release: | 
|  | if (!locked) | 
|  | hw->phy.ops.release(hw); | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_phy_reg_igp - Read igp PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Acquires semaphore then reads the PHY register at offset and stores the | 
|  | *  retrieved information in data. | 
|  | *  Release the acquired semaphore before exiting. | 
|  | **/ | 
|  | s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | return __e1000e_read_phy_reg_igp(hw, offset, data, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_phy_reg_igp_locked - Read igp PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Reads the PHY register at offset and stores the retrieved information | 
|  | *  in data.  Assumes semaphore already acquired. | 
|  | **/ | 
|  | s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | return __e1000e_read_phy_reg_igp(hw, offset, data, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_phy_reg_igp - Write igp PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | *  @locked: semaphore has already been acquired or not | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then writes the data to PHY register | 
|  | *  at the offset.  Release any acquired semaphores before exiting. | 
|  | **/ | 
|  | static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data, | 
|  | bool locked) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | if (!locked) { | 
|  | if (!(hw->phy.ops.acquire)) | 
|  | goto out; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (offset > MAX_PHY_MULTI_PAGE_REG) { | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, | 
|  | IGP01E1000_PHY_PAGE_SELECT, | 
|  | (u16)offset); | 
|  | if (ret_val) | 
|  | goto release; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | 
|  | data); | 
|  |  | 
|  | release: | 
|  | if (!locked) | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_phy_reg_igp - Write igp PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Acquires semaphore then writes the data to PHY register | 
|  | *  at the offset.  Release any acquired semaphores before exiting. | 
|  | **/ | 
|  | s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | return __e1000e_write_phy_reg_igp(hw, offset, data, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_phy_reg_igp_locked - Write igp PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Writes the data to PHY register at the offset. | 
|  | *  Assumes semaphore already acquired. | 
|  | **/ | 
|  | s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | return __e1000e_write_phy_reg_igp(hw, offset, data, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  __e1000_read_kmrn_reg - Read kumeran register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | *  @locked: semaphore has already been acquired or not | 
|  | * | 
|  | *  Acquires semaphore, if necessary.  Then reads the PHY register at offset | 
|  | *  using the kumeran interface.  The information retrieved is stored in data. | 
|  | *  Release any acquired semaphores before exiting. | 
|  | **/ | 
|  | static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data, | 
|  | bool locked) | 
|  | { | 
|  | u32 kmrnctrlsta; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | if (!locked) { | 
|  | if (!(hw->phy.ops.acquire)) | 
|  | goto out; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & | 
|  | E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN; | 
|  | ew32(KMRNCTRLSTA, kmrnctrlsta); | 
|  |  | 
|  | udelay(2); | 
|  |  | 
|  | kmrnctrlsta = er32(KMRNCTRLSTA); | 
|  | *data = (u16)kmrnctrlsta; | 
|  |  | 
|  | if (!locked) | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_kmrn_reg -  Read kumeran register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Acquires semaphore then reads the PHY register at offset using the | 
|  | *  kumeran interface.  The information retrieved is stored in data. | 
|  | *  Release the acquired semaphore before exiting. | 
|  | **/ | 
|  | s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | return __e1000_read_kmrn_reg(hw, offset, data, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_kmrn_reg_locked -  Read kumeran register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Reads the PHY register at offset using the kumeran interface.  The | 
|  | *  information retrieved is stored in data. | 
|  | *  Assumes semaphore already acquired. | 
|  | **/ | 
|  | s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | return __e1000_read_kmrn_reg(hw, offset, data, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  __e1000_write_kmrn_reg - Write kumeran register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | *  @locked: semaphore has already been acquired or not | 
|  | * | 
|  | *  Acquires semaphore, if necessary.  Then write the data to PHY register | 
|  | *  at the offset using the kumeran interface.  Release any acquired semaphores | 
|  | *  before exiting. | 
|  | **/ | 
|  | static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data, | 
|  | bool locked) | 
|  | { | 
|  | u32 kmrnctrlsta; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | if (!locked) { | 
|  | if (!(hw->phy.ops.acquire)) | 
|  | goto out; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) & | 
|  | E1000_KMRNCTRLSTA_OFFSET) | data; | 
|  | ew32(KMRNCTRLSTA, kmrnctrlsta); | 
|  |  | 
|  | udelay(2); | 
|  |  | 
|  | if (!locked) | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_kmrn_reg -  Write kumeran register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Acquires semaphore then writes the data to the PHY register at the offset | 
|  | *  using the kumeran interface.  Release the acquired semaphore before exiting. | 
|  | **/ | 
|  | s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | return __e1000_write_kmrn_reg(hw, offset, data, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_kmrn_reg_locked -  Write kumeran register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Write the data to PHY register at the offset using the kumeran interface. | 
|  | *  Assumes semaphore already acquired. | 
|  | **/ | 
|  | s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | return __e1000_write_kmrn_reg(hw, offset, data, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Sets up Carrier-sense on Transmit and downshift values. | 
|  | **/ | 
|  | s32 e1000_copper_link_setup_82577(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | /* Enable CRS on Tx. This must be set for half-duplex operation. */ | 
|  | ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | phy_data |= I82577_CFG_ASSERT_CRS_ON_TX; | 
|  |  | 
|  | /* Enable downshift */ | 
|  | phy_data |= I82577_CFG_ENABLE_DOWNSHIFT; | 
|  |  | 
|  | ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock | 
|  | *  and downshift values are set also. | 
|  | **/ | 
|  | s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | /* Enable CRS on Tx. This must be set for half-duplex operation. */ | 
|  | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* For BM PHY this bit is downshift enable */ | 
|  | if (phy->type != e1000_phy_bm) | 
|  | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  |  | 
|  | /* | 
|  | * Options: | 
|  | *   MDI/MDI-X = 0 (default) | 
|  | *   0 - Auto for all speeds | 
|  | *   1 - MDI mode | 
|  | *   2 - MDI-X mode | 
|  | *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  |  | 
|  | switch (phy->mdix) { | 
|  | case 1: | 
|  | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 
|  | break; | 
|  | case 2: | 
|  | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 
|  | break; | 
|  | case 3: | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Options: | 
|  | *   disable_polarity_correction = 0 (default) | 
|  | *       Automatic Correction for Reversed Cable Polarity | 
|  | *   0 - Disabled | 
|  | *   1 - Enabled | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | if (phy->disable_polarity_correction == 1) | 
|  | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 
|  |  | 
|  | /* Enable downshift on BM (disabled by default) */ | 
|  | if (phy->type == e1000_phy_bm) | 
|  | phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT; | 
|  |  | 
|  | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((phy->type == e1000_phy_m88) && | 
|  | (phy->revision < E1000_REVISION_4) && | 
|  | (phy->id != BME1000_E_PHY_ID_R2)) { | 
|  | /* | 
|  | * Force TX_CLK in the Extended PHY Specific Control Register | 
|  | * to 25MHz clock. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  |  | 
|  | if ((phy->revision == 2) && | 
|  | (phy->id == M88E1111_I_PHY_ID)) { | 
|  | /* 82573L PHY - set the downshift counter to 5x. */ | 
|  | phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; | 
|  | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | 
|  | } else { | 
|  | /* Configure Master and Slave downshift values */ | 
|  | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 
|  | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 
|  | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 
|  | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 
|  | } | 
|  | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) { | 
|  | /* Set PHY page 0, register 29 to 0x0003 */ | 
|  | ret_val = e1e_wphy(hw, 29, 0x0003); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Set PHY page 0, register 30 to 0x0000 */ | 
|  | ret_val = e1e_wphy(hw, 30, 0x0000); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Commit the changes. */ | 
|  | ret_val = e1000e_commit_phy(hw); | 
|  | if (ret_val) { | 
|  | e_dbg("Error committing the PHY changes\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (phy->type == e1000_phy_82578) { | 
|  | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* 82578 PHY - set the downshift count to 1x. */ | 
|  | phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE; | 
|  | phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK; | 
|  | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for | 
|  | *  igp PHY's. | 
|  | **/ | 
|  | s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = e1000_phy_hw_reset(hw); | 
|  | if (ret_val) { | 
|  | e_dbg("Error resetting the PHY.\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait 100ms for MAC to configure PHY from NVM settings, to avoid | 
|  | * timeout issues when LFS is enabled. | 
|  | */ | 
|  | msleep(100); | 
|  |  | 
|  | /* disable lplu d0 during driver init */ | 
|  | ret_val = e1000_set_d0_lplu_state(hw, false); | 
|  | if (ret_val) { | 
|  | e_dbg("Error Disabling LPLU D0\n"); | 
|  | return ret_val; | 
|  | } | 
|  | /* Configure mdi-mdix settings */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|  |  | 
|  | switch (phy->mdix) { | 
|  | case 1: | 
|  | data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | break; | 
|  | case 2: | 
|  | data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | data |= IGP01E1000_PSCR_AUTO_MDIX; | 
|  | break; | 
|  | } | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* set auto-master slave resolution settings */ | 
|  | if (hw->mac.autoneg) { | 
|  | /* | 
|  | * when autonegotiation advertisement is only 1000Mbps then we | 
|  | * should disable SmartSpeed and enable Auto MasterSlave | 
|  | * resolution as hardware default. | 
|  | */ | 
|  | if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { | 
|  | /* Disable SmartSpeed */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Set auto Master/Slave resolution process */ | 
|  | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~CR_1000T_MS_ENABLE; | 
|  | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* load defaults for future use */ | 
|  | phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? | 
|  | ((data & CR_1000T_MS_VALUE) ? | 
|  | e1000_ms_force_master : | 
|  | e1000_ms_force_slave) : | 
|  | e1000_ms_auto; | 
|  |  | 
|  | switch (phy->ms_type) { | 
|  | case e1000_ms_force_master: | 
|  | data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 
|  | break; | 
|  | case e1000_ms_force_slave: | 
|  | data |= CR_1000T_MS_ENABLE; | 
|  | data &= ~(CR_1000T_MS_VALUE); | 
|  | break; | 
|  | case e1000_ms_auto: | 
|  | data &= ~CR_1000T_MS_ENABLE; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the MII auto-neg advertisement register and/or the 1000T control | 
|  | *  register and if the PHY is already setup for auto-negotiation, then | 
|  | *  return successful.  Otherwise, setup advertisement and flow control to | 
|  | *  the appropriate values for the wanted auto-negotiation. | 
|  | **/ | 
|  | static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 mii_autoneg_adv_reg; | 
|  | u16 mii_1000t_ctrl_reg = 0; | 
|  |  | 
|  | phy->autoneg_advertised &= phy->autoneg_mask; | 
|  |  | 
|  | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | 
|  | ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (phy->autoneg_mask & ADVERTISE_1000_FULL) { | 
|  | /* Read the MII 1000Base-T Control Register (Address 9). */ | 
|  | ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to parse both autoneg_advertised and fc and set up | 
|  | * the appropriate PHY registers.  First we will parse for | 
|  | * autoneg_advertised software override.  Since we can advertise | 
|  | * a plethora of combinations, we need to check each bit | 
|  | * individually. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * First we clear all the 10/100 mb speed bits in the Auto-Neg | 
|  | * Advertisement Register (Address 4) and the 1000 mb speed bits in | 
|  | * the  1000Base-T Control Register (Address 9). | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | | 
|  | NWAY_AR_100TX_HD_CAPS | | 
|  | NWAY_AR_10T_FD_CAPS   | | 
|  | NWAY_AR_10T_HD_CAPS); | 
|  | mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); | 
|  |  | 
|  | e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); | 
|  |  | 
|  | /* Do we want to advertise 10 Mb Half Duplex? */ | 
|  | if (phy->autoneg_advertised & ADVERTISE_10_HALF) { | 
|  | e_dbg("Advertise 10mb Half duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 10 Mb Full Duplex? */ | 
|  | if (phy->autoneg_advertised & ADVERTISE_10_FULL) { | 
|  | e_dbg("Advertise 10mb Full duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 100 Mb Half Duplex? */ | 
|  | if (phy->autoneg_advertised & ADVERTISE_100_HALF) { | 
|  | e_dbg("Advertise 100mb Half duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 100 Mb Full Duplex? */ | 
|  | if (phy->autoneg_advertised & ADVERTISE_100_FULL) { | 
|  | e_dbg("Advertise 100mb Full duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | 
|  | if (phy->autoneg_advertised & ADVERTISE_1000_HALF) | 
|  | e_dbg("Advertise 1000mb Half duplex request denied!\n"); | 
|  |  | 
|  | /* Do we want to advertise 1000 Mb Full Duplex? */ | 
|  | if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { | 
|  | e_dbg("Advertise 1000mb Full duplex\n"); | 
|  | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for a software override of the flow control settings, and | 
|  | * setup the PHY advertisement registers accordingly.  If | 
|  | * auto-negotiation is enabled, then software will have to set the | 
|  | * "PAUSE" bits to the correct value in the Auto-Negotiation | 
|  | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- | 
|  | * negotiation. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause frames | 
|  | *	  but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *	  but we do not support receiving pause frames). | 
|  | *      3:  Both Rx and Tx flow control (symmetric) are enabled. | 
|  | *  other:  No software override.  The flow control configuration | 
|  | *	  in the EEPROM is used. | 
|  | */ | 
|  | switch (hw->fc.current_mode) { | 
|  | case e1000_fc_none: | 
|  | /* | 
|  | * Flow control (Rx & Tx) is completely disabled by a | 
|  | * software over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | case e1000_fc_rx_pause: | 
|  | /* | 
|  | * Rx Flow control is enabled, and Tx Flow control is | 
|  | * disabled, by a software over-ride. | 
|  | * | 
|  | * Since there really isn't a way to advertise that we are | 
|  | * capable of Rx Pause ONLY, we will advertise that we | 
|  | * support both symmetric and asymmetric Rx PAUSE.  Later | 
|  | * (in e1000e_config_fc_after_link_up) we will disable the | 
|  | * hw's ability to send PAUSE frames. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | case e1000_fc_tx_pause: | 
|  | /* | 
|  | * Tx Flow control is enabled, and Rx Flow control is | 
|  | * disabled, by a software over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | 
|  | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | 
|  | break; | 
|  | case e1000_fc_full: | 
|  | /* | 
|  | * Flow control (both Rx and Tx) is enabled by a software | 
|  | * over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | default: | 
|  | e_dbg("Flow control param set incorrectly\n"); | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 
|  |  | 
|  | if (phy->autoneg_mask & ADVERTISE_1000_FULL) | 
|  | ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Performs initial bounds checking on autoneg advertisement parameter, then | 
|  | *  configure to advertise the full capability.  Setup the PHY to autoneg | 
|  | *  and restart the negotiation process between the link partner.  If | 
|  | *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting. | 
|  | **/ | 
|  | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_ctrl; | 
|  |  | 
|  | /* | 
|  | * Perform some bounds checking on the autoneg advertisement | 
|  | * parameter. | 
|  | */ | 
|  | phy->autoneg_advertised &= phy->autoneg_mask; | 
|  |  | 
|  | /* | 
|  | * If autoneg_advertised is zero, we assume it was not defaulted | 
|  | * by the calling code so we set to advertise full capability. | 
|  | */ | 
|  | if (phy->autoneg_advertised == 0) | 
|  | phy->autoneg_advertised = phy->autoneg_mask; | 
|  |  | 
|  | e_dbg("Reconfiguring auto-neg advertisement params\n"); | 
|  | ret_val = e1000_phy_setup_autoneg(hw); | 
|  | if (ret_val) { | 
|  | e_dbg("Error Setting up Auto-Negotiation\n"); | 
|  | return ret_val; | 
|  | } | 
|  | e_dbg("Restarting Auto-Neg\n"); | 
|  |  | 
|  | /* | 
|  | * Restart auto-negotiation by setting the Auto Neg Enable bit and | 
|  | * the Auto Neg Restart bit in the PHY control register. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 
|  | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * Does the user want to wait for Auto-Neg to complete here, or | 
|  | * check at a later time (for example, callback routine). | 
|  | */ | 
|  | if (phy->autoneg_wait_to_complete) { | 
|  | ret_val = e1000_wait_autoneg(hw); | 
|  | if (ret_val) { | 
|  | e_dbg("Error while waiting for " | 
|  | "autoneg to complete\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | hw->mac.get_link_status = 1; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_setup_copper_link - Configure copper link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calls the appropriate function to configure the link for auto-neg or forced | 
|  | *  speed and duplex.  Then we check for link, once link is established calls | 
|  | *  to configure collision distance and flow control are called.  If link is | 
|  | *  not established, we return -E1000_ERR_PHY (-2). | 
|  | **/ | 
|  | s32 e1000e_setup_copper_link(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | bool link; | 
|  |  | 
|  | if (hw->mac.autoneg) { | 
|  | /* | 
|  | * Setup autoneg and flow control advertisement and perform | 
|  | * autonegotiation. | 
|  | */ | 
|  | ret_val = e1000_copper_link_autoneg(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | /* | 
|  | * PHY will be set to 10H, 10F, 100H or 100F | 
|  | * depending on user settings. | 
|  | */ | 
|  | e_dbg("Forcing Speed and Duplex\n"); | 
|  | ret_val = e1000_phy_force_speed_duplex(hw); | 
|  | if (ret_val) { | 
|  | e_dbg("Error Forcing Speed and Duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check link status. Wait up to 100 microseconds for link to become | 
|  | * valid. | 
|  | */ | 
|  | ret_val = e1000e_phy_has_link_generic(hw, | 
|  | COPPER_LINK_UP_LIMIT, | 
|  | 10, | 
|  | &link); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (link) { | 
|  | e_dbg("Valid link established!!!\n"); | 
|  | e1000e_config_collision_dist(hw); | 
|  | ret_val = e1000e_config_fc_after_link_up(hw); | 
|  | } else { | 
|  | e_dbg("Unable to establish link!!!\n"); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calls the PHY setup function to force speed and duplex.  Clears the | 
|  | *  auto-crossover to force MDI manually.  Waits for link and returns | 
|  | *  successful if link up is successful, else -E1000_ERR_PHY (-2). | 
|  | **/ | 
|  | s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | bool link; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | 
|  |  | 
|  | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * Clear Auto-Crossover to force MDI manually.  IGP requires MDI | 
|  | * forced whenever speed and duplex are forced. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|  | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  |  | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | e_dbg("IGP PSCR: %X\n", phy_data); | 
|  |  | 
|  | udelay(1); | 
|  |  | 
|  | if (phy->autoneg_wait_to_complete) { | 
|  | e_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); | 
|  |  | 
|  | ret_val = e1000e_phy_has_link_generic(hw, | 
|  | PHY_FORCE_LIMIT, | 
|  | 100000, | 
|  | &link); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!link) | 
|  | e_dbg("Link taking longer than expected.\n"); | 
|  |  | 
|  | /* Try once more */ | 
|  | ret_val = e1000e_phy_has_link_generic(hw, | 
|  | PHY_FORCE_LIMIT, | 
|  | 100000, | 
|  | &link); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calls the PHY setup function to force speed and duplex.  Clears the | 
|  | *  auto-crossover to force MDI manually.  Resets the PHY to commit the | 
|  | *  changes.  If time expires while waiting for link up, we reset the DSP. | 
|  | *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon | 
|  | *  successful completion, else return corresponding error code. | 
|  | **/ | 
|  | s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | bool link; | 
|  |  | 
|  | /* | 
|  | * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI | 
|  | * forced whenever speed and duplex are forced. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | e_dbg("M88E1000 PSCR: %X\n", phy_data); | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | 
|  |  | 
|  | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Reset the phy to commit changes. */ | 
|  | ret_val = e1000e_commit_phy(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (phy->autoneg_wait_to_complete) { | 
|  | e_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); | 
|  |  | 
|  | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | 
|  | 100000, &link); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!link) { | 
|  | if (hw->phy.type != e1000_phy_m88) { | 
|  | e_dbg("Link taking longer than expected.\n"); | 
|  | } else { | 
|  | /* | 
|  | * We didn't get link. | 
|  | * Reset the DSP and cross our fingers. | 
|  | */ | 
|  | ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT, | 
|  | 0x001d); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000e_phy_reset_dsp(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Try once more */ | 
|  | ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT, | 
|  | 100000, &link); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (hw->phy.type != e1000_phy_m88) | 
|  | return 0; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * Resetting the phy means we need to re-force TX_CLK in the | 
|  | * Extended PHY Specific Control Register to 25MHz clock from | 
|  | * the reset value of 2.5MHz. | 
|  | */ | 
|  | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  | ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * In addition, we must re-enable CRS on Tx for both half and full | 
|  | * duplex. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  | ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Forces the speed and duplex settings of the PHY. | 
|  | *  This is a function pointer entry point only called by | 
|  | *  PHY setup routines. | 
|  | **/ | 
|  | s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  | bool link; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_CONTROL, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | e1000e_phy_force_speed_duplex_setup(hw, &data); | 
|  |  | 
|  | ret_val = e1e_wphy(hw, PHY_CONTROL, data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* Disable MDI-X support for 10/100 */ | 
|  | ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | data &= ~IFE_PMC_AUTO_MDIX; | 
|  | data &= ~IFE_PMC_FORCE_MDIX; | 
|  |  | 
|  | ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | e_dbg("IFE PMC: %X\n", data); | 
|  |  | 
|  | udelay(1); | 
|  |  | 
|  | if (phy->autoneg_wait_to_complete) { | 
|  | e_dbg("Waiting for forced speed/duplex link on IFE phy.\n"); | 
|  |  | 
|  | ret_val = e1000e_phy_has_link_generic(hw, | 
|  | PHY_FORCE_LIMIT, | 
|  | 100000, | 
|  | &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (!link) | 
|  | e_dbg("Link taking longer than expected.\n"); | 
|  |  | 
|  | /* Try once more */ | 
|  | ret_val = e1000e_phy_has_link_generic(hw, | 
|  | PHY_FORCE_LIMIT, | 
|  | 100000, | 
|  | &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @phy_ctrl: pointer to current value of PHY_CONTROL | 
|  | * | 
|  | *  Forces speed and duplex on the PHY by doing the following: disable flow | 
|  | *  control, force speed/duplex on the MAC, disable auto speed detection, | 
|  | *  disable auto-negotiation, configure duplex, configure speed, configure | 
|  | *  the collision distance, write configuration to CTRL register.  The | 
|  | *  caller must write to the PHY_CONTROL register for these settings to | 
|  | *  take affect. | 
|  | **/ | 
|  | void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 ctrl; | 
|  |  | 
|  | /* Turn off flow control when forcing speed/duplex */ | 
|  | hw->fc.current_mode = e1000_fc_none; | 
|  |  | 
|  | /* Force speed/duplex on the mac */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ctrl &= ~E1000_CTRL_SPD_SEL; | 
|  |  | 
|  | /* Disable Auto Speed Detection */ | 
|  | ctrl &= ~E1000_CTRL_ASDE; | 
|  |  | 
|  | /* Disable autoneg on the phy */ | 
|  | *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; | 
|  |  | 
|  | /* Forcing Full or Half Duplex? */ | 
|  | if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { | 
|  | ctrl &= ~E1000_CTRL_FD; | 
|  | *phy_ctrl &= ~MII_CR_FULL_DUPLEX; | 
|  | e_dbg("Half Duplex\n"); | 
|  | } else { | 
|  | ctrl |= E1000_CTRL_FD; | 
|  | *phy_ctrl |= MII_CR_FULL_DUPLEX; | 
|  | e_dbg("Full Duplex\n"); | 
|  | } | 
|  |  | 
|  | /* Forcing 10mb or 100mb? */ | 
|  | if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { | 
|  | ctrl |= E1000_CTRL_SPD_100; | 
|  | *phy_ctrl |= MII_CR_SPEED_100; | 
|  | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | 
|  | e_dbg("Forcing 100mb\n"); | 
|  | } else { | 
|  | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 
|  | *phy_ctrl |= MII_CR_SPEED_10; | 
|  | *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | 
|  | e_dbg("Forcing 10mb\n"); | 
|  | } | 
|  |  | 
|  | e1000e_config_collision_dist(hw); | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_set_d3_lplu_state - Sets low power link up state for D3 | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: boolean used to enable/disable lplu | 
|  | * | 
|  | *  Success returns 0, Failure returns 1 | 
|  | * | 
|  | *  The low power link up (lplu) state is set to the power management level D3 | 
|  | *  and SmartSpeed is disabled when active is true, else clear lplu for D3 | 
|  | *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU | 
|  | *  is used during Dx states where the power conservation is most important. | 
|  | *  During driver activity, SmartSpeed should be enabled so performance is | 
|  | *  maintained. | 
|  | **/ | 
|  | s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!active) { | 
|  | data &= ~IGP02E1000_PM_D3_LPLU; | 
|  | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* | 
|  | * LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. | 
|  | */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (phy->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | 
|  | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | 
|  | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | 
|  | data |= IGP02E1000_PM_D3_LPLU; | 
|  | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_check_downshift - Checks whether a downshift in speed occurred | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Success returns 0, Failure returns 1 | 
|  | * | 
|  | *  A downshift is detected by querying the PHY link health. | 
|  | **/ | 
|  | s32 e1000e_check_downshift(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data, offset, mask; | 
|  |  | 
|  | switch (phy->type) { | 
|  | case e1000_phy_m88: | 
|  | case e1000_phy_gg82563: | 
|  | case e1000_phy_bm: | 
|  | case e1000_phy_82578: | 
|  | offset	= M88E1000_PHY_SPEC_STATUS; | 
|  | mask	= M88E1000_PSSR_DOWNSHIFT; | 
|  | break; | 
|  | case e1000_phy_igp_2: | 
|  | case e1000_phy_igp_3: | 
|  | offset	= IGP01E1000_PHY_LINK_HEALTH; | 
|  | mask	= IGP01E1000_PLHR_SS_DOWNGRADE; | 
|  | break; | 
|  | default: | 
|  | /* speed downshift not supported */ | 
|  | phy->speed_downgraded = false; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret_val = e1e_rphy(hw, offset, &phy_data); | 
|  |  | 
|  | if (!ret_val) | 
|  | phy->speed_downgraded = (phy_data & mask); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_polarity_m88 - Checks the polarity. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) | 
|  | * | 
|  | *  Polarity is determined based on the PHY specific status register. | 
|  | **/ | 
|  | s32 e1000_check_polarity_m88(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data); | 
|  |  | 
|  | if (!ret_val) | 
|  | phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) | 
|  | ? e1000_rev_polarity_reversed | 
|  | : e1000_rev_polarity_normal; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_polarity_igp - Checks the polarity. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) | 
|  | * | 
|  | *  Polarity is determined based on the PHY port status register, and the | 
|  | *  current speed (since there is no polarity at 100Mbps). | 
|  | **/ | 
|  | s32 e1000_check_polarity_igp(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data, offset, mask; | 
|  |  | 
|  | /* | 
|  | * Polarity is determined based on the speed of | 
|  | * our connection. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | 
|  | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|  | offset	= IGP01E1000_PHY_PCS_INIT_REG; | 
|  | mask	= IGP01E1000_PHY_POLARITY_MASK; | 
|  | } else { | 
|  | /* | 
|  | * This really only applies to 10Mbps since | 
|  | * there is no polarity for 100Mbps (always 0). | 
|  | */ | 
|  | offset	= IGP01E1000_PHY_PORT_STATUS; | 
|  | mask	= IGP01E1000_PSSR_POLARITY_REVERSED; | 
|  | } | 
|  |  | 
|  | ret_val = e1e_rphy(hw, offset, &data); | 
|  |  | 
|  | if (!ret_val) | 
|  | phy->cable_polarity = (data & mask) | 
|  | ? e1000_rev_polarity_reversed | 
|  | : e1000_rev_polarity_normal; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_polarity_ife - Check cable polarity for IFE PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Polarity is determined on the polarity reversal feature being enabled. | 
|  | **/ | 
|  | s32 e1000_check_polarity_ife(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data, offset, mask; | 
|  |  | 
|  | /* | 
|  | * Polarity is determined based on the reversal feature being enabled. | 
|  | */ | 
|  | if (phy->polarity_correction) { | 
|  | offset = IFE_PHY_EXTENDED_STATUS_CONTROL; | 
|  | mask = IFE_PESC_POLARITY_REVERSED; | 
|  | } else { | 
|  | offset = IFE_PHY_SPECIAL_CONTROL; | 
|  | mask = IFE_PSC_FORCE_POLARITY; | 
|  | } | 
|  |  | 
|  | ret_val = e1e_rphy(hw, offset, &phy_data); | 
|  |  | 
|  | if (!ret_val) | 
|  | phy->cable_polarity = (phy_data & mask) | 
|  | ? e1000_rev_polarity_reversed | 
|  | : e1000_rev_polarity_normal; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_wait_autoneg - Wait for auto-neg completion | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Waits for auto-negotiation to complete or for the auto-negotiation time | 
|  | *  limit to expire, which ever happens first. | 
|  | **/ | 
|  | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 i, phy_status; | 
|  |  | 
|  | /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ | 
|  | for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { | 
|  | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | 
|  | if (ret_val) | 
|  | break; | 
|  | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | 
|  | if (ret_val) | 
|  | break; | 
|  | if (phy_status & MII_SR_AUTONEG_COMPLETE) | 
|  | break; | 
|  | msleep(100); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation | 
|  | * has completed. | 
|  | */ | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_phy_has_link_generic - Polls PHY for link | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @iterations: number of times to poll for link | 
|  | *  @usec_interval: delay between polling attempts | 
|  | *  @success: pointer to whether polling was successful or not | 
|  | * | 
|  | *  Polls the PHY status register for link, 'iterations' number of times. | 
|  | **/ | 
|  | s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations, | 
|  | u32 usec_interval, bool *success) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 i, phy_status; | 
|  |  | 
|  | for (i = 0; i < iterations; i++) { | 
|  | /* | 
|  | * Some PHYs require the PHY_STATUS register to be read | 
|  | * twice due to the link bit being sticky.  No harm doing | 
|  | * it across the board. | 
|  | */ | 
|  | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | 
|  | if (ret_val) | 
|  | /* | 
|  | * If the first read fails, another entity may have | 
|  | * ownership of the resources, wait and try again to | 
|  | * see if they have relinquished the resources yet. | 
|  | */ | 
|  | udelay(usec_interval); | 
|  | ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status); | 
|  | if (ret_val) | 
|  | break; | 
|  | if (phy_status & MII_SR_LINK_STATUS) | 
|  | break; | 
|  | if (usec_interval >= 1000) | 
|  | mdelay(usec_interval/1000); | 
|  | else | 
|  | udelay(usec_interval); | 
|  | } | 
|  |  | 
|  | *success = (i < iterations); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the PHY specific status register to retrieve the cable length | 
|  | *  information.  The cable length is determined by averaging the minimum and | 
|  | *  maximum values to get the "average" cable length.  The m88 PHY has four | 
|  | *  possible cable length values, which are: | 
|  | *	Register Value		Cable Length | 
|  | *	0			< 50 meters | 
|  | *	1			50 - 80 meters | 
|  | *	2			80 - 110 meters | 
|  | *	3			110 - 140 meters | 
|  | *	4			> 140 meters | 
|  | **/ | 
|  | s32 e1000e_get_cable_length_m88(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data, index; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 
|  | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | 
|  | if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1) { | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | phy->min_cable_length = e1000_m88_cable_length_table[index]; | 
|  | phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; | 
|  |  | 
|  | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  The automatic gain control (agc) normalizes the amplitude of the | 
|  | *  received signal, adjusting for the attenuation produced by the | 
|  | *  cable.  By reading the AGC registers, which represent the | 
|  | *  combination of coarse and fine gain value, the value can be put | 
|  | *  into a lookup table to obtain the approximate cable length | 
|  | *  for each channel. | 
|  | **/ | 
|  | s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data, i, agc_value = 0; | 
|  | u16 cur_agc_index, max_agc_index = 0; | 
|  | u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1; | 
|  | static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { | 
|  | IGP02E1000_PHY_AGC_A, | 
|  | IGP02E1000_PHY_AGC_B, | 
|  | IGP02E1000_PHY_AGC_C, | 
|  | IGP02E1000_PHY_AGC_D | 
|  | }; | 
|  |  | 
|  | /* Read the AGC registers for all channels */ | 
|  | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | 
|  | ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* | 
|  | * Getting bits 15:9, which represent the combination of | 
|  | * coarse and fine gain values.  The result is a number | 
|  | * that can be put into the lookup table to obtain the | 
|  | * approximate cable length. | 
|  | */ | 
|  | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | 
|  | IGP02E1000_AGC_LENGTH_MASK; | 
|  |  | 
|  | /* Array index bound check. */ | 
|  | if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) || | 
|  | (cur_agc_index == 0)) | 
|  | return -E1000_ERR_PHY; | 
|  |  | 
|  | /* Remove min & max AGC values from calculation. */ | 
|  | if (e1000_igp_2_cable_length_table[min_agc_index] > | 
|  | e1000_igp_2_cable_length_table[cur_agc_index]) | 
|  | min_agc_index = cur_agc_index; | 
|  | if (e1000_igp_2_cable_length_table[max_agc_index] < | 
|  | e1000_igp_2_cable_length_table[cur_agc_index]) | 
|  | max_agc_index = cur_agc_index; | 
|  |  | 
|  | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | 
|  | } | 
|  |  | 
|  | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | 
|  | e1000_igp_2_cable_length_table[max_agc_index]); | 
|  | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | 
|  |  | 
|  | /* Calculate cable length with the error range of +/- 10 meters. */ | 
|  | phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | 
|  | (agc_value - IGP02E1000_AGC_RANGE) : 0; | 
|  | phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; | 
|  |  | 
|  | phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_phy_info_m88 - Retrieve PHY information | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Valid for only copper links.  Read the PHY status register (sticky read) | 
|  | *  to verify that link is up.  Read the PHY special control register to | 
|  | *  determine the polarity and 10base-T extended distance.  Read the PHY | 
|  | *  special status register to determine MDI/MDIx and current speed.  If | 
|  | *  speed is 1000, then determine cable length, local and remote receiver. | 
|  | **/ | 
|  | s32 e1000e_get_phy_info_m88(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32  ret_val; | 
|  | u16 phy_data; | 
|  | bool link; | 
|  |  | 
|  | if (phy->media_type != e1000_media_type_copper) { | 
|  | e_dbg("Phy info is only valid for copper media\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!link) { | 
|  | e_dbg("Phy info is only valid if link is up\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy->polarity_correction = (phy_data & | 
|  | M88E1000_PSCR_POLARITY_REVERSAL); | 
|  |  | 
|  | ret_val = e1000_check_polarity_m88(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX); | 
|  |  | 
|  | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | 
|  | ret_val = e1000_get_cable_length(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) | 
|  | ? e1000_1000t_rx_status_ok | 
|  | : e1000_1000t_rx_status_not_ok; | 
|  |  | 
|  | phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) | 
|  | ? e1000_1000t_rx_status_ok | 
|  | : e1000_1000t_rx_status_not_ok; | 
|  | } else { | 
|  | /* Set values to "undefined" */ | 
|  | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | 
|  | phy->local_rx = e1000_1000t_rx_status_undefined; | 
|  | phy->remote_rx = e1000_1000t_rx_status_undefined; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_phy_info_igp - Retrieve igp PHY information | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Read PHY status to determine if link is up.  If link is up, then | 
|  | *  set/determine 10base-T extended distance and polarity correction.  Read | 
|  | *  PHY port status to determine MDI/MDIx and speed.  Based on the speed, | 
|  | *  determine on the cable length, local and remote receiver. | 
|  | **/ | 
|  | s32 e1000e_get_phy_info_igp(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  | bool link; | 
|  |  | 
|  | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!link) { | 
|  | e_dbg("Phy info is only valid if link is up\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | phy->polarity_correction = true; | 
|  |  | 
|  | ret_val = e1000_check_polarity_igp(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy->is_mdix = (data & IGP01E1000_PSSR_MDIX); | 
|  |  | 
|  | if ((data & IGP01E1000_PSSR_SPEED_MASK) == | 
|  | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|  | ret_val = e1000_get_cable_length(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | 
|  | ? e1000_1000t_rx_status_ok | 
|  | : e1000_1000t_rx_status_not_ok; | 
|  |  | 
|  | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | 
|  | ? e1000_1000t_rx_status_ok | 
|  | : e1000_1000t_rx_status_not_ok; | 
|  | } else { | 
|  | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | 
|  | phy->local_rx = e1000_1000t_rx_status_undefined; | 
|  | phy->remote_rx = e1000_1000t_rx_status_undefined; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_phy_info_ife - Retrieves various IFE PHY states | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Populates "phy" structure with various feature states. | 
|  | **/ | 
|  | s32 e1000_get_phy_info_ife(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  | bool link; | 
|  |  | 
|  | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (!link) { | 
|  | e_dbg("Phy info is only valid if link is up\n"); | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE) | 
|  | ? false : true; | 
|  |  | 
|  | if (phy->polarity_correction) { | 
|  | ret_val = e1000_check_polarity_ife(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } else { | 
|  | /* Polarity is forced */ | 
|  | phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY) | 
|  | ? e1000_rev_polarity_reversed | 
|  | : e1000_rev_polarity_normal; | 
|  | } | 
|  |  | 
|  | ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false; | 
|  |  | 
|  | /* The following parameters are undefined for 10/100 operation. */ | 
|  | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | 
|  | phy->local_rx = e1000_1000t_rx_status_undefined; | 
|  | phy->remote_rx = e1000_1000t_rx_status_undefined; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_phy_sw_reset - PHY software reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Does a software reset of the PHY by reading the PHY control register and | 
|  | *  setting/write the control register reset bit to the PHY. | 
|  | **/ | 
|  | s32 e1000e_phy_sw_reset(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_ctrl; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_ctrl |= MII_CR_RESET; | 
|  | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | udelay(1); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_phy_hw_reset_generic - PHY hardware reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Verify the reset block is not blocking us from resetting.  Acquire | 
|  | *  semaphore (if necessary) and read/set/write the device control reset | 
|  | *  bit in the PHY.  Wait the appropriate delay time for the device to | 
|  | *  reset and release the semaphore (if necessary). | 
|  | **/ | 
|  | s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u32 ctrl; | 
|  |  | 
|  | ret_val = e1000_check_reset_block(hw); | 
|  | if (ret_val) | 
|  | return 0; | 
|  |  | 
|  | ret_val = phy->ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | 
|  | e1e_flush(); | 
|  |  | 
|  | udelay(phy->reset_delay_us); | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | e1e_flush(); | 
|  |  | 
|  | udelay(150); | 
|  |  | 
|  | phy->ops.release(hw); | 
|  |  | 
|  | return e1000_get_phy_cfg_done(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_cfg_done - Generic configuration done | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Generic function to wait 10 milli-seconds for configuration to complete | 
|  | *  and return success. | 
|  | **/ | 
|  | s32 e1000e_get_cfg_done(struct e1000_hw *hw) | 
|  | { | 
|  | mdelay(10); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present. | 
|  | **/ | 
|  | s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw) | 
|  | { | 
|  | e_dbg("Running IGP 3 PHY init script\n"); | 
|  |  | 
|  | /* PHY init IGP 3 */ | 
|  | /* Enable rise/fall, 10-mode work in class-A */ | 
|  | e1e_wphy(hw, 0x2F5B, 0x9018); | 
|  | /* Remove all caps from Replica path filter */ | 
|  | e1e_wphy(hw, 0x2F52, 0x0000); | 
|  | /* Bias trimming for ADC, AFE and Driver (Default) */ | 
|  | e1e_wphy(hw, 0x2FB1, 0x8B24); | 
|  | /* Increase Hybrid poly bias */ | 
|  | e1e_wphy(hw, 0x2FB2, 0xF8F0); | 
|  | /* Add 4% to Tx amplitude in Gig mode */ | 
|  | e1e_wphy(hw, 0x2010, 0x10B0); | 
|  | /* Disable trimming (TTT) */ | 
|  | e1e_wphy(hw, 0x2011, 0x0000); | 
|  | /* Poly DC correction to 94.6% + 2% for all channels */ | 
|  | e1e_wphy(hw, 0x20DD, 0x249A); | 
|  | /* ABS DC correction to 95.9% */ | 
|  | e1e_wphy(hw, 0x20DE, 0x00D3); | 
|  | /* BG temp curve trim */ | 
|  | e1e_wphy(hw, 0x28B4, 0x04CE); | 
|  | /* Increasing ADC OPAMP stage 1 currents to max */ | 
|  | e1e_wphy(hw, 0x2F70, 0x29E4); | 
|  | /* Force 1000 ( required for enabling PHY regs configuration) */ | 
|  | e1e_wphy(hw, 0x0000, 0x0140); | 
|  | /* Set upd_freq to 6 */ | 
|  | e1e_wphy(hw, 0x1F30, 0x1606); | 
|  | /* Disable NPDFE */ | 
|  | e1e_wphy(hw, 0x1F31, 0xB814); | 
|  | /* Disable adaptive fixed FFE (Default) */ | 
|  | e1e_wphy(hw, 0x1F35, 0x002A); | 
|  | /* Enable FFE hysteresis */ | 
|  | e1e_wphy(hw, 0x1F3E, 0x0067); | 
|  | /* Fixed FFE for short cable lengths */ | 
|  | e1e_wphy(hw, 0x1F54, 0x0065); | 
|  | /* Fixed FFE for medium cable lengths */ | 
|  | e1e_wphy(hw, 0x1F55, 0x002A); | 
|  | /* Fixed FFE for long cable lengths */ | 
|  | e1e_wphy(hw, 0x1F56, 0x002A); | 
|  | /* Enable Adaptive Clip Threshold */ | 
|  | e1e_wphy(hw, 0x1F72, 0x3FB0); | 
|  | /* AHT reset limit to 1 */ | 
|  | e1e_wphy(hw, 0x1F76, 0xC0FF); | 
|  | /* Set AHT master delay to 127 msec */ | 
|  | e1e_wphy(hw, 0x1F77, 0x1DEC); | 
|  | /* Set scan bits for AHT */ | 
|  | e1e_wphy(hw, 0x1F78, 0xF9EF); | 
|  | /* Set AHT Preset bits */ | 
|  | e1e_wphy(hw, 0x1F79, 0x0210); | 
|  | /* Change integ_factor of channel A to 3 */ | 
|  | e1e_wphy(hw, 0x1895, 0x0003); | 
|  | /* Change prop_factor of channels BCD to 8 */ | 
|  | e1e_wphy(hw, 0x1796, 0x0008); | 
|  | /* Change cg_icount + enable integbp for channels BCD */ | 
|  | e1e_wphy(hw, 0x1798, 0xD008); | 
|  | /* | 
|  | * Change cg_icount + enable integbp + change prop_factor_master | 
|  | * to 8 for channel A | 
|  | */ | 
|  | e1e_wphy(hw, 0x1898, 0xD918); | 
|  | /* Disable AHT in Slave mode on channel A */ | 
|  | e1e_wphy(hw, 0x187A, 0x0800); | 
|  | /* | 
|  | * Enable LPLU and disable AN to 1000 in non-D0a states, | 
|  | * Enable SPD+B2B | 
|  | */ | 
|  | e1e_wphy(hw, 0x0019, 0x008D); | 
|  | /* Enable restart AN on an1000_dis change */ | 
|  | e1e_wphy(hw, 0x001B, 0x2080); | 
|  | /* Enable wh_fifo read clock in 10/100 modes */ | 
|  | e1e_wphy(hw, 0x0014, 0x0045); | 
|  | /* Restart AN, Speed selection is 1000 */ | 
|  | e1e_wphy(hw, 0x0000, 0x1340); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Internal function pointers */ | 
|  |  | 
|  | /** | 
|  | *  e1000_get_phy_cfg_done - Generic PHY configuration done | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Return success if silicon family did not implement a family specific | 
|  | *  get_cfg_done function. | 
|  | **/ | 
|  | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->phy.ops.get_cfg_done) | 
|  | return hw->phy.ops.get_cfg_done(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  When the silicon family has not implemented a forced speed/duplex | 
|  | *  function for the PHY, simply return 0. | 
|  | **/ | 
|  | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->phy.ops.force_speed_duplex) | 
|  | return hw->phy.ops.force_speed_duplex(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_phy_type_from_id - Get PHY type from id | 
|  | *  @phy_id: phy_id read from the phy | 
|  | * | 
|  | *  Returns the phy type from the id. | 
|  | **/ | 
|  | enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id) | 
|  | { | 
|  | enum e1000_phy_type phy_type = e1000_phy_unknown; | 
|  |  | 
|  | switch (phy_id) { | 
|  | case M88E1000_I_PHY_ID: | 
|  | case M88E1000_E_PHY_ID: | 
|  | case M88E1111_I_PHY_ID: | 
|  | case M88E1011_I_PHY_ID: | 
|  | phy_type = e1000_phy_m88; | 
|  | break; | 
|  | case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */ | 
|  | phy_type = e1000_phy_igp_2; | 
|  | break; | 
|  | case GG82563_E_PHY_ID: | 
|  | phy_type = e1000_phy_gg82563; | 
|  | break; | 
|  | case IGP03E1000_E_PHY_ID: | 
|  | phy_type = e1000_phy_igp_3; | 
|  | break; | 
|  | case IFE_E_PHY_ID: | 
|  | case IFE_PLUS_E_PHY_ID: | 
|  | case IFE_C_E_PHY_ID: | 
|  | phy_type = e1000_phy_ife; | 
|  | break; | 
|  | case BME1000_E_PHY_ID: | 
|  | case BME1000_E_PHY_ID_R2: | 
|  | phy_type = e1000_phy_bm; | 
|  | break; | 
|  | case I82578_E_PHY_ID: | 
|  | phy_type = e1000_phy_82578; | 
|  | break; | 
|  | case I82577_E_PHY_ID: | 
|  | phy_type = e1000_phy_82577; | 
|  | break; | 
|  | case I82579_E_PHY_ID: | 
|  | phy_type = e1000_phy_82579; | 
|  | break; | 
|  | default: | 
|  | phy_type = e1000_phy_unknown; | 
|  | break; | 
|  | } | 
|  | return phy_type; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_determine_phy_address - Determines PHY address. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This uses a trial and error method to loop through possible PHY | 
|  | *  addresses. It tests each by reading the PHY ID registers and | 
|  | *  checking for a match. | 
|  | **/ | 
|  | s32 e1000e_determine_phy_address(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = -E1000_ERR_PHY_TYPE; | 
|  | u32 phy_addr = 0; | 
|  | u32 i; | 
|  | enum e1000_phy_type phy_type = e1000_phy_unknown; | 
|  |  | 
|  | hw->phy.id = phy_type; | 
|  |  | 
|  | for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) { | 
|  | hw->phy.addr = phy_addr; | 
|  | i = 0; | 
|  |  | 
|  | do { | 
|  | e1000e_get_phy_id(hw); | 
|  | phy_type = e1000e_get_phy_type_from_id(hw->phy.id); | 
|  |  | 
|  | /* | 
|  | * If phy_type is valid, break - we found our | 
|  | * PHY address | 
|  | */ | 
|  | if (phy_type  != e1000_phy_unknown) { | 
|  | ret_val = 0; | 
|  | goto out; | 
|  | } | 
|  | usleep_range(1000, 2000); | 
|  | i++; | 
|  | } while (i < 10); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address | 
|  | *  @page: page to access | 
|  | * | 
|  | *  Returns the phy address for the page requested. | 
|  | **/ | 
|  | static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg) | 
|  | { | 
|  | u32 phy_addr = 2; | 
|  |  | 
|  | if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31)) | 
|  | phy_addr = 1; | 
|  |  | 
|  | return phy_addr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_phy_reg_bm - Write BM PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then writes the data to PHY register | 
|  | *  at the offset.  Release any acquired semaphores before exiting. | 
|  | **/ | 
|  | s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | s32 ret_val; | 
|  | u32 page = offset >> IGP_PAGE_SHIFT; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Page 800 works differently than the rest so it has its own func */ | 
|  | if (page == BM_WUC_PAGE) { | 
|  | ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, | 
|  | false); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); | 
|  |  | 
|  | if (offset > MAX_PHY_MULTI_PAGE_REG) { | 
|  | u32 page_shift, page_select; | 
|  |  | 
|  | /* | 
|  | * Page select is register 31 for phy address 1 and 22 for | 
|  | * phy address 2 and 3. Page select is shifted only for | 
|  | * phy address 1. | 
|  | */ | 
|  | if (hw->phy.addr == 1) { | 
|  | page_shift = IGP_PAGE_SHIFT; | 
|  | page_select = IGP01E1000_PHY_PAGE_SELECT; | 
|  | } else { | 
|  | page_shift = 0; | 
|  | page_select = BM_PHY_PAGE_SELECT; | 
|  | } | 
|  |  | 
|  | /* Page is shifted left, PHY expects (page x 32) */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, page_select, | 
|  | (page << page_shift)); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | 
|  | data); | 
|  |  | 
|  | out: | 
|  | hw->phy.ops.release(hw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_phy_reg_bm - Read BM PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then reads the PHY register at offset | 
|  | *  and storing the retrieved information in data.  Release any acquired | 
|  | *  semaphores before exiting. | 
|  | **/ | 
|  | s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  | u32 page = offset >> IGP_PAGE_SHIFT; | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Page 800 works differently than the rest so it has its own func */ | 
|  | if (page == BM_WUC_PAGE) { | 
|  | ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, | 
|  | true); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset); | 
|  |  | 
|  | if (offset > MAX_PHY_MULTI_PAGE_REG) { | 
|  | u32 page_shift, page_select; | 
|  |  | 
|  | /* | 
|  | * Page select is register 31 for phy address 1 and 22 for | 
|  | * phy address 2 and 3. Page select is shifted only for | 
|  | * phy address 1. | 
|  | */ | 
|  | if (hw->phy.addr == 1) { | 
|  | page_shift = IGP_PAGE_SHIFT; | 
|  | page_select = IGP01E1000_PHY_PAGE_SELECT; | 
|  | } else { | 
|  | page_shift = 0; | 
|  | page_select = BM_PHY_PAGE_SELECT; | 
|  | } | 
|  |  | 
|  | /* Page is shifted left, PHY expects (page x 32) */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, page_select, | 
|  | (page << page_shift)); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | 
|  | data); | 
|  | out: | 
|  | hw->phy.ops.release(hw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_read_phy_reg_bm2 - Read BM PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then reads the PHY register at offset | 
|  | *  and storing the retrieved information in data.  Release any acquired | 
|  | *  semaphores before exiting. | 
|  | **/ | 
|  | s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 page = (u16)(offset >> IGP_PAGE_SHIFT); | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Page 800 works differently than the rest so it has its own func */ | 
|  | if (page == BM_WUC_PAGE) { | 
|  | ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data, | 
|  | true); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hw->phy.addr = 1; | 
|  |  | 
|  | if (offset > MAX_PHY_MULTI_PAGE_REG) { | 
|  |  | 
|  | /* Page is shifted left, PHY expects (page x 32) */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, | 
|  | page); | 
|  |  | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | 
|  | data); | 
|  | out: | 
|  | hw->phy.ops.release(hw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_write_phy_reg_bm2 - Write BM PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then writes the data to PHY register | 
|  | *  at the offset.  Release any acquired semaphores before exiting. | 
|  | **/ | 
|  | s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 page = (u16)(offset >> IGP_PAGE_SHIFT); | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Page 800 works differently than the rest so it has its own func */ | 
|  | if (page == BM_WUC_PAGE) { | 
|  | ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data, | 
|  | false); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hw->phy.addr = 1; | 
|  |  | 
|  | if (offset > MAX_PHY_MULTI_PAGE_REG) { | 
|  | /* Page is shifted left, PHY expects (page x 32) */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT, | 
|  | page); | 
|  |  | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, | 
|  | data); | 
|  |  | 
|  | out: | 
|  | hw->phy.ops.release(hw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_access_phy_wakeup_reg_bm - Read BM PHY wakeup register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read or written | 
|  | *  @data: pointer to the data to read or write | 
|  | *  @read: determines if operation is read or write | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then reads the PHY register at offset | 
|  | *  and storing the retrieved information in data.  Release any acquired | 
|  | *  semaphores before exiting. Note that procedure to read the wakeup | 
|  | *  registers are different. It works as such: | 
|  | *  1) Set page 769, register 17, bit 2 = 1 | 
|  | *  2) Set page to 800 for host (801 if we were manageability) | 
|  | *  3) Write the address using the address opcode (0x11) | 
|  | *  4) Read or write the data using the data opcode (0x12) | 
|  | *  5) Restore 769_17.2 to its original value | 
|  | * | 
|  | *  Assumes semaphore already acquired. | 
|  | **/ | 
|  | static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset, | 
|  | u16 *data, bool read) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 reg = BM_PHY_REG_NUM(offset); | 
|  | u16 phy_reg = 0; | 
|  |  | 
|  | /* Gig must be disabled for MDIO accesses to page 800 */ | 
|  | if ((hw->mac.type == e1000_pchlan) && | 
|  | (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE))) | 
|  | e_dbg("Attempting to access page 800 while gig enabled.\n"); | 
|  |  | 
|  | /* All operations in this function are phy address 1 */ | 
|  | hw->phy.addr = 1; | 
|  |  | 
|  | /* Set page 769 */ | 
|  | e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); | 
|  |  | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, &phy_reg); | 
|  | if (ret_val) { | 
|  | e_dbg("Could not read PHY page 769\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* First clear bit 4 to avoid a power state change */ | 
|  | phy_reg &= ~(BM_WUC_HOST_WU_BIT); | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); | 
|  | if (ret_val) { | 
|  | e_dbg("Could not clear PHY page 769 bit 4\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Write bit 2 = 1, and clear bit 4 to 769_17 */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, | 
|  | phy_reg | BM_WUC_ENABLE_BIT); | 
|  | if (ret_val) { | 
|  | e_dbg("Could not write PHY page 769 bit 2\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Select page 800 */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | (BM_WUC_PAGE << IGP_PAGE_SHIFT)); | 
|  |  | 
|  | /* Write the page 800 offset value using opcode 0x11 */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg); | 
|  | if (ret_val) { | 
|  | e_dbg("Could not write address opcode to page 800\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (read) { | 
|  | /* Read the page 800 value using opcode 0x12 */ | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, | 
|  | data); | 
|  | } else { | 
|  | /* Write the page 800 value using opcode 0x12 */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE, | 
|  | *data); | 
|  | } | 
|  |  | 
|  | if (ret_val) { | 
|  | e_dbg("Could not access data value from page 800\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Restore 769_17.2 to its original value | 
|  | * Set page 769 | 
|  | */ | 
|  | e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | (BM_WUC_ENABLE_PAGE << IGP_PAGE_SHIFT)); | 
|  |  | 
|  | /* Clear 769_17.2 */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg); | 
|  | if (ret_val) { | 
|  | e_dbg("Could not clear PHY page 769 bit 2\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_power_up_phy_copper - Restore copper link in case of PHY power down | 
|  | * @hw: pointer to the HW structure | 
|  | * | 
|  | * In the case of a PHY power down to save power, or to turn off link during a | 
|  | * driver unload, or wake on lan is not enabled, restore the link to previous | 
|  | * settings. | 
|  | **/ | 
|  | void e1000_power_up_phy_copper(struct e1000_hw *hw) | 
|  | { | 
|  | u16 mii_reg = 0; | 
|  |  | 
|  | /* The PHY will retain its settings across a power down/up cycle */ | 
|  | e1e_rphy(hw, PHY_CONTROL, &mii_reg); | 
|  | mii_reg &= ~MII_CR_POWER_DOWN; | 
|  | e1e_wphy(hw, PHY_CONTROL, mii_reg); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_power_down_phy_copper - Restore copper link in case of PHY power down | 
|  | * @hw: pointer to the HW structure | 
|  | * | 
|  | * In the case of a PHY power down to save power, or to turn off link during a | 
|  | * driver unload, or wake on lan is not enabled, restore the link to previous | 
|  | * settings. | 
|  | **/ | 
|  | void e1000_power_down_phy_copper(struct e1000_hw *hw) | 
|  | { | 
|  | u16 mii_reg = 0; | 
|  |  | 
|  | /* The PHY will retain its settings across a power down/up cycle */ | 
|  | e1e_rphy(hw, PHY_CONTROL, &mii_reg); | 
|  | mii_reg |= MII_CR_POWER_DOWN; | 
|  | e1e_wphy(hw, PHY_CONTROL, mii_reg); | 
|  | usleep_range(1000, 2000); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_commit_phy - Soft PHY reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Performs a soft PHY reset on those that apply. This is a function pointer | 
|  | *  entry point called by drivers. | 
|  | **/ | 
|  | s32 e1000e_commit_phy(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->phy.ops.commit) | 
|  | return hw->phy.ops.commit(hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_d0_lplu_state - Sets low power link up state for D0 | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: boolean used to enable/disable lplu | 
|  | * | 
|  | *  Success returns 0, Failure returns 1 | 
|  | * | 
|  | *  The low power link up (lplu) state is set to the power management level D0 | 
|  | *  and SmartSpeed is disabled when active is true, else clear lplu for D0 | 
|  | *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU | 
|  | *  is used during Dx states where the power conservation is most important. | 
|  | *  During driver activity, SmartSpeed should be enabled so performance is | 
|  | *  maintained.  This is a function pointer entry point called by drivers. | 
|  | **/ | 
|  | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | if (hw->phy.ops.set_d0_lplu_state) | 
|  | return hw->phy.ops.set_d0_lplu_state(hw, active); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  __e1000_read_phy_reg_hv -  Read HV PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | *  @locked: semaphore has already been acquired or not | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then reads the PHY register at offset | 
|  | *  and stores the retrieved information in data.  Release any acquired | 
|  | *  semaphore before exiting. | 
|  | **/ | 
|  | static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data, | 
|  | bool locked) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 page = BM_PHY_REG_PAGE(offset); | 
|  | u16 reg = BM_PHY_REG_NUM(offset); | 
|  |  | 
|  | if (!locked) { | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Page 800 works differently than the rest so it has its own func */ | 
|  | if (page == BM_WUC_PAGE) { | 
|  | ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, | 
|  | data, true); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (page > 0 && page < HV_INTC_FC_PAGE_START) { | 
|  | ret_val = e1000_access_phy_debug_regs_hv(hw, offset, | 
|  | data, true); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); | 
|  |  | 
|  | if (page == HV_INTC_FC_PAGE_START) | 
|  | page = 0; | 
|  |  | 
|  | if (reg > MAX_PHY_MULTI_PAGE_REG) { | 
|  | u32 phy_addr = hw->phy.addr; | 
|  |  | 
|  | hw->phy.addr = 1; | 
|  |  | 
|  | /* Page is shifted left, PHY expects (page x 32) */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, | 
|  | IGP01E1000_PHY_PAGE_SELECT, | 
|  | (page << IGP_PAGE_SHIFT)); | 
|  | hw->phy.addr = phy_addr; | 
|  |  | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, | 
|  | data); | 
|  | out: | 
|  | if (!locked) | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_phy_reg_hv -  Read HV PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Acquires semaphore then reads the PHY register at offset and stores | 
|  | *  the retrieved information in data.  Release the acquired semaphore | 
|  | *  before exiting. | 
|  | **/ | 
|  | s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | return __e1000_read_phy_reg_hv(hw, offset, data, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_read_phy_reg_hv_locked -  Read HV PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Reads the PHY register at offset and stores the retrieved information | 
|  | *  in data.  Assumes semaphore already acquired. | 
|  | **/ | 
|  | s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | return __e1000_read_phy_reg_hv(hw, offset, data, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  __e1000_write_phy_reg_hv - Write HV PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | *  @locked: semaphore has already been acquired or not | 
|  | * | 
|  | *  Acquires semaphore, if necessary, then writes the data to PHY register | 
|  | *  at the offset.  Release any acquired semaphores before exiting. | 
|  | **/ | 
|  | static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data, | 
|  | bool locked) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 page = BM_PHY_REG_PAGE(offset); | 
|  | u16 reg = BM_PHY_REG_NUM(offset); | 
|  |  | 
|  | if (!locked) { | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Page 800 works differently than the rest so it has its own func */ | 
|  | if (page == BM_WUC_PAGE) { | 
|  | ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, | 
|  | &data, false); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (page > 0 && page < HV_INTC_FC_PAGE_START) { | 
|  | ret_val = e1000_access_phy_debug_regs_hv(hw, offset, | 
|  | &data, false); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | hw->phy.addr = e1000_get_phy_addr_for_hv_page(page); | 
|  |  | 
|  | if (page == HV_INTC_FC_PAGE_START) | 
|  | page = 0; | 
|  |  | 
|  | /* | 
|  | * Workaround MDIO accesses being disabled after entering IEEE Power | 
|  | * Down (whenever bit 11 of the PHY Control register is set) | 
|  | */ | 
|  | if ((hw->phy.type == e1000_phy_82578) && | 
|  | (hw->phy.revision >= 1) && | 
|  | (hw->phy.addr == 2) && | 
|  | ((MAX_PHY_REG_ADDRESS & reg) == 0) && | 
|  | (data & (1 << 11))) { | 
|  | u16 data2 = 0x7EFF; | 
|  | ret_val = e1000_access_phy_debug_regs_hv(hw, (1 << 6) | 0x3, | 
|  | &data2, false); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (reg > MAX_PHY_MULTI_PAGE_REG) { | 
|  | u32 phy_addr = hw->phy.addr; | 
|  |  | 
|  | hw->phy.addr = 1; | 
|  |  | 
|  | /* Page is shifted left, PHY expects (page x 32) */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, | 
|  | IGP01E1000_PHY_PAGE_SELECT, | 
|  | (page << IGP_PAGE_SHIFT)); | 
|  | hw->phy.addr = phy_addr; | 
|  |  | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, | 
|  | data); | 
|  |  | 
|  | out: | 
|  | if (!locked) | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_phy_reg_hv - Write HV PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Acquires semaphore then writes the data to PHY register at the offset. | 
|  | *  Release the acquired semaphores before exiting. | 
|  | **/ | 
|  | s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | return __e1000_write_phy_reg_hv(hw, offset, data, false); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_phy_reg_hv_locked - Write HV PHY register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Writes the data to PHY register at the offset.  Assumes semaphore | 
|  | *  already acquired. | 
|  | **/ | 
|  | s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | return __e1000_write_phy_reg_hv(hw, offset, data, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page | 
|  | *  @page: page to be accessed | 
|  | **/ | 
|  | static u32 e1000_get_phy_addr_for_hv_page(u32 page) | 
|  | { | 
|  | u32 phy_addr = 2; | 
|  |  | 
|  | if (page >= HV_INTC_FC_PAGE_START) | 
|  | phy_addr = 1; | 
|  |  | 
|  | return phy_addr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read or written | 
|  | *  @data: pointer to the data to be read or written | 
|  | *  @read: determines if operation is read or written | 
|  | * | 
|  | *  Reads the PHY register at offset and stores the retreived information | 
|  | *  in data.  Assumes semaphore already acquired.  Note that the procedure | 
|  | *  to read these regs uses the address port and data port to read/write. | 
|  | **/ | 
|  | static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset, | 
|  | u16 *data, bool read) | 
|  | { | 
|  | s32 ret_val; | 
|  | u32 addr_reg = 0; | 
|  | u32 data_reg = 0; | 
|  |  | 
|  | /* This takes care of the difference with desktop vs mobile phy */ | 
|  | addr_reg = (hw->phy.type == e1000_phy_82578) ? | 
|  | I82578_ADDR_REG : I82577_ADDR_REG; | 
|  | data_reg = addr_reg + 1; | 
|  |  | 
|  | /* All operations in this function are phy address 2 */ | 
|  | hw->phy.addr = 2; | 
|  |  | 
|  | /* masking with 0x3F to remove the page from offset */ | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F); | 
|  | if (ret_val) { | 
|  | e_dbg("Could not write PHY the HV address register\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Read or write the data value next */ | 
|  | if (read) | 
|  | ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data); | 
|  | else | 
|  | ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data); | 
|  |  | 
|  | if (ret_val) { | 
|  | e_dbg("Could not read data value from HV data register\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_link_stall_workaround_hv - Si workaround | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This function works around a Si bug where the link partner can get | 
|  | *  a link up indication before the PHY does.  If small packets are sent | 
|  | *  by the link partner they can be placed in the packet buffer without | 
|  | *  being properly accounted for by the PHY and will stall preventing | 
|  | *  further packets from being received.  The workaround is to clear the | 
|  | *  packet buffer after the PHY detects link up. | 
|  | **/ | 
|  | s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 data; | 
|  |  | 
|  | if (hw->phy.type != e1000_phy_82578) | 
|  | goto out; | 
|  |  | 
|  | /* Do not apply workaround if in PHY loopback bit 14 set */ | 
|  | e1e_rphy(hw, PHY_CONTROL, &data); | 
|  | if (data & PHY_CONTROL_LB) | 
|  | goto out; | 
|  |  | 
|  | /* check if link is up and at 1Gbps */ | 
|  | ret_val = e1e_rphy(hw, BM_CS_STATUS, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | data &= BM_CS_STATUS_LINK_UP | | 
|  | BM_CS_STATUS_RESOLVED | | 
|  | BM_CS_STATUS_SPEED_MASK; | 
|  |  | 
|  | if (data != (BM_CS_STATUS_LINK_UP | | 
|  | BM_CS_STATUS_RESOLVED | | 
|  | BM_CS_STATUS_SPEED_1000)) | 
|  | goto out; | 
|  |  | 
|  | mdelay(200); | 
|  |  | 
|  | /* flush the packets in the fifo buffer */ | 
|  | ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC | | 
|  | HV_MUX_DATA_CTRL_FORCE_SPEED); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_check_polarity_82577 - Checks the polarity. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Success returns 0, Failure returns -E1000_ERR_PHY (-2) | 
|  | * | 
|  | *  Polarity is determined based on the PHY specific status register. | 
|  | **/ | 
|  | s32 e1000_check_polarity_82577(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); | 
|  |  | 
|  | if (!ret_val) | 
|  | phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY) | 
|  | ? e1000_rev_polarity_reversed | 
|  | : e1000_rev_polarity_normal; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calls the PHY setup function to force speed and duplex. | 
|  | **/ | 
|  | s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | bool link; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | e1000e_phy_force_speed_duplex_setup(hw, &phy_data); | 
|  |  | 
|  | ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | udelay(1); | 
|  |  | 
|  | if (phy->autoneg_wait_to_complete) { | 
|  | e_dbg("Waiting for forced speed/duplex link on 82577 phy\n"); | 
|  |  | 
|  | ret_val = e1000e_phy_has_link_generic(hw, | 
|  | PHY_FORCE_LIMIT, | 
|  | 100000, | 
|  | &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (!link) | 
|  | e_dbg("Link taking longer than expected.\n"); | 
|  |  | 
|  | /* Try once more */ | 
|  | ret_val = e1000e_phy_has_link_generic(hw, | 
|  | PHY_FORCE_LIMIT, | 
|  | 100000, | 
|  | &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Read PHY status to determine if link is up.  If link is up, then | 
|  | *  set/determine 10base-T extended distance and polarity correction.  Read | 
|  | *  PHY port status to determine MDI/MDIx and speed.  Based on the speed, | 
|  | *  determine on the cable length, local and remote receiver. | 
|  | **/ | 
|  | s32 e1000_get_phy_info_82577(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  | bool link; | 
|  |  | 
|  | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (!link) { | 
|  | e_dbg("Phy info is only valid if link is up\n"); | 
|  | ret_val = -E1000_ERR_CONFIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | phy->polarity_correction = true; | 
|  |  | 
|  | ret_val = e1000_check_polarity_82577(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false; | 
|  |  | 
|  | if ((data & I82577_PHY_STATUS2_SPEED_MASK) == | 
|  | I82577_PHY_STATUS2_SPEED_1000MBPS) { | 
|  | ret_val = hw->phy.ops.get_cable_length(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) | 
|  | ? e1000_1000t_rx_status_ok | 
|  | : e1000_1000t_rx_status_not_ok; | 
|  |  | 
|  | phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) | 
|  | ? e1000_1000t_rx_status_ok | 
|  | : e1000_1000t_rx_status_not_ok; | 
|  | } else { | 
|  | phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; | 
|  | phy->local_rx = e1000_1000t_rx_status_undefined; | 
|  | phy->remote_rx = e1000_1000t_rx_status_undefined; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | * Reads the diagnostic status register and verifies result is valid before | 
|  | * placing it in the phy_cable_length field. | 
|  | **/ | 
|  | s32 e1000_get_cable_length_82577(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 phy_data, length; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >> | 
|  | I82577_DSTATUS_CABLE_LENGTH_SHIFT; | 
|  |  | 
|  | if (length == E1000_CABLE_LENGTH_UNDEFINED) | 
|  | ret_val = -E1000_ERR_PHY; | 
|  |  | 
|  | phy->cable_length = length; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } |