|  | /**************************************************************************** | 
|  | * Driver for Solarflare Solarstorm network controllers and boards | 
|  | * Copyright 2005-2006 Fen Systems Ltd. | 
|  | * Copyright 2005-2010 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #include <linux/pci.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <linux/slab.h> | 
|  | #include <net/ipv6.h> | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/highmem.h> | 
|  | #include "net_driver.h" | 
|  | #include "efx.h" | 
|  | #include "nic.h" | 
|  | #include "workarounds.h" | 
|  |  | 
|  | /* | 
|  | * TX descriptor ring full threshold | 
|  | * | 
|  | * The tx_queue descriptor ring fill-level must fall below this value | 
|  | * before we restart the netif queue | 
|  | */ | 
|  | #define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u) | 
|  |  | 
|  | static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, | 
|  | struct efx_tx_buffer *buffer) | 
|  | { | 
|  | if (buffer->unmap_len) { | 
|  | struct pci_dev *pci_dev = tx_queue->efx->pci_dev; | 
|  | dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - | 
|  | buffer->unmap_len); | 
|  | if (buffer->unmap_single) | 
|  | pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | else | 
|  | pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | buffer->unmap_len = 0; | 
|  | buffer->unmap_single = false; | 
|  | } | 
|  |  | 
|  | if (buffer->skb) { | 
|  | dev_kfree_skb_any((struct sk_buff *) buffer->skb); | 
|  | buffer->skb = NULL; | 
|  | netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, | 
|  | "TX queue %d transmission id %x complete\n", | 
|  | tx_queue->queue, tx_queue->read_count); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * struct efx_tso_header - a DMA mapped buffer for packet headers | 
|  | * @next: Linked list of free ones. | 
|  | *	The list is protected by the TX queue lock. | 
|  | * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. | 
|  | * @dma_addr: The DMA address of the header below. | 
|  | * | 
|  | * This controls the memory used for a TSO header.  Use TSOH_DATA() | 
|  | * to find the packet header data.  Use TSOH_SIZE() to calculate the | 
|  | * total size required for a given packet header length.  TSO headers | 
|  | * in the free list are exactly %TSOH_STD_SIZE bytes in size. | 
|  | */ | 
|  | struct efx_tso_header { | 
|  | union { | 
|  | struct efx_tso_header *next; | 
|  | size_t unmap_len; | 
|  | }; | 
|  | dma_addr_t dma_addr; | 
|  | }; | 
|  |  | 
|  | static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, | 
|  | struct sk_buff *skb); | 
|  | static void efx_fini_tso(struct efx_tx_queue *tx_queue); | 
|  | static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, | 
|  | struct efx_tso_header *tsoh); | 
|  |  | 
|  | static void efx_tsoh_free(struct efx_tx_queue *tx_queue, | 
|  | struct efx_tx_buffer *buffer) | 
|  | { | 
|  | if (buffer->tsoh) { | 
|  | if (likely(!buffer->tsoh->unmap_len)) { | 
|  | buffer->tsoh->next = tx_queue->tso_headers_free; | 
|  | tx_queue->tso_headers_free = buffer->tsoh; | 
|  | } else { | 
|  | efx_tsoh_heap_free(tx_queue, buffer->tsoh); | 
|  | } | 
|  | buffer->tsoh = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline unsigned | 
|  | efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr) | 
|  | { | 
|  | /* Depending on the NIC revision, we can use descriptor | 
|  | * lengths up to 8K or 8K-1.  However, since PCI Express | 
|  | * devices must split read requests at 4K boundaries, there is | 
|  | * little benefit from using descriptors that cross those | 
|  | * boundaries and we keep things simple by not doing so. | 
|  | */ | 
|  | unsigned len = (~dma_addr & 0xfff) + 1; | 
|  |  | 
|  | /* Work around hardware bug for unaligned buffers. */ | 
|  | if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf)) | 
|  | len = min_t(unsigned, len, 512 - (dma_addr & 0xf)); | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a socket buffer to a TX queue | 
|  | * | 
|  | * This maps all fragments of a socket buffer for DMA and adds them to | 
|  | * the TX queue.  The queue's insert pointer will be incremented by | 
|  | * the number of fragments in the socket buffer. | 
|  | * | 
|  | * If any DMA mapping fails, any mapped fragments will be unmapped, | 
|  | * the queue's insert pointer will be restored to its original value. | 
|  | * | 
|  | * This function is split out from efx_hard_start_xmit to allow the | 
|  | * loopback test to direct packets via specific TX queues. | 
|  | * | 
|  | * Returns NETDEV_TX_OK or NETDEV_TX_BUSY | 
|  | * You must hold netif_tx_lock() to call this function. | 
|  | */ | 
|  | netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | struct pci_dev *pci_dev = efx->pci_dev; | 
|  | struct efx_tx_buffer *buffer; | 
|  | skb_frag_t *fragment; | 
|  | struct page *page; | 
|  | int page_offset; | 
|  | unsigned int len, unmap_len = 0, fill_level, insert_ptr; | 
|  | dma_addr_t dma_addr, unmap_addr = 0; | 
|  | unsigned int dma_len; | 
|  | bool unmap_single; | 
|  | int q_space, i = 0; | 
|  | netdev_tx_t rc = NETDEV_TX_OK; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); | 
|  |  | 
|  | if (skb_shinfo(skb)->gso_size) | 
|  | return efx_enqueue_skb_tso(tx_queue, skb); | 
|  |  | 
|  | /* Get size of the initial fragment */ | 
|  | len = skb_headlen(skb); | 
|  |  | 
|  | /* Pad if necessary */ | 
|  | if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) { | 
|  | EFX_BUG_ON_PARANOID(skb->data_len); | 
|  | len = 32 + 1; | 
|  | if (skb_pad(skb, len - skb->len)) | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | fill_level = tx_queue->insert_count - tx_queue->old_read_count; | 
|  | q_space = efx->txq_entries - 1 - fill_level; | 
|  |  | 
|  | /* Map for DMA.  Use pci_map_single rather than pci_map_page | 
|  | * since this is more efficient on machines with sparse | 
|  | * memory. | 
|  | */ | 
|  | unmap_single = true; | 
|  | dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); | 
|  |  | 
|  | /* Process all fragments */ | 
|  | while (1) { | 
|  | if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr))) | 
|  | goto pci_err; | 
|  |  | 
|  | /* Store fields for marking in the per-fragment final | 
|  | * descriptor */ | 
|  | unmap_len = len; | 
|  | unmap_addr = dma_addr; | 
|  |  | 
|  | /* Add to TX queue, splitting across DMA boundaries */ | 
|  | do { | 
|  | if (unlikely(q_space-- <= 0)) { | 
|  | /* It might be that completions have | 
|  | * happened since the xmit path last | 
|  | * checked.  Update the xmit path's | 
|  | * copy of read_count. | 
|  | */ | 
|  | netif_tx_stop_queue(tx_queue->core_txq); | 
|  | /* This memory barrier protects the | 
|  | * change of queue state from the access | 
|  | * of read_count. */ | 
|  | smp_mb(); | 
|  | tx_queue->old_read_count = | 
|  | ACCESS_ONCE(tx_queue->read_count); | 
|  | fill_level = (tx_queue->insert_count | 
|  | - tx_queue->old_read_count); | 
|  | q_space = efx->txq_entries - 1 - fill_level; | 
|  | if (unlikely(q_space-- <= 0)) { | 
|  | rc = NETDEV_TX_BUSY; | 
|  | goto unwind; | 
|  | } | 
|  | smp_mb(); | 
|  | if (likely(!efx->loopback_selftest)) | 
|  | netif_tx_start_queue( | 
|  | tx_queue->core_txq); | 
|  | } | 
|  |  | 
|  | insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; | 
|  | buffer = &tx_queue->buffer[insert_ptr]; | 
|  | efx_tsoh_free(tx_queue, buffer); | 
|  | EFX_BUG_ON_PARANOID(buffer->tsoh); | 
|  | EFX_BUG_ON_PARANOID(buffer->skb); | 
|  | EFX_BUG_ON_PARANOID(buffer->len); | 
|  | EFX_BUG_ON_PARANOID(!buffer->continuation); | 
|  | EFX_BUG_ON_PARANOID(buffer->unmap_len); | 
|  |  | 
|  | dma_len = efx_max_tx_len(efx, dma_addr); | 
|  | if (likely(dma_len >= len)) | 
|  | dma_len = len; | 
|  |  | 
|  | /* Fill out per descriptor fields */ | 
|  | buffer->len = dma_len; | 
|  | buffer->dma_addr = dma_addr; | 
|  | len -= dma_len; | 
|  | dma_addr += dma_len; | 
|  | ++tx_queue->insert_count; | 
|  | } while (len); | 
|  |  | 
|  | /* Transfer ownership of the unmapping to the final buffer */ | 
|  | buffer->unmap_single = unmap_single; | 
|  | buffer->unmap_len = unmap_len; | 
|  | unmap_len = 0; | 
|  |  | 
|  | /* Get address and size of next fragment */ | 
|  | if (i >= skb_shinfo(skb)->nr_frags) | 
|  | break; | 
|  | fragment = &skb_shinfo(skb)->frags[i]; | 
|  | len = fragment->size; | 
|  | page = fragment->page; | 
|  | page_offset = fragment->page_offset; | 
|  | i++; | 
|  | /* Map for DMA */ | 
|  | unmap_single = false; | 
|  | dma_addr = pci_map_page(pci_dev, page, page_offset, len, | 
|  | PCI_DMA_TODEVICE); | 
|  | } | 
|  |  | 
|  | /* Transfer ownership of the skb to the final buffer */ | 
|  | buffer->skb = skb; | 
|  | buffer->continuation = false; | 
|  |  | 
|  | /* Pass off to hardware */ | 
|  | efx_nic_push_buffers(tx_queue); | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  |  | 
|  | pci_err: | 
|  | netif_err(efx, tx_err, efx->net_dev, | 
|  | " TX queue %d could not map skb with %d bytes %d " | 
|  | "fragments for DMA\n", tx_queue->queue, skb->len, | 
|  | skb_shinfo(skb)->nr_frags + 1); | 
|  |  | 
|  | /* Mark the packet as transmitted, and free the SKB ourselves */ | 
|  | dev_kfree_skb_any(skb); | 
|  |  | 
|  | unwind: | 
|  | /* Work backwards until we hit the original insert pointer value */ | 
|  | while (tx_queue->insert_count != tx_queue->write_count) { | 
|  | --tx_queue->insert_count; | 
|  | insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; | 
|  | buffer = &tx_queue->buffer[insert_ptr]; | 
|  | efx_dequeue_buffer(tx_queue, buffer); | 
|  | buffer->len = 0; | 
|  | } | 
|  |  | 
|  | /* Free the fragment we were mid-way through pushing */ | 
|  | if (unmap_len) { | 
|  | if (unmap_single) | 
|  | pci_unmap_single(pci_dev, unmap_addr, unmap_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | else | 
|  | pci_unmap_page(pci_dev, unmap_addr, unmap_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* Remove packets from the TX queue | 
|  | * | 
|  | * This removes packets from the TX queue, up to and including the | 
|  | * specified index. | 
|  | */ | 
|  | static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, | 
|  | unsigned int index) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | unsigned int stop_index, read_ptr; | 
|  |  | 
|  | stop_index = (index + 1) & tx_queue->ptr_mask; | 
|  | read_ptr = tx_queue->read_count & tx_queue->ptr_mask; | 
|  |  | 
|  | while (read_ptr != stop_index) { | 
|  | struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; | 
|  | if (unlikely(buffer->len == 0)) { | 
|  | netif_err(efx, tx_err, efx->net_dev, | 
|  | "TX queue %d spurious TX completion id %x\n", | 
|  | tx_queue->queue, read_ptr); | 
|  | efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); | 
|  | return; | 
|  | } | 
|  |  | 
|  | efx_dequeue_buffer(tx_queue, buffer); | 
|  | buffer->continuation = true; | 
|  | buffer->len = 0; | 
|  |  | 
|  | ++tx_queue->read_count; | 
|  | read_ptr = tx_queue->read_count & tx_queue->ptr_mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initiate a packet transmission.  We use one channel per CPU | 
|  | * (sharing when we have more CPUs than channels).  On Falcon, the TX | 
|  | * completion events will be directed back to the CPU that transmitted | 
|  | * the packet, which should be cache-efficient. | 
|  | * | 
|  | * Context: non-blocking. | 
|  | * Note that returning anything other than NETDEV_TX_OK will cause the | 
|  | * OS to free the skb. | 
|  | */ | 
|  | netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, | 
|  | struct net_device *net_dev) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | struct efx_tx_queue *tx_queue; | 
|  | unsigned index, type; | 
|  |  | 
|  | EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); | 
|  |  | 
|  | index = skb_get_queue_mapping(skb); | 
|  | type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; | 
|  | if (index >= efx->n_tx_channels) { | 
|  | index -= efx->n_tx_channels; | 
|  | type |= EFX_TXQ_TYPE_HIGHPRI; | 
|  | } | 
|  | tx_queue = efx_get_tx_queue(efx, index, type); | 
|  |  | 
|  | return efx_enqueue_skb(tx_queue, skb); | 
|  | } | 
|  |  | 
|  | void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  |  | 
|  | /* Must be inverse of queue lookup in efx_hard_start_xmit() */ | 
|  | tx_queue->core_txq = | 
|  | netdev_get_tx_queue(efx->net_dev, | 
|  | tx_queue->queue / EFX_TXQ_TYPES + | 
|  | ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? | 
|  | efx->n_tx_channels : 0)); | 
|  | } | 
|  |  | 
|  | int efx_setup_tc(struct net_device *net_dev, u8 num_tc) | 
|  | { | 
|  | struct efx_nic *efx = netdev_priv(net_dev); | 
|  | struct efx_channel *channel; | 
|  | struct efx_tx_queue *tx_queue; | 
|  | unsigned tc; | 
|  | int rc; | 
|  |  | 
|  | if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (num_tc == net_dev->num_tc) | 
|  | return 0; | 
|  |  | 
|  | for (tc = 0; tc < num_tc; tc++) { | 
|  | net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; | 
|  | net_dev->tc_to_txq[tc].count = efx->n_tx_channels; | 
|  | } | 
|  |  | 
|  | if (num_tc > net_dev->num_tc) { | 
|  | /* Initialise high-priority queues as necessary */ | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_possible_channel_tx_queue(tx_queue, | 
|  | channel) { | 
|  | if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) | 
|  | continue; | 
|  | if (!tx_queue->buffer) { | 
|  | rc = efx_probe_tx_queue(tx_queue); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  | if (!tx_queue->initialised) | 
|  | efx_init_tx_queue(tx_queue); | 
|  | efx_init_tx_queue_core_txq(tx_queue); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Reduce number of classes before number of queues */ | 
|  | net_dev->num_tc = num_tc; | 
|  | } | 
|  |  | 
|  | rc = netif_set_real_num_tx_queues(net_dev, | 
|  | max_t(int, num_tc, 1) * | 
|  | efx->n_tx_channels); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Do not destroy high-priority queues when they become | 
|  | * unused.  We would have to flush them first, and it is | 
|  | * fairly difficult to flush a subset of TX queues.  Leave | 
|  | * it to efx_fini_channels(). | 
|  | */ | 
|  |  | 
|  | net_dev->num_tc = num_tc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) | 
|  | { | 
|  | unsigned fill_level; | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask); | 
|  |  | 
|  | efx_dequeue_buffers(tx_queue, index); | 
|  |  | 
|  | /* See if we need to restart the netif queue.  This barrier | 
|  | * separates the update of read_count from the test of the | 
|  | * queue state. */ | 
|  | smp_mb(); | 
|  | if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && | 
|  | likely(efx->port_enabled) && | 
|  | likely(netif_device_present(efx->net_dev))) { | 
|  | fill_level = tx_queue->insert_count - tx_queue->read_count; | 
|  | if (fill_level < EFX_TXQ_THRESHOLD(efx)) { | 
|  | EFX_BUG_ON_PARANOID(!efx_dev_registered(efx)); | 
|  | netif_tx_wake_queue(tx_queue->core_txq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check whether the hardware queue is now empty */ | 
|  | if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { | 
|  | tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); | 
|  | if (tx_queue->read_count == tx_queue->old_write_count) { | 
|  | smp_mb(); | 
|  | tx_queue->empty_read_count = | 
|  | tx_queue->read_count | EFX_EMPTY_COUNT_VALID; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | unsigned int entries; | 
|  | int i, rc; | 
|  |  | 
|  | /* Create the smallest power-of-two aligned ring */ | 
|  | entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); | 
|  | EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); | 
|  | tx_queue->ptr_mask = entries - 1; | 
|  |  | 
|  | netif_dbg(efx, probe, efx->net_dev, | 
|  | "creating TX queue %d size %#x mask %#x\n", | 
|  | tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); | 
|  |  | 
|  | /* Allocate software ring */ | 
|  | tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer), | 
|  | GFP_KERNEL); | 
|  | if (!tx_queue->buffer) | 
|  | return -ENOMEM; | 
|  | for (i = 0; i <= tx_queue->ptr_mask; ++i) | 
|  | tx_queue->buffer[i].continuation = true; | 
|  |  | 
|  | /* Allocate hardware ring */ | 
|  | rc = efx_nic_probe_tx(tx_queue); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | kfree(tx_queue->buffer); | 
|  | tx_queue->buffer = NULL; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void efx_init_tx_queue(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, | 
|  | "initialising TX queue %d\n", tx_queue->queue); | 
|  |  | 
|  | tx_queue->insert_count = 0; | 
|  | tx_queue->write_count = 0; | 
|  | tx_queue->old_write_count = 0; | 
|  | tx_queue->read_count = 0; | 
|  | tx_queue->old_read_count = 0; | 
|  | tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; | 
|  |  | 
|  | /* Set up TX descriptor ring */ | 
|  | efx_nic_init_tx(tx_queue); | 
|  |  | 
|  | tx_queue->initialised = true; | 
|  | } | 
|  |  | 
|  | void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_tx_buffer *buffer; | 
|  |  | 
|  | if (!tx_queue->buffer) | 
|  | return; | 
|  |  | 
|  | /* Free any buffers left in the ring */ | 
|  | while (tx_queue->read_count != tx_queue->write_count) { | 
|  | buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; | 
|  | efx_dequeue_buffer(tx_queue, buffer); | 
|  | buffer->continuation = true; | 
|  | buffer->len = 0; | 
|  |  | 
|  | ++tx_queue->read_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | if (!tx_queue->initialised) | 
|  | return; | 
|  |  | 
|  | netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, | 
|  | "shutting down TX queue %d\n", tx_queue->queue); | 
|  |  | 
|  | tx_queue->initialised = false; | 
|  |  | 
|  | /* Flush TX queue, remove descriptor ring */ | 
|  | efx_nic_fini_tx(tx_queue); | 
|  |  | 
|  | efx_release_tx_buffers(tx_queue); | 
|  |  | 
|  | /* Free up TSO header cache */ | 
|  | efx_fini_tso(tx_queue); | 
|  | } | 
|  |  | 
|  | void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | if (!tx_queue->buffer) | 
|  | return; | 
|  |  | 
|  | netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, | 
|  | "destroying TX queue %d\n", tx_queue->queue); | 
|  | efx_nic_remove_tx(tx_queue); | 
|  |  | 
|  | kfree(tx_queue->buffer); | 
|  | tx_queue->buffer = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Efx TCP segmentation acceleration. | 
|  | * | 
|  | * Why?  Because by doing it here in the driver we can go significantly | 
|  | * faster than the GSO. | 
|  | * | 
|  | * Requires TX checksum offload support. | 
|  | */ | 
|  |  | 
|  | /* Number of bytes inserted at the start of a TSO header buffer, | 
|  | * similar to NET_IP_ALIGN. | 
|  | */ | 
|  | #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS | 
|  | #define TSOH_OFFSET	0 | 
|  | #else | 
|  | #define TSOH_OFFSET	NET_IP_ALIGN | 
|  | #endif | 
|  |  | 
|  | #define TSOH_BUFFER(tsoh)	((u8 *)(tsoh + 1) + TSOH_OFFSET) | 
|  |  | 
|  | /* Total size of struct efx_tso_header, buffer and padding */ | 
|  | #define TSOH_SIZE(hdr_len)					\ | 
|  | (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) | 
|  |  | 
|  | /* Size of blocks on free list.  Larger blocks must be allocated from | 
|  | * the heap. | 
|  | */ | 
|  | #define TSOH_STD_SIZE		128 | 
|  |  | 
|  | #define PTR_DIFF(p1, p2)  ((u8 *)(p1) - (u8 *)(p2)) | 
|  | #define ETH_HDR_LEN(skb)  (skb_network_header(skb) - (skb)->data) | 
|  | #define SKB_TCP_OFF(skb)  PTR_DIFF(tcp_hdr(skb), (skb)->data) | 
|  | #define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) | 
|  | #define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data) | 
|  |  | 
|  | /** | 
|  | * struct tso_state - TSO state for an SKB | 
|  | * @out_len: Remaining length in current segment | 
|  | * @seqnum: Current sequence number | 
|  | * @ipv4_id: Current IPv4 ID, host endian | 
|  | * @packet_space: Remaining space in current packet | 
|  | * @dma_addr: DMA address of current position | 
|  | * @in_len: Remaining length in current SKB fragment | 
|  | * @unmap_len: Length of SKB fragment | 
|  | * @unmap_addr: DMA address of SKB fragment | 
|  | * @unmap_single: DMA single vs page mapping flag | 
|  | * @protocol: Network protocol (after any VLAN header) | 
|  | * @header_len: Number of bytes of header | 
|  | * @full_packet_size: Number of bytes to put in each outgoing segment | 
|  | * | 
|  | * The state used during segmentation.  It is put into this data structure | 
|  | * just to make it easy to pass into inline functions. | 
|  | */ | 
|  | struct tso_state { | 
|  | /* Output position */ | 
|  | unsigned out_len; | 
|  | unsigned seqnum; | 
|  | unsigned ipv4_id; | 
|  | unsigned packet_space; | 
|  |  | 
|  | /* Input position */ | 
|  | dma_addr_t dma_addr; | 
|  | unsigned in_len; | 
|  | unsigned unmap_len; | 
|  | dma_addr_t unmap_addr; | 
|  | bool unmap_single; | 
|  |  | 
|  | __be16 protocol; | 
|  | unsigned header_len; | 
|  | int full_packet_size; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Verify that our various assumptions about sk_buffs and the conditions | 
|  | * under which TSO will be attempted hold true.  Return the protocol number. | 
|  | */ | 
|  | static __be16 efx_tso_check_protocol(struct sk_buff *skb) | 
|  | { | 
|  | __be16 protocol = skb->protocol; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != | 
|  | protocol); | 
|  | if (protocol == htons(ETH_P_8021Q)) { | 
|  | /* Find the encapsulated protocol; reset network header | 
|  | * and transport header based on that. */ | 
|  | struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; | 
|  | protocol = veh->h_vlan_encapsulated_proto; | 
|  | skb_set_network_header(skb, sizeof(*veh)); | 
|  | if (protocol == htons(ETH_P_IP)) | 
|  | skb_set_transport_header(skb, sizeof(*veh) + | 
|  | 4 * ip_hdr(skb)->ihl); | 
|  | else if (protocol == htons(ETH_P_IPV6)) | 
|  | skb_set_transport_header(skb, sizeof(*veh) + | 
|  | sizeof(struct ipv6hdr)); | 
|  | } | 
|  |  | 
|  | if (protocol == htons(ETH_P_IP)) { | 
|  | EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); | 
|  | } else { | 
|  | EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6)); | 
|  | EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); | 
|  | } | 
|  | EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) | 
|  | + (tcp_hdr(skb)->doff << 2u)) > | 
|  | skb_headlen(skb)); | 
|  |  | 
|  | return protocol; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocate a page worth of efx_tso_header structures, and string them | 
|  | * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. | 
|  | */ | 
|  | static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  |  | 
|  | struct pci_dev *pci_dev = tx_queue->efx->pci_dev; | 
|  | struct efx_tso_header *tsoh; | 
|  | dma_addr_t dma_addr; | 
|  | u8 *base_kva, *kva; | 
|  |  | 
|  | base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr); | 
|  | if (base_kva == NULL) { | 
|  | netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev, | 
|  | "Unable to allocate page for TSO headers\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* pci_alloc_consistent() allocates pages. */ | 
|  | EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); | 
|  |  | 
|  | for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { | 
|  | tsoh = (struct efx_tso_header *)kva; | 
|  | tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); | 
|  | tsoh->next = tx_queue->tso_headers_free; | 
|  | tx_queue->tso_headers_free = tsoh; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Free up a TSO header, and all others in the same page. */ | 
|  | static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, | 
|  | struct efx_tso_header *tsoh, | 
|  | struct pci_dev *pci_dev) | 
|  | { | 
|  | struct efx_tso_header **p; | 
|  | unsigned long base_kva; | 
|  | dma_addr_t base_dma; | 
|  |  | 
|  | base_kva = (unsigned long)tsoh & PAGE_MASK; | 
|  | base_dma = tsoh->dma_addr & PAGE_MASK; | 
|  |  | 
|  | p = &tx_queue->tso_headers_free; | 
|  | while (*p != NULL) { | 
|  | if (((unsigned long)*p & PAGE_MASK) == base_kva) | 
|  | *p = (*p)->next; | 
|  | else | 
|  | p = &(*p)->next; | 
|  | } | 
|  |  | 
|  | pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma); | 
|  | } | 
|  |  | 
|  | static struct efx_tso_header * | 
|  | efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) | 
|  | { | 
|  | struct efx_tso_header *tsoh; | 
|  |  | 
|  | tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); | 
|  | if (unlikely(!tsoh)) | 
|  | return NULL; | 
|  |  | 
|  | tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev, | 
|  | TSOH_BUFFER(tsoh), header_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev, | 
|  | tsoh->dma_addr))) { | 
|  | kfree(tsoh); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | tsoh->unmap_len = header_len; | 
|  | return tsoh; | 
|  | } | 
|  |  | 
|  | static void | 
|  | efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) | 
|  | { | 
|  | pci_unmap_single(tx_queue->efx->pci_dev, | 
|  | tsoh->dma_addr, tsoh->unmap_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | kfree(tsoh); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_tx_queue_insert - push descriptors onto the TX queue | 
|  | * @tx_queue:		Efx TX queue | 
|  | * @dma_addr:		DMA address of fragment | 
|  | * @len:		Length of fragment | 
|  | * @final_buffer:	The final buffer inserted into the queue | 
|  | * | 
|  | * Push descriptors onto the TX queue.  Return 0 on success or 1 if | 
|  | * @tx_queue full. | 
|  | */ | 
|  | static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, | 
|  | dma_addr_t dma_addr, unsigned len, | 
|  | struct efx_tx_buffer **final_buffer) | 
|  | { | 
|  | struct efx_tx_buffer *buffer; | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | unsigned dma_len, fill_level, insert_ptr; | 
|  | int q_space; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(len <= 0); | 
|  |  | 
|  | fill_level = tx_queue->insert_count - tx_queue->old_read_count; | 
|  | /* -1 as there is no way to represent all descriptors used */ | 
|  | q_space = efx->txq_entries - 1 - fill_level; | 
|  |  | 
|  | while (1) { | 
|  | if (unlikely(q_space-- <= 0)) { | 
|  | /* It might be that completions have happened | 
|  | * since the xmit path last checked.  Update | 
|  | * the xmit path's copy of read_count. | 
|  | */ | 
|  | netif_tx_stop_queue(tx_queue->core_txq); | 
|  | /* This memory barrier protects the change of | 
|  | * queue state from the access of read_count. */ | 
|  | smp_mb(); | 
|  | tx_queue->old_read_count = | 
|  | ACCESS_ONCE(tx_queue->read_count); | 
|  | fill_level = (tx_queue->insert_count | 
|  | - tx_queue->old_read_count); | 
|  | q_space = efx->txq_entries - 1 - fill_level; | 
|  | if (unlikely(q_space-- <= 0)) { | 
|  | *final_buffer = NULL; | 
|  | return 1; | 
|  | } | 
|  | smp_mb(); | 
|  | netif_tx_start_queue(tx_queue->core_txq); | 
|  | } | 
|  |  | 
|  | insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; | 
|  | buffer = &tx_queue->buffer[insert_ptr]; | 
|  | ++tx_queue->insert_count; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(tx_queue->insert_count - | 
|  | tx_queue->read_count >= | 
|  | efx->txq_entries); | 
|  |  | 
|  | efx_tsoh_free(tx_queue, buffer); | 
|  | EFX_BUG_ON_PARANOID(buffer->len); | 
|  | EFX_BUG_ON_PARANOID(buffer->unmap_len); | 
|  | EFX_BUG_ON_PARANOID(buffer->skb); | 
|  | EFX_BUG_ON_PARANOID(!buffer->continuation); | 
|  | EFX_BUG_ON_PARANOID(buffer->tsoh); | 
|  |  | 
|  | buffer->dma_addr = dma_addr; | 
|  |  | 
|  | dma_len = efx_max_tx_len(efx, dma_addr); | 
|  |  | 
|  | /* If there is enough space to send then do so */ | 
|  | if (dma_len >= len) | 
|  | break; | 
|  |  | 
|  | buffer->len = dma_len; /* Don't set the other members */ | 
|  | dma_addr += dma_len; | 
|  | len -= dma_len; | 
|  | } | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(!len); | 
|  | buffer->len = len; | 
|  | *final_buffer = buffer; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Put a TSO header into the TX queue. | 
|  | * | 
|  | * This is special-cased because we know that it is small enough to fit in | 
|  | * a single fragment, and we know it doesn't cross a page boundary.  It | 
|  | * also allows us to not worry about end-of-packet etc. | 
|  | */ | 
|  | static void efx_tso_put_header(struct efx_tx_queue *tx_queue, | 
|  | struct efx_tso_header *tsoh, unsigned len) | 
|  | { | 
|  | struct efx_tx_buffer *buffer; | 
|  |  | 
|  | buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask]; | 
|  | efx_tsoh_free(tx_queue, buffer); | 
|  | EFX_BUG_ON_PARANOID(buffer->len); | 
|  | EFX_BUG_ON_PARANOID(buffer->unmap_len); | 
|  | EFX_BUG_ON_PARANOID(buffer->skb); | 
|  | EFX_BUG_ON_PARANOID(!buffer->continuation); | 
|  | EFX_BUG_ON_PARANOID(buffer->tsoh); | 
|  | buffer->len = len; | 
|  | buffer->dma_addr = tsoh->dma_addr; | 
|  | buffer->tsoh = tsoh; | 
|  |  | 
|  | ++tx_queue->insert_count; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Remove descriptors put into a tx_queue. */ | 
|  | static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | struct efx_tx_buffer *buffer; | 
|  | dma_addr_t unmap_addr; | 
|  |  | 
|  | /* Work backwards until we hit the original insert pointer value */ | 
|  | while (tx_queue->insert_count != tx_queue->write_count) { | 
|  | --tx_queue->insert_count; | 
|  | buffer = &tx_queue->buffer[tx_queue->insert_count & | 
|  | tx_queue->ptr_mask]; | 
|  | efx_tsoh_free(tx_queue, buffer); | 
|  | EFX_BUG_ON_PARANOID(buffer->skb); | 
|  | if (buffer->unmap_len) { | 
|  | unmap_addr = (buffer->dma_addr + buffer->len - | 
|  | buffer->unmap_len); | 
|  | if (buffer->unmap_single) | 
|  | pci_unmap_single(tx_queue->efx->pci_dev, | 
|  | unmap_addr, buffer->unmap_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | else | 
|  | pci_unmap_page(tx_queue->efx->pci_dev, | 
|  | unmap_addr, buffer->unmap_len, | 
|  | PCI_DMA_TODEVICE); | 
|  | buffer->unmap_len = 0; | 
|  | } | 
|  | buffer->len = 0; | 
|  | buffer->continuation = true; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Parse the SKB header and initialise state. */ | 
|  | static void tso_start(struct tso_state *st, const struct sk_buff *skb) | 
|  | { | 
|  | /* All ethernet/IP/TCP headers combined size is TCP header size | 
|  | * plus offset of TCP header relative to start of packet. | 
|  | */ | 
|  | st->header_len = ((tcp_hdr(skb)->doff << 2u) | 
|  | + PTR_DIFF(tcp_hdr(skb), skb->data)); | 
|  | st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size; | 
|  |  | 
|  | if (st->protocol == htons(ETH_P_IP)) | 
|  | st->ipv4_id = ntohs(ip_hdr(skb)->id); | 
|  | else | 
|  | st->ipv4_id = 0; | 
|  | st->seqnum = ntohl(tcp_hdr(skb)->seq); | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); | 
|  | EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); | 
|  | EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); | 
|  |  | 
|  | st->packet_space = st->full_packet_size; | 
|  | st->out_len = skb->len - st->header_len; | 
|  | st->unmap_len = 0; | 
|  | st->unmap_single = false; | 
|  | } | 
|  |  | 
|  | static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, | 
|  | skb_frag_t *frag) | 
|  | { | 
|  | st->unmap_addr = pci_map_page(efx->pci_dev, frag->page, | 
|  | frag->page_offset, frag->size, | 
|  | PCI_DMA_TODEVICE); | 
|  | if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { | 
|  | st->unmap_single = false; | 
|  | st->unmap_len = frag->size; | 
|  | st->in_len = frag->size; | 
|  | st->dma_addr = st->unmap_addr; | 
|  | return 0; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | int hl = st->header_len; | 
|  | int len = skb_headlen(skb) - hl; | 
|  |  | 
|  | st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl, | 
|  | len, PCI_DMA_TODEVICE); | 
|  | if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { | 
|  | st->unmap_single = true; | 
|  | st->unmap_len = len; | 
|  | st->in_len = len; | 
|  | st->dma_addr = st->unmap_addr; | 
|  | return 0; | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * tso_fill_packet_with_fragment - form descriptors for the current fragment | 
|  | * @tx_queue:		Efx TX queue | 
|  | * @skb:		Socket buffer | 
|  | * @st:			TSO state | 
|  | * | 
|  | * Form descriptors for the current fragment, until we reach the end | 
|  | * of fragment or end-of-packet.  Return 0 on success, 1 if not enough | 
|  | * space in @tx_queue. | 
|  | */ | 
|  | static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, | 
|  | const struct sk_buff *skb, | 
|  | struct tso_state *st) | 
|  | { | 
|  | struct efx_tx_buffer *buffer; | 
|  | int n, end_of_packet, rc; | 
|  |  | 
|  | if (st->in_len == 0) | 
|  | return 0; | 
|  | if (st->packet_space == 0) | 
|  | return 0; | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(st->in_len <= 0); | 
|  | EFX_BUG_ON_PARANOID(st->packet_space <= 0); | 
|  |  | 
|  | n = min(st->in_len, st->packet_space); | 
|  |  | 
|  | st->packet_space -= n; | 
|  | st->out_len -= n; | 
|  | st->in_len -= n; | 
|  |  | 
|  | rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); | 
|  | if (likely(rc == 0)) { | 
|  | if (st->out_len == 0) | 
|  | /* Transfer ownership of the skb */ | 
|  | buffer->skb = skb; | 
|  |  | 
|  | end_of_packet = st->out_len == 0 || st->packet_space == 0; | 
|  | buffer->continuation = !end_of_packet; | 
|  |  | 
|  | if (st->in_len == 0) { | 
|  | /* Transfer ownership of the pci mapping */ | 
|  | buffer->unmap_len = st->unmap_len; | 
|  | buffer->unmap_single = st->unmap_single; | 
|  | st->unmap_len = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | st->dma_addr += n; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * tso_start_new_packet - generate a new header and prepare for the new packet | 
|  | * @tx_queue:		Efx TX queue | 
|  | * @skb:		Socket buffer | 
|  | * @st:			TSO state | 
|  | * | 
|  | * Generate a new header and prepare for the new packet.  Return 0 on | 
|  | * success, or -1 if failed to alloc header. | 
|  | */ | 
|  | static int tso_start_new_packet(struct efx_tx_queue *tx_queue, | 
|  | const struct sk_buff *skb, | 
|  | struct tso_state *st) | 
|  | { | 
|  | struct efx_tso_header *tsoh; | 
|  | struct tcphdr *tsoh_th; | 
|  | unsigned ip_length; | 
|  | u8 *header; | 
|  |  | 
|  | /* Allocate a DMA-mapped header buffer. */ | 
|  | if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) { | 
|  | if (tx_queue->tso_headers_free == NULL) { | 
|  | if (efx_tsoh_block_alloc(tx_queue)) | 
|  | return -1; | 
|  | } | 
|  | EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); | 
|  | tsoh = tx_queue->tso_headers_free; | 
|  | tx_queue->tso_headers_free = tsoh->next; | 
|  | tsoh->unmap_len = 0; | 
|  | } else { | 
|  | tx_queue->tso_long_headers++; | 
|  | tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len); | 
|  | if (unlikely(!tsoh)) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | header = TSOH_BUFFER(tsoh); | 
|  | tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); | 
|  |  | 
|  | /* Copy and update the headers. */ | 
|  | memcpy(header, skb->data, st->header_len); | 
|  |  | 
|  | tsoh_th->seq = htonl(st->seqnum); | 
|  | st->seqnum += skb_shinfo(skb)->gso_size; | 
|  | if (st->out_len > skb_shinfo(skb)->gso_size) { | 
|  | /* This packet will not finish the TSO burst. */ | 
|  | ip_length = st->full_packet_size - ETH_HDR_LEN(skb); | 
|  | tsoh_th->fin = 0; | 
|  | tsoh_th->psh = 0; | 
|  | } else { | 
|  | /* This packet will be the last in the TSO burst. */ | 
|  | ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len; | 
|  | tsoh_th->fin = tcp_hdr(skb)->fin; | 
|  | tsoh_th->psh = tcp_hdr(skb)->psh; | 
|  | } | 
|  |  | 
|  | if (st->protocol == htons(ETH_P_IP)) { | 
|  | struct iphdr *tsoh_iph = | 
|  | (struct iphdr *)(header + SKB_IPV4_OFF(skb)); | 
|  |  | 
|  | tsoh_iph->tot_len = htons(ip_length); | 
|  |  | 
|  | /* Linux leaves suitable gaps in the IP ID space for us to fill. */ | 
|  | tsoh_iph->id = htons(st->ipv4_id); | 
|  | st->ipv4_id++; | 
|  | } else { | 
|  | struct ipv6hdr *tsoh_iph = | 
|  | (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb)); | 
|  |  | 
|  | tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph)); | 
|  | } | 
|  |  | 
|  | st->packet_space = skb_shinfo(skb)->gso_size; | 
|  | ++tx_queue->tso_packets; | 
|  |  | 
|  | /* Form a descriptor for this header. */ | 
|  | efx_tso_put_header(tx_queue, tsoh, st->header_len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer | 
|  | * @tx_queue:		Efx TX queue | 
|  | * @skb:		Socket buffer | 
|  | * | 
|  | * Context: You must hold netif_tx_lock() to call this function. | 
|  | * | 
|  | * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if | 
|  | * @skb was not enqueued.  In all cases @skb is consumed.  Return | 
|  | * %NETDEV_TX_OK or %NETDEV_TX_BUSY. | 
|  | */ | 
|  | static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | struct efx_nic *efx = tx_queue->efx; | 
|  | int frag_i, rc, rc2 = NETDEV_TX_OK; | 
|  | struct tso_state state; | 
|  |  | 
|  | /* Find the packet protocol and sanity-check it */ | 
|  | state.protocol = efx_tso_check_protocol(skb); | 
|  |  | 
|  | EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); | 
|  |  | 
|  | tso_start(&state, skb); | 
|  |  | 
|  | /* Assume that skb header area contains exactly the headers, and | 
|  | * all payload is in the frag list. | 
|  | */ | 
|  | if (skb_headlen(skb) == state.header_len) { | 
|  | /* Grab the first payload fragment. */ | 
|  | EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); | 
|  | frag_i = 0; | 
|  | rc = tso_get_fragment(&state, efx, | 
|  | skb_shinfo(skb)->frags + frag_i); | 
|  | if (rc) | 
|  | goto mem_err; | 
|  | } else { | 
|  | rc = tso_get_head_fragment(&state, efx, skb); | 
|  | if (rc) | 
|  | goto mem_err; | 
|  | frag_i = -1; | 
|  | } | 
|  |  | 
|  | if (tso_start_new_packet(tx_queue, skb, &state) < 0) | 
|  | goto mem_err; | 
|  |  | 
|  | while (1) { | 
|  | rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); | 
|  | if (unlikely(rc)) { | 
|  | rc2 = NETDEV_TX_BUSY; | 
|  | goto unwind; | 
|  | } | 
|  |  | 
|  | /* Move onto the next fragment? */ | 
|  | if (state.in_len == 0) { | 
|  | if (++frag_i >= skb_shinfo(skb)->nr_frags) | 
|  | /* End of payload reached. */ | 
|  | break; | 
|  | rc = tso_get_fragment(&state, efx, | 
|  | skb_shinfo(skb)->frags + frag_i); | 
|  | if (rc) | 
|  | goto mem_err; | 
|  | } | 
|  |  | 
|  | /* Start at new packet? */ | 
|  | if (state.packet_space == 0 && | 
|  | tso_start_new_packet(tx_queue, skb, &state) < 0) | 
|  | goto mem_err; | 
|  | } | 
|  |  | 
|  | /* Pass off to hardware */ | 
|  | efx_nic_push_buffers(tx_queue); | 
|  |  | 
|  | tx_queue->tso_bursts++; | 
|  | return NETDEV_TX_OK; | 
|  |  | 
|  | mem_err: | 
|  | netif_err(efx, tx_err, efx->net_dev, | 
|  | "Out of memory for TSO headers, or PCI mapping error\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  |  | 
|  | unwind: | 
|  | /* Free the DMA mapping we were in the process of writing out */ | 
|  | if (state.unmap_len) { | 
|  | if (state.unmap_single) | 
|  | pci_unmap_single(efx->pci_dev, state.unmap_addr, | 
|  | state.unmap_len, PCI_DMA_TODEVICE); | 
|  | else | 
|  | pci_unmap_page(efx->pci_dev, state.unmap_addr, | 
|  | state.unmap_len, PCI_DMA_TODEVICE); | 
|  | } | 
|  |  | 
|  | efx_enqueue_unwind(tx_queue); | 
|  | return rc2; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Free up all TSO datastructures associated with tx_queue. This | 
|  | * routine should be called only once the tx_queue is both empty and | 
|  | * will no longer be used. | 
|  | */ | 
|  | static void efx_fini_tso(struct efx_tx_queue *tx_queue) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | if (tx_queue->buffer) { | 
|  | for (i = 0; i <= tx_queue->ptr_mask; ++i) | 
|  | efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); | 
|  | } | 
|  |  | 
|  | while (tx_queue->tso_headers_free != NULL) | 
|  | efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, | 
|  | tx_queue->efx->pci_dev); | 
|  | } |