|  | /* | 
|  | Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> | 
|  | Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com> | 
|  | Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> | 
|  | Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com> | 
|  |  | 
|  | Based on the original rt2800pci.c and rt2800usb.c. | 
|  | Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> | 
|  | Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> | 
|  | Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> | 
|  | Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> | 
|  | Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> | 
|  | Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt2800lib | 
|  | Abstract: rt2800 generic device routines. | 
|  | */ | 
|  |  | 
|  | #include <linux/crc-ccitt.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #include "rt2800lib.h" | 
|  | #include "rt2800.h" | 
|  |  | 
|  | /* | 
|  | * Register access. | 
|  | * All access to the CSR registers will go through the methods | 
|  | * rt2800_register_read and rt2800_register_write. | 
|  | * BBP and RF register require indirect register access, | 
|  | * and use the CSR registers BBPCSR and RFCSR to achieve this. | 
|  | * These indirect registers work with busy bits, | 
|  | * and we will try maximal REGISTER_BUSY_COUNT times to access | 
|  | * the register while taking a REGISTER_BUSY_DELAY us delay | 
|  | * between each attampt. When the busy bit is still set at that time, | 
|  | * the access attempt is considered to have failed, | 
|  | * and we will print an error. | 
|  | * The _lock versions must be used if you already hold the csr_mutex | 
|  | */ | 
|  | #define WAIT_FOR_BBP(__dev, __reg) \ | 
|  | rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg)) | 
|  | #define WAIT_FOR_RFCSR(__dev, __reg) \ | 
|  | rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg)) | 
|  | #define WAIT_FOR_RF(__dev, __reg) \ | 
|  | rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg)) | 
|  | #define WAIT_FOR_MCU(__dev, __reg) \ | 
|  | rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \ | 
|  | H2M_MAILBOX_CSR_OWNER, (__reg)) | 
|  |  | 
|  | static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* check for rt2872 on SoC */ | 
|  | if (!rt2x00_is_soc(rt2x00dev) || | 
|  | !rt2x00_rt(rt2x00dev, RT2872)) | 
|  | return false; | 
|  |  | 
|  | /* we know for sure that these rf chipsets are used on rt305x boards */ | 
|  | if (rt2x00_rf(rt2x00dev, RF3020) || | 
|  | rt2x00_rf(rt2x00dev, RF3021) || | 
|  | rt2x00_rf(rt2x00dev, RF3022)) | 
|  | return true; | 
|  |  | 
|  | NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u8 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_VALUE, value); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 0); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, u8 *value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the read request into the register. | 
|  | * After the data has been written, we wait until hardware | 
|  | * returns the correct value, if at any time the register | 
|  | * doesn't become available in time, reg will be 0xffffffff | 
|  | * which means we return 0xff to the caller. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 1); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); | 
|  |  | 
|  | WAIT_FOR_BBP(rt2x00dev, ®); | 
|  | } | 
|  |  | 
|  | *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u8 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RFCSR becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_DATA, value); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, u8 *value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RFCSR becomes available, afterwards we | 
|  | * can safely write the read request into the register. | 
|  | * After the data has been written, we wait until hardware | 
|  | * returns the correct value, if at any time the register | 
|  | * doesn't become available in time, reg will be 0xffffffff | 
|  | * which means we return 0xff to the caller. | 
|  | */ | 
|  | if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); | 
|  |  | 
|  | WAIT_FOR_RFCSR(rt2x00dev, ®); | 
|  | } | 
|  |  | 
|  | *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u32 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RF becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_RF(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, RF_CSR_CFG0_REG_VALUE_BW, value); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG0_STANDBYMODE, 0); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG0_SEL, 0); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG0_BUSY, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg); | 
|  | rt2x00_rf_write(rt2x00dev, word, value); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 command, const u8 token, | 
|  | const u8 arg0, const u8 arg1) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * SOC devices don't support MCU requests. | 
|  | */ | 
|  | if (rt2x00_is_soc(rt2x00dev)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the MCU becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_MCU(rt2x00dev, ®)) { | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); | 
|  | rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg); | 
|  |  | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); | 
|  | rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_mcu_request); | 
|  |  | 
|  | int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i = 0; | 
|  | u32 reg; | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2800_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  | if (reg && reg != ~0) | 
|  | return 0; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "Unstable hardware.\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready); | 
|  |  | 
|  | int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Some devices are really slow to respond here. Wait a whole second | 
|  | * before timing out. | 
|  | */ | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | 
|  | if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) && | 
|  | !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY)) | 
|  | return 0; | 
|  |  | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready); | 
|  |  | 
|  | static bool rt2800_check_firmware_crc(const u8 *data, const size_t len) | 
|  | { | 
|  | u16 fw_crc; | 
|  | u16 crc; | 
|  |  | 
|  | /* | 
|  | * The last 2 bytes in the firmware array are the crc checksum itself, | 
|  | * this means that we should never pass those 2 bytes to the crc | 
|  | * algorithm. | 
|  | */ | 
|  | fw_crc = (data[len - 2] << 8 | data[len - 1]); | 
|  |  | 
|  | /* | 
|  | * Use the crc ccitt algorithm. | 
|  | * This will return the same value as the legacy driver which | 
|  | * used bit ordering reversion on the both the firmware bytes | 
|  | * before input input as well as on the final output. | 
|  | * Obviously using crc ccitt directly is much more efficient. | 
|  | */ | 
|  | crc = crc_ccitt(~0, data, len - 2); | 
|  |  | 
|  | /* | 
|  | * There is a small difference between the crc-itu-t + bitrev and | 
|  | * the crc-ccitt crc calculation. In the latter method the 2 bytes | 
|  | * will be swapped, use swab16 to convert the crc to the correct | 
|  | * value. | 
|  | */ | 
|  | crc = swab16(crc); | 
|  |  | 
|  | return fw_crc == crc; | 
|  | } | 
|  |  | 
|  | int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 *data, const size_t len) | 
|  | { | 
|  | size_t offset = 0; | 
|  | size_t fw_len; | 
|  | bool multiple; | 
|  |  | 
|  | /* | 
|  | * PCI(e) & SOC devices require firmware with a length | 
|  | * of 8kb. USB devices require firmware files with a length | 
|  | * of 4kb. Certain USB chipsets however require different firmware, | 
|  | * which Ralink only provides attached to the original firmware | 
|  | * file. Thus for USB devices, firmware files have a length | 
|  | * which is a multiple of 4kb. | 
|  | */ | 
|  | if (rt2x00_is_usb(rt2x00dev)) { | 
|  | fw_len = 4096; | 
|  | multiple = true; | 
|  | } else { | 
|  | fw_len = 8192; | 
|  | multiple = true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the firmware length | 
|  | */ | 
|  | if (len != fw_len && (!multiple || (len % fw_len) != 0)) | 
|  | return FW_BAD_LENGTH; | 
|  |  | 
|  | /* | 
|  | * Check if the chipset requires one of the upper parts | 
|  | * of the firmware. | 
|  | */ | 
|  | if (rt2x00_is_usb(rt2x00dev) && | 
|  | !rt2x00_rt(rt2x00dev, RT2860) && | 
|  | !rt2x00_rt(rt2x00dev, RT2872) && | 
|  | !rt2x00_rt(rt2x00dev, RT3070) && | 
|  | ((len / fw_len) == 1)) | 
|  | return FW_BAD_VERSION; | 
|  |  | 
|  | /* | 
|  | * 8kb firmware files must be checked as if it were | 
|  | * 2 separate firmware files. | 
|  | */ | 
|  | while (offset < len) { | 
|  | if (!rt2800_check_firmware_crc(data + offset, fw_len)) | 
|  | return FW_BAD_CRC; | 
|  |  | 
|  | offset += fw_len; | 
|  | } | 
|  |  | 
|  | return FW_OK; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_check_firmware); | 
|  |  | 
|  | int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 *data, const size_t len) | 
|  | { | 
|  | unsigned int i; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * If driver doesn't wake up firmware here, | 
|  | * rt2800_load_firmware will hang forever when interface is up again. | 
|  | */ | 
|  | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000); | 
|  |  | 
|  | /* | 
|  | * Wait for stable hardware. | 
|  | */ | 
|  | if (rt2800_wait_csr_ready(rt2x00dev)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (rt2x00_is_pci(rt2x00dev)) { | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_register_read(rt2x00dev, AUX_CTRL, ®); | 
|  | rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); | 
|  | rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); | 
|  | rt2800_register_write(rt2x00dev, AUX_CTRL, reg); | 
|  | } | 
|  | rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable DMA, will be reenabled later when enabling | 
|  | * the radio. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); | 
|  | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | 
|  |  | 
|  | /* | 
|  | * Write firmware to the device. | 
|  | */ | 
|  | rt2800_drv_write_firmware(rt2x00dev, data, len); | 
|  |  | 
|  | /* | 
|  | * Wait for device to stabilize. | 
|  | */ | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®); | 
|  | if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY)) | 
|  | break; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | if (i == REGISTER_BUSY_COUNT) { | 
|  | ERROR(rt2x00dev, "PBF system register not ready.\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize firmware. | 
|  | */ | 
|  | rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); | 
|  | rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); | 
|  | msleep(1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_load_firmware); | 
|  |  | 
|  | void rt2800_write_tx_data(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | __le32 *txwi = rt2800_drv_get_txwi(entry); | 
|  | u32 word; | 
|  |  | 
|  | /* | 
|  | * Initialize TX Info descriptor | 
|  | */ | 
|  | rt2x00_desc_read(txwi, 0, &word); | 
|  | rt2x00_set_field32(&word, TXWI_W0_FRAG, | 
|  | test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, | 
|  | test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0); | 
|  | rt2x00_set_field32(&word, TXWI_W0_TS, | 
|  | test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXWI_W0_AMPDU, | 
|  | test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, | 
|  | txdesc->u.ht.mpdu_density); | 
|  | rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop); | 
|  | rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs); | 
|  | rt2x00_set_field32(&word, TXWI_W0_BW, | 
|  | test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXWI_W0_SHORT_GI, | 
|  | test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc); | 
|  | rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode); | 
|  | rt2x00_desc_write(txwi, 0, word); | 
|  |  | 
|  | rt2x00_desc_read(txwi, 1, &word); | 
|  | rt2x00_set_field32(&word, TXWI_W1_ACK, | 
|  | test_bit(ENTRY_TXD_ACK, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXWI_W1_NSEQ, | 
|  | test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size); | 
|  | rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID, | 
|  | test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ? | 
|  | txdesc->key_idx : 0xff); | 
|  | rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT, | 
|  | txdesc->length); | 
|  | rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid); | 
|  | rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1); | 
|  | rt2x00_desc_write(txwi, 1, word); | 
|  |  | 
|  | /* | 
|  | * Always write 0 to IV/EIV fields, hardware will insert the IV | 
|  | * from the IVEIV register when TXD_W3_WIV is set to 0. | 
|  | * When TXD_W3_WIV is set to 1 it will use the IV data | 
|  | * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which | 
|  | * crypto entry in the registers should be used to encrypt the frame. | 
|  | */ | 
|  | _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */); | 
|  | _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_write_tx_data); | 
|  |  | 
|  | static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2) | 
|  | { | 
|  | int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0); | 
|  | int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1); | 
|  | int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2); | 
|  | u16 eeprom; | 
|  | u8 offset0; | 
|  | u8 offset1; | 
|  | u8 offset2; | 
|  |  | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom); | 
|  | offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0); | 
|  | offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1); | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom); | 
|  | offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2); | 
|  | } else { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom); | 
|  | offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0); | 
|  | offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1); | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom); | 
|  | offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert the value from the descriptor into the RSSI value | 
|  | * If the value in the descriptor is 0, it is considered invalid | 
|  | * and the default (extremely low) rssi value is assumed | 
|  | */ | 
|  | rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128; | 
|  | rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128; | 
|  | rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128; | 
|  |  | 
|  | /* | 
|  | * mac80211 only accepts a single RSSI value. Calculating the | 
|  | * average doesn't deliver a fair answer either since -60:-60 would | 
|  | * be considered equally good as -50:-70 while the second is the one | 
|  | * which gives less energy... | 
|  | */ | 
|  | rssi0 = max(rssi0, rssi1); | 
|  | return max(rssi0, rssi2); | 
|  | } | 
|  |  | 
|  | void rt2800_process_rxwi(struct queue_entry *entry, | 
|  | struct rxdone_entry_desc *rxdesc) | 
|  | { | 
|  | __le32 *rxwi = (__le32 *) entry->skb->data; | 
|  | u32 word; | 
|  |  | 
|  | rt2x00_desc_read(rxwi, 0, &word); | 
|  |  | 
|  | rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF); | 
|  | rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT); | 
|  |  | 
|  | rt2x00_desc_read(rxwi, 1, &word); | 
|  |  | 
|  | if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI)) | 
|  | rxdesc->flags |= RX_FLAG_SHORT_GI; | 
|  |  | 
|  | if (rt2x00_get_field32(word, RXWI_W1_BW)) | 
|  | rxdesc->flags |= RX_FLAG_40MHZ; | 
|  |  | 
|  | /* | 
|  | * Detect RX rate, always use MCS as signal type. | 
|  | */ | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_MCS; | 
|  | rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS); | 
|  | rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE); | 
|  |  | 
|  | /* | 
|  | * Mask of 0x8 bit to remove the short preamble flag. | 
|  | */ | 
|  | if (rxdesc->rate_mode == RATE_MODE_CCK) | 
|  | rxdesc->signal &= ~0x8; | 
|  |  | 
|  | rt2x00_desc_read(rxwi, 2, &word); | 
|  |  | 
|  | /* | 
|  | * Convert descriptor AGC value to RSSI value. | 
|  | */ | 
|  | rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word); | 
|  |  | 
|  | /* | 
|  | * Remove RXWI descriptor from start of buffer. | 
|  | */ | 
|  | skb_pull(entry->skb, RXWI_DESC_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_process_rxwi); | 
|  |  | 
|  | static bool rt2800_txdone_entry_check(struct queue_entry *entry, u32 reg) | 
|  | { | 
|  | __le32 *txwi; | 
|  | u32 word; | 
|  | int wcid, ack, pid; | 
|  | int tx_wcid, tx_ack, tx_pid; | 
|  |  | 
|  | if (test_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags) || | 
|  | !test_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags)) { | 
|  | WARNING(entry->queue->rt2x00dev, | 
|  | "Data pending for entry %u in queue %u\n", | 
|  | entry->entry_idx, entry->queue->qid); | 
|  | cond_resched(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | wcid	= rt2x00_get_field32(reg, TX_STA_FIFO_WCID); | 
|  | ack	= rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED); | 
|  | pid	= rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE); | 
|  |  | 
|  | /* | 
|  | * This frames has returned with an IO error, | 
|  | * so the status report is not intended for this | 
|  | * frame. | 
|  | */ | 
|  | if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) { | 
|  | rt2x00lib_txdone_noinfo(entry, TXDONE_FAILURE); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate if this TX status report is intended for | 
|  | * this entry by comparing the WCID/ACK/PID fields. | 
|  | */ | 
|  | txwi = rt2800_drv_get_txwi(entry); | 
|  |  | 
|  | rt2x00_desc_read(txwi, 1, &word); | 
|  | tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID); | 
|  | tx_ack  = rt2x00_get_field32(word, TXWI_W1_ACK); | 
|  | tx_pid  = rt2x00_get_field32(word, TXWI_W1_PACKETID); | 
|  |  | 
|  | if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid)) { | 
|  | WARNING(entry->queue->rt2x00dev, | 
|  | "TX status report missed for queue %d entry %d\n", | 
|  | entry->queue->qid, entry->entry_idx); | 
|  | rt2x00lib_txdone_noinfo(entry, TXDONE_UNKNOWN); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void rt2800_txdone_entry(struct queue_entry *entry, u32 status) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | struct txdone_entry_desc txdesc; | 
|  | u32 word; | 
|  | u16 mcs, real_mcs; | 
|  | int aggr, ampdu; | 
|  | __le32 *txwi; | 
|  |  | 
|  | /* | 
|  | * Obtain the status about this packet. | 
|  | */ | 
|  | txdesc.flags = 0; | 
|  | txwi = rt2800_drv_get_txwi(entry); | 
|  | rt2x00_desc_read(txwi, 0, &word); | 
|  |  | 
|  | mcs = rt2x00_get_field32(word, TXWI_W0_MCS); | 
|  | ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU); | 
|  |  | 
|  | real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS); | 
|  | aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE); | 
|  |  | 
|  | /* | 
|  | * If a frame was meant to be sent as a single non-aggregated MPDU | 
|  | * but ended up in an aggregate the used tx rate doesn't correlate | 
|  | * with the one specified in the TXWI as the whole aggregate is sent | 
|  | * with the same rate. | 
|  | * | 
|  | * For example: two frames are sent to rt2x00, the first one sets | 
|  | * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0 | 
|  | * and requests MCS15. If the hw aggregates both frames into one | 
|  | * AMDPU the tx status for both frames will contain MCS7 although | 
|  | * the frame was sent successfully. | 
|  | * | 
|  | * Hence, replace the requested rate with the real tx rate to not | 
|  | * confuse the rate control algortihm by providing clearly wrong | 
|  | * data. | 
|  | */ | 
|  | if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) { | 
|  | skbdesc->tx_rate_idx = real_mcs; | 
|  | mcs = real_mcs; | 
|  | } | 
|  |  | 
|  | if (aggr == 1 || ampdu == 1) | 
|  | __set_bit(TXDONE_AMPDU, &txdesc.flags); | 
|  |  | 
|  | /* | 
|  | * Ralink has a retry mechanism using a global fallback | 
|  | * table. We setup this fallback table to try the immediate | 
|  | * lower rate for all rates. In the TX_STA_FIFO, the MCS field | 
|  | * always contains the MCS used for the last transmission, be | 
|  | * it successful or not. | 
|  | */ | 
|  | if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) { | 
|  | /* | 
|  | * Transmission succeeded. The number of retries is | 
|  | * mcs - real_mcs | 
|  | */ | 
|  | __set_bit(TXDONE_SUCCESS, &txdesc.flags); | 
|  | txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0); | 
|  | } else { | 
|  | /* | 
|  | * Transmission failed. The number of retries is | 
|  | * always 7 in this case (for a total number of 8 | 
|  | * frames sent). | 
|  | */ | 
|  | __set_bit(TXDONE_FAILURE, &txdesc.flags); | 
|  | txdesc.retry = rt2x00dev->long_retry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the frame was retried at least once | 
|  | * -> hw used fallback rates | 
|  | */ | 
|  | if (txdesc.retry) | 
|  | __set_bit(TXDONE_FALLBACK, &txdesc.flags); | 
|  |  | 
|  | rt2x00lib_txdone(entry, &txdesc); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_txdone_entry); | 
|  |  | 
|  | void rt2800_txdone(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  | struct queue_entry *entry; | 
|  | u32 reg; | 
|  | u8 qid; | 
|  |  | 
|  | while (kfifo_get(&rt2x00dev->txstatus_fifo, ®)) { | 
|  |  | 
|  | /* TX_STA_FIFO_PID_QUEUE is a 2-bit field, thus | 
|  | * qid is guaranteed to be one of the TX QIDs | 
|  | */ | 
|  | qid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_QUEUE); | 
|  | queue = rt2x00queue_get_tx_queue(rt2x00dev, qid); | 
|  | if (unlikely(!queue)) { | 
|  | WARNING(rt2x00dev, "Got TX status for an unavailable " | 
|  | "queue %u, dropping\n", qid); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Inside each queue, we process each entry in a chronological | 
|  | * order. We first check that the queue is not empty. | 
|  | */ | 
|  | entry = NULL; | 
|  | while (!rt2x00queue_empty(queue)) { | 
|  | entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); | 
|  | if (rt2800_txdone_entry_check(entry, reg)) | 
|  | break; | 
|  | entry = NULL; | 
|  | } | 
|  |  | 
|  | if (entry) | 
|  | rt2800_txdone_entry(entry, reg); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_txdone); | 
|  |  | 
|  | void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | unsigned int beacon_base; | 
|  | unsigned int padding_len; | 
|  | u32 orig_reg, reg; | 
|  |  | 
|  | /* | 
|  | * Disable beaconing while we are reloading the beacon data, | 
|  | * otherwise we might be sending out invalid data. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | orig_reg = reg; | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  |  | 
|  | /* | 
|  | * Add space for the TXWI in front of the skb. | 
|  | */ | 
|  | memset(skb_push(entry->skb, TXWI_DESC_SIZE), 0, TXWI_DESC_SIZE); | 
|  |  | 
|  | /* | 
|  | * Register descriptor details in skb frame descriptor. | 
|  | */ | 
|  | skbdesc->flags |= SKBDESC_DESC_IN_SKB; | 
|  | skbdesc->desc = entry->skb->data; | 
|  | skbdesc->desc_len = TXWI_DESC_SIZE; | 
|  |  | 
|  | /* | 
|  | * Add the TXWI for the beacon to the skb. | 
|  | */ | 
|  | rt2800_write_tx_data(entry, txdesc); | 
|  |  | 
|  | /* | 
|  | * Dump beacon to userspace through debugfs. | 
|  | */ | 
|  | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); | 
|  |  | 
|  | /* | 
|  | * Write entire beacon with TXWI and padding to register. | 
|  | */ | 
|  | padding_len = roundup(entry->skb->len, 4) - entry->skb->len; | 
|  | if (padding_len && skb_pad(entry->skb, padding_len)) { | 
|  | ERROR(rt2x00dev, "Failure padding beacon, aborting\n"); | 
|  | /* skb freed by skb_pad() on failure */ | 
|  | entry->skb = NULL; | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | beacon_base = HW_BEACON_OFFSET(entry->entry_idx); | 
|  | rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, | 
|  | entry->skb->len + padding_len); | 
|  |  | 
|  | /* | 
|  | * Enable beaconing again. | 
|  | */ | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  |  | 
|  | /* | 
|  | * Clean up beacon skb. | 
|  | */ | 
|  | dev_kfree_skb_any(entry->skb); | 
|  | entry->skb = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_write_beacon); | 
|  |  | 
|  | static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev, | 
|  | unsigned int beacon_base) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * For the Beacon base registers we only need to clear | 
|  | * the whole TXWI which (when set to 0) will invalidate | 
|  | * the entire beacon. | 
|  | */ | 
|  | for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32)) | 
|  | rt2800_register_write(rt2x00dev, beacon_base + i, 0); | 
|  | } | 
|  |  | 
|  | void rt2800_clear_beacon(struct queue_entry *entry) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Disable beaconing while we are reloading the beacon data, | 
|  | * otherwise we might be sending out invalid data. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  |  | 
|  | /* | 
|  | * Clear beacon. | 
|  | */ | 
|  | rt2800_clear_beacon_register(rt2x00dev, | 
|  | HW_BEACON_OFFSET(entry->entry_idx)); | 
|  |  | 
|  | /* | 
|  | * Enabled beaconing again. | 
|  | */ | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_clear_beacon); | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | const struct rt2x00debug rt2800_rt2x00debug = { | 
|  | .owner	= THIS_MODULE, | 
|  | .csr	= { | 
|  | .read		= rt2800_register_read, | 
|  | .write		= rt2800_register_write, | 
|  | .flags		= RT2X00DEBUGFS_OFFSET, | 
|  | .word_base	= CSR_REG_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= CSR_REG_SIZE / sizeof(u32), | 
|  | }, | 
|  | .eeprom	= { | 
|  | .read		= rt2x00_eeprom_read, | 
|  | .write		= rt2x00_eeprom_write, | 
|  | .word_base	= EEPROM_BASE, | 
|  | .word_size	= sizeof(u16), | 
|  | .word_count	= EEPROM_SIZE / sizeof(u16), | 
|  | }, | 
|  | .bbp	= { | 
|  | .read		= rt2800_bbp_read, | 
|  | .write		= rt2800_bbp_write, | 
|  | .word_base	= BBP_BASE, | 
|  | .word_size	= sizeof(u8), | 
|  | .word_count	= BBP_SIZE / sizeof(u8), | 
|  | }, | 
|  | .rf	= { | 
|  | .read		= rt2x00_rf_read, | 
|  | .write		= rt2800_rf_write, | 
|  | .word_base	= RF_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= RF_SIZE / sizeof(u32), | 
|  | }, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(rt2800_rt2x00debug); | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  |  | 
|  | int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); | 
|  | return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_rfkill_poll); | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | static void rt2800_brightness_set(struct led_classdev *led_cdev, | 
|  | enum led_brightness brightness) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | unsigned int enabled = brightness != LED_OFF; | 
|  | unsigned int bg_mode = | 
|  | (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); | 
|  | unsigned int polarity = | 
|  | rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, | 
|  | EEPROM_FREQ_LED_POLARITY); | 
|  | unsigned int ledmode = | 
|  | rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, | 
|  | EEPROM_FREQ_LED_MODE); | 
|  | u32 reg; | 
|  |  | 
|  | /* Check for SoC (SOC devices don't support MCU requests) */ | 
|  | if (rt2x00_is_soc(led->rt2x00dev)) { | 
|  | rt2800_register_read(led->rt2x00dev, LED_CFG, ®); | 
|  |  | 
|  | /* Set LED Polarity */ | 
|  | rt2x00_set_field32(®, LED_CFG_LED_POLAR, polarity); | 
|  |  | 
|  | /* Set LED Mode */ | 
|  | if (led->type == LED_TYPE_RADIO) { | 
|  | rt2x00_set_field32(®, LED_CFG_G_LED_MODE, | 
|  | enabled ? 3 : 0); | 
|  | } else if (led->type == LED_TYPE_ASSOC) { | 
|  | rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, | 
|  | enabled ? 3 : 0); | 
|  | } else if (led->type == LED_TYPE_QUALITY) { | 
|  | rt2x00_set_field32(®, LED_CFG_R_LED_MODE, | 
|  | enabled ? 3 : 0); | 
|  | } | 
|  |  | 
|  | rt2800_register_write(led->rt2x00dev, LED_CFG, reg); | 
|  |  | 
|  | } else { | 
|  | if (led->type == LED_TYPE_RADIO) { | 
|  | rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, | 
|  | enabled ? 0x20 : 0); | 
|  | } else if (led->type == LED_TYPE_ASSOC) { | 
|  | rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, | 
|  | enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20); | 
|  | } else if (led->type == LED_TYPE_QUALITY) { | 
|  | /* | 
|  | * The brightness is divided into 6 levels (0 - 5), | 
|  | * The specs tell us the following levels: | 
|  | *	0, 1 ,3, 7, 15, 31 | 
|  | * to determine the level in a simple way we can simply | 
|  | * work with bitshifting: | 
|  | *	(1 << level) - 1 | 
|  | */ | 
|  | rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, | 
|  | (1 << brightness / (LED_FULL / 6)) - 1, | 
|  | polarity); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2800_blink_set(struct led_classdev *led_cdev, | 
|  | unsigned long *delay_on, unsigned long *delay_off) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(led->rt2x00dev, LED_CFG, ®); | 
|  | rt2x00_set_field32(®, LED_CFG_ON_PERIOD, *delay_on); | 
|  | rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, *delay_off); | 
|  | rt2800_register_write(led->rt2x00dev, LED_CFG, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2800_init_led(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_led *led, enum led_type type) | 
|  | { | 
|  | led->rt2x00dev = rt2x00dev; | 
|  | led->type = type; | 
|  | led->led_dev.brightness_set = rt2800_brightness_set; | 
|  | led->led_dev.blink_set = rt2800_blink_set; | 
|  | led->flags = LED_INITIALIZED; | 
|  | } | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Configuration handlers. | 
|  | */ | 
|  | static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct mac_wcid_entry wcid_entry; | 
|  | struct mac_iveiv_entry iveiv_entry; | 
|  | u32 offset; | 
|  | u32 reg; | 
|  |  | 
|  | offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx); | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB, | 
|  | !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)); | 
|  | /* | 
|  | * Both the cipher as the BSS Idx numbers are split in a main | 
|  | * value of 3 bits, and a extended field for adding one additional | 
|  | * bit to the value. | 
|  | */ | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER, | 
|  | (crypto->cipher & 0x7)); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER_EXT, | 
|  | (crypto->cipher & 0x8) >> 3); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX, | 
|  | (crypto->bssidx & 0x7)); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT, | 
|  | (crypto->bssidx & 0x8) >> 3); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher); | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  | } else { | 
|  | rt2800_register_write(rt2x00dev, offset, 0); | 
|  | } | 
|  |  | 
|  | offset = MAC_IVEIV_ENTRY(key->hw_key_idx); | 
|  |  | 
|  | memset(&iveiv_entry, 0, sizeof(iveiv_entry)); | 
|  | if ((crypto->cipher == CIPHER_TKIP) || | 
|  | (crypto->cipher == CIPHER_TKIP_NO_MIC) || | 
|  | (crypto->cipher == CIPHER_AES)) | 
|  | iveiv_entry.iv[3] |= 0x20; | 
|  | iveiv_entry.iv[3] |= key->keyidx << 6; | 
|  | rt2800_register_multiwrite(rt2x00dev, offset, | 
|  | &iveiv_entry, sizeof(iveiv_entry)); | 
|  |  | 
|  | offset = MAC_WCID_ENTRY(key->hw_key_idx); | 
|  |  | 
|  | memset(&wcid_entry, 0, sizeof(wcid_entry)); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | memcpy(wcid_entry.mac, crypto->address, ETH_ALEN); | 
|  | rt2800_register_multiwrite(rt2x00dev, offset, | 
|  | &wcid_entry, sizeof(wcid_entry)); | 
|  | } | 
|  |  | 
|  | int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct hw_key_entry key_entry; | 
|  | struct rt2x00_field32 field; | 
|  | u32 offset; | 
|  | u32 reg; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx; | 
|  |  | 
|  | memcpy(key_entry.key, crypto->key, | 
|  | sizeof(key_entry.key)); | 
|  | memcpy(key_entry.tx_mic, crypto->tx_mic, | 
|  | sizeof(key_entry.tx_mic)); | 
|  | memcpy(key_entry.rx_mic, crypto->rx_mic, | 
|  | sizeof(key_entry.rx_mic)); | 
|  |  | 
|  | offset = SHARED_KEY_ENTRY(key->hw_key_idx); | 
|  | rt2800_register_multiwrite(rt2x00dev, offset, | 
|  | &key_entry, sizeof(key_entry)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The cipher types are stored over multiple registers | 
|  | * starting with SHARED_KEY_MODE_BASE each word will have | 
|  | * 32 bits and contains the cipher types for 2 bssidx each. | 
|  | * Using the correct defines correctly will cause overhead, | 
|  | * so just calculate the correct offset. | 
|  | */ | 
|  | field.bit_offset = 4 * (key->hw_key_idx % 8); | 
|  | field.bit_mask = 0x7 << field.bit_offset; | 
|  |  | 
|  | offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, field, | 
|  | (crypto->cmd == SET_KEY) * crypto->cipher); | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | /* | 
|  | * Update WCID information | 
|  | */ | 
|  | rt2800_config_wcid_attr(rt2x00dev, crypto, key); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_shared_key); | 
|  |  | 
|  | static inline int rt2800_find_pairwise_keyslot(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int idx; | 
|  | u32 offset, reg; | 
|  |  | 
|  | /* | 
|  | * Search for the first free pairwise key entry and return the | 
|  | * corresponding index. | 
|  | * | 
|  | * Make sure the WCID starts _after_ the last possible shared key | 
|  | * entry (>32). | 
|  | * | 
|  | * Since parts of the pairwise key table might be shared with | 
|  | * the beacon frame buffers 6 & 7 we should only write into the | 
|  | * first 222 entries. | 
|  | */ | 
|  | for (idx = 33; idx <= 222; idx++) { | 
|  | offset = MAC_WCID_ATTR_ENTRY(idx); | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | if (!reg) | 
|  | return idx; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct hw_key_entry key_entry; | 
|  | u32 offset; | 
|  | int idx; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | idx = rt2800_find_pairwise_keyslot(rt2x00dev); | 
|  | if (idx < 0) | 
|  | return -ENOSPC; | 
|  | key->hw_key_idx = idx; | 
|  |  | 
|  | memcpy(key_entry.key, crypto->key, | 
|  | sizeof(key_entry.key)); | 
|  | memcpy(key_entry.tx_mic, crypto->tx_mic, | 
|  | sizeof(key_entry.tx_mic)); | 
|  | memcpy(key_entry.rx_mic, crypto->rx_mic, | 
|  | sizeof(key_entry.rx_mic)); | 
|  |  | 
|  | offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx); | 
|  | rt2800_register_multiwrite(rt2x00dev, offset, | 
|  | &key_entry, sizeof(key_entry)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update WCID information | 
|  | */ | 
|  | rt2800_config_wcid_attr(rt2x00dev, crypto, key); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key); | 
|  |  | 
|  | void rt2800_config_filter(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int filter_flags) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Start configuration steps. | 
|  | * Note that the version error will always be dropped | 
|  | * and broadcast frames will always be accepted since | 
|  | * there is no filter for it at this time. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, RX_FILTER_CFG, ®); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CRC_ERROR, | 
|  | !(filter_flags & FIF_FCSFAIL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PHY_ERROR, | 
|  | !(filter_flags & FIF_PLCPFAIL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_TO_ME, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_VER_ERROR, 1); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_MULTICAST, | 
|  | !(filter_flags & FIF_ALLMULTI)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BROADCAST, 0); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_DUPLICATE, 1); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END_ACK, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_ACK, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CTS, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_RTS, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL, | 
|  | !(filter_flags & FIF_PSPOLL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 1); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 0); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_filter); | 
|  |  | 
|  | void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, | 
|  | struct rt2x00intf_conf *conf, const unsigned int flags) | 
|  | { | 
|  | u32 reg; | 
|  | bool update_bssid = false; | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_TYPE) { | 
|  | /* | 
|  | * Enable synchronisation. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, conf->sync); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  |  | 
|  | if (conf->sync == TSF_SYNC_AP_NONE) { | 
|  | /* | 
|  | * Tune beacon queue transmit parameters for AP mode | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, ®); | 
|  | rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_CWMIN, 0); | 
|  | rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_AIFSN, 1); | 
|  | rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_EXP_WIN, 32); | 
|  | rt2x00_set_field32(®, TBTT_SYNC_CFG_TBTT_ADJUST, 0); | 
|  | rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg); | 
|  | } else { | 
|  | rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, ®); | 
|  | rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_CWMIN, 4); | 
|  | rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_AIFSN, 2); | 
|  | rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_EXP_WIN, 32); | 
|  | rt2x00_set_field32(®, TBTT_SYNC_CFG_TBTT_ADJUST, 16); | 
|  | rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_MAC) { | 
|  | if (flags & CONFIG_UPDATE_TYPE && | 
|  | conf->sync == TSF_SYNC_AP_NONE) { | 
|  | /* | 
|  | * The BSSID register has to be set to our own mac | 
|  | * address in AP mode. | 
|  | */ | 
|  | memcpy(conf->bssid, conf->mac, sizeof(conf->mac)); | 
|  | update_bssid = true; | 
|  | } | 
|  |  | 
|  | if (!is_zero_ether_addr((const u8 *)conf->mac)) { | 
|  | reg = le32_to_cpu(conf->mac[1]); | 
|  | rt2x00_set_field32(®, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff); | 
|  | conf->mac[1] = cpu_to_le32(reg); | 
|  | } | 
|  |  | 
|  | rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0, | 
|  | conf->mac, sizeof(conf->mac)); | 
|  | } | 
|  |  | 
|  | if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) { | 
|  | if (!is_zero_ether_addr((const u8 *)conf->bssid)) { | 
|  | reg = le32_to_cpu(conf->bssid[1]); | 
|  | rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_ID_MASK, 3); | 
|  | rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_BCN_NUM, 7); | 
|  | conf->bssid[1] = cpu_to_le32(reg); | 
|  | } | 
|  |  | 
|  | rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0, | 
|  | conf->bssid, sizeof(conf->bssid)); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_intf); | 
|  |  | 
|  | static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_erp *erp) | 
|  | { | 
|  | bool any_sta_nongf = !!(erp->ht_opmode & | 
|  | IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT); | 
|  | u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION; | 
|  | u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode; | 
|  | u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate; | 
|  | u32 reg; | 
|  |  | 
|  | /* default protection rate for HT20: OFDM 24M */ | 
|  | mm20_rate = gf20_rate = 0x4004; | 
|  |  | 
|  | /* default protection rate for HT40: duplicate OFDM 24M */ | 
|  | mm40_rate = gf40_rate = 0x4084; | 
|  |  | 
|  | switch (protection) { | 
|  | case IEEE80211_HT_OP_MODE_PROTECTION_NONE: | 
|  | /* | 
|  | * All STAs in this BSS are HT20/40 but there might be | 
|  | * STAs not supporting greenfield mode. | 
|  | * => Disable protection for HT transmissions. | 
|  | */ | 
|  | mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0; | 
|  |  | 
|  | break; | 
|  | case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ: | 
|  | /* | 
|  | * All STAs in this BSS are HT20 or HT20/40 but there | 
|  | * might be STAs not supporting greenfield mode. | 
|  | * => Protect all HT40 transmissions. | 
|  | */ | 
|  | mm20_mode = gf20_mode = 0; | 
|  | mm40_mode = gf40_mode = 2; | 
|  |  | 
|  | break; | 
|  | case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER: | 
|  | /* | 
|  | * Nonmember protection: | 
|  | * According to 802.11n we _should_ protect all | 
|  | * HT transmissions (but we don't have to). | 
|  | * | 
|  | * But if cts_protection is enabled we _shall_ protect | 
|  | * all HT transmissions using a CCK rate. | 
|  | * | 
|  | * And if any station is non GF we _shall_ protect | 
|  | * GF transmissions. | 
|  | * | 
|  | * We decide to protect everything | 
|  | * -> fall through to mixed mode. | 
|  | */ | 
|  | case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED: | 
|  | /* | 
|  | * Legacy STAs are present | 
|  | * => Protect all HT transmissions. | 
|  | */ | 
|  | mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2; | 
|  |  | 
|  | /* | 
|  | * If erp protection is needed we have to protect HT | 
|  | * transmissions with CCK 11M long preamble. | 
|  | */ | 
|  | if (erp->cts_protection) { | 
|  | /* don't duplicate RTS/CTS in CCK mode */ | 
|  | mm20_rate = mm40_rate = 0x0003; | 
|  | gf20_rate = gf40_rate = 0x0003; | 
|  | } | 
|  | break; | 
|  | }; | 
|  |  | 
|  | /* check for STAs not supporting greenfield mode */ | 
|  | if (any_sta_nongf) | 
|  | gf20_mode = gf40_mode = 2; | 
|  |  | 
|  | /* Update HT protection config */ | 
|  | rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, mm20_rate); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode); | 
|  | rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, mm40_rate); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode); | 
|  | rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, gf20_rate); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode); | 
|  | rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, gf40_rate); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode); | 
|  | rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); | 
|  | } | 
|  |  | 
|  | void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp, | 
|  | u32 changed) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_PREAMBLE) { | 
|  | rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, | 
|  | !!erp->short_preamble); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, | 
|  | !!erp->short_preamble); | 
|  | rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_CTS_PROT) { | 
|  | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, | 
|  | erp->cts_protection ? 2 : 0); | 
|  | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_BASIC_RATES) { | 
|  | rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, | 
|  | erp->basic_rates); | 
|  | rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_SLOT) { | 
|  | rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®); | 
|  | rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, | 
|  | erp->slot_time); | 
|  | rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, erp->eifs); | 
|  | rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_BEACON_INT) { | 
|  | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, | 
|  | erp->beacon_int * 16); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_HT) | 
|  | rt2800_config_ht_opmode(rt2x00dev, erp); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_erp); | 
|  |  | 
|  | static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev, | 
|  | enum antenna ant) | 
|  | { | 
|  | u32 reg; | 
|  | u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0; | 
|  | u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1; | 
|  |  | 
|  | if (rt2x00_is_pci(rt2x00dev)) { | 
|  | rt2800_register_read(rt2x00dev, E2PROM_CSR, ®); | 
|  | rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, eesk_pin); | 
|  | rt2800_register_write(rt2x00dev, E2PROM_CSR, reg); | 
|  | } else if (rt2x00_is_usb(rt2x00dev)) | 
|  | rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff, | 
|  | eesk_pin, 0); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_GPIOD_BIT3, 0); | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT3, gpio_bit3); | 
|  | rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg); | 
|  | } | 
|  |  | 
|  | void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) | 
|  | { | 
|  | u8 r1; | 
|  | u8 r3; | 
|  | u16 eeprom; | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 1, &r1); | 
|  | rt2800_bbp_read(rt2x00dev, 3, &r3); | 
|  |  | 
|  | /* | 
|  | * Configure the TX antenna. | 
|  | */ | 
|  | switch (ant->tx_chain_num) { | 
|  | case 1: | 
|  | rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0); | 
|  | break; | 
|  | case 2: | 
|  | rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2); | 
|  | break; | 
|  | case 3: | 
|  | rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch (ant->rx_chain_num) { | 
|  | case 1: | 
|  | if (rt2x00_rt(rt2x00dev, RT3070) || | 
|  | rt2x00_rt(rt2x00dev, RT3090) || | 
|  | rt2x00_rt(rt2x00dev, RT3390)) { | 
|  | rt2x00_eeprom_read(rt2x00dev, | 
|  | EEPROM_NIC_CONF1, &eeprom); | 
|  | if (rt2x00_get_field16(eeprom, | 
|  | EEPROM_NIC_CONF1_ANT_DIVERSITY)) | 
|  | rt2800_set_ant_diversity(rt2x00dev, | 
|  | rt2x00dev->default_ant.rx); | 
|  | } | 
|  | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0); | 
|  | break; | 
|  | case 2: | 
|  | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1); | 
|  | break; | 
|  | case 3: | 
|  | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 3, r3); | 
|  | rt2800_bbp_write(rt2x00dev, 1, r1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_ant); | 
|  |  | 
|  | static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u16 eeprom; | 
|  | short lna_gain; | 
|  |  | 
|  | if (libconf->rf.channel <= 14) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); | 
|  | lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG); | 
|  | } else if (libconf->rf.channel <= 64) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); | 
|  | lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0); | 
|  | } else if (libconf->rf.channel <= 128) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom); | 
|  | lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1); | 
|  | } else { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom); | 
|  | lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2); | 
|  | } | 
|  |  | 
|  | rt2x00dev->lna_gain = lna_gain; | 
|  | } | 
|  |  | 
|  | static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_conf *conf, | 
|  | struct rf_channel *rf, | 
|  | struct channel_info *info) | 
|  | { | 
|  | rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); | 
|  |  | 
|  | if (rt2x00dev->default_ant.tx_chain_num == 1) | 
|  | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1); | 
|  |  | 
|  | if (rt2x00dev->default_ant.rx_chain_num == 1) { | 
|  | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1); | 
|  | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); | 
|  | } else if (rt2x00dev->default_ant.rx_chain_num == 2) | 
|  | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); | 
|  |  | 
|  | if (rf->channel > 14) { | 
|  | /* | 
|  | * When TX power is below 0, we should increase it by 7 to | 
|  | * make it a positive value (Minimum value is -7). | 
|  | * However this means that values between 0 and 7 have | 
|  | * double meaning, and we should set a 7DBm boost flag. | 
|  | */ | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST, | 
|  | (info->default_power1 >= 0)); | 
|  |  | 
|  | if (info->default_power1 < 0) | 
|  | info->default_power1 += 7; | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1); | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST, | 
|  | (info->default_power2 >= 0)); | 
|  |  | 
|  | if (info->default_power2 < 0) | 
|  | info->default_power2 += 7; | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2); | 
|  | } else { | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1); | 
|  | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2); | 
|  | } | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf)); | 
|  |  | 
|  | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
|  | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | udelay(200); | 
|  |  | 
|  | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); | 
|  | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | udelay(200); | 
|  |  | 
|  | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
|  | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | 
|  | } | 
|  |  | 
|  | static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_conf *conf, | 
|  | struct rf_channel *rf, | 
|  | struct channel_info *info) | 
|  | { | 
|  | u8 rfcsr; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2); | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 12, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2); | 
|  | rt2800_rfcsr_write(rt2x00dev, 13, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset); | 
|  | rt2800_rfcsr_write(rt2x00dev, 23, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, | 
|  | rt2x00dev->calibration[conf_is_ht40(conf)]); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 7, rfcsr); | 
|  | } | 
|  |  | 
|  |  | 
|  | #define RT5390_POWER_BOUND     0x27 | 
|  | #define RT5390_FREQ_OFFSET_BOUND       0x5f | 
|  |  | 
|  | static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_conf *conf, | 
|  | struct rf_channel *rf, | 
|  | struct channel_info *info) | 
|  | { | 
|  | u8 rfcsr; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3); | 
|  | rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2); | 
|  | rt2800_rfcsr_write(rt2x00dev, 11, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr); | 
|  | if (info->default_power1 > RT5390_POWER_BOUND) | 
|  | rt2x00_set_field8(&rfcsr, RFCSR49_TX, RT5390_POWER_BOUND); | 
|  | else | 
|  | rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 49, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 1, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr); | 
|  | if (rt2x00dev->freq_offset > RT5390_FREQ_OFFSET_BOUND) | 
|  | rt2x00_set_field8(&rfcsr, RFCSR17_CODE, | 
|  | RT5390_FREQ_OFFSET_BOUND); | 
|  | else | 
|  | rt2x00_set_field8(&rfcsr, RFCSR17_CODE, rt2x00dev->freq_offset); | 
|  | rt2800_rfcsr_write(rt2x00dev, 17, rfcsr); | 
|  |  | 
|  | if (rf->channel <= 14) { | 
|  | int idx = rf->channel-1; | 
|  |  | 
|  | if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) { | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) { | 
|  | /* r55/r59 value array of channel 1~14 */ | 
|  | static const char r55_bt_rev[] = {0x83, 0x83, | 
|  | 0x83, 0x73, 0x73, 0x63, 0x53, 0x53, | 
|  | 0x53, 0x43, 0x43, 0x43, 0x43, 0x43}; | 
|  | static const char r59_bt_rev[] = {0x0e, 0x0e, | 
|  | 0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09, | 
|  | 0x07, 0x07, 0x07, 0x07, 0x07, 0x07}; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 55, | 
|  | r55_bt_rev[idx]); | 
|  | rt2800_rfcsr_write(rt2x00dev, 59, | 
|  | r59_bt_rev[idx]); | 
|  | } else { | 
|  | static const char r59_bt[] = {0x8b, 0x8b, 0x8b, | 
|  | 0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89, | 
|  | 0x88, 0x88, 0x86, 0x85, 0x84}; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]); | 
|  | } | 
|  | } else { | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) { | 
|  | static const char r55_nonbt_rev[] = {0x23, 0x23, | 
|  | 0x23, 0x23, 0x13, 0x13, 0x03, 0x03, | 
|  | 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; | 
|  | static const char r59_nonbt_rev[] = {0x07, 0x07, | 
|  | 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, | 
|  | 0x07, 0x07, 0x06, 0x05, 0x04, 0x04}; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 55, | 
|  | r55_nonbt_rev[idx]); | 
|  | rt2800_rfcsr_write(rt2x00dev, 59, | 
|  | r59_nonbt_rev[idx]); | 
|  | } else if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | static const char r59_non_bt[] = {0x8f, 0x8f, | 
|  | 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d, | 
|  | 0x8a, 0x88, 0x88, 0x87, 0x87, 0x86}; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 59, | 
|  | r59_non_bt[idx]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, 0); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 3, rfcsr); | 
|  | } | 
|  |  | 
|  | static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_conf *conf, | 
|  | struct rf_channel *rf, | 
|  | struct channel_info *info) | 
|  | { | 
|  | u32 reg; | 
|  | unsigned int tx_pin; | 
|  | u8 bbp; | 
|  |  | 
|  | if (rf->channel <= 14) { | 
|  | info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1); | 
|  | info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2); | 
|  | } else { | 
|  | info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1); | 
|  | info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rf(rt2x00dev, RF2020) || | 
|  | rt2x00_rf(rt2x00dev, RF3020) || | 
|  | rt2x00_rf(rt2x00dev, RF3021) || | 
|  | rt2x00_rf(rt2x00dev, RF3022) || | 
|  | rt2x00_rf(rt2x00dev, RF3052) || | 
|  | rt2x00_rf(rt2x00dev, RF3320)) | 
|  | rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info); | 
|  | else if (rt2x00_rf(rt2x00dev, RF5370) || | 
|  | rt2x00_rf(rt2x00dev, RF5390)) | 
|  | rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info); | 
|  | else | 
|  | rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info); | 
|  |  | 
|  | /* | 
|  | * Change BBP settings | 
|  | */ | 
|  | rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain); | 
|  | rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain); | 
|  | rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain); | 
|  | rt2800_bbp_write(rt2x00dev, 86, 0); | 
|  |  | 
|  | if (rf->channel <= 14) { | 
|  | if (!rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, | 
|  | &rt2x00dev->cap_flags)) { | 
|  | rt2800_bbp_write(rt2x00dev, 82, 0x62); | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x46); | 
|  | } else { | 
|  | rt2800_bbp_write(rt2x00dev, 82, 0x84); | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x50); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | rt2800_bbp_write(rt2x00dev, 82, 0xf2); | 
|  |  | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x46); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x50); | 
|  | } | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_BAND_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf)); | 
|  | rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14); | 
|  | rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14); | 
|  | rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg); | 
|  |  | 
|  | tx_pin = 0; | 
|  |  | 
|  | /* Turn on unused PA or LNA when not using 1T or 1R */ | 
|  | if (rt2x00dev->default_ant.tx_chain_num == 2) { | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1); | 
|  | } | 
|  |  | 
|  | /* Turn on unused PA or LNA when not using 1T or 1R */ | 
|  | if (rt2x00dev->default_ant.rx_chain_num == 2) { | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1); | 
|  | } | 
|  |  | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 4, &bbp); | 
|  | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf)); | 
|  | rt2800_bbp_write(rt2x00dev, 4, bbp); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 3, &bbp); | 
|  | rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf)); | 
|  | rt2800_bbp_write(rt2x00dev, 3, bbp); | 
|  |  | 
|  | if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) { | 
|  | if (conf_is_ht40(conf)) { | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x1a); | 
|  | rt2800_bbp_write(rt2x00dev, 70, 0x0a); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x16); | 
|  | } else { | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x16); | 
|  | rt2800_bbp_write(rt2x00dev, 70, 0x08); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x11); | 
|  | } | 
|  | } | 
|  |  | 
|  | msleep(1); | 
|  |  | 
|  | /* | 
|  | * Clear channel statistic counters | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, CH_IDLE_STA, ®); | 
|  | rt2800_register_read(rt2x00dev, CH_BUSY_STA, ®); | 
|  | rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, ®); | 
|  | } | 
|  |  | 
|  | static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u8 tssi_bounds[9]; | 
|  | u8 current_tssi; | 
|  | u16 eeprom; | 
|  | u8 step; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Read TSSI boundaries for temperature compensation from | 
|  | * the EEPROM. | 
|  | * | 
|  | * Array idx               0    1    2    3    4    5    6    7    8 | 
|  | * Matching Delta value   -4   -3   -2   -1    0   +1   +2   +3   +4 | 
|  | * Example TSSI bounds  0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00 | 
|  | */ | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1, &eeprom); | 
|  | tssi_bounds[0] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG1_MINUS4); | 
|  | tssi_bounds[1] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG1_MINUS3); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2, &eeprom); | 
|  | tssi_bounds[2] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG2_MINUS2); | 
|  | tssi_bounds[3] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG2_MINUS1); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3, &eeprom); | 
|  | tssi_bounds[4] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG3_REF); | 
|  | tssi_bounds[5] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG3_PLUS1); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4, &eeprom); | 
|  | tssi_bounds[6] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG4_PLUS2); | 
|  | tssi_bounds[7] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG4_PLUS3); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5, &eeprom); | 
|  | tssi_bounds[8] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG5_PLUS4); | 
|  |  | 
|  | step = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_BG5_AGC_STEP); | 
|  | } else { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1, &eeprom); | 
|  | tssi_bounds[0] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A1_MINUS4); | 
|  | tssi_bounds[1] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A1_MINUS3); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2, &eeprom); | 
|  | tssi_bounds[2] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A2_MINUS2); | 
|  | tssi_bounds[3] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A2_MINUS1); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3, &eeprom); | 
|  | tssi_bounds[4] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A3_REF); | 
|  | tssi_bounds[5] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A3_PLUS1); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4, &eeprom); | 
|  | tssi_bounds[6] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A4_PLUS2); | 
|  | tssi_bounds[7] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A4_PLUS3); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5, &eeprom); | 
|  | tssi_bounds[8] = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A5_PLUS4); | 
|  |  | 
|  | step = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TSSI_BOUND_A5_AGC_STEP); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if temperature compensation is supported. | 
|  | */ | 
|  | if (tssi_bounds[4] == 0xff) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Read current TSSI (BBP 49). | 
|  | */ | 
|  | rt2800_bbp_read(rt2x00dev, 49, ¤t_tssi); | 
|  |  | 
|  | /* | 
|  | * Compare TSSI value (BBP49) with the compensation boundaries | 
|  | * from the EEPROM and increase or decrease tx power. | 
|  | */ | 
|  | for (i = 0; i <= 3; i++) { | 
|  | if (current_tssi > tssi_bounds[i]) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == 4) { | 
|  | for (i = 8; i >= 5; i--) { | 
|  | if (current_tssi < tssi_bounds[i]) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return (i - 4) * step; | 
|  | } | 
|  |  | 
|  | static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev, | 
|  | enum ieee80211_band band) | 
|  | { | 
|  | u16 eeprom; | 
|  | u8 comp_en; | 
|  | u8 comp_type; | 
|  | int comp_value = 0; | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA, &eeprom); | 
|  |  | 
|  | /* | 
|  | * HT40 compensation not required. | 
|  | */ | 
|  | if (eeprom == 0xffff || | 
|  | !test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) | 
|  | return 0; | 
|  |  | 
|  | if (band == IEEE80211_BAND_2GHZ) { | 
|  | comp_en = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_DELTA_ENABLE_2G); | 
|  | if (comp_en) { | 
|  | comp_type = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_DELTA_TYPE_2G); | 
|  | comp_value = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_DELTA_VALUE_2G); | 
|  | if (!comp_type) | 
|  | comp_value = -comp_value; | 
|  | } | 
|  | } else { | 
|  | comp_en = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_DELTA_ENABLE_5G); | 
|  | if (comp_en) { | 
|  | comp_type = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_DELTA_TYPE_5G); | 
|  | comp_value = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_DELTA_VALUE_5G); | 
|  | if (!comp_type) | 
|  | comp_value = -comp_value; | 
|  | } | 
|  | } | 
|  |  | 
|  | return comp_value; | 
|  | } | 
|  |  | 
|  | static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b, | 
|  | enum ieee80211_band band, int power_level, | 
|  | u8 txpower, int delta) | 
|  | { | 
|  | u32 reg; | 
|  | u16 eeprom; | 
|  | u8 criterion; | 
|  | u8 eirp_txpower; | 
|  | u8 eirp_txpower_criterion; | 
|  | u8 reg_limit; | 
|  |  | 
|  | if (!((band == IEEE80211_BAND_5GHZ) && is_rate_b)) | 
|  | return txpower; | 
|  |  | 
|  | if (test_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags)) { | 
|  | /* | 
|  | * Check if eirp txpower exceed txpower_limit. | 
|  | * We use OFDM 6M as criterion and its eirp txpower | 
|  | * is stored at EEPROM_EIRP_MAX_TX_POWER. | 
|  | * .11b data rate need add additional 4dbm | 
|  | * when calculating eirp txpower. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, ®); | 
|  | criterion = rt2x00_get_field32(reg, TX_PWR_CFG_0_6MBS); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, | 
|  | EEPROM_EIRP_MAX_TX_POWER, &eeprom); | 
|  |  | 
|  | if (band == IEEE80211_BAND_2GHZ) | 
|  | eirp_txpower_criterion = rt2x00_get_field16(eeprom, | 
|  | EEPROM_EIRP_MAX_TX_POWER_2GHZ); | 
|  | else | 
|  | eirp_txpower_criterion = rt2x00_get_field16(eeprom, | 
|  | EEPROM_EIRP_MAX_TX_POWER_5GHZ); | 
|  |  | 
|  | eirp_txpower = eirp_txpower_criterion + (txpower - criterion) + | 
|  | (is_rate_b ? 4 : 0) + delta; | 
|  |  | 
|  | reg_limit = (eirp_txpower > power_level) ? | 
|  | (eirp_txpower - power_level) : 0; | 
|  | } else | 
|  | reg_limit = 0; | 
|  |  | 
|  | return txpower + delta - reg_limit; | 
|  | } | 
|  |  | 
|  | static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev, | 
|  | enum ieee80211_band band, | 
|  | int power_level) | 
|  | { | 
|  | u8 txpower; | 
|  | u16 eeprom; | 
|  | int i, is_rate_b; | 
|  | u32 reg; | 
|  | u8 r1; | 
|  | u32 offset; | 
|  | int delta; | 
|  |  | 
|  | /* | 
|  | * Calculate HT40 compensation delta | 
|  | */ | 
|  | delta = rt2800_get_txpower_bw_comp(rt2x00dev, band); | 
|  |  | 
|  | /* | 
|  | * calculate temperature compensation delta | 
|  | */ | 
|  | delta += rt2800_get_gain_calibration_delta(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * set to normal bbp tx power control mode: +/- 0dBm | 
|  | */ | 
|  | rt2800_bbp_read(rt2x00dev, 1, &r1); | 
|  | rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, 0); | 
|  | rt2800_bbp_write(rt2x00dev, 1, r1); | 
|  | offset = TX_PWR_CFG_0; | 
|  |  | 
|  | for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) { | 
|  | /* just to be safe */ | 
|  | if (offset > TX_PWR_CFG_4) | 
|  | break; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  |  | 
|  | /* read the next four txpower values */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i, | 
|  | &eeprom); | 
|  |  | 
|  | is_rate_b = i ? 0 : 1; | 
|  | /* | 
|  | * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS, | 
|  | * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12, | 
|  | * TX_PWR_CFG_4: unknown | 
|  | */ | 
|  | txpower = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_BYRATE_RATE0); | 
|  | txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, | 
|  | power_level, txpower, delta); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_RATE0, txpower); | 
|  |  | 
|  | /* | 
|  | * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS, | 
|  | * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13, | 
|  | * TX_PWR_CFG_4: unknown | 
|  | */ | 
|  | txpower = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_BYRATE_RATE1); | 
|  | txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, | 
|  | power_level, txpower, delta); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_RATE1, txpower); | 
|  |  | 
|  | /* | 
|  | * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS, | 
|  | * TX_PWR_CFG_2: MCS6,  TX_PWR_CFG_3: MCS14, | 
|  | * TX_PWR_CFG_4: unknown | 
|  | */ | 
|  | txpower = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_BYRATE_RATE2); | 
|  | txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, | 
|  | power_level, txpower, delta); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_RATE2, txpower); | 
|  |  | 
|  | /* | 
|  | * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS, | 
|  | * TX_PWR_CFG_2: MCS7,  TX_PWR_CFG_3: MCS15, | 
|  | * TX_PWR_CFG_4: unknown | 
|  | */ | 
|  | txpower = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_BYRATE_RATE3); | 
|  | txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, | 
|  | power_level, txpower, delta); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_RATE3, txpower); | 
|  |  | 
|  | /* read the next four txpower values */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1, | 
|  | &eeprom); | 
|  |  | 
|  | is_rate_b = 0; | 
|  | /* | 
|  | * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0, | 
|  | * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown, | 
|  | * TX_PWR_CFG_4: unknown | 
|  | */ | 
|  | txpower = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_BYRATE_RATE0); | 
|  | txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, | 
|  | power_level, txpower, delta); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_RATE4, txpower); | 
|  |  | 
|  | /* | 
|  | * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1, | 
|  | * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown, | 
|  | * TX_PWR_CFG_4: unknown | 
|  | */ | 
|  | txpower = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_BYRATE_RATE1); | 
|  | txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, | 
|  | power_level, txpower, delta); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_RATE5, txpower); | 
|  |  | 
|  | /* | 
|  | * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2, | 
|  | * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown, | 
|  | * TX_PWR_CFG_4: unknown | 
|  | */ | 
|  | txpower = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_BYRATE_RATE2); | 
|  | txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, | 
|  | power_level, txpower, delta); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_RATE6, txpower); | 
|  |  | 
|  | /* | 
|  | * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3, | 
|  | * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown, | 
|  | * TX_PWR_CFG_4: unknown | 
|  | */ | 
|  | txpower = rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXPOWER_BYRATE_RATE3); | 
|  | txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, | 
|  | power_level, txpower, delta); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_RATE7, txpower); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | /* next TX_PWR_CFG register */ | 
|  | offset += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | rt2800_config_txpower(rt2x00dev, rt2x00dev->curr_band, | 
|  | rt2x00dev->tx_power); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_gain_calibration); | 
|  |  | 
|  | static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, | 
|  | libconf->conf->short_frame_max_tx_count); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, | 
|  | libconf->conf->long_frame_max_tx_count); | 
|  | rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg); | 
|  | } | 
|  |  | 
|  | static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | enum dev_state state = | 
|  | (libconf->conf->flags & IEEE80211_CONF_PS) ? | 
|  | STATE_SLEEP : STATE_AWAKE; | 
|  | u32 reg; | 
|  |  | 
|  | if (state == STATE_SLEEP) { | 
|  | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, | 
|  | libconf->conf->listen_interval - 1); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1); | 
|  | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); | 
|  |  | 
|  | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | 
|  | } else { | 
|  | rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 0); | 
|  | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); | 
|  |  | 
|  | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | 
|  | } | 
|  | } | 
|  |  | 
|  | void rt2800_config(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | /* Always recalculate LNA gain before changing configuration */ | 
|  | rt2800_config_lna_gain(rt2x00dev, libconf); | 
|  |  | 
|  | if (flags & IEEE80211_CONF_CHANGE_CHANNEL) { | 
|  | rt2800_config_channel(rt2x00dev, libconf->conf, | 
|  | &libconf->rf, &libconf->channel); | 
|  | rt2800_config_txpower(rt2x00dev, libconf->conf->channel->band, | 
|  | libconf->conf->power_level); | 
|  | } | 
|  | if (flags & IEEE80211_CONF_CHANGE_POWER) | 
|  | rt2800_config_txpower(rt2x00dev, libconf->conf->channel->band, | 
|  | libconf->conf->power_level); | 
|  | if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) | 
|  | rt2800_config_retry_limit(rt2x00dev, libconf); | 
|  | if (flags & IEEE80211_CONF_CHANGE_PS) | 
|  | rt2800_config_ps(rt2x00dev, libconf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config); | 
|  |  | 
|  | /* | 
|  | * Link tuning | 
|  | */ | 
|  | void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Update FCS error count from register. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); | 
|  | qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_link_stats); | 
|  |  | 
|  | static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { | 
|  | if (rt2x00_rt(rt2x00dev, RT3070) || | 
|  | rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3090) || | 
|  | rt2x00_rt(rt2x00dev, RT3390) || | 
|  | rt2x00_rt(rt2x00dev, RT5390)) | 
|  | return 0x1c + (2 * rt2x00dev->lna_gain); | 
|  | else | 
|  | return 0x2e + rt2x00dev->lna_gain; | 
|  | } | 
|  |  | 
|  | if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) | 
|  | return 0x32 + (rt2x00dev->lna_gain * 5) / 3; | 
|  | else | 
|  | return 0x3a + (rt2x00dev->lna_gain * 5) / 3; | 
|  | } | 
|  |  | 
|  | static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual, u8 vgc_level) | 
|  | { | 
|  | if (qual->vgc_level != vgc_level) { | 
|  | rt2800_bbp_write(rt2x00dev, 66, vgc_level); | 
|  | qual->vgc_level = vgc_level; | 
|  | qual->vgc_level_reg = vgc_level; | 
|  | } | 
|  | } | 
|  |  | 
|  | void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) | 
|  | { | 
|  | rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_reset_tuner); | 
|  |  | 
|  | void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, | 
|  | const u32 count) | 
|  | { | 
|  | if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * When RSSI is better then -80 increase VGC level with 0x10 | 
|  | */ | 
|  | rt2800_set_vgc(rt2x00dev, qual, | 
|  | rt2800_get_default_vgc(rt2x00dev) + | 
|  | ((qual->rssi > -80) * 0x10)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_link_tuner); | 
|  |  | 
|  | /* | 
|  | * Initialization functions. | 
|  | */ | 
|  | static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  | u16 eeprom; | 
|  | unsigned int i; | 
|  | int ret; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); | 
|  | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | 
|  |  | 
|  | ret = rt2800_drv_init_registers(rt2x00dev); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BCN_OFFSET0, ®); | 
|  | rt2x00_set_field32(®, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */ | 
|  | rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BCN_OFFSET1, ®); | 
|  | rt2x00_set_field32(®, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */ | 
|  | rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f); | 
|  | rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 1600); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  |  | 
|  | rt2800_config_filter(rt2x00dev, FIF_ALLMULTI); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®); | 
|  | rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, 9); | 
|  | rt2x00_set_field32(®, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2); | 
|  | rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3090) || | 
|  | rt2x00_rt(rt2x00dev, RT3390)) { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); | 
|  | if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST)) | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG2, | 
|  | 0x0000002c); | 
|  | else | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG2, | 
|  | 0x0000000f); | 
|  | } else { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); | 
|  | } | 
|  | } else if (rt2x00_rt(rt2x00dev, RT3070)) { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); | 
|  |  | 
|  | if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c); | 
|  | } else { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); | 
|  | } | 
|  | } else if (rt2800_is_305x_soc(rt2x00dev)) { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000030); | 
|  | } else if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); | 
|  | } else { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); | 
|  | } | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_LINK_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_MFB_ENABLE, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_TX_MRQ_EN, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_TX_RDG_EN, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_TX_CF_ACK_EN, 1); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFS, 0); | 
|  | rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9); | 
|  | rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32); | 
|  | rt2x00_set_field32(®, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10); | 
|  | rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MAX_LEN_CFG, ®); | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE); | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) || | 
|  | rt2x00_rt(rt2x00dev, RT2883) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E)) | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 2); | 
|  | else | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 1); | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MIN_PSDU, 0); | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MIN_MPDU, 0); | 
|  | rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, LED_CFG, ®); | 
|  | rt2x00_set_field32(®, LED_CFG_ON_PERIOD, 70); | 
|  | rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, 30); | 
|  | rt2x00_set_field32(®, LED_CFG_SLOW_BLINK_PERIOD, 3); | 
|  | rt2x00_set_field32(®, LED_CFG_R_LED_MODE, 3); | 
|  | rt2x00_set_field32(®, LED_CFG_G_LED_MODE, 3); | 
|  | rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, 3); | 
|  | rt2x00_set_field32(®, LED_CFG_LED_POLAR, 1); | 
|  | rt2800_register_write(rt2x00dev, LED_CFG, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, 15); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, 31); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_THRE, 2000); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_NON_AGG_RTY_MODE, 0); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_AGG_RTY_MODE, 0); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1); | 
|  | rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_AUTORESPONDER, 1); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, 1); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MMODE, 0); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MREF, 0); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, 1); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_DUAL_CTS_EN, 0); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0); | 
|  | rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 3); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, 1); | 
|  | rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 3); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, 1); | 
|  | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, 0x4004); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, 0); | 
|  | rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, 0x4084); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, 0); | 
|  | rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, 0x4004); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, 0); | 
|  | rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, 0x4084); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, 0); | 
|  | rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); | 
|  |  | 
|  | if (rt2x00_is_usb(rt2x00dev)) { | 
|  | rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_BIG_ENDIAN, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_HDR_SEG_LEN, 0); | 
|  | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1 | 
|  | * although it is reserved. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, ®); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_AC_TRUN_EN, 1); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CCA_EN, 0); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CCA_DLY, 88); | 
|  | rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CWMIN, 0); | 
|  | rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32); | 
|  | rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, | 
|  | IEEE80211_MAX_RTS_THRESHOLD); | 
|  | rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0); | 
|  | rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca); | 
|  |  | 
|  | /* | 
|  | * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS | 
|  | * time should be set to 16. However, the original Ralink driver uses | 
|  | * 16 for both and indeed using a value of 10 for CCK SIFS results in | 
|  | * connection problems with 11g + CTS protection. Hence, use the same | 
|  | * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, 314); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1); | 
|  | rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); | 
|  |  | 
|  | /* | 
|  | * ASIC will keep garbage value after boot, clear encryption keys. | 
|  | */ | 
|  | for (i = 0; i < 4; i++) | 
|  | rt2800_register_write(rt2x00dev, | 
|  | SHARED_KEY_MODE_ENTRY(i), 0); | 
|  |  | 
|  | for (i = 0; i < 256; i++) { | 
|  | static const u32 wcid[2] = { 0xffffffff, 0x00ffffff }; | 
|  | rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i), | 
|  | wcid, sizeof(wcid)); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 0); | 
|  | rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear all beacons | 
|  | */ | 
|  | rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE0); | 
|  | rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE1); | 
|  | rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE2); | 
|  | rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE3); | 
|  | rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE4); | 
|  | rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE5); | 
|  | rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE6); | 
|  | rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE7); | 
|  |  | 
|  | if (rt2x00_is_usb(rt2x00dev)) { | 
|  | rt2800_register_read(rt2x00dev, US_CYC_CNT, ®); | 
|  | rt2x00_set_field32(®, US_CYC_CNT_CLOCK_CYCLE, 30); | 
|  | rt2800_register_write(rt2x00dev, US_CYC_CNT, reg); | 
|  | } else if (rt2x00_is_pcie(rt2x00dev)) { | 
|  | rt2800_register_read(rt2x00dev, US_CYC_CNT, ®); | 
|  | rt2x00_set_field32(®, US_CYC_CNT_CLOCK_CYCLE, 125); | 
|  | rt2800_register_write(rt2x00dev, US_CYC_CNT, reg); | 
|  | } | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, HT_FBK_CFG0, ®); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS0FBK, 0); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS1FBK, 0); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS2FBK, 1); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS3FBK, 2); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS4FBK, 3); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS5FBK, 4); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS6FBK, 5); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS7FBK, 6); | 
|  | rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, HT_FBK_CFG1, ®); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS8FBK, 8); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS9FBK, 8); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS10FBK, 9); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS11FBK, 10); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS12FBK, 11); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS13FBK, 12); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS14FBK, 13); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS15FBK, 14); | 
|  | rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, LG_FBK_CFG0, ®); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 9); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14); | 
|  | rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, LG_FBK_CFG1, ®); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS0FBK, 0); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS1FBK, 0); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS2FBK, 1); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS3FBK, 2); | 
|  | rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg); | 
|  |  | 
|  | /* | 
|  | * Do not force the BA window size, we use the TXWI to set it | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, ®); | 
|  | rt2x00_set_field32(®, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0); | 
|  | rt2x00_set_field32(®, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0); | 
|  | rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg); | 
|  |  | 
|  | /* | 
|  | * We must clear the error counters. | 
|  | * These registers are cleared on read, | 
|  | * so we may pass a useless variable to store the value. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); | 
|  | rt2800_register_read(rt2x00dev, RX_STA_CNT1, ®); | 
|  | rt2800_register_read(rt2x00dev, RX_STA_CNT2, ®); | 
|  | rt2800_register_read(rt2x00dev, TX_STA_CNT0, ®); | 
|  | rt2800_register_read(rt2x00dev, TX_STA_CNT1, ®); | 
|  | rt2800_register_read(rt2x00dev, TX_STA_CNT2, ®); | 
|  |  | 
|  | /* | 
|  | * Setup leadtime for pre tbtt interrupt to 6ms | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, INT_TIMER_CFG, ®); | 
|  | rt2x00_set_field32(®, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4); | 
|  | rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg); | 
|  |  | 
|  | /* | 
|  | * Set up channel statistics timer | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, CH_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, CH_TIME_CFG_EIFS_BUSY, 1); | 
|  | rt2x00_set_field32(®, CH_TIME_CFG_NAV_BUSY, 1); | 
|  | rt2x00_set_field32(®, CH_TIME_CFG_RX_BUSY, 1); | 
|  | rt2x00_set_field32(®, CH_TIME_CFG_TX_BUSY, 1); | 
|  | rt2x00_set_field32(®, CH_TIME_CFG_TMR_EN, 1); | 
|  | rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u32 reg; | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, ®); | 
|  | if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY)) | 
|  | return 0; | 
|  |  | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u8 value; | 
|  |  | 
|  | /* | 
|  | * BBP was enabled after firmware was loaded, | 
|  | * but we need to reactivate it now. | 
|  | */ | 
|  | rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); | 
|  | rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); | 
|  | msleep(1); | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2800_bbp_read(rt2x00dev, 0, &value); | 
|  | if ((value != 0xff) && (value != 0x00)) | 
|  | return 0; | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u16 eeprom; | 
|  | u8 reg_id; | 
|  | u8 value; | 
|  |  | 
|  | if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) || | 
|  | rt2800_wait_bbp_ready(rt2x00dev))) | 
|  | return -EACCES; | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_bbp_read(rt2x00dev, 4, &value); | 
|  | rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1); | 
|  | rt2800_bbp_write(rt2x00dev, 4, value); | 
|  | } | 
|  |  | 
|  | if (rt2800_is_305x_soc(rt2x00dev) || | 
|  | rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 31, 0x08); | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 65, 0x2c); | 
|  | rt2800_bbp_write(rt2x00dev, 66, 0x38); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 68, 0x0b); | 
|  |  | 
|  | if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) { | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x16); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x12); | 
|  | } else if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x12); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x13); | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x46); | 
|  | rt2800_bbp_write(rt2x00dev, 76, 0x28); | 
|  | rt2800_bbp_write(rt2x00dev, 77, 0x59); | 
|  | } else { | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x12); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x10); | 
|  | } | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 70, 0x0a); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT3070) || | 
|  | rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3090) || | 
|  | rt2x00_rt(rt2x00dev, RT3390) || | 
|  | rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_bbp_write(rt2x00dev, 79, 0x13); | 
|  | rt2800_bbp_write(rt2x00dev, 80, 0x05); | 
|  | rt2800_bbp_write(rt2x00dev, 81, 0x33); | 
|  | } else if (rt2800_is_305x_soc(rt2x00dev)) { | 
|  | rt2800_bbp_write(rt2x00dev, 78, 0x0e); | 
|  | rt2800_bbp_write(rt2x00dev, 80, 0x08); | 
|  | } else { | 
|  | rt2800_bbp_write(rt2x00dev, 81, 0x37); | 
|  | } | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 82, 0x62); | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 83, 0x7a); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 83, 0x6a); | 
|  |  | 
|  | if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D)) | 
|  | rt2800_bbp_write(rt2x00dev, 84, 0x19); | 
|  | else if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 84, 0x9a); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 84, 0x99); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 86, 0x38); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 86, 0x00); | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 91, 0x04); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 92, 0x02); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 92, 0x00); | 
|  |  | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) || | 
|  | rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) || | 
|  | rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) || | 
|  | rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) || | 
|  | rt2x00_rt(rt2x00dev, RT5390) || | 
|  | rt2800_is_305x_soc(rt2x00dev)) | 
|  | rt2800_bbp_write(rt2x00dev, 103, 0xc0); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 103, 0x00); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 104, 0x92); | 
|  |  | 
|  | if (rt2800_is_305x_soc(rt2x00dev)) | 
|  | rt2800_bbp_write(rt2x00dev, 105, 0x01); | 
|  | else if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 105, 0x3c); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 105, 0x05); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 106, 0x03); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 106, 0x35); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) | 
|  | rt2800_bbp_write(rt2x00dev, 128, 0x12); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3090) || | 
|  | rt2x00_rt(rt2x00dev, RT3390) || | 
|  | rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_bbp_read(rt2x00dev, 138, &value); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1) | 
|  | value |= 0x20; | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1) | 
|  | value &= ~0x02; | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 138, value); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | int ant, div_mode; | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom); | 
|  | div_mode = rt2x00_get_field16(eeprom, | 
|  | EEPROM_NIC_CONF1_ANT_DIVERSITY); | 
|  | ant = (div_mode == 3) ? 1 : 0; | 
|  |  | 
|  | /* check if this is a Bluetooth combo card */ | 
|  | if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_GPIOD_BIT3, 0); | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_GPIOD_BIT6, 0); | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT3, 0); | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT6, 0); | 
|  | if (ant == 0) | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT3, 1); | 
|  | else if (ant == 1) | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT6, 1); | 
|  | rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg); | 
|  | } | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 152, &value); | 
|  | if (ant == 0) | 
|  | rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1); | 
|  | else | 
|  | rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0); | 
|  | rt2800_bbp_write(rt2x00dev, 152, value); | 
|  |  | 
|  | /* Init frequency calibration */ | 
|  | rt2800_bbp_write(rt2x00dev, 142, 1); | 
|  | rt2800_bbp_write(rt2x00dev, 143, 57); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < EEPROM_BBP_SIZE; i++) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); | 
|  |  | 
|  | if (eeprom != 0xffff && eeprom != 0x0000) { | 
|  | reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); | 
|  | rt2800_bbp_write(rt2x00dev, reg_id, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev, | 
|  | bool bw40, u8 rfcsr24, u8 filter_target) | 
|  | { | 
|  | unsigned int i; | 
|  | u8 bbp; | 
|  | u8 rfcsr; | 
|  | u8 passband; | 
|  | u8 stopband; | 
|  | u8 overtuned = 0; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 4, &bbp); | 
|  | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40); | 
|  | rt2800_bbp_write(rt2x00dev, 4, bbp); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40); | 
|  | rt2800_rfcsr_write(rt2x00dev, 31, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); | 
|  |  | 
|  | /* | 
|  | * Set power & frequency of passband test tone | 
|  | */ | 
|  | rt2800_bbp_write(rt2x00dev, 24, 0); | 
|  |  | 
|  | for (i = 0; i < 100; i++) { | 
|  | rt2800_bbp_write(rt2x00dev, 25, 0x90); | 
|  | msleep(1); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 55, &passband); | 
|  | if (passband) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set power & frequency of stopband test tone | 
|  | */ | 
|  | rt2800_bbp_write(rt2x00dev, 24, 0x06); | 
|  |  | 
|  | for (i = 0; i < 100; i++) { | 
|  | rt2800_bbp_write(rt2x00dev, 25, 0x90); | 
|  | msleep(1); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 55, &stopband); | 
|  |  | 
|  | if ((passband - stopband) <= filter_target) { | 
|  | rfcsr24++; | 
|  | overtuned += ((passband - stopband) == filter_target); | 
|  | } else | 
|  | break; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | 
|  | } | 
|  |  | 
|  | rfcsr24 -= !!overtuned; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | 
|  | return rfcsr24; | 
|  | } | 
|  |  | 
|  | static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u8 rfcsr; | 
|  | u8 bbp; | 
|  | u32 reg; | 
|  | u16 eeprom; | 
|  |  | 
|  | if (!rt2x00_rt(rt2x00dev, RT3070) && | 
|  | !rt2x00_rt(rt2x00dev, RT3071) && | 
|  | !rt2x00_rt(rt2x00dev, RT3090) && | 
|  | !rt2x00_rt(rt2x00dev, RT3390) && | 
|  | !rt2x00_rt(rt2x00dev, RT5390) && | 
|  | !rt2800_is_305x_soc(rt2x00dev)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Init RF calibration. | 
|  | */ | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_rfcsr_read(rt2x00dev, 2, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 2, rfcsr); | 
|  | msleep(1); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 2, rfcsr); | 
|  | } else { | 
|  | rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); | 
|  | msleep(1); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT3070) || | 
|  | rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3090)) { | 
|  | rt2800_rfcsr_write(rt2x00dev, 4, 0x40); | 
|  | rt2800_rfcsr_write(rt2x00dev, 5, 0x03); | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, 0x02); | 
|  | rt2800_rfcsr_write(rt2x00dev, 7, 0x60); | 
|  | rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); | 
|  | rt2800_rfcsr_write(rt2x00dev, 10, 0x41); | 
|  | rt2800_rfcsr_write(rt2x00dev, 11, 0x21); | 
|  | rt2800_rfcsr_write(rt2x00dev, 12, 0x7b); | 
|  | rt2800_rfcsr_write(rt2x00dev, 14, 0x90); | 
|  | rt2800_rfcsr_write(rt2x00dev, 15, 0x58); | 
|  | rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); | 
|  | rt2800_rfcsr_write(rt2x00dev, 17, 0x92); | 
|  | rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); | 
|  | rt2800_rfcsr_write(rt2x00dev, 19, 0x02); | 
|  | rt2800_rfcsr_write(rt2x00dev, 20, 0xba); | 
|  | rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, 0x16); | 
|  | rt2800_rfcsr_write(rt2x00dev, 25, 0x01); | 
|  | rt2800_rfcsr_write(rt2x00dev, 29, 0x1f); | 
|  | } else if (rt2x00_rt(rt2x00dev, RT3390)) { | 
|  | rt2800_rfcsr_write(rt2x00dev, 0, 0xa0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 1, 0xe1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 2, 0xf1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 3, 0x62); | 
|  | rt2800_rfcsr_write(rt2x00dev, 4, 0x40); | 
|  | rt2800_rfcsr_write(rt2x00dev, 5, 0x8b); | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, 0x42); | 
|  | rt2800_rfcsr_write(rt2x00dev, 7, 0x34); | 
|  | rt2800_rfcsr_write(rt2x00dev, 8, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 9, 0xc0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 10, 0x61); | 
|  | rt2800_rfcsr_write(rt2x00dev, 11, 0x21); | 
|  | rt2800_rfcsr_write(rt2x00dev, 12, 0x3b); | 
|  | rt2800_rfcsr_write(rt2x00dev, 13, 0xe0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 14, 0x90); | 
|  | rt2800_rfcsr_write(rt2x00dev, 15, 0x53); | 
|  | rt2800_rfcsr_write(rt2x00dev, 16, 0xe0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 17, 0x94); | 
|  | rt2800_rfcsr_write(rt2x00dev, 18, 0x5c); | 
|  | rt2800_rfcsr_write(rt2x00dev, 19, 0x4a); | 
|  | rt2800_rfcsr_write(rt2x00dev, 20, 0xb2); | 
|  | rt2800_rfcsr_write(rt2x00dev, 21, 0xf6); | 
|  | rt2800_rfcsr_write(rt2x00dev, 22, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 23, 0x14); | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, 0x08); | 
|  | rt2800_rfcsr_write(rt2x00dev, 25, 0x3d); | 
|  | rt2800_rfcsr_write(rt2x00dev, 26, 0x85); | 
|  | rt2800_rfcsr_write(rt2x00dev, 27, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 28, 0x41); | 
|  | rt2800_rfcsr_write(rt2x00dev, 29, 0x8f); | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, 0x20); | 
|  | rt2800_rfcsr_write(rt2x00dev, 31, 0x0f); | 
|  | } else if (rt2800_is_305x_soc(rt2x00dev)) { | 
|  | rt2800_rfcsr_write(rt2x00dev, 0, 0x50); | 
|  | rt2800_rfcsr_write(rt2x00dev, 1, 0x01); | 
|  | rt2800_rfcsr_write(rt2x00dev, 2, 0xf7); | 
|  | rt2800_rfcsr_write(rt2x00dev, 3, 0x75); | 
|  | rt2800_rfcsr_write(rt2x00dev, 4, 0x40); | 
|  | rt2800_rfcsr_write(rt2x00dev, 5, 0x03); | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, 0x02); | 
|  | rt2800_rfcsr_write(rt2x00dev, 7, 0x50); | 
|  | rt2800_rfcsr_write(rt2x00dev, 8, 0x39); | 
|  | rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); | 
|  | rt2800_rfcsr_write(rt2x00dev, 10, 0x60); | 
|  | rt2800_rfcsr_write(rt2x00dev, 11, 0x21); | 
|  | rt2800_rfcsr_write(rt2x00dev, 12, 0x75); | 
|  | rt2800_rfcsr_write(rt2x00dev, 13, 0x75); | 
|  | rt2800_rfcsr_write(rt2x00dev, 14, 0x90); | 
|  | rt2800_rfcsr_write(rt2x00dev, 15, 0x58); | 
|  | rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); | 
|  | rt2800_rfcsr_write(rt2x00dev, 17, 0x92); | 
|  | rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); | 
|  | rt2800_rfcsr_write(rt2x00dev, 19, 0x02); | 
|  | rt2800_rfcsr_write(rt2x00dev, 20, 0xba); | 
|  | rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); | 
|  | rt2800_rfcsr_write(rt2x00dev, 22, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 23, 0x31); | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, 0x08); | 
|  | rt2800_rfcsr_write(rt2x00dev, 25, 0x01); | 
|  | rt2800_rfcsr_write(rt2x00dev, 26, 0x25); | 
|  | rt2800_rfcsr_write(rt2x00dev, 27, 0x23); | 
|  | rt2800_rfcsr_write(rt2x00dev, 28, 0x13); | 
|  | rt2800_rfcsr_write(rt2x00dev, 29, 0x83); | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 31, 0x00); | 
|  | return 0; | 
|  | } else if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_rfcsr_write(rt2x00dev, 1, 0x0f); | 
|  | rt2800_rfcsr_write(rt2x00dev, 2, 0x80); | 
|  | rt2800_rfcsr_write(rt2x00dev, 3, 0x88); | 
|  | rt2800_rfcsr_write(rt2x00dev, 5, 0x10); | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, 0xe0); | 
|  | else | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, 0xa0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 7, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 10, 0x53); | 
|  | rt2800_rfcsr_write(rt2x00dev, 11, 0x4a); | 
|  | rt2800_rfcsr_write(rt2x00dev, 12, 0xc6); | 
|  | rt2800_rfcsr_write(rt2x00dev, 13, 0x9f); | 
|  | rt2800_rfcsr_write(rt2x00dev, 14, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 15, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 16, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 18, 0x03); | 
|  | rt2800_rfcsr_write(rt2x00dev, 19, 0x00); | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 20, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 21, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 22, 0x20); | 
|  | rt2800_rfcsr_write(rt2x00dev, 23, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, 0x00); | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) | 
|  | rt2800_rfcsr_write(rt2x00dev, 25, 0x80); | 
|  | else | 
|  | rt2800_rfcsr_write(rt2x00dev, 25, 0xc0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 26, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 27, 0x09); | 
|  | rt2800_rfcsr_write(rt2x00dev, 28, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 29, 0x10); | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 31, 0x80); | 
|  | rt2800_rfcsr_write(rt2x00dev, 32, 0x80); | 
|  | rt2800_rfcsr_write(rt2x00dev, 33, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 34, 0x07); | 
|  | rt2800_rfcsr_write(rt2x00dev, 35, 0x12); | 
|  | rt2800_rfcsr_write(rt2x00dev, 36, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 37, 0x08); | 
|  | rt2800_rfcsr_write(rt2x00dev, 38, 0x85); | 
|  | rt2800_rfcsr_write(rt2x00dev, 39, 0x1b); | 
|  |  | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) | 
|  | rt2800_rfcsr_write(rt2x00dev, 40, 0x0b); | 
|  | else | 
|  | rt2800_rfcsr_write(rt2x00dev, 40, 0x4b); | 
|  | rt2800_rfcsr_write(rt2x00dev, 41, 0xbb); | 
|  | rt2800_rfcsr_write(rt2x00dev, 42, 0xd2); | 
|  | rt2800_rfcsr_write(rt2x00dev, 43, 0x9a); | 
|  | rt2800_rfcsr_write(rt2x00dev, 44, 0x0e); | 
|  | rt2800_rfcsr_write(rt2x00dev, 45, 0xa2); | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) | 
|  | rt2800_rfcsr_write(rt2x00dev, 46, 0x73); | 
|  | else | 
|  | rt2800_rfcsr_write(rt2x00dev, 46, 0x7b); | 
|  | rt2800_rfcsr_write(rt2x00dev, 47, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 48, 0x10); | 
|  | rt2800_rfcsr_write(rt2x00dev, 49, 0x94); | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 52, 0x38); | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) | 
|  | rt2800_rfcsr_write(rt2x00dev, 53, 0x00); | 
|  | else | 
|  | rt2800_rfcsr_write(rt2x00dev, 53, 0x84); | 
|  | rt2800_rfcsr_write(rt2x00dev, 54, 0x78); | 
|  | rt2800_rfcsr_write(rt2x00dev, 55, 0x44); | 
|  | rt2800_rfcsr_write(rt2x00dev, 56, 0x22); | 
|  | rt2800_rfcsr_write(rt2x00dev, 57, 0x80); | 
|  | rt2800_rfcsr_write(rt2x00dev, 58, 0x7f); | 
|  | rt2800_rfcsr_write(rt2x00dev, 59, 0x63); | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 60, 0x45); | 
|  | if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) | 
|  | rt2800_rfcsr_write(rt2x00dev, 61, 0xd1); | 
|  | else | 
|  | rt2800_rfcsr_write(rt2x00dev, 61, 0xdd); | 
|  | rt2800_rfcsr_write(rt2x00dev, 62, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 63, 0x00); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) { | 
|  | rt2800_register_read(rt2x00dev, LDO_CFG0, ®); | 
|  | rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1); | 
|  | rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3); | 
|  | rt2800_register_write(rt2x00dev, LDO_CFG0, reg); | 
|  | } else if (rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3090)) { | 
|  | rt2800_rfcsr_write(rt2x00dev, 31, 0x14); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, LDO_CFG0, ®); | 
|  | rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1); | 
|  | if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST)) | 
|  | rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3); | 
|  | else | 
|  | rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 0); | 
|  | } | 
|  | rt2800_register_write(rt2x00dev, LDO_CFG0, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®); | 
|  | rt2x00_set_field32(®, GPIO_SWITCH_5, 0); | 
|  | rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg); | 
|  | } else if (rt2x00_rt(rt2x00dev, RT3390)) { | 
|  | rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®); | 
|  | rt2x00_set_field32(®, GPIO_SWITCH_5, 0); | 
|  | rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set RX Filter calibration for 20MHz and 40MHz | 
|  | */ | 
|  | if (rt2x00_rt(rt2x00dev, RT3070)) { | 
|  | rt2x00dev->calibration[0] = | 
|  | rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16); | 
|  | rt2x00dev->calibration[1] = | 
|  | rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19); | 
|  | } else if (rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3090) || | 
|  | rt2x00_rt(rt2x00dev, RT3390)) { | 
|  | rt2x00dev->calibration[0] = | 
|  | rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13); | 
|  | rt2x00dev->calibration[1] = | 
|  | rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15); | 
|  | } | 
|  |  | 
|  | if (!rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | /* | 
|  | * Set back to initial state | 
|  | */ | 
|  | rt2800_bbp_write(rt2x00dev, 24, 0); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); | 
|  |  | 
|  | /* | 
|  | * Set BBP back to BW20 | 
|  | */ | 
|  | rt2800_bbp_read(rt2x00dev, 4, &bbp); | 
|  | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0); | 
|  | rt2800_bbp_write(rt2x00dev, 4, bbp); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) | 
|  | rt2800_rfcsr_write(rt2x00dev, 27, 0x03); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, OPT_14_CSR, ®); | 
|  | rt2x00_set_field32(®, OPT_14_CSR_BIT0, 1); | 
|  | rt2800_register_write(rt2x00dev, OPT_14_CSR, reg); | 
|  |  | 
|  | if (!rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0); | 
|  | if (rt2x00_rt(rt2x00dev, RT3070) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || | 
|  | rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) { | 
|  | if (!test_bit(CAPABILITY_EXTERNAL_LNA_BG, | 
|  | &rt2x00dev->cap_flags)) | 
|  | rt2x00_set_field8(&rfcsr, RFCSR17_R, 1); | 
|  | } | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1) | 
|  | rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_TXMIXER_GAIN_BG_VAL)); | 
|  | rt2800_rfcsr_write(rt2x00dev, 17, rfcsr); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT3090)) { | 
|  | rt2800_bbp_read(rt2x00dev, 138, &bbp); | 
|  |  | 
|  | /*  Turn off unused DAC1 and ADC1 to reduce power consumption */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1) | 
|  | rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1) | 
|  | rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1); | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 138, bbp); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3090) || | 
|  | rt2x00_rt(rt2x00dev, RT3390)) { | 
|  | rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 1, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 15, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 20, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 21, rfcsr); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT3070)) { | 
|  | rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr); | 
|  | if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) | 
|  | rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3); | 
|  | else | 
|  | rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 27, rfcsr); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | rt2800_rfcsr_read(rt2x00dev, 38, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 38, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 39, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 39, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2); | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  | u16 word; | 
|  |  | 
|  | /* | 
|  | * Initialize all registers. | 
|  | */ | 
|  | if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) || | 
|  | rt2800_init_registers(rt2x00dev) || | 
|  | rt2800_init_bbp(rt2x00dev) || | 
|  | rt2800_init_rfcsr(rt2x00dev))) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * Send signal to firmware during boot time. | 
|  | */ | 
|  | rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0); | 
|  |  | 
|  | if (rt2x00_is_usb(rt2x00dev) && | 
|  | (rt2x00_rt(rt2x00dev, RT3070) || | 
|  | rt2x00_rt(rt2x00dev, RT3071) || | 
|  | rt2x00_rt(rt2x00dev, RT3572))) { | 
|  | udelay(200); | 
|  | rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0); | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable RX. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); | 
|  | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | 
|  |  | 
|  | udelay(50); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); | 
|  | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); | 
|  | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | 
|  |  | 
|  | /* | 
|  | * Initialize LED control | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word); | 
|  | rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff, | 
|  | word & 0xff, (word >> 8) & 0xff); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word); | 
|  | rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff, | 
|  | word & 0xff, (word >> 8) & 0xff); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word); | 
|  | rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff, | 
|  | word & 0xff, (word >> 8) & 0xff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_enable_radio); | 
|  |  | 
|  | void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | 
|  | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | 
|  |  | 
|  | /* Wait for DMA, ignore error */ | 
|  | rt2800_wait_wpdma_ready(rt2x00dev); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 0); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); | 
|  | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_disable_radio); | 
|  |  | 
|  | int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, EFUSE_CTRL, ®); | 
|  |  | 
|  | return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_efuse_detect); | 
|  |  | 
|  | static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, ®); | 
|  | rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i); | 
|  | rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0); | 
|  | rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1); | 
|  | rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg); | 
|  |  | 
|  | /* Wait until the EEPROM has been loaded */ | 
|  | rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, ®); | 
|  |  | 
|  | /* Apparently the data is read from end to start */ | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3, ®); | 
|  | /* The returned value is in CPU order, but eeprom is le */ | 
|  | rt2x00dev->eeprom[i] = cpu_to_le32(reg); | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2, ®); | 
|  | *(u32 *)&rt2x00dev->eeprom[i + 2] = cpu_to_le32(reg); | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1, ®); | 
|  | *(u32 *)&rt2x00dev->eeprom[i + 4] = cpu_to_le32(reg); | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0, ®); | 
|  | *(u32 *)&rt2x00dev->eeprom[i + 6] = cpu_to_le32(reg); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8) | 
|  | rt2800_efuse_read(rt2x00dev, i); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse); | 
|  |  | 
|  | int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u16 word; | 
|  | u8 *mac; | 
|  | u8 default_lna_gain; | 
|  |  | 
|  | /* | 
|  | * Start validation of the data that has been read. | 
|  | */ | 
|  | mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); | 
|  | if (!is_valid_ether_addr(mac)) { | 
|  | random_ether_addr(mac); | 
|  | EEPROM(rt2x00dev, "MAC: %pM\n", mac); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word); | 
|  | EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); | 
|  | } else if (rt2x00_rt(rt2x00dev, RT2860) || | 
|  | rt2x00_rt(rt2x00dev, RT2872)) { | 
|  | /* | 
|  | * There is a max of 2 RX streams for RT28x0 series | 
|  | */ | 
|  | if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2) | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word); | 
|  | EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); | 
|  | if ((word & 0x00ff) == 0x00ff) { | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); | 
|  | EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); | 
|  | } | 
|  | if ((word & 0xff00) == 0xff00) { | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE, | 
|  | LED_MODE_TXRX_ACTIVITY); | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8); | 
|  | EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During the LNA validation we are going to use | 
|  | * lna0 as correct value. Note that EEPROM_LNA | 
|  | * is never validated. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word); | 
|  | default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0); | 
|  | if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 || | 
|  | rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1, | 
|  | default_lna_gain); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0); | 
|  | if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 || | 
|  | rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2, | 
|  | default_lna_gain); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_validate_eeprom); | 
|  |  | 
|  | int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  | u16 value; | 
|  | u16 eeprom; | 
|  |  | 
|  | /* | 
|  | * Read EEPROM word for configuration. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom); | 
|  |  | 
|  | /* | 
|  | * Identify RF chipset by EEPROM value | 
|  | * RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field | 
|  | * RT53xx: defined in "EEPROM_CHIP_ID" field | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  | if (rt2x00_get_field32(reg, MAC_CSR0_CHIPSET) == RT5390) | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_CHIP_ID, &value); | 
|  | else | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE); | 
|  |  | 
|  | rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), | 
|  | value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); | 
|  |  | 
|  | if (!rt2x00_rt(rt2x00dev, RT2860) && | 
|  | !rt2x00_rt(rt2x00dev, RT2872) && | 
|  | !rt2x00_rt(rt2x00dev, RT2883) && | 
|  | !rt2x00_rt(rt2x00dev, RT3070) && | 
|  | !rt2x00_rt(rt2x00dev, RT3071) && | 
|  | !rt2x00_rt(rt2x00dev, RT3090) && | 
|  | !rt2x00_rt(rt2x00dev, RT3390) && | 
|  | !rt2x00_rt(rt2x00dev, RT3572) && | 
|  | !rt2x00_rt(rt2x00dev, RT5390)) { | 
|  | ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | switch (rt2x00dev->chip.rf) { | 
|  | case RF2820: | 
|  | case RF2850: | 
|  | case RF2720: | 
|  | case RF2750: | 
|  | case RF3020: | 
|  | case RF2020: | 
|  | case RF3021: | 
|  | case RF3022: | 
|  | case RF3052: | 
|  | case RF3320: | 
|  | case RF5370: | 
|  | case RF5390: | 
|  | break; | 
|  | default: | 
|  | ERROR(rt2x00dev, "Invalid RF chipset 0x%x detected.\n", | 
|  | rt2x00dev->chip.rf); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify default antenna configuration. | 
|  | */ | 
|  | rt2x00dev->default_ant.tx_chain_num = | 
|  | rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH); | 
|  | rt2x00dev->default_ant.rx_chain_num = | 
|  | rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom); | 
|  |  | 
|  | if (rt2x00_rt(rt2x00dev, RT3070) || | 
|  | rt2x00_rt(rt2x00dev, RT3090) || | 
|  | rt2x00_rt(rt2x00dev, RT3390)) { | 
|  | value = rt2x00_get_field16(eeprom, | 
|  | EEPROM_NIC_CONF1_ANT_DIVERSITY); | 
|  | switch (value) { | 
|  | case 0: | 
|  | case 1: | 
|  | case 2: | 
|  | rt2x00dev->default_ant.tx = ANTENNA_A; | 
|  | rt2x00dev->default_ant.rx = ANTENNA_A; | 
|  | break; | 
|  | case 3: | 
|  | rt2x00dev->default_ant.tx = ANTENNA_A; | 
|  | rt2x00dev->default_ant.rx = ANTENNA_B; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | rt2x00dev->default_ant.tx = ANTENNA_A; | 
|  | rt2x00dev->default_ant.rx = ANTENNA_A; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine external LNA informations. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G)) | 
|  | __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G)) | 
|  | __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Detect if this device has an hardware controlled radio. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO)) | 
|  | __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Detect if this device has Bluetooth co-existence. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST)) | 
|  | __set_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Read frequency offset and RF programming sequence. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); | 
|  | rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); | 
|  |  | 
|  | /* | 
|  | * Store led settings, for correct led behaviour. | 
|  | */ | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); | 
|  | rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); | 
|  | rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); | 
|  |  | 
|  | rt2x00dev->led_mcu_reg = eeprom; | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Check if support EIRP tx power limit feature. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER, &eeprom); | 
|  |  | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) < | 
|  | EIRP_MAX_TX_POWER_LIMIT) | 
|  | __set_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_init_eeprom); | 
|  |  | 
|  | /* | 
|  | * RF value list for rt28xx | 
|  | * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750) | 
|  | */ | 
|  | static const struct rf_channel rf_vals[] = { | 
|  | { 1,  0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b }, | 
|  | { 2,  0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f }, | 
|  | { 3,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b }, | 
|  | { 4,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f }, | 
|  | { 5,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b }, | 
|  | { 6,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f }, | 
|  | { 7,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b }, | 
|  | { 8,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f }, | 
|  | { 9,  0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b }, | 
|  | { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f }, | 
|  | { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b }, | 
|  | { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f }, | 
|  | { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b }, | 
|  | { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 }, | 
|  | { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 }, | 
|  | { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 }, | 
|  | { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 }, | 
|  | { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b }, | 
|  | { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b }, | 
|  | { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 }, | 
|  | { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 }, | 
|  | { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b }, | 
|  | { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 }, | 
|  | { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 }, | 
|  | { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 }, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 }, | 
|  | { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 }, | 
|  | { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 }, | 
|  | { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 }, | 
|  | { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 }, | 
|  | { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b }, | 
|  | { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 }, | 
|  | { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 }, | 
|  | { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 }, | 
|  | { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 }, | 
|  | { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b }, | 
|  | { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 }, | 
|  | { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b }, | 
|  | { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 }, | 
|  | { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b }, | 
|  | { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 }, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 }, | 
|  | { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 }, | 
|  | { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f }, | 
|  | { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f }, | 
|  | { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 }, | 
|  | { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 }, | 
|  | { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 }, | 
|  | { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f }, | 
|  | { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 }, | 
|  | { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 }, | 
|  | { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f }, | 
|  |  | 
|  | /* 802.11 Japan */ | 
|  | { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b }, | 
|  | { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 }, | 
|  | { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b }, | 
|  | { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 }, | 
|  | { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 }, | 
|  | { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b }, | 
|  | { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for rt3xxx | 
|  | * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052) | 
|  | */ | 
|  | static const struct rf_channel rf_vals_3x[] = { | 
|  | {1,  241, 2, 2 }, | 
|  | {2,  241, 2, 7 }, | 
|  | {3,  242, 2, 2 }, | 
|  | {4,  242, 2, 7 }, | 
|  | {5,  243, 2, 2 }, | 
|  | {6,  243, 2, 7 }, | 
|  | {7,  244, 2, 2 }, | 
|  | {8,  244, 2, 7 }, | 
|  | {9,  245, 2, 2 }, | 
|  | {10, 245, 2, 7 }, | 
|  | {11, 246, 2, 2 }, | 
|  | {12, 246, 2, 7 }, | 
|  | {13, 247, 2, 2 }, | 
|  | {14, 248, 2, 4 }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | {36, 0x56, 0, 4}, | 
|  | {38, 0x56, 0, 6}, | 
|  | {40, 0x56, 0, 8}, | 
|  | {44, 0x57, 0, 0}, | 
|  | {46, 0x57, 0, 2}, | 
|  | {48, 0x57, 0, 4}, | 
|  | {52, 0x57, 0, 8}, | 
|  | {54, 0x57, 0, 10}, | 
|  | {56, 0x58, 0, 0}, | 
|  | {60, 0x58, 0, 4}, | 
|  | {62, 0x58, 0, 6}, | 
|  | {64, 0x58, 0, 8}, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | {100, 0x5b, 0, 8}, | 
|  | {102, 0x5b, 0, 10}, | 
|  | {104, 0x5c, 0, 0}, | 
|  | {108, 0x5c, 0, 4}, | 
|  | {110, 0x5c, 0, 6}, | 
|  | {112, 0x5c, 0, 8}, | 
|  | {116, 0x5d, 0, 0}, | 
|  | {118, 0x5d, 0, 2}, | 
|  | {120, 0x5d, 0, 4}, | 
|  | {124, 0x5d, 0, 8}, | 
|  | {126, 0x5d, 0, 10}, | 
|  | {128, 0x5e, 0, 0}, | 
|  | {132, 0x5e, 0, 4}, | 
|  | {134, 0x5e, 0, 6}, | 
|  | {136, 0x5e, 0, 8}, | 
|  | {140, 0x5f, 0, 0}, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | {149, 0x5f, 0, 9}, | 
|  | {151, 0x5f, 0, 11}, | 
|  | {153, 0x60, 0, 1}, | 
|  | {157, 0x60, 0, 5}, | 
|  | {159, 0x60, 0, 7}, | 
|  | {161, 0x60, 0, 9}, | 
|  | {165, 0x61, 0, 1}, | 
|  | {167, 0x61, 0, 3}, | 
|  | {169, 0x61, 0, 5}, | 
|  | {171, 0x61, 0, 7}, | 
|  | {173, 0x61, 0, 9}, | 
|  | }; | 
|  |  | 
|  | int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct hw_mode_spec *spec = &rt2x00dev->spec; | 
|  | struct channel_info *info; | 
|  | char *default_power1; | 
|  | char *default_power2; | 
|  | unsigned int i; | 
|  | u16 eeprom; | 
|  |  | 
|  | /* | 
|  | * Disable powersaving as default on PCI devices. | 
|  | */ | 
|  | if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev)) | 
|  | rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; | 
|  |  | 
|  | /* | 
|  | * Initialize all hw fields. | 
|  | */ | 
|  | rt2x00dev->hw->flags = | 
|  | IEEE80211_HW_SIGNAL_DBM | | 
|  | IEEE80211_HW_SUPPORTS_PS | | 
|  | IEEE80211_HW_PS_NULLFUNC_STACK | | 
|  | IEEE80211_HW_AMPDU_AGGREGATION; | 
|  | /* | 
|  | * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices | 
|  | * unless we are capable of sending the buffered frames out after the | 
|  | * DTIM transmission using rt2x00lib_beacondone. This will send out | 
|  | * multicast and broadcast traffic immediately instead of buffering it | 
|  | * infinitly and thus dropping it after some time. | 
|  | */ | 
|  | if (!rt2x00_is_usb(rt2x00dev)) | 
|  | rt2x00dev->hw->flags |= | 
|  | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING; | 
|  |  | 
|  | SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); | 
|  | SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, | 
|  | rt2x00_eeprom_addr(rt2x00dev, | 
|  | EEPROM_MAC_ADDR_0)); | 
|  |  | 
|  | /* | 
|  | * As rt2800 has a global fallback table we cannot specify | 
|  | * more then one tx rate per frame but since the hw will | 
|  | * try several rates (based on the fallback table) we should | 
|  | * initialize max_report_rates to the maximum number of rates | 
|  | * we are going to try. Otherwise mac80211 will truncate our | 
|  | * reported tx rates and the rc algortihm will end up with | 
|  | * incorrect data. | 
|  | */ | 
|  | rt2x00dev->hw->max_rates = 1; | 
|  | rt2x00dev->hw->max_report_rates = 7; | 
|  | rt2x00dev->hw->max_rate_tries = 1; | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom); | 
|  |  | 
|  | /* | 
|  | * Initialize hw_mode information. | 
|  | */ | 
|  | spec->supported_bands = SUPPORT_BAND_2GHZ; | 
|  | spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; | 
|  |  | 
|  | if (rt2x00_rf(rt2x00dev, RF2820) || | 
|  | rt2x00_rf(rt2x00dev, RF2720)) { | 
|  | spec->num_channels = 14; | 
|  | spec->channels = rf_vals; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF2850) || | 
|  | rt2x00_rf(rt2x00dev, RF2750)) { | 
|  | spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals); | 
|  | spec->channels = rf_vals; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF3020) || | 
|  | rt2x00_rf(rt2x00dev, RF2020) || | 
|  | rt2x00_rf(rt2x00dev, RF3021) || | 
|  | rt2x00_rf(rt2x00dev, RF3022) || | 
|  | rt2x00_rf(rt2x00dev, RF3320) || | 
|  | rt2x00_rf(rt2x00dev, RF5370) || | 
|  | rt2x00_rf(rt2x00dev, RF5390)) { | 
|  | spec->num_channels = 14; | 
|  | spec->channels = rf_vals_3x; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF3052)) { | 
|  | spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_3x); | 
|  | spec->channels = rf_vals_3x; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize HT information. | 
|  | */ | 
|  | if (!rt2x00_rf(rt2x00dev, RF2020)) | 
|  | spec->ht.ht_supported = true; | 
|  | else | 
|  | spec->ht.ht_supported = false; | 
|  |  | 
|  | spec->ht.cap = | 
|  | IEEE80211_HT_CAP_SUP_WIDTH_20_40 | | 
|  | IEEE80211_HT_CAP_GRN_FLD | | 
|  | IEEE80211_HT_CAP_SGI_20 | | 
|  | IEEE80211_HT_CAP_SGI_40; | 
|  |  | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) >= 2) | 
|  | spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC; | 
|  |  | 
|  | spec->ht.cap |= | 
|  | rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) << | 
|  | IEEE80211_HT_CAP_RX_STBC_SHIFT; | 
|  |  | 
|  | spec->ht.ampdu_factor = 3; | 
|  | spec->ht.ampdu_density = 4; | 
|  | spec->ht.mcs.tx_params = | 
|  | IEEE80211_HT_MCS_TX_DEFINED | | 
|  | IEEE80211_HT_MCS_TX_RX_DIFF | | 
|  | ((rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) - 1) << | 
|  | IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); | 
|  |  | 
|  | switch (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH)) { | 
|  | case 3: | 
|  | spec->ht.mcs.rx_mask[2] = 0xff; | 
|  | case 2: | 
|  | spec->ht.mcs.rx_mask[1] = 0xff; | 
|  | case 1: | 
|  | spec->ht.mcs.rx_mask[0] = 0xff; | 
|  | spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create channel information array | 
|  | */ | 
|  | info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spec->channels_info = info; | 
|  |  | 
|  | default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1); | 
|  | default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2); | 
|  |  | 
|  | for (i = 0; i < 14; i++) { | 
|  | info[i].default_power1 = default_power1[i]; | 
|  | info[i].default_power2 = default_power2[i]; | 
|  | } | 
|  |  | 
|  | if (spec->num_channels > 14) { | 
|  | default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1); | 
|  | default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2); | 
|  |  | 
|  | for (i = 14; i < spec->num_channels; i++) { | 
|  | info[i].default_power1 = default_power1[i]; | 
|  | info[i].default_power2 = default_power2[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode); | 
|  |  | 
|  | /* | 
|  | * IEEE80211 stack callback functions. | 
|  | */ | 
|  | void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32, | 
|  | u16 *iv16) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | struct mac_iveiv_entry iveiv_entry; | 
|  | u32 offset; | 
|  |  | 
|  | offset = MAC_IVEIV_ENTRY(hw_key_idx); | 
|  | rt2800_register_multiread(rt2x00dev, offset, | 
|  | &iveiv_entry, sizeof(iveiv_entry)); | 
|  |  | 
|  | memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16)); | 
|  | memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq); | 
|  |  | 
|  | int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | u32 reg; | 
|  | bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, value); | 
|  | rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold); | 
|  |  | 
|  | int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx, | 
|  | const struct ieee80211_tx_queue_params *params) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | struct data_queue *queue; | 
|  | struct rt2x00_field32 field; | 
|  | int retval; | 
|  | u32 reg; | 
|  | u32 offset; | 
|  |  | 
|  | /* | 
|  | * First pass the configuration through rt2x00lib, that will | 
|  | * update the queue settings and validate the input. After that | 
|  | * we are free to update the registers based on the value | 
|  | * in the queue parameter. | 
|  | */ | 
|  | retval = rt2x00mac_conf_tx(hw, queue_idx, params); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * We only need to perform additional register initialization | 
|  | * for WMM queues/ | 
|  | */ | 
|  | if (queue_idx >= 4) | 
|  | return 0; | 
|  |  | 
|  | queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); | 
|  |  | 
|  | /* Update WMM TXOP register */ | 
|  | offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2))); | 
|  | field.bit_offset = (queue_idx & 1) * 16; | 
|  | field.bit_mask = 0xffff << field.bit_offset; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, field, queue->txop); | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | /* Update WMM registers */ | 
|  | field.bit_offset = queue_idx * 4; | 
|  | field.bit_mask = 0xf << field.bit_offset; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, ®); | 
|  | rt2x00_set_field32(®, field, queue->aifs); | 
|  | rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, ®); | 
|  | rt2x00_set_field32(®, field, queue->cw_min); | 
|  | rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, ®); | 
|  | rt2x00_set_field32(®, field, queue->cw_max); | 
|  | rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg); | 
|  |  | 
|  | /* Update EDCA registers */ | 
|  | offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, EDCA_AC0_CFG_TX_OP, queue->txop); | 
|  | rt2x00_set_field32(®, EDCA_AC0_CFG_AIFSN, queue->aifs); | 
|  | rt2x00_set_field32(®, EDCA_AC0_CFG_CWMIN, queue->cw_min); | 
|  | rt2x00_set_field32(®, EDCA_AC0_CFG_CWMAX, queue->cw_max); | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_conf_tx); | 
|  |  | 
|  | u64 rt2800_get_tsf(struct ieee80211_hw *hw) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | u64 tsf; | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, ®); | 
|  | tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32; | 
|  | rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, ®); | 
|  | tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD); | 
|  |  | 
|  | return tsf; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_get_tsf); | 
|  |  | 
|  | int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, | 
|  | enum ieee80211_ampdu_mlme_action action, | 
|  | struct ieee80211_sta *sta, u16 tid, u16 *ssn, | 
|  | u8 buf_size) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | switch (action) { | 
|  | case IEEE80211_AMPDU_RX_START: | 
|  | case IEEE80211_AMPDU_RX_STOP: | 
|  | /* | 
|  | * The hw itself takes care of setting up BlockAck mechanisms. | 
|  | * So, we only have to allow mac80211 to nagotiate a BlockAck | 
|  | * agreement. Once that is done, the hw will BlockAck incoming | 
|  | * AMPDUs without further setup. | 
|  | */ | 
|  | break; | 
|  | case IEEE80211_AMPDU_TX_START: | 
|  | ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); | 
|  | break; | 
|  | case IEEE80211_AMPDU_TX_STOP: | 
|  | ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); | 
|  | break; | 
|  | case IEEE80211_AMPDU_TX_OPERATIONAL: | 
|  | break; | 
|  | default: | 
|  | WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n"); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_ampdu_action); | 
|  |  | 
|  | int rt2800_get_survey(struct ieee80211_hw *hw, int idx, | 
|  | struct survey_info *survey) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | struct ieee80211_conf *conf = &hw->conf; | 
|  | u32 idle, busy, busy_ext; | 
|  |  | 
|  | if (idx != 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | survey->channel = conf->channel; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle); | 
|  | rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy); | 
|  | rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext); | 
|  |  | 
|  | if (idle || busy) { | 
|  | survey->filled = SURVEY_INFO_CHANNEL_TIME | | 
|  | SURVEY_INFO_CHANNEL_TIME_BUSY | | 
|  | SURVEY_INFO_CHANNEL_TIME_EXT_BUSY; | 
|  |  | 
|  | survey->channel_time = (idle + busy) / 1000; | 
|  | survey->channel_time_busy = busy / 1000; | 
|  | survey->channel_time_ext_busy = busy_ext / 1000; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_get_survey); | 
|  |  | 
|  | MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_DESCRIPTION("Ralink RT2800 library"); | 
|  | MODULE_LICENSE("GPL"); |