|  | /* | 
|  | Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> | 
|  | Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> | 
|  | Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt2x00lib | 
|  | Abstract: rt2x00 queue specific routines. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/dma-mapping.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #include "rt2x00lib.h" | 
|  |  | 
|  | struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct sk_buff *skb; | 
|  | struct skb_frame_desc *skbdesc; | 
|  | unsigned int frame_size; | 
|  | unsigned int head_size = 0; | 
|  | unsigned int tail_size = 0; | 
|  |  | 
|  | /* | 
|  | * The frame size includes descriptor size, because the | 
|  | * hardware directly receive the frame into the skbuffer. | 
|  | */ | 
|  | frame_size = entry->queue->data_size + entry->queue->desc_size; | 
|  |  | 
|  | /* | 
|  | * The payload should be aligned to a 4-byte boundary, | 
|  | * this means we need at least 3 bytes for moving the frame | 
|  | * into the correct offset. | 
|  | */ | 
|  | head_size = 4; | 
|  |  | 
|  | /* | 
|  | * For IV/EIV/ICV assembly we must make sure there is | 
|  | * at least 8 bytes bytes available in headroom for IV/EIV | 
|  | * and 8 bytes for ICV data as tailroon. | 
|  | */ | 
|  | if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) { | 
|  | head_size += 8; | 
|  | tail_size += 8; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate skbuffer. | 
|  | */ | 
|  | skb = dev_alloc_skb(frame_size + head_size + tail_size); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Make sure we not have a frame with the requested bytes | 
|  | * available in the head and tail. | 
|  | */ | 
|  | skb_reserve(skb, head_size); | 
|  | skb_put(skb, frame_size); | 
|  |  | 
|  | /* | 
|  | * Populate skbdesc. | 
|  | */ | 
|  | skbdesc = get_skb_frame_desc(skb); | 
|  | memset(skbdesc, 0, sizeof(*skbdesc)); | 
|  | skbdesc->entry = entry; | 
|  |  | 
|  | if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) { | 
|  | skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, | 
|  | skb->data, | 
|  | skb->len, | 
|  | DMA_FROM_DEVICE); | 
|  | skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; | 
|  | } | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | void rt2x00queue_map_txskb(struct queue_entry *entry) | 
|  | { | 
|  | struct device *dev = entry->queue->rt2x00dev->dev; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  |  | 
|  | skbdesc->skb_dma = | 
|  | dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE); | 
|  | skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); | 
|  |  | 
|  | void rt2x00queue_unmap_skb(struct queue_entry *entry) | 
|  | { | 
|  | struct device *dev = entry->queue->rt2x00dev->dev; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  |  | 
|  | if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { | 
|  | dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, | 
|  | DMA_FROM_DEVICE); | 
|  | skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; | 
|  | } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { | 
|  | dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, | 
|  | DMA_TO_DEVICE); | 
|  | skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb); | 
|  |  | 
|  | void rt2x00queue_free_skb(struct queue_entry *entry) | 
|  | { | 
|  | if (!entry->skb) | 
|  | return; | 
|  |  | 
|  | rt2x00queue_unmap_skb(entry); | 
|  | dev_kfree_skb_any(entry->skb); | 
|  | entry->skb = NULL; | 
|  | } | 
|  |  | 
|  | void rt2x00queue_align_frame(struct sk_buff *skb) | 
|  | { | 
|  | unsigned int frame_length = skb->len; | 
|  | unsigned int align = ALIGN_SIZE(skb, 0); | 
|  |  | 
|  | if (!align) | 
|  | return; | 
|  |  | 
|  | skb_push(skb, align); | 
|  | memmove(skb->data, skb->data + align, frame_length); | 
|  | skb_trim(skb, frame_length); | 
|  | } | 
|  |  | 
|  | void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length) | 
|  | { | 
|  | unsigned int payload_length = skb->len - header_length; | 
|  | unsigned int header_align = ALIGN_SIZE(skb, 0); | 
|  | unsigned int payload_align = ALIGN_SIZE(skb, header_length); | 
|  | unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0; | 
|  |  | 
|  | /* | 
|  | * Adjust the header alignment if the payload needs to be moved more | 
|  | * than the header. | 
|  | */ | 
|  | if (payload_align > header_align) | 
|  | header_align += 4; | 
|  |  | 
|  | /* There is nothing to do if no alignment is needed */ | 
|  | if (!header_align) | 
|  | return; | 
|  |  | 
|  | /* Reserve the amount of space needed in front of the frame */ | 
|  | skb_push(skb, header_align); | 
|  |  | 
|  | /* | 
|  | * Move the header. | 
|  | */ | 
|  | memmove(skb->data, skb->data + header_align, header_length); | 
|  |  | 
|  | /* Move the payload, if present and if required */ | 
|  | if (payload_length && payload_align) | 
|  | memmove(skb->data + header_length + l2pad, | 
|  | skb->data + header_length + l2pad + payload_align, | 
|  | payload_length); | 
|  |  | 
|  | /* Trim the skb to the correct size */ | 
|  | skb_trim(skb, header_length + l2pad + payload_length); | 
|  | } | 
|  |  | 
|  | void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length) | 
|  | { | 
|  | /* | 
|  | * L2 padding is only present if the skb contains more than just the | 
|  | * IEEE 802.11 header. | 
|  | */ | 
|  | unsigned int l2pad = (skb->len > header_length) ? | 
|  | L2PAD_SIZE(header_length) : 0; | 
|  |  | 
|  | if (!l2pad) | 
|  | return; | 
|  |  | 
|  | memmove(skb->data + l2pad, skb->data, header_length); | 
|  | skb_pull(skb, l2pad); | 
|  | } | 
|  |  | 
|  | static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data; | 
|  | struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif); | 
|  | unsigned long irqflags; | 
|  |  | 
|  | if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) | 
|  | return; | 
|  |  | 
|  | __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); | 
|  |  | 
|  | if (!test_bit(REQUIRE_SW_SEQNO, &entry->queue->rt2x00dev->cap_flags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The hardware is not able to insert a sequence number. Assign a | 
|  | * software generated one here. | 
|  | * | 
|  | * This is wrong because beacons are not getting sequence | 
|  | * numbers assigned properly. | 
|  | * | 
|  | * A secondary problem exists for drivers that cannot toggle | 
|  | * sequence counting per-frame, since those will override the | 
|  | * sequence counter given by mac80211. | 
|  | */ | 
|  | spin_lock_irqsave(&intf->seqlock, irqflags); | 
|  |  | 
|  | if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) | 
|  | intf->seqno += 0x10; | 
|  | hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); | 
|  | hdr->seq_ctrl |= cpu_to_le16(intf->seqno); | 
|  |  | 
|  | spin_unlock_irqrestore(&intf->seqlock, irqflags); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc, | 
|  | const struct rt2x00_rate *hwrate) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); | 
|  | struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; | 
|  | unsigned int data_length; | 
|  | unsigned int duration; | 
|  | unsigned int residual; | 
|  |  | 
|  | /* | 
|  | * Determine with what IFS priority this frame should be send. | 
|  | * Set ifs to IFS_SIFS when the this is not the first fragment, | 
|  | * or this fragment came after RTS/CTS. | 
|  | */ | 
|  | if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) | 
|  | txdesc->u.plcp.ifs = IFS_BACKOFF; | 
|  | else | 
|  | txdesc->u.plcp.ifs = IFS_SIFS; | 
|  |  | 
|  | /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */ | 
|  | data_length = entry->skb->len + 4; | 
|  | data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb); | 
|  |  | 
|  | /* | 
|  | * PLCP setup | 
|  | * Length calculation depends on OFDM/CCK rate. | 
|  | */ | 
|  | txdesc->u.plcp.signal = hwrate->plcp; | 
|  | txdesc->u.plcp.service = 0x04; | 
|  |  | 
|  | if (hwrate->flags & DEV_RATE_OFDM) { | 
|  | txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f; | 
|  | txdesc->u.plcp.length_low = data_length & 0x3f; | 
|  | } else { | 
|  | /* | 
|  | * Convert length to microseconds. | 
|  | */ | 
|  | residual = GET_DURATION_RES(data_length, hwrate->bitrate); | 
|  | duration = GET_DURATION(data_length, hwrate->bitrate); | 
|  |  | 
|  | if (residual != 0) { | 
|  | duration++; | 
|  |  | 
|  | /* | 
|  | * Check if we need to set the Length Extension | 
|  | */ | 
|  | if (hwrate->bitrate == 110 && residual <= 30) | 
|  | txdesc->u.plcp.service |= 0x80; | 
|  | } | 
|  |  | 
|  | txdesc->u.plcp.length_high = (duration >> 8) & 0xff; | 
|  | txdesc->u.plcp.length_low = duration & 0xff; | 
|  |  | 
|  | /* | 
|  | * When preamble is enabled we should set the | 
|  | * preamble bit for the signal. | 
|  | */ | 
|  | if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) | 
|  | txdesc->u.plcp.signal |= 0x08; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2x00queue_create_tx_descriptor_ht(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc, | 
|  | const struct rt2x00_rate *hwrate) | 
|  | { | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); | 
|  | struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data; | 
|  |  | 
|  | if (tx_info->control.sta) | 
|  | txdesc->u.ht.mpdu_density = | 
|  | tx_info->control.sta->ht_cap.ampdu_density; | 
|  |  | 
|  | txdesc->u.ht.ba_size = 7;	/* FIXME: What value is needed? */ | 
|  |  | 
|  | /* | 
|  | * Only one STBC stream is supported for now. | 
|  | */ | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_STBC) | 
|  | txdesc->u.ht.stbc = 1; | 
|  |  | 
|  | /* | 
|  | * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the | 
|  | * mcs rate to be used | 
|  | */ | 
|  | if (txrate->flags & IEEE80211_TX_RC_MCS) { | 
|  | txdesc->u.ht.mcs = txrate->idx; | 
|  |  | 
|  | /* | 
|  | * MIMO PS should be set to 1 for STA's using dynamic SM PS | 
|  | * when using more then one tx stream (>MCS7). | 
|  | */ | 
|  | if (tx_info->control.sta && txdesc->u.ht.mcs > 7 && | 
|  | ((tx_info->control.sta->ht_cap.cap & | 
|  | IEEE80211_HT_CAP_SM_PS) >> | 
|  | IEEE80211_HT_CAP_SM_PS_SHIFT) == | 
|  | WLAN_HT_CAP_SM_PS_DYNAMIC) | 
|  | __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags); | 
|  | } else { | 
|  | txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs); | 
|  | if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) | 
|  | txdesc->u.ht.mcs |= 0x08; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This frame is eligible for an AMPDU, however, don't aggregate | 
|  | * frames that are intended to probe a specific tx rate. | 
|  | */ | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_AMPDU && | 
|  | !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) | 
|  | __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags); | 
|  |  | 
|  | /* | 
|  | * Set 40Mhz mode if necessary (for legacy rates this will | 
|  | * duplicate the frame to both channels). | 
|  | */ | 
|  | if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH || | 
|  | txrate->flags & IEEE80211_TX_RC_DUP_DATA) | 
|  | __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags); | 
|  | if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) | 
|  | __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags); | 
|  |  | 
|  | /* | 
|  | * Determine IFS values | 
|  | * - Use TXOP_BACKOFF for management frames except beacons | 
|  | * - Use TXOP_SIFS for fragment bursts | 
|  | * - Use TXOP_HTTXOP for everything else | 
|  | * | 
|  | * Note: rt2800 devices won't use CTS protection (if used) | 
|  | * for frames not transmitted with TXOP_HTTXOP | 
|  | */ | 
|  | if (ieee80211_is_mgmt(hdr->frame_control) && | 
|  | !ieee80211_is_beacon(hdr->frame_control)) | 
|  | txdesc->u.ht.txop = TXOP_BACKOFF; | 
|  | else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) | 
|  | txdesc->u.ht.txop = TXOP_SIFS; | 
|  | else | 
|  | txdesc->u.ht.txop = TXOP_HTTXOP; | 
|  | } | 
|  |  | 
|  | static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); | 
|  | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data; | 
|  | struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; | 
|  | struct ieee80211_rate *rate; | 
|  | const struct rt2x00_rate *hwrate = NULL; | 
|  |  | 
|  | memset(txdesc, 0, sizeof(*txdesc)); | 
|  |  | 
|  | /* | 
|  | * Header and frame information. | 
|  | */ | 
|  | txdesc->length = entry->skb->len; | 
|  | txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb); | 
|  |  | 
|  | /* | 
|  | * Check whether this frame is to be acked. | 
|  | */ | 
|  | if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) | 
|  | __set_bit(ENTRY_TXD_ACK, &txdesc->flags); | 
|  |  | 
|  | /* | 
|  | * Check if this is a RTS/CTS frame | 
|  | */ | 
|  | if (ieee80211_is_rts(hdr->frame_control) || | 
|  | ieee80211_is_cts(hdr->frame_control)) { | 
|  | __set_bit(ENTRY_TXD_BURST, &txdesc->flags); | 
|  | if (ieee80211_is_rts(hdr->frame_control)) | 
|  | __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); | 
|  | else | 
|  | __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); | 
|  | if (tx_info->control.rts_cts_rate_idx >= 0) | 
|  | rate = | 
|  | ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine retry information. | 
|  | */ | 
|  | txdesc->retry_limit = tx_info->control.rates[0].count - 1; | 
|  | if (txdesc->retry_limit >= rt2x00dev->long_retry) | 
|  | __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); | 
|  |  | 
|  | /* | 
|  | * Check if more fragments are pending | 
|  | */ | 
|  | if (ieee80211_has_morefrags(hdr->frame_control)) { | 
|  | __set_bit(ENTRY_TXD_BURST, &txdesc->flags); | 
|  | __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if more frames (!= fragments) are pending | 
|  | */ | 
|  | if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES) | 
|  | __set_bit(ENTRY_TXD_BURST, &txdesc->flags); | 
|  |  | 
|  | /* | 
|  | * Beacons and probe responses require the tsf timestamp | 
|  | * to be inserted into the frame. | 
|  | */ | 
|  | if (ieee80211_is_beacon(hdr->frame_control) || | 
|  | ieee80211_is_probe_resp(hdr->frame_control)) | 
|  | __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); | 
|  |  | 
|  | if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) && | 
|  | !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) | 
|  | __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); | 
|  |  | 
|  | /* | 
|  | * Determine rate modulation. | 
|  | */ | 
|  | if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) | 
|  | txdesc->rate_mode = RATE_MODE_HT_GREENFIELD; | 
|  | else if (txrate->flags & IEEE80211_TX_RC_MCS) | 
|  | txdesc->rate_mode = RATE_MODE_HT_MIX; | 
|  | else { | 
|  | rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); | 
|  | hwrate = rt2x00_get_rate(rate->hw_value); | 
|  | if (hwrate->flags & DEV_RATE_OFDM) | 
|  | txdesc->rate_mode = RATE_MODE_OFDM; | 
|  | else | 
|  | txdesc->rate_mode = RATE_MODE_CCK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Apply TX descriptor handling by components | 
|  | */ | 
|  | rt2x00crypto_create_tx_descriptor(entry, txdesc); | 
|  | rt2x00queue_create_tx_descriptor_seq(entry, txdesc); | 
|  |  | 
|  | if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags)) | 
|  | rt2x00queue_create_tx_descriptor_ht(entry, txdesc, hwrate); | 
|  | else | 
|  | rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate); | 
|  | } | 
|  |  | 
|  | static int rt2x00queue_write_tx_data(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  |  | 
|  | /* | 
|  | * This should not happen, we already checked the entry | 
|  | * was ours. When the hardware disagrees there has been | 
|  | * a queue corruption! | 
|  | */ | 
|  | if (unlikely(rt2x00dev->ops->lib->get_entry_state && | 
|  | rt2x00dev->ops->lib->get_entry_state(entry))) { | 
|  | ERROR(rt2x00dev, | 
|  | "Corrupt queue %d, accessing entry which is not ours.\n" | 
|  | "Please file bug report to %s.\n", | 
|  | entry->queue->qid, DRV_PROJECT); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add the requested extra tx headroom in front of the skb. | 
|  | */ | 
|  | skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom); | 
|  | memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom); | 
|  |  | 
|  | /* | 
|  | * Call the driver's write_tx_data function, if it exists. | 
|  | */ | 
|  | if (rt2x00dev->ops->lib->write_tx_data) | 
|  | rt2x00dev->ops->lib->write_tx_data(entry, txdesc); | 
|  |  | 
|  | /* | 
|  | * Map the skb to DMA. | 
|  | */ | 
|  | if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) | 
|  | rt2x00queue_map_txskb(entry); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct data_queue *queue = entry->queue; | 
|  |  | 
|  | queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc); | 
|  |  | 
|  | /* | 
|  | * All processing on the frame has been completed, this means | 
|  | * it is now ready to be dumped to userspace through debugfs. | 
|  | */ | 
|  | rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb); | 
|  | } | 
|  |  | 
|  | static void rt2x00queue_kick_tx_queue(struct data_queue *queue, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | /* | 
|  | * Check if we need to kick the queue, there are however a few rules | 
|  | *	1) Don't kick unless this is the last in frame in a burst. | 
|  | *	   When the burst flag is set, this frame is always followed | 
|  | *	   by another frame which in some way are related to eachother. | 
|  | *	   This is true for fragments, RTS or CTS-to-self frames. | 
|  | *	2) Rule 1 can be broken when the available entries | 
|  | *	   in the queue are less then a certain threshold. | 
|  | */ | 
|  | if (rt2x00queue_threshold(queue) || | 
|  | !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) | 
|  | queue->rt2x00dev->ops->lib->kick_queue(queue); | 
|  | } | 
|  |  | 
|  | int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb, | 
|  | bool local) | 
|  | { | 
|  | struct ieee80211_tx_info *tx_info; | 
|  | struct queue_entry *entry; | 
|  | struct txentry_desc txdesc; | 
|  | struct skb_frame_desc *skbdesc; | 
|  | u8 rate_idx, rate_flags; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&queue->tx_lock); | 
|  |  | 
|  | entry = rt2x00queue_get_entry(queue, Q_INDEX); | 
|  |  | 
|  | if (unlikely(rt2x00queue_full(queue))) { | 
|  | ERROR(queue->rt2x00dev, | 
|  | "Dropping frame due to full tx queue %d.\n", queue->qid); | 
|  | ret = -ENOBUFS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, | 
|  | &entry->flags))) { | 
|  | ERROR(queue->rt2x00dev, | 
|  | "Arrived at non-free entry in the non-full queue %d.\n" | 
|  | "Please file bug report to %s.\n", | 
|  | queue->qid, DRV_PROJECT); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy all TX descriptor information into txdesc, | 
|  | * after that we are free to use the skb->cb array | 
|  | * for our information. | 
|  | */ | 
|  | entry->skb = skb; | 
|  | rt2x00queue_create_tx_descriptor(entry, &txdesc); | 
|  |  | 
|  | /* | 
|  | * All information is retrieved from the skb->cb array, | 
|  | * now we should claim ownership of the driver part of that | 
|  | * array, preserving the bitrate index and flags. | 
|  | */ | 
|  | tx_info = IEEE80211_SKB_CB(skb); | 
|  | rate_idx = tx_info->control.rates[0].idx; | 
|  | rate_flags = tx_info->control.rates[0].flags; | 
|  | skbdesc = get_skb_frame_desc(skb); | 
|  | memset(skbdesc, 0, sizeof(*skbdesc)); | 
|  | skbdesc->entry = entry; | 
|  | skbdesc->tx_rate_idx = rate_idx; | 
|  | skbdesc->tx_rate_flags = rate_flags; | 
|  |  | 
|  | if (local) | 
|  | skbdesc->flags |= SKBDESC_NOT_MAC80211; | 
|  |  | 
|  | /* | 
|  | * When hardware encryption is supported, and this frame | 
|  | * is to be encrypted, we should strip the IV/EIV data from | 
|  | * the frame so we can provide it to the driver separately. | 
|  | */ | 
|  | if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && | 
|  | !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) { | 
|  | if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags)) | 
|  | rt2x00crypto_tx_copy_iv(skb, &txdesc); | 
|  | else | 
|  | rt2x00crypto_tx_remove_iv(skb, &txdesc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When DMA allocation is required we should guarantee to the | 
|  | * driver that the DMA is aligned to a 4-byte boundary. | 
|  | * However some drivers require L2 padding to pad the payload | 
|  | * rather then the header. This could be a requirement for | 
|  | * PCI and USB devices, while header alignment only is valid | 
|  | * for PCI devices. | 
|  | */ | 
|  | if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags)) | 
|  | rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length); | 
|  | else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags)) | 
|  | rt2x00queue_align_frame(entry->skb); | 
|  |  | 
|  | /* | 
|  | * It could be possible that the queue was corrupted and this | 
|  | * call failed. Since we always return NETDEV_TX_OK to mac80211, | 
|  | * this frame will simply be dropped. | 
|  | */ | 
|  | if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) { | 
|  | clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); | 
|  | entry->skb = NULL; | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | set_bit(ENTRY_DATA_PENDING, &entry->flags); | 
|  |  | 
|  | rt2x00queue_index_inc(entry, Q_INDEX); | 
|  | rt2x00queue_write_tx_descriptor(entry, &txdesc); | 
|  | rt2x00queue_kick_tx_queue(queue, &txdesc); | 
|  |  | 
|  | out: | 
|  | spin_unlock(&queue->tx_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_vif *vif) | 
|  | { | 
|  | struct rt2x00_intf *intf = vif_to_intf(vif); | 
|  |  | 
|  | if (unlikely(!intf->beacon)) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | mutex_lock(&intf->beacon_skb_mutex); | 
|  |  | 
|  | /* | 
|  | * Clean up the beacon skb. | 
|  | */ | 
|  | rt2x00queue_free_skb(intf->beacon); | 
|  |  | 
|  | /* | 
|  | * Clear beacon (single bssid devices don't need to clear the beacon | 
|  | * since the beacon queue will get stopped anyway). | 
|  | */ | 
|  | if (rt2x00dev->ops->lib->clear_beacon) | 
|  | rt2x00dev->ops->lib->clear_beacon(intf->beacon); | 
|  |  | 
|  | mutex_unlock(&intf->beacon_skb_mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_vif *vif) | 
|  | { | 
|  | struct rt2x00_intf *intf = vif_to_intf(vif); | 
|  | struct skb_frame_desc *skbdesc; | 
|  | struct txentry_desc txdesc; | 
|  |  | 
|  | if (unlikely(!intf->beacon)) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | /* | 
|  | * Clean up the beacon skb. | 
|  | */ | 
|  | rt2x00queue_free_skb(intf->beacon); | 
|  |  | 
|  | intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif); | 
|  | if (!intf->beacon->skb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Copy all TX descriptor information into txdesc, | 
|  | * after that we are free to use the skb->cb array | 
|  | * for our information. | 
|  | */ | 
|  | rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc); | 
|  |  | 
|  | /* | 
|  | * Fill in skb descriptor | 
|  | */ | 
|  | skbdesc = get_skb_frame_desc(intf->beacon->skb); | 
|  | memset(skbdesc, 0, sizeof(*skbdesc)); | 
|  | skbdesc->entry = intf->beacon; | 
|  |  | 
|  | /* | 
|  | * Send beacon to hardware. | 
|  | */ | 
|  | rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_vif *vif) | 
|  | { | 
|  | struct rt2x00_intf *intf = vif_to_intf(vif); | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&intf->beacon_skb_mutex); | 
|  | ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif); | 
|  | mutex_unlock(&intf->beacon_skb_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool rt2x00queue_for_each_entry(struct data_queue *queue, | 
|  | enum queue_index start, | 
|  | enum queue_index end, | 
|  | void *data, | 
|  | bool (*fn)(struct queue_entry *entry, | 
|  | void *data)) | 
|  | { | 
|  | unsigned long irqflags; | 
|  | unsigned int index_start; | 
|  | unsigned int index_end; | 
|  | unsigned int i; | 
|  |  | 
|  | if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) { | 
|  | ERROR(queue->rt2x00dev, | 
|  | "Entry requested from invalid index range (%d - %d)\n", | 
|  | start, end); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only protect the range we are going to loop over, | 
|  | * if during our loop a extra entry is set to pending | 
|  | * it should not be kicked during this run, since it | 
|  | * is part of another TX operation. | 
|  | */ | 
|  | spin_lock_irqsave(&queue->index_lock, irqflags); | 
|  | index_start = queue->index[start]; | 
|  | index_end = queue->index[end]; | 
|  | spin_unlock_irqrestore(&queue->index_lock, irqflags); | 
|  |  | 
|  | /* | 
|  | * Start from the TX done pointer, this guarantees that we will | 
|  | * send out all frames in the correct order. | 
|  | */ | 
|  | if (index_start < index_end) { | 
|  | for (i = index_start; i < index_end; i++) { | 
|  | if (fn(&queue->entries[i], data)) | 
|  | return true; | 
|  | } | 
|  | } else { | 
|  | for (i = index_start; i < queue->limit; i++) { | 
|  | if (fn(&queue->entries[i], data)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < index_end; i++) { | 
|  | if (fn(&queue->entries[i], data)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry); | 
|  |  | 
|  | struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, | 
|  | enum queue_index index) | 
|  | { | 
|  | struct queue_entry *entry; | 
|  | unsigned long irqflags; | 
|  |  | 
|  | if (unlikely(index >= Q_INDEX_MAX)) { | 
|  | ERROR(queue->rt2x00dev, | 
|  | "Entry requested from invalid index type (%d)\n", index); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&queue->index_lock, irqflags); | 
|  |  | 
|  | entry = &queue->entries[queue->index[index]]; | 
|  |  | 
|  | spin_unlock_irqrestore(&queue->index_lock, irqflags); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); | 
|  |  | 
|  | void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index) | 
|  | { | 
|  | struct data_queue *queue = entry->queue; | 
|  | unsigned long irqflags; | 
|  |  | 
|  | if (unlikely(index >= Q_INDEX_MAX)) { | 
|  | ERROR(queue->rt2x00dev, | 
|  | "Index change on invalid index type (%d)\n", index); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&queue->index_lock, irqflags); | 
|  |  | 
|  | queue->index[index]++; | 
|  | if (queue->index[index] >= queue->limit) | 
|  | queue->index[index] = 0; | 
|  |  | 
|  | entry->last_action = jiffies; | 
|  |  | 
|  | if (index == Q_INDEX) { | 
|  | queue->length++; | 
|  | } else if (index == Q_INDEX_DONE) { | 
|  | queue->length--; | 
|  | queue->count++; | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&queue->index_lock, irqflags); | 
|  | } | 
|  |  | 
|  | void rt2x00queue_pause_queue(struct data_queue *queue) | 
|  | { | 
|  | if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || | 
|  | !test_bit(QUEUE_STARTED, &queue->flags) || | 
|  | test_and_set_bit(QUEUE_PAUSED, &queue->flags)) | 
|  | return; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_AC_VO: | 
|  | case QID_AC_VI: | 
|  | case QID_AC_BE: | 
|  | case QID_AC_BK: | 
|  | /* | 
|  | * For TX queues, we have to disable the queue | 
|  | * inside mac80211. | 
|  | */ | 
|  | ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue); | 
|  |  | 
|  | void rt2x00queue_unpause_queue(struct data_queue *queue) | 
|  | { | 
|  | if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || | 
|  | !test_bit(QUEUE_STARTED, &queue->flags) || | 
|  | !test_and_clear_bit(QUEUE_PAUSED, &queue->flags)) | 
|  | return; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_AC_VO: | 
|  | case QID_AC_VI: | 
|  | case QID_AC_BE: | 
|  | case QID_AC_BK: | 
|  | /* | 
|  | * For TX queues, we have to enable the queue | 
|  | * inside mac80211. | 
|  | */ | 
|  | ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid); | 
|  | break; | 
|  | case QID_RX: | 
|  | /* | 
|  | * For RX we need to kick the queue now in order to | 
|  | * receive frames. | 
|  | */ | 
|  | queue->rt2x00dev->ops->lib->kick_queue(queue); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue); | 
|  |  | 
|  | void rt2x00queue_start_queue(struct data_queue *queue) | 
|  | { | 
|  | mutex_lock(&queue->status_lock); | 
|  |  | 
|  | if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || | 
|  | test_and_set_bit(QUEUE_STARTED, &queue->flags)) { | 
|  | mutex_unlock(&queue->status_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | set_bit(QUEUE_PAUSED, &queue->flags); | 
|  |  | 
|  | queue->rt2x00dev->ops->lib->start_queue(queue); | 
|  |  | 
|  | rt2x00queue_unpause_queue(queue); | 
|  |  | 
|  | mutex_unlock(&queue->status_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_start_queue); | 
|  |  | 
|  | void rt2x00queue_stop_queue(struct data_queue *queue) | 
|  | { | 
|  | mutex_lock(&queue->status_lock); | 
|  |  | 
|  | if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) { | 
|  | mutex_unlock(&queue->status_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rt2x00queue_pause_queue(queue); | 
|  |  | 
|  | queue->rt2x00dev->ops->lib->stop_queue(queue); | 
|  |  | 
|  | mutex_unlock(&queue->status_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue); | 
|  |  | 
|  | void rt2x00queue_flush_queue(struct data_queue *queue, bool drop) | 
|  | { | 
|  | bool started; | 
|  | bool tx_queue = | 
|  | (queue->qid == QID_AC_VO) || | 
|  | (queue->qid == QID_AC_VI) || | 
|  | (queue->qid == QID_AC_BE) || | 
|  | (queue->qid == QID_AC_BK); | 
|  |  | 
|  | mutex_lock(&queue->status_lock); | 
|  |  | 
|  | /* | 
|  | * If the queue has been started, we must stop it temporarily | 
|  | * to prevent any new frames to be queued on the device. If | 
|  | * we are not dropping the pending frames, the queue must | 
|  | * only be stopped in the software and not the hardware, | 
|  | * otherwise the queue will never become empty on its own. | 
|  | */ | 
|  | started = test_bit(QUEUE_STARTED, &queue->flags); | 
|  | if (started) { | 
|  | /* | 
|  | * Pause the queue | 
|  | */ | 
|  | rt2x00queue_pause_queue(queue); | 
|  |  | 
|  | /* | 
|  | * If we are not supposed to drop any pending | 
|  | * frames, this means we must force a start (=kick) | 
|  | * to the queue to make sure the hardware will | 
|  | * start transmitting. | 
|  | */ | 
|  | if (!drop && tx_queue) | 
|  | queue->rt2x00dev->ops->lib->kick_queue(queue); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if driver supports flushing, if that is the case we can | 
|  | * defer the flushing to the driver. Otherwise we must use the | 
|  | * alternative which just waits for the queue to become empty. | 
|  | */ | 
|  | if (likely(queue->rt2x00dev->ops->lib->flush_queue)) | 
|  | queue->rt2x00dev->ops->lib->flush_queue(queue, drop); | 
|  |  | 
|  | /* | 
|  | * The queue flush has failed... | 
|  | */ | 
|  | if (unlikely(!rt2x00queue_empty(queue))) | 
|  | WARNING(queue->rt2x00dev, "Queue %d failed to flush\n", queue->qid); | 
|  |  | 
|  | /* | 
|  | * Restore the queue to the previous status | 
|  | */ | 
|  | if (started) | 
|  | rt2x00queue_unpause_queue(queue); | 
|  |  | 
|  | mutex_unlock(&queue->status_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue); | 
|  |  | 
|  | void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  |  | 
|  | /* | 
|  | * rt2x00queue_start_queue will call ieee80211_wake_queue | 
|  | * for each queue after is has been properly initialized. | 
|  | */ | 
|  | tx_queue_for_each(rt2x00dev, queue) | 
|  | rt2x00queue_start_queue(queue); | 
|  |  | 
|  | rt2x00queue_start_queue(rt2x00dev->rx); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_start_queues); | 
|  |  | 
|  | void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  |  | 
|  | /* | 
|  | * rt2x00queue_stop_queue will call ieee80211_stop_queue | 
|  | * as well, but we are completely shutting doing everything | 
|  | * now, so it is much safer to stop all TX queues at once, | 
|  | * and use rt2x00queue_stop_queue for cleaning up. | 
|  | */ | 
|  | ieee80211_stop_queues(rt2x00dev->hw); | 
|  |  | 
|  | tx_queue_for_each(rt2x00dev, queue) | 
|  | rt2x00queue_stop_queue(queue); | 
|  |  | 
|  | rt2x00queue_stop_queue(rt2x00dev->rx); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues); | 
|  |  | 
|  | void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop) | 
|  | { | 
|  | struct data_queue *queue; | 
|  |  | 
|  | tx_queue_for_each(rt2x00dev, queue) | 
|  | rt2x00queue_flush_queue(queue, drop); | 
|  |  | 
|  | rt2x00queue_flush_queue(rt2x00dev->rx, drop); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues); | 
|  |  | 
|  | static void rt2x00queue_reset(struct data_queue *queue) | 
|  | { | 
|  | unsigned long irqflags; | 
|  | unsigned int i; | 
|  |  | 
|  | spin_lock_irqsave(&queue->index_lock, irqflags); | 
|  |  | 
|  | queue->count = 0; | 
|  | queue->length = 0; | 
|  |  | 
|  | for (i = 0; i < Q_INDEX_MAX; i++) | 
|  | queue->index[i] = 0; | 
|  |  | 
|  | spin_unlock_irqrestore(&queue->index_lock, irqflags); | 
|  | } | 
|  |  | 
|  | void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  | unsigned int i; | 
|  |  | 
|  | queue_for_each(rt2x00dev, queue) { | 
|  | rt2x00queue_reset(queue); | 
|  |  | 
|  | for (i = 0; i < queue->limit; i++) | 
|  | rt2x00dev->ops->lib->clear_entry(&queue->entries[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2x00queue_alloc_entries(struct data_queue *queue, | 
|  | const struct data_queue_desc *qdesc) | 
|  | { | 
|  | struct queue_entry *entries; | 
|  | unsigned int entry_size; | 
|  | unsigned int i; | 
|  |  | 
|  | rt2x00queue_reset(queue); | 
|  |  | 
|  | queue->limit = qdesc->entry_num; | 
|  | queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10); | 
|  | queue->data_size = qdesc->data_size; | 
|  | queue->desc_size = qdesc->desc_size; | 
|  |  | 
|  | /* | 
|  | * Allocate all queue entries. | 
|  | */ | 
|  | entry_size = sizeof(*entries) + qdesc->priv_size; | 
|  | entries = kcalloc(queue->limit, entry_size, GFP_KERNEL); | 
|  | if (!entries) | 
|  | return -ENOMEM; | 
|  |  | 
|  | #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ | 
|  | (((char *)(__base)) + ((__limit) * (__esize)) + \ | 
|  | ((__index) * (__psize))) | 
|  |  | 
|  | for (i = 0; i < queue->limit; i++) { | 
|  | entries[i].flags = 0; | 
|  | entries[i].queue = queue; | 
|  | entries[i].skb = NULL; | 
|  | entries[i].entry_idx = i; | 
|  | entries[i].priv_data = | 
|  | QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, | 
|  | sizeof(*entries), qdesc->priv_size); | 
|  | } | 
|  |  | 
|  | #undef QUEUE_ENTRY_PRIV_OFFSET | 
|  |  | 
|  | queue->entries = entries; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2x00queue_free_skbs(struct data_queue *queue) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (!queue->entries) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < queue->limit; i++) { | 
|  | rt2x00queue_free_skb(&queue->entries[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2x00queue_alloc_rxskbs(struct data_queue *queue) | 
|  | { | 
|  | unsigned int i; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | for (i = 0; i < queue->limit; i++) { | 
|  | skb = rt2x00queue_alloc_rxskb(&queue->entries[i]); | 
|  | if (!skb) | 
|  | return -ENOMEM; | 
|  | queue->entries[i].skb = skb; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  | int status; | 
|  |  | 
|  | status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx); | 
|  | if (status) | 
|  | goto exit; | 
|  |  | 
|  | tx_queue_for_each(rt2x00dev, queue) { | 
|  | status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx); | 
|  | if (status) | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn); | 
|  | if (status) | 
|  | goto exit; | 
|  |  | 
|  | if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) { | 
|  | status = rt2x00queue_alloc_entries(rt2x00dev->atim, | 
|  | rt2x00dev->ops->atim); | 
|  | if (status) | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx); | 
|  | if (status) | 
|  | goto exit; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit: | 
|  | ERROR(rt2x00dev, "Queue entries allocation failed.\n"); | 
|  |  | 
|  | rt2x00queue_uninitialize(rt2x00dev); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  |  | 
|  | rt2x00queue_free_skbs(rt2x00dev->rx); | 
|  |  | 
|  | queue_for_each(rt2x00dev, queue) { | 
|  | kfree(queue->entries); | 
|  | queue->entries = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, | 
|  | struct data_queue *queue, enum data_queue_qid qid) | 
|  | { | 
|  | mutex_init(&queue->status_lock); | 
|  | spin_lock_init(&queue->tx_lock); | 
|  | spin_lock_init(&queue->index_lock); | 
|  |  | 
|  | queue->rt2x00dev = rt2x00dev; | 
|  | queue->qid = qid; | 
|  | queue->txop = 0; | 
|  | queue->aifs = 2; | 
|  | queue->cw_min = 5; | 
|  | queue->cw_max = 10; | 
|  | } | 
|  |  | 
|  | int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  | enum data_queue_qid qid; | 
|  | unsigned int req_atim = | 
|  | !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * We need the following queues: | 
|  | * RX: 1 | 
|  | * TX: ops->tx_queues | 
|  | * Beacon: 1 | 
|  | * Atim: 1 (if required) | 
|  | */ | 
|  | rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; | 
|  |  | 
|  | queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL); | 
|  | if (!queue) { | 
|  | ERROR(rt2x00dev, "Queue allocation failed.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize pointers | 
|  | */ | 
|  | rt2x00dev->rx = queue; | 
|  | rt2x00dev->tx = &queue[1]; | 
|  | rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; | 
|  | rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL; | 
|  |  | 
|  | /* | 
|  | * Initialize queue parameters. | 
|  | * RX: qid = QID_RX | 
|  | * TX: qid = QID_AC_VO + index | 
|  | * TX: cw_min: 2^5 = 32. | 
|  | * TX: cw_max: 2^10 = 1024. | 
|  | * BCN: qid = QID_BEACON | 
|  | * ATIM: qid = QID_ATIM | 
|  | */ | 
|  | rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); | 
|  |  | 
|  | qid = QID_AC_VO; | 
|  | tx_queue_for_each(rt2x00dev, queue) | 
|  | rt2x00queue_init(rt2x00dev, queue, qid++); | 
|  |  | 
|  | rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON); | 
|  | if (req_atim) | 
|  | rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | kfree(rt2x00dev->rx); | 
|  | rt2x00dev->rx = NULL; | 
|  | rt2x00dev->tx = NULL; | 
|  | rt2x00dev->bcn = NULL; | 
|  | } |