| /* | 
 |  * Copyright (c) 2006 Oracle.  All rights reserved. | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  * | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/in.h> | 
 | #include <linux/if.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/inetdevice.h> | 
 | #include <linux/if_arp.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include "rds.h" | 
 | #include "ib.h" | 
 |  | 
 | static unsigned int fmr_pool_size = RDS_FMR_POOL_SIZE; | 
 | unsigned int fmr_message_size = RDS_FMR_SIZE + 1; /* +1 allows for unaligned MRs */ | 
 | unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT; | 
 |  | 
 | module_param(fmr_pool_size, int, 0444); | 
 | MODULE_PARM_DESC(fmr_pool_size, " Max number of fmr per HCA"); | 
 | module_param(fmr_message_size, int, 0444); | 
 | MODULE_PARM_DESC(fmr_message_size, " Max size of a RDMA transfer"); | 
 | module_param(rds_ib_retry_count, int, 0444); | 
 | MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error"); | 
 |  | 
 | /* | 
 |  * we have a clumsy combination of RCU and a rwsem protecting this list | 
 |  * because it is used both in the get_mr fast path and while blocking in | 
 |  * the FMR flushing path. | 
 |  */ | 
 | DECLARE_RWSEM(rds_ib_devices_lock); | 
 | struct list_head rds_ib_devices; | 
 |  | 
 | /* NOTE: if also grabbing ibdev lock, grab this first */ | 
 | DEFINE_SPINLOCK(ib_nodev_conns_lock); | 
 | LIST_HEAD(ib_nodev_conns); | 
 |  | 
 | static void rds_ib_nodev_connect(void) | 
 | { | 
 | 	struct rds_ib_connection *ic; | 
 |  | 
 | 	spin_lock(&ib_nodev_conns_lock); | 
 | 	list_for_each_entry(ic, &ib_nodev_conns, ib_node) | 
 | 		rds_conn_connect_if_down(ic->conn); | 
 | 	spin_unlock(&ib_nodev_conns_lock); | 
 | } | 
 |  | 
 | static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev) | 
 | { | 
 | 	struct rds_ib_connection *ic; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&rds_ibdev->spinlock, flags); | 
 | 	list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node) | 
 | 		rds_conn_drop(ic->conn); | 
 | 	spin_unlock_irqrestore(&rds_ibdev->spinlock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references | 
 |  * from interrupt context so we push freing off into a work struct in krdsd. | 
 |  */ | 
 | static void rds_ib_dev_free(struct work_struct *work) | 
 | { | 
 | 	struct rds_ib_ipaddr *i_ipaddr, *i_next; | 
 | 	struct rds_ib_device *rds_ibdev = container_of(work, | 
 | 					struct rds_ib_device, free_work); | 
 |  | 
 | 	if (rds_ibdev->mr_pool) | 
 | 		rds_ib_destroy_mr_pool(rds_ibdev->mr_pool); | 
 | 	if (rds_ibdev->mr) | 
 | 		ib_dereg_mr(rds_ibdev->mr); | 
 | 	if (rds_ibdev->pd) | 
 | 		ib_dealloc_pd(rds_ibdev->pd); | 
 |  | 
 | 	list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) { | 
 | 		list_del(&i_ipaddr->list); | 
 | 		kfree(i_ipaddr); | 
 | 	} | 
 |  | 
 | 	kfree(rds_ibdev); | 
 | } | 
 |  | 
 | void rds_ib_dev_put(struct rds_ib_device *rds_ibdev) | 
 | { | 
 | 	BUG_ON(atomic_read(&rds_ibdev->refcount) <= 0); | 
 | 	if (atomic_dec_and_test(&rds_ibdev->refcount)) | 
 | 		queue_work(rds_wq, &rds_ibdev->free_work); | 
 | } | 
 |  | 
 | static void rds_ib_add_one(struct ib_device *device) | 
 | { | 
 | 	struct rds_ib_device *rds_ibdev; | 
 | 	struct ib_device_attr *dev_attr; | 
 |  | 
 | 	/* Only handle IB (no iWARP) devices */ | 
 | 	if (device->node_type != RDMA_NODE_IB_CA) | 
 | 		return; | 
 |  | 
 | 	dev_attr = kmalloc(sizeof *dev_attr, GFP_KERNEL); | 
 | 	if (!dev_attr) | 
 | 		return; | 
 |  | 
 | 	if (ib_query_device(device, dev_attr)) { | 
 | 		rdsdebug("Query device failed for %s\n", device->name); | 
 | 		goto free_attr; | 
 | 	} | 
 |  | 
 | 	rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL, | 
 | 				 ibdev_to_node(device)); | 
 | 	if (!rds_ibdev) | 
 | 		goto free_attr; | 
 |  | 
 | 	spin_lock_init(&rds_ibdev->spinlock); | 
 | 	atomic_set(&rds_ibdev->refcount, 1); | 
 | 	INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free); | 
 |  | 
 | 	rds_ibdev->max_wrs = dev_attr->max_qp_wr; | 
 | 	rds_ibdev->max_sge = min(dev_attr->max_sge, RDS_IB_MAX_SGE); | 
 |  | 
 | 	rds_ibdev->fmr_max_remaps = dev_attr->max_map_per_fmr?: 32; | 
 | 	rds_ibdev->max_fmrs = dev_attr->max_fmr ? | 
 | 			min_t(unsigned int, dev_attr->max_fmr, fmr_pool_size) : | 
 | 			fmr_pool_size; | 
 |  | 
 | 	rds_ibdev->max_initiator_depth = dev_attr->max_qp_init_rd_atom; | 
 | 	rds_ibdev->max_responder_resources = dev_attr->max_qp_rd_atom; | 
 |  | 
 | 	rds_ibdev->dev = device; | 
 | 	rds_ibdev->pd = ib_alloc_pd(device); | 
 | 	if (IS_ERR(rds_ibdev->pd)) { | 
 | 		rds_ibdev->pd = NULL; | 
 | 		goto put_dev; | 
 | 	} | 
 |  | 
 | 	rds_ibdev->mr = ib_get_dma_mr(rds_ibdev->pd, IB_ACCESS_LOCAL_WRITE); | 
 | 	if (IS_ERR(rds_ibdev->mr)) { | 
 | 		rds_ibdev->mr = NULL; | 
 | 		goto put_dev; | 
 | 	} | 
 |  | 
 | 	rds_ibdev->mr_pool = rds_ib_create_mr_pool(rds_ibdev); | 
 | 	if (IS_ERR(rds_ibdev->mr_pool)) { | 
 | 		rds_ibdev->mr_pool = NULL; | 
 | 		goto put_dev; | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&rds_ibdev->ipaddr_list); | 
 | 	INIT_LIST_HEAD(&rds_ibdev->conn_list); | 
 |  | 
 | 	down_write(&rds_ib_devices_lock); | 
 | 	list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices); | 
 | 	up_write(&rds_ib_devices_lock); | 
 | 	atomic_inc(&rds_ibdev->refcount); | 
 |  | 
 | 	ib_set_client_data(device, &rds_ib_client, rds_ibdev); | 
 | 	atomic_inc(&rds_ibdev->refcount); | 
 |  | 
 | 	rds_ib_nodev_connect(); | 
 |  | 
 | put_dev: | 
 | 	rds_ib_dev_put(rds_ibdev); | 
 | free_attr: | 
 | 	kfree(dev_attr); | 
 | } | 
 |  | 
 | /* | 
 |  * New connections use this to find the device to associate with the | 
 |  * connection.  It's not in the fast path so we're not concerned about the | 
 |  * performance of the IB call.  (As of this writing, it uses an interrupt | 
 |  * blocking spinlock to serialize walking a per-device list of all registered | 
 |  * clients.) | 
 |  * | 
 |  * RCU is used to handle incoming connections racing with device teardown. | 
 |  * Rather than use a lock to serialize removal from the client_data and | 
 |  * getting a new reference, we use an RCU grace period.  The destruction | 
 |  * path removes the device from client_data and then waits for all RCU | 
 |  * readers to finish. | 
 |  * | 
 |  * A new connection can get NULL from this if its arriving on a | 
 |  * device that is in the process of being removed. | 
 |  */ | 
 | struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device) | 
 | { | 
 | 	struct rds_ib_device *rds_ibdev; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	rds_ibdev = ib_get_client_data(device, &rds_ib_client); | 
 | 	if (rds_ibdev) | 
 | 		atomic_inc(&rds_ibdev->refcount); | 
 | 	rcu_read_unlock(); | 
 | 	return rds_ibdev; | 
 | } | 
 |  | 
 | /* | 
 |  * The IB stack is letting us know that a device is going away.  This can | 
 |  * happen if the underlying HCA driver is removed or if PCI hotplug is removing | 
 |  * the pci function, for example. | 
 |  * | 
 |  * This can be called at any time and can be racing with any other RDS path. | 
 |  */ | 
 | static void rds_ib_remove_one(struct ib_device *device) | 
 | { | 
 | 	struct rds_ib_device *rds_ibdev; | 
 |  | 
 | 	rds_ibdev = ib_get_client_data(device, &rds_ib_client); | 
 | 	if (!rds_ibdev) | 
 | 		return; | 
 |  | 
 | 	rds_ib_dev_shutdown(rds_ibdev); | 
 |  | 
 | 	/* stop connection attempts from getting a reference to this device. */ | 
 | 	ib_set_client_data(device, &rds_ib_client, NULL); | 
 |  | 
 | 	down_write(&rds_ib_devices_lock); | 
 | 	list_del_rcu(&rds_ibdev->list); | 
 | 	up_write(&rds_ib_devices_lock); | 
 |  | 
 | 	/* | 
 | 	 * This synchronize rcu is waiting for readers of both the ib | 
 | 	 * client data and the devices list to finish before we drop | 
 | 	 * both of those references. | 
 | 	 */ | 
 | 	synchronize_rcu(); | 
 | 	rds_ib_dev_put(rds_ibdev); | 
 | 	rds_ib_dev_put(rds_ibdev); | 
 | } | 
 |  | 
 | struct ib_client rds_ib_client = { | 
 | 	.name   = "rds_ib", | 
 | 	.add    = rds_ib_add_one, | 
 | 	.remove = rds_ib_remove_one | 
 | }; | 
 |  | 
 | static int rds_ib_conn_info_visitor(struct rds_connection *conn, | 
 | 				    void *buffer) | 
 | { | 
 | 	struct rds_info_rdma_connection *iinfo = buffer; | 
 | 	struct rds_ib_connection *ic; | 
 |  | 
 | 	/* We will only ever look at IB transports */ | 
 | 	if (conn->c_trans != &rds_ib_transport) | 
 | 		return 0; | 
 |  | 
 | 	iinfo->src_addr = conn->c_laddr; | 
 | 	iinfo->dst_addr = conn->c_faddr; | 
 |  | 
 | 	memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid)); | 
 | 	memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid)); | 
 | 	if (rds_conn_state(conn) == RDS_CONN_UP) { | 
 | 		struct rds_ib_device *rds_ibdev; | 
 | 		struct rdma_dev_addr *dev_addr; | 
 |  | 
 | 		ic = conn->c_transport_data; | 
 | 		dev_addr = &ic->i_cm_id->route.addr.dev_addr; | 
 |  | 
 | 		rdma_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid); | 
 | 		rdma_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid); | 
 |  | 
 | 		rds_ibdev = ic->rds_ibdev; | 
 | 		iinfo->max_send_wr = ic->i_send_ring.w_nr; | 
 | 		iinfo->max_recv_wr = ic->i_recv_ring.w_nr; | 
 | 		iinfo->max_send_sge = rds_ibdev->max_sge; | 
 | 		rds_ib_get_mr_info(rds_ibdev, iinfo); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void rds_ib_ic_info(struct socket *sock, unsigned int len, | 
 | 			   struct rds_info_iterator *iter, | 
 | 			   struct rds_info_lengths *lens) | 
 | { | 
 | 	rds_for_each_conn_info(sock, len, iter, lens, | 
 | 				rds_ib_conn_info_visitor, | 
 | 				sizeof(struct rds_info_rdma_connection)); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Early RDS/IB was built to only bind to an address if there is an IPoIB | 
 |  * device with that address set. | 
 |  * | 
 |  * If it were me, I'd advocate for something more flexible.  Sending and | 
 |  * receiving should be device-agnostic.  Transports would try and maintain | 
 |  * connections between peers who have messages queued.  Userspace would be | 
 |  * allowed to influence which paths have priority.  We could call userspace | 
 |  * asserting this policy "routing". | 
 |  */ | 
 | static int rds_ib_laddr_check(__be32 addr) | 
 | { | 
 | 	int ret; | 
 | 	struct rdma_cm_id *cm_id; | 
 | 	struct sockaddr_in sin; | 
 |  | 
 | 	/* Create a CMA ID and try to bind it. This catches both | 
 | 	 * IB and iWARP capable NICs. | 
 | 	 */ | 
 | 	cm_id = rdma_create_id(NULL, NULL, RDMA_PS_TCP, IB_QPT_RC); | 
 | 	if (IS_ERR(cm_id)) | 
 | 		return PTR_ERR(cm_id); | 
 |  | 
 | 	memset(&sin, 0, sizeof(sin)); | 
 | 	sin.sin_family = AF_INET; | 
 | 	sin.sin_addr.s_addr = addr; | 
 |  | 
 | 	/* rdma_bind_addr will only succeed for IB & iWARP devices */ | 
 | 	ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin); | 
 | 	/* due to this, we will claim to support iWARP devices unless we | 
 | 	   check node_type. */ | 
 | 	if (ret || cm_id->device->node_type != RDMA_NODE_IB_CA) | 
 | 		ret = -EADDRNOTAVAIL; | 
 |  | 
 | 	rdsdebug("addr %pI4 ret %d node type %d\n", | 
 | 		&addr, ret, | 
 | 		cm_id->device ? cm_id->device->node_type : -1); | 
 |  | 
 | 	rdma_destroy_id(cm_id); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void rds_ib_unregister_client(void) | 
 | { | 
 | 	ib_unregister_client(&rds_ib_client); | 
 | 	/* wait for rds_ib_dev_free() to complete */ | 
 | 	flush_workqueue(rds_wq); | 
 | } | 
 |  | 
 | void rds_ib_exit(void) | 
 | { | 
 | 	rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); | 
 | 	rds_ib_unregister_client(); | 
 | 	rds_ib_destroy_nodev_conns(); | 
 | 	rds_ib_sysctl_exit(); | 
 | 	rds_ib_recv_exit(); | 
 | 	rds_trans_unregister(&rds_ib_transport); | 
 | } | 
 |  | 
 | struct rds_transport rds_ib_transport = { | 
 | 	.laddr_check		= rds_ib_laddr_check, | 
 | 	.xmit_complete		= rds_ib_xmit_complete, | 
 | 	.xmit			= rds_ib_xmit, | 
 | 	.xmit_rdma		= rds_ib_xmit_rdma, | 
 | 	.xmit_atomic		= rds_ib_xmit_atomic, | 
 | 	.recv			= rds_ib_recv, | 
 | 	.conn_alloc		= rds_ib_conn_alloc, | 
 | 	.conn_free		= rds_ib_conn_free, | 
 | 	.conn_connect		= rds_ib_conn_connect, | 
 | 	.conn_shutdown		= rds_ib_conn_shutdown, | 
 | 	.inc_copy_to_user	= rds_ib_inc_copy_to_user, | 
 | 	.inc_free		= rds_ib_inc_free, | 
 | 	.cm_initiate_connect	= rds_ib_cm_initiate_connect, | 
 | 	.cm_handle_connect	= rds_ib_cm_handle_connect, | 
 | 	.cm_connect_complete	= rds_ib_cm_connect_complete, | 
 | 	.stats_info_copy	= rds_ib_stats_info_copy, | 
 | 	.exit			= rds_ib_exit, | 
 | 	.get_mr			= rds_ib_get_mr, | 
 | 	.sync_mr		= rds_ib_sync_mr, | 
 | 	.free_mr		= rds_ib_free_mr, | 
 | 	.flush_mrs		= rds_ib_flush_mrs, | 
 | 	.t_owner		= THIS_MODULE, | 
 | 	.t_name			= "infiniband", | 
 | 	.t_type			= RDS_TRANS_IB | 
 | }; | 
 |  | 
 | int rds_ib_init(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	INIT_LIST_HEAD(&rds_ib_devices); | 
 |  | 
 | 	ret = ib_register_client(&rds_ib_client); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = rds_ib_sysctl_init(); | 
 | 	if (ret) | 
 | 		goto out_ibreg; | 
 |  | 
 | 	ret = rds_ib_recv_init(); | 
 | 	if (ret) | 
 | 		goto out_sysctl; | 
 |  | 
 | 	ret = rds_trans_register(&rds_ib_transport); | 
 | 	if (ret) | 
 | 		goto out_recv; | 
 |  | 
 | 	rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info); | 
 |  | 
 | 	goto out; | 
 |  | 
 | out_recv: | 
 | 	rds_ib_recv_exit(); | 
 | out_sysctl: | 
 | 	rds_ib_sysctl_exit(); | 
 | out_ibreg: | 
 | 	rds_ib_unregister_client(); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 |  |