| /* | 
 |  *	IDE I/O functions | 
 |  * | 
 |  *	Basic PIO and command management functionality. | 
 |  * | 
 |  * This code was split off from ide.c. See ide.c for history and original | 
 |  * copyrights. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms of the GNU General Public License as published by the | 
 |  * Free Software Foundation; either version 2, or (at your option) any | 
 |  * later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * For the avoidance of doubt the "preferred form" of this code is one which | 
 |  * is in an open non patent encumbered format. Where cryptographic key signing | 
 |  * forms part of the process of creating an executable the information | 
 |  * including keys needed to generate an equivalently functional executable | 
 |  * are deemed to be part of the source code. | 
 |  */ | 
 |   | 
 |   | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/string.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/major.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/genhd.h> | 
 | #include <linux/blkpg.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/ide.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/cdrom.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/device.h> | 
 | #include <linux/kmod.h> | 
 | #include <linux/scatterlist.h> | 
 |  | 
 | #include <asm/byteorder.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/io.h> | 
 | #include <asm/bitops.h> | 
 |  | 
 | static int __ide_end_request(ide_drive_t *drive, struct request *rq, | 
 | 			     int uptodate, int nr_sectors) | 
 | { | 
 | 	int ret = 1; | 
 |  | 
 | 	/* | 
 | 	 * if failfast is set on a request, override number of sectors and | 
 | 	 * complete the whole request right now | 
 | 	 */ | 
 | 	if (blk_noretry_request(rq) && end_io_error(uptodate)) | 
 | 		nr_sectors = rq->hard_nr_sectors; | 
 |  | 
 | 	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) | 
 | 		rq->errors = -EIO; | 
 |  | 
 | 	/* | 
 | 	 * decide whether to reenable DMA -- 3 is a random magic for now, | 
 | 	 * if we DMA timeout more than 3 times, just stay in PIO | 
 | 	 */ | 
 | 	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { | 
 | 		drive->state = 0; | 
 | 		HWGROUP(drive)->hwif->ide_dma_on(drive); | 
 | 	} | 
 |  | 
 | 	if (!end_that_request_first(rq, uptodate, nr_sectors)) { | 
 | 		add_disk_randomness(rq->rq_disk); | 
 | 		if (!list_empty(&rq->queuelist)) | 
 | 			blkdev_dequeue_request(rq); | 
 | 		HWGROUP(drive)->rq = NULL; | 
 | 		end_that_request_last(rq, uptodate); | 
 | 		ret = 0; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	ide_end_request		-	complete an IDE I/O | 
 |  *	@drive: IDE device for the I/O | 
 |  *	@uptodate: | 
 |  *	@nr_sectors: number of sectors completed | 
 |  * | 
 |  *	This is our end_request wrapper function. We complete the I/O | 
 |  *	update random number input and dequeue the request, which if | 
 |  *	it was tagged may be out of order. | 
 |  */ | 
 |  | 
 | int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) | 
 | { | 
 | 	struct request *rq; | 
 | 	unsigned long flags; | 
 | 	int ret = 1; | 
 |  | 
 | 	/* | 
 | 	 * room for locking improvements here, the calls below don't | 
 | 	 * need the queue lock held at all | 
 | 	 */ | 
 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 	rq = HWGROUP(drive)->rq; | 
 |  | 
 | 	if (!nr_sectors) | 
 | 		nr_sectors = rq->hard_cur_sectors; | 
 |  | 
 | 	ret = __ide_end_request(drive, rq, uptodate, nr_sectors); | 
 |  | 
 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(ide_end_request); | 
 |  | 
 | /* | 
 |  * Power Management state machine. This one is rather trivial for now, | 
 |  * we should probably add more, like switching back to PIO on suspend | 
 |  * to help some BIOSes, re-do the door locking on resume, etc... | 
 |  */ | 
 |  | 
 | enum { | 
 | 	ide_pm_flush_cache	= ide_pm_state_start_suspend, | 
 | 	idedisk_pm_standby, | 
 |  | 
 | 	idedisk_pm_restore_pio	= ide_pm_state_start_resume, | 
 | 	idedisk_pm_idle, | 
 | 	ide_pm_restore_dma, | 
 | }; | 
 |  | 
 | static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) | 
 | { | 
 | 	struct request_pm_state *pm = rq->data; | 
 |  | 
 | 	if (drive->media != ide_disk) | 
 | 		return; | 
 |  | 
 | 	switch (pm->pm_step) { | 
 | 	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) complete */ | 
 | 		if (pm->pm_state == PM_EVENT_FREEZE) | 
 | 			pm->pm_step = ide_pm_state_completed; | 
 | 		else | 
 | 			pm->pm_step = idedisk_pm_standby; | 
 | 		break; | 
 | 	case idedisk_pm_standby:	/* Suspend step 2 (standby) complete */ | 
 | 		pm->pm_step = ide_pm_state_completed; | 
 | 		break; | 
 | 	case idedisk_pm_restore_pio:	/* Resume step 1 complete */ | 
 | 		pm->pm_step = idedisk_pm_idle; | 
 | 		break; | 
 | 	case idedisk_pm_idle:		/* Resume step 2 (idle) complete */ | 
 | 		pm->pm_step = ide_pm_restore_dma; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) | 
 | { | 
 | 	struct request_pm_state *pm = rq->data; | 
 | 	ide_task_t *args = rq->special; | 
 |  | 
 | 	memset(args, 0, sizeof(*args)); | 
 |  | 
 | 	if (drive->media != ide_disk) { | 
 | 		/* | 
 | 		 * skip idedisk_pm_restore_pio and idedisk_pm_idle for ATAPI | 
 | 		 * devices | 
 | 		 */ | 
 | 		if (pm->pm_step == idedisk_pm_restore_pio) | 
 | 			pm->pm_step = ide_pm_restore_dma; | 
 | 	} | 
 |  | 
 | 	switch (pm->pm_step) { | 
 | 	case ide_pm_flush_cache:	/* Suspend step 1 (flush cache) */ | 
 | 		if (drive->media != ide_disk) | 
 | 			break; | 
 | 		/* Not supported? Switch to next step now. */ | 
 | 		if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { | 
 | 			ide_complete_power_step(drive, rq, 0, 0); | 
 | 			return ide_stopped; | 
 | 		} | 
 | 		if (ide_id_has_flush_cache_ext(drive->id)) | 
 | 			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT; | 
 | 		else | 
 | 			args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE; | 
 | 		args->command_type = IDE_DRIVE_TASK_NO_DATA; | 
 | 		args->handler	   = &task_no_data_intr; | 
 | 		return do_rw_taskfile(drive, args); | 
 |  | 
 | 	case idedisk_pm_standby:	/* Suspend step 2 (standby) */ | 
 | 		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1; | 
 | 		args->command_type = IDE_DRIVE_TASK_NO_DATA; | 
 | 		args->handler	   = &task_no_data_intr; | 
 | 		return do_rw_taskfile(drive, args); | 
 |  | 
 | 	case idedisk_pm_restore_pio:	/* Resume step 1 (restore PIO) */ | 
 | 		if (drive->hwif->tuneproc != NULL) | 
 | 			drive->hwif->tuneproc(drive, 255); | 
 | 		ide_complete_power_step(drive, rq, 0, 0); | 
 | 		return ide_stopped; | 
 |  | 
 | 	case idedisk_pm_idle:		/* Resume step 2 (idle) */ | 
 | 		args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE; | 
 | 		args->command_type = IDE_DRIVE_TASK_NO_DATA; | 
 | 		args->handler = task_no_data_intr; | 
 | 		return do_rw_taskfile(drive, args); | 
 |  | 
 | 	case ide_pm_restore_dma:	/* Resume step 3 (restore DMA) */ | 
 | 		/* | 
 | 		 * Right now, all we do is call hwif->ide_dma_check(drive), | 
 | 		 * we could be smarter and check for current xfer_speed | 
 | 		 * in struct drive etc... | 
 | 		 */ | 
 | 		if ((drive->id->capability & 1) == 0) | 
 | 			break; | 
 | 		if (drive->hwif->ide_dma_check == NULL) | 
 | 			break; | 
 | 		ide_set_dma(drive); | 
 | 		break; | 
 | 	} | 
 | 	pm->pm_step = ide_pm_state_completed; | 
 | 	return ide_stopped; | 
 | } | 
 |  | 
 | /** | 
 |  *	ide_end_dequeued_request	-	complete an IDE I/O | 
 |  *	@drive: IDE device for the I/O | 
 |  *	@uptodate: | 
 |  *	@nr_sectors: number of sectors completed | 
 |  * | 
 |  *	Complete an I/O that is no longer on the request queue. This | 
 |  *	typically occurs when we pull the request and issue a REQUEST_SENSE. | 
 |  *	We must still finish the old request but we must not tamper with the | 
 |  *	queue in the meantime. | 
 |  * | 
 |  *	NOTE: This path does not handle barrier, but barrier is not supported | 
 |  *	on ide-cd anyway. | 
 |  */ | 
 |  | 
 | int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq, | 
 | 			     int uptodate, int nr_sectors) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock_irqsave(&ide_lock, flags); | 
 |  | 
 | 	BUG_ON(!blk_rq_started(rq)); | 
 |  | 
 | 	/* | 
 | 	 * if failfast is set on a request, override number of sectors and | 
 | 	 * complete the whole request right now | 
 | 	 */ | 
 | 	if (blk_noretry_request(rq) && end_io_error(uptodate)) | 
 | 		nr_sectors = rq->hard_nr_sectors; | 
 |  | 
 | 	if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) | 
 | 		rq->errors = -EIO; | 
 |  | 
 | 	/* | 
 | 	 * decide whether to reenable DMA -- 3 is a random magic for now, | 
 | 	 * if we DMA timeout more than 3 times, just stay in PIO | 
 | 	 */ | 
 | 	if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { | 
 | 		drive->state = 0; | 
 | 		HWGROUP(drive)->hwif->ide_dma_on(drive); | 
 | 	} | 
 |  | 
 | 	if (!end_that_request_first(rq, uptodate, nr_sectors)) { | 
 | 		add_disk_randomness(rq->rq_disk); | 
 | 		if (blk_rq_tagged(rq)) | 
 | 			blk_queue_end_tag(drive->queue, rq); | 
 | 		end_that_request_last(rq, uptodate); | 
 | 		ret = 0; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(ide_end_dequeued_request); | 
 |  | 
 |  | 
 | /** | 
 |  *	ide_complete_pm_request - end the current Power Management request | 
 |  *	@drive: target drive | 
 |  *	@rq: request | 
 |  * | 
 |  *	This function cleans up the current PM request and stops the queue | 
 |  *	if necessary. | 
 |  */ | 
 | static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | #ifdef DEBUG_PM | 
 | 	printk("%s: completing PM request, %s\n", drive->name, | 
 | 	       blk_pm_suspend_request(rq) ? "suspend" : "resume"); | 
 | #endif | 
 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 	if (blk_pm_suspend_request(rq)) { | 
 | 		blk_stop_queue(drive->queue); | 
 | 	} else { | 
 | 		drive->blocked = 0; | 
 | 		blk_start_queue(drive->queue); | 
 | 	} | 
 | 	blkdev_dequeue_request(rq); | 
 | 	HWGROUP(drive)->rq = NULL; | 
 | 	end_that_request_last(rq, 1); | 
 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * FIXME: probably move this somewhere else, name is bad too :) | 
 |  */ | 
 | u64 ide_get_error_location(ide_drive_t *drive, char *args) | 
 | { | 
 | 	u32 high, low; | 
 | 	u8 hcyl, lcyl, sect; | 
 | 	u64 sector; | 
 |  | 
 | 	high = 0; | 
 | 	hcyl = args[5]; | 
 | 	lcyl = args[4]; | 
 | 	sect = args[3]; | 
 |  | 
 | 	if (ide_id_has_flush_cache_ext(drive->id)) { | 
 | 		low = (hcyl << 16) | (lcyl << 8) | sect; | 
 | 		HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); | 
 | 		high = ide_read_24(drive); | 
 | 	} else { | 
 | 		u8 cur = HWIF(drive)->INB(IDE_SELECT_REG); | 
 | 		if (cur & 0x40) { | 
 | 			high = cur & 0xf; | 
 | 			low = (hcyl << 16) | (lcyl << 8) | sect; | 
 | 		} else { | 
 | 			low = hcyl * drive->head * drive->sect; | 
 | 			low += lcyl * drive->sect; | 
 | 			low += sect - 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	sector = ((u64) high << 24) | low; | 
 | 	return sector; | 
 | } | 
 | EXPORT_SYMBOL(ide_get_error_location); | 
 |  | 
 | /** | 
 |  *	ide_end_drive_cmd	-	end an explicit drive command | 
 |  *	@drive: command  | 
 |  *	@stat: status bits | 
 |  *	@err: error bits | 
 |  * | 
 |  *	Clean up after success/failure of an explicit drive command. | 
 |  *	These get thrown onto the queue so they are synchronized with | 
 |  *	real I/O operations on the drive. | 
 |  * | 
 |  *	In LBA48 mode we have to read the register set twice to get | 
 |  *	all the extra information out. | 
 |  */ | 
 |   | 
 | void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) | 
 | { | 
 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 	unsigned long flags; | 
 | 	struct request *rq; | 
 |  | 
 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 	rq = HWGROUP(drive)->rq; | 
 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 |  | 
 | 	if (rq->cmd_type == REQ_TYPE_ATA_CMD) { | 
 | 		u8 *args = (u8 *) rq->buffer; | 
 | 		if (rq->errors == 0) | 
 | 			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | 
 |  | 
 | 		if (args) { | 
 | 			args[0] = stat; | 
 | 			args[1] = err; | 
 | 			args[2] = hwif->INB(IDE_NSECTOR_REG); | 
 | 		} | 
 | 	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) { | 
 | 		u8 *args = (u8 *) rq->buffer; | 
 | 		if (rq->errors == 0) | 
 | 			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | 
 |  | 
 | 		if (args) { | 
 | 			args[0] = stat; | 
 | 			args[1] = err; | 
 | 			args[2] = hwif->INB(IDE_NSECTOR_REG); | 
 | 			args[3] = hwif->INB(IDE_SECTOR_REG); | 
 | 			args[4] = hwif->INB(IDE_LCYL_REG); | 
 | 			args[5] = hwif->INB(IDE_HCYL_REG); | 
 | 			args[6] = hwif->INB(IDE_SELECT_REG); | 
 | 		} | 
 | 	} else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { | 
 | 		ide_task_t *args = (ide_task_t *) rq->special; | 
 | 		if (rq->errors == 0) | 
 | 			rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); | 
 | 			 | 
 | 		if (args) { | 
 | 			if (args->tf_in_flags.b.data) { | 
 | 				u16 data				= hwif->INW(IDE_DATA_REG); | 
 | 				args->tfRegister[IDE_DATA_OFFSET]	= (data) & 0xFF; | 
 | 				args->hobRegister[IDE_DATA_OFFSET]	= (data >> 8) & 0xFF; | 
 | 			} | 
 | 			args->tfRegister[IDE_ERROR_OFFSET]   = err; | 
 | 			/* be sure we're looking at the low order bits */ | 
 | 			hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); | 
 | 			args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); | 
 | 			args->tfRegister[IDE_SECTOR_OFFSET]  = hwif->INB(IDE_SECTOR_REG); | 
 | 			args->tfRegister[IDE_LCYL_OFFSET]    = hwif->INB(IDE_LCYL_REG); | 
 | 			args->tfRegister[IDE_HCYL_OFFSET]    = hwif->INB(IDE_HCYL_REG); | 
 | 			args->tfRegister[IDE_SELECT_OFFSET]  = hwif->INB(IDE_SELECT_REG); | 
 | 			args->tfRegister[IDE_STATUS_OFFSET]  = stat; | 
 |  | 
 | 			if (drive->addressing == 1) { | 
 | 				hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); | 
 | 				args->hobRegister[IDE_FEATURE_OFFSET]	= hwif->INB(IDE_FEATURE_REG); | 
 | 				args->hobRegister[IDE_NSECTOR_OFFSET]	= hwif->INB(IDE_NSECTOR_REG); | 
 | 				args->hobRegister[IDE_SECTOR_OFFSET]	= hwif->INB(IDE_SECTOR_REG); | 
 | 				args->hobRegister[IDE_LCYL_OFFSET]	= hwif->INB(IDE_LCYL_REG); | 
 | 				args->hobRegister[IDE_HCYL_OFFSET]	= hwif->INB(IDE_HCYL_REG); | 
 | 			} | 
 | 		} | 
 | 	} else if (blk_pm_request(rq)) { | 
 | 		struct request_pm_state *pm = rq->data; | 
 | #ifdef DEBUG_PM | 
 | 		printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", | 
 | 			drive->name, rq->pm->pm_step, stat, err); | 
 | #endif | 
 | 		ide_complete_power_step(drive, rq, stat, err); | 
 | 		if (pm->pm_step == ide_pm_state_completed) | 
 | 			ide_complete_pm_request(drive, rq); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 	blkdev_dequeue_request(rq); | 
 | 	HWGROUP(drive)->rq = NULL; | 
 | 	rq->errors = err; | 
 | 	end_that_request_last(rq, !rq->errors); | 
 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ide_end_drive_cmd); | 
 |  | 
 | /** | 
 |  *	try_to_flush_leftover_data	-	flush junk | 
 |  *	@drive: drive to flush | 
 |  * | 
 |  *	try_to_flush_leftover_data() is invoked in response to a drive | 
 |  *	unexpectedly having its DRQ_STAT bit set.  As an alternative to | 
 |  *	resetting the drive, this routine tries to clear the condition | 
 |  *	by read a sector's worth of data from the drive.  Of course, | 
 |  *	this may not help if the drive is *waiting* for data from *us*. | 
 |  */ | 
 | static void try_to_flush_leftover_data (ide_drive_t *drive) | 
 | { | 
 | 	int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; | 
 |  | 
 | 	if (drive->media != ide_disk) | 
 | 		return; | 
 | 	while (i > 0) { | 
 | 		u32 buffer[16]; | 
 | 		u32 wcount = (i > 16) ? 16 : i; | 
 |  | 
 | 		i -= wcount; | 
 | 		HWIF(drive)->ata_input_data(drive, buffer, wcount); | 
 | 	} | 
 | } | 
 |  | 
 | static void ide_kill_rq(ide_drive_t *drive, struct request *rq) | 
 | { | 
 | 	if (rq->rq_disk) { | 
 | 		ide_driver_t *drv; | 
 |  | 
 | 		drv = *(ide_driver_t **)rq->rq_disk->private_data; | 
 | 		drv->end_request(drive, 0, 0); | 
 | 	} else | 
 | 		ide_end_request(drive, 0, 0); | 
 | } | 
 |  | 
 | static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 |  | 
 | 	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { | 
 | 		/* other bits are useless when BUSY */ | 
 | 		rq->errors |= ERROR_RESET; | 
 | 	} else if (stat & ERR_STAT) { | 
 | 		/* err has different meaning on cdrom and tape */ | 
 | 		if (err == ABRT_ERR) { | 
 | 			if (drive->select.b.lba && | 
 | 			    /* some newer drives don't support WIN_SPECIFY */ | 
 | 			    hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) | 
 | 				return ide_stopped; | 
 | 		} else if ((err & BAD_CRC) == BAD_CRC) { | 
 | 			/* UDMA crc error, just retry the operation */ | 
 | 			drive->crc_count++; | 
 | 		} else if (err & (BBD_ERR | ECC_ERR)) { | 
 | 			/* retries won't help these */ | 
 | 			rq->errors = ERROR_MAX; | 
 | 		} else if (err & TRK0_ERR) { | 
 | 			/* help it find track zero */ | 
 | 			rq->errors |= ERROR_RECAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ && hwif->err_stops_fifo == 0) | 
 | 		try_to_flush_leftover_data(drive); | 
 |  | 
 | 	if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) { | 
 | 		ide_kill_rq(drive, rq); | 
 | 		return ide_stopped; | 
 | 	} | 
 |  | 
 | 	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) | 
 | 		rq->errors |= ERROR_RESET; | 
 |  | 
 | 	if ((rq->errors & ERROR_RESET) == ERROR_RESET) { | 
 | 		++rq->errors; | 
 | 		return ide_do_reset(drive); | 
 | 	} | 
 |  | 
 | 	if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) | 
 | 		drive->special.b.recalibrate = 1; | 
 |  | 
 | 	++rq->errors; | 
 |  | 
 | 	return ide_stopped; | 
 | } | 
 |  | 
 | static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 |  | 
 | 	if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { | 
 | 		/* other bits are useless when BUSY */ | 
 | 		rq->errors |= ERROR_RESET; | 
 | 	} else { | 
 | 		/* add decoding error stuff */ | 
 | 	} | 
 |  | 
 | 	if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) | 
 | 		/* force an abort */ | 
 | 		hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); | 
 |  | 
 | 	if (rq->errors >= ERROR_MAX) { | 
 | 		ide_kill_rq(drive, rq); | 
 | 	} else { | 
 | 		if ((rq->errors & ERROR_RESET) == ERROR_RESET) { | 
 | 			++rq->errors; | 
 | 			return ide_do_reset(drive); | 
 | 		} | 
 | 		++rq->errors; | 
 | 	} | 
 |  | 
 | 	return ide_stopped; | 
 | } | 
 |  | 
 | ide_startstop_t | 
 | __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) | 
 | { | 
 | 	if (drive->media == ide_disk) | 
 | 		return ide_ata_error(drive, rq, stat, err); | 
 | 	return ide_atapi_error(drive, rq, stat, err); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(__ide_error); | 
 |  | 
 | /** | 
 |  *	ide_error	-	handle an error on the IDE | 
 |  *	@drive: drive the error occurred on | 
 |  *	@msg: message to report | 
 |  *	@stat: status bits | 
 |  * | 
 |  *	ide_error() takes action based on the error returned by the drive. | 
 |  *	For normal I/O that may well include retries. We deal with | 
 |  *	both new-style (taskfile) and old style command handling here. | 
 |  *	In the case of taskfile command handling there is work left to | 
 |  *	do | 
 |  */ | 
 |   | 
 | ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) | 
 | { | 
 | 	struct request *rq; | 
 | 	u8 err; | 
 |  | 
 | 	err = ide_dump_status(drive, msg, stat); | 
 |  | 
 | 	if ((rq = HWGROUP(drive)->rq) == NULL) | 
 | 		return ide_stopped; | 
 |  | 
 | 	/* retry only "normal" I/O: */ | 
 | 	if (!blk_fs_request(rq)) { | 
 | 		rq->errors = 1; | 
 | 		ide_end_drive_cmd(drive, stat, err); | 
 | 		return ide_stopped; | 
 | 	} | 
 |  | 
 | 	if (rq->rq_disk) { | 
 | 		ide_driver_t *drv; | 
 |  | 
 | 		drv = *(ide_driver_t **)rq->rq_disk->private_data; | 
 | 		return drv->error(drive, rq, stat, err); | 
 | 	} else | 
 | 		return __ide_error(drive, rq, stat, err); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(ide_error); | 
 |  | 
 | ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) | 
 | { | 
 | 	if (drive->media != ide_disk) | 
 | 		rq->errors |= ERROR_RESET; | 
 |  | 
 | 	ide_kill_rq(drive, rq); | 
 |  | 
 | 	return ide_stopped; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(__ide_abort); | 
 |  | 
 | /** | 
 |  *	ide_abort	-	abort pending IDE operations | 
 |  *	@drive: drive the error occurred on | 
 |  *	@msg: message to report | 
 |  * | 
 |  *	ide_abort kills and cleans up when we are about to do a  | 
 |  *	host initiated reset on active commands. Longer term we | 
 |  *	want handlers to have sensible abort handling themselves | 
 |  * | 
 |  *	This differs fundamentally from ide_error because in  | 
 |  *	this case the command is doing just fine when we | 
 |  *	blow it away. | 
 |  */ | 
 |   | 
 | ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) | 
 | { | 
 | 	struct request *rq; | 
 |  | 
 | 	if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) | 
 | 		return ide_stopped; | 
 |  | 
 | 	/* retry only "normal" I/O: */ | 
 | 	if (!blk_fs_request(rq)) { | 
 | 		rq->errors = 1; | 
 | 		ide_end_drive_cmd(drive, BUSY_STAT, 0); | 
 | 		return ide_stopped; | 
 | 	} | 
 |  | 
 | 	if (rq->rq_disk) { | 
 | 		ide_driver_t *drv; | 
 |  | 
 | 		drv = *(ide_driver_t **)rq->rq_disk->private_data; | 
 | 		return drv->abort(drive, rq); | 
 | 	} else | 
 | 		return __ide_abort(drive, rq); | 
 | } | 
 |  | 
 | /** | 
 |  *	ide_cmd		-	issue a simple drive command | 
 |  *	@drive: drive the command is for | 
 |  *	@cmd: command byte | 
 |  *	@nsect: sector byte | 
 |  *	@handler: handler for the command completion | 
 |  * | 
 |  *	Issue a simple drive command with interrupts. | 
 |  *	The drive must be selected beforehand. | 
 |  */ | 
 |  | 
 | static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, | 
 | 		ide_handler_t *handler) | 
 | { | 
 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 	if (IDE_CONTROL_REG) | 
 | 		hwif->OUTB(drive->ctl,IDE_CONTROL_REG);	/* clear nIEN */ | 
 | 	SELECT_MASK(drive,0); | 
 | 	hwif->OUTB(nsect,IDE_NSECTOR_REG); | 
 | 	ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL); | 
 | } | 
 |  | 
 | /** | 
 |  *	drive_cmd_intr		- 	drive command completion interrupt | 
 |  *	@drive: drive the completion interrupt occurred on | 
 |  * | 
 |  *	drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. | 
 |  *	We do any necessary data reading and then wait for the drive to | 
 |  *	go non busy. At that point we may read the error data and complete | 
 |  *	the request | 
 |  */ | 
 |   | 
 | static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) | 
 | { | 
 | 	struct request *rq = HWGROUP(drive)->rq; | 
 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 	u8 *args = (u8 *) rq->buffer; | 
 | 	u8 stat = hwif->INB(IDE_STATUS_REG); | 
 | 	int retries = 10; | 
 |  | 
 | 	local_irq_enable_in_hardirq(); | 
 | 	if ((stat & DRQ_STAT) && args && args[3]) { | 
 | 		u8 io_32bit = drive->io_32bit; | 
 | 		drive->io_32bit = 0; | 
 | 		hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); | 
 | 		drive->io_32bit = io_32bit; | 
 | 		while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) | 
 | 			udelay(100); | 
 | 	} | 
 |  | 
 | 	if (!OK_STAT(stat, READY_STAT, BAD_STAT)) | 
 | 		return ide_error(drive, "drive_cmd", stat); | 
 | 		/* calls ide_end_drive_cmd */ | 
 | 	ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); | 
 | 	return ide_stopped; | 
 | } | 
 |  | 
 | static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) | 
 | { | 
 | 	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; | 
 | 	task->tfRegister[IDE_SECTOR_OFFSET]  = drive->sect; | 
 | 	task->tfRegister[IDE_LCYL_OFFSET]    = drive->cyl; | 
 | 	task->tfRegister[IDE_HCYL_OFFSET]    = drive->cyl>>8; | 
 | 	task->tfRegister[IDE_SELECT_OFFSET]  = ((drive->head-1)|drive->select.all)&0xBF; | 
 | 	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY; | 
 |  | 
 | 	task->handler = &set_geometry_intr; | 
 | } | 
 |  | 
 | static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) | 
 | { | 
 | 	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; | 
 | 	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE; | 
 |  | 
 | 	task->handler = &recal_intr; | 
 | } | 
 |  | 
 | static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) | 
 | { | 
 | 	task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req; | 
 | 	task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT; | 
 |  | 
 | 	task->handler = &set_multmode_intr; | 
 | } | 
 |  | 
 | static ide_startstop_t ide_disk_special(ide_drive_t *drive) | 
 | { | 
 | 	special_t *s = &drive->special; | 
 | 	ide_task_t args; | 
 |  | 
 | 	memset(&args, 0, sizeof(ide_task_t)); | 
 | 	args.command_type = IDE_DRIVE_TASK_NO_DATA; | 
 |  | 
 | 	if (s->b.set_geometry) { | 
 | 		s->b.set_geometry = 0; | 
 | 		ide_init_specify_cmd(drive, &args); | 
 | 	} else if (s->b.recalibrate) { | 
 | 		s->b.recalibrate = 0; | 
 | 		ide_init_restore_cmd(drive, &args); | 
 | 	} else if (s->b.set_multmode) { | 
 | 		s->b.set_multmode = 0; | 
 | 		if (drive->mult_req > drive->id->max_multsect) | 
 | 			drive->mult_req = drive->id->max_multsect; | 
 | 		ide_init_setmult_cmd(drive, &args); | 
 | 	} else if (s->all) { | 
 | 		int special = s->all; | 
 | 		s->all = 0; | 
 | 		printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); | 
 | 		return ide_stopped; | 
 | 	} | 
 |  | 
 | 	do_rw_taskfile(drive, &args); | 
 |  | 
 | 	return ide_started; | 
 | } | 
 |  | 
 | /** | 
 |  *	do_special		-	issue some special commands | 
 |  *	@drive: drive the command is for | 
 |  * | 
 |  *	do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT | 
 |  *	commands to a drive.  It used to do much more, but has been scaled | 
 |  *	back. | 
 |  */ | 
 |  | 
 | static ide_startstop_t do_special (ide_drive_t *drive) | 
 | { | 
 | 	special_t *s = &drive->special; | 
 |  | 
 | #ifdef DEBUG | 
 | 	printk("%s: do_special: 0x%02x\n", drive->name, s->all); | 
 | #endif | 
 | 	if (s->b.set_tune) { | 
 | 		s->b.set_tune = 0; | 
 | 		if (HWIF(drive)->tuneproc != NULL) | 
 | 			HWIF(drive)->tuneproc(drive, drive->tune_req); | 
 | 		return ide_stopped; | 
 | 	} else { | 
 | 		if (drive->media == ide_disk) | 
 | 			return ide_disk_special(drive); | 
 |  | 
 | 		s->all = 0; | 
 | 		drive->mult_req = 0; | 
 | 		return ide_stopped; | 
 | 	} | 
 | } | 
 |  | 
 | void ide_map_sg(ide_drive_t *drive, struct request *rq) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 | 	struct scatterlist *sg = hwif->sg_table; | 
 |  | 
 | 	if (hwif->sg_mapped)	/* needed by ide-scsi */ | 
 | 		return; | 
 |  | 
 | 	if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) { | 
 | 		hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); | 
 | 	} else { | 
 | 		sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); | 
 | 		hwif->sg_nents = 1; | 
 | 	} | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(ide_map_sg); | 
 |  | 
 | void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) | 
 | { | 
 | 	ide_hwif_t *hwif = drive->hwif; | 
 |  | 
 | 	hwif->nsect = hwif->nleft = rq->nr_sectors; | 
 | 	hwif->cursg = hwif->cursg_ofs = 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(ide_init_sg_cmd); | 
 |  | 
 | /** | 
 |  *	execute_drive_command	-	issue special drive command | 
 |  *	@drive: the drive to issue the command on | 
 |  *	@rq: the request structure holding the command | 
 |  * | 
 |  *	execute_drive_cmd() issues a special drive command,  usually  | 
 |  *	initiated by ioctl() from the external hdparm program. The | 
 |  *	command can be a drive command, drive task or taskfile  | 
 |  *	operation. Weirdly you can call it with NULL to wait for | 
 |  *	all commands to finish. Don't do this as that is due to change | 
 |  */ | 
 |  | 
 | static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, | 
 | 		struct request *rq) | 
 | { | 
 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 	if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) { | 
 |  		ide_task_t *args = rq->special; | 
 |   | 
 | 		if (!args) | 
 | 			goto done; | 
 |  | 
 | 		hwif->data_phase = args->data_phase; | 
 |  | 
 | 		switch (hwif->data_phase) { | 
 | 		case TASKFILE_MULTI_OUT: | 
 | 		case TASKFILE_OUT: | 
 | 		case TASKFILE_MULTI_IN: | 
 | 		case TASKFILE_IN: | 
 | 			ide_init_sg_cmd(drive, rq); | 
 | 			ide_map_sg(drive, rq); | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (args->tf_out_flags.all != 0)  | 
 | 			return flagged_taskfile(drive, args); | 
 | 		return do_rw_taskfile(drive, args); | 
 | 	} else if (rq->cmd_type == REQ_TYPE_ATA_TASK) { | 
 | 		u8 *args = rq->buffer; | 
 | 		u8 sel; | 
 |   | 
 | 		if (!args) | 
 | 			goto done; | 
 | #ifdef DEBUG | 
 |  		printk("%s: DRIVE_TASK_CMD ", drive->name); | 
 |  		printk("cmd=0x%02x ", args[0]); | 
 |  		printk("fr=0x%02x ", args[1]); | 
 |  		printk("ns=0x%02x ", args[2]); | 
 |  		printk("sc=0x%02x ", args[3]); | 
 |  		printk("lcyl=0x%02x ", args[4]); | 
 |  		printk("hcyl=0x%02x ", args[5]); | 
 |  		printk("sel=0x%02x\n", args[6]); | 
 | #endif | 
 |  		hwif->OUTB(args[1], IDE_FEATURE_REG); | 
 |  		hwif->OUTB(args[3], IDE_SECTOR_REG); | 
 |  		hwif->OUTB(args[4], IDE_LCYL_REG); | 
 |  		hwif->OUTB(args[5], IDE_HCYL_REG); | 
 |  		sel = (args[6] & ~0x10); | 
 |  		if (drive->select.b.unit) | 
 |  			sel |= 0x10; | 
 |  		hwif->OUTB(sel, IDE_SELECT_REG); | 
 |  		ide_cmd(drive, args[0], args[2], &drive_cmd_intr); | 
 |  		return ide_started; | 
 |  	} else if (rq->cmd_type == REQ_TYPE_ATA_CMD) { | 
 |  		u8 *args = rq->buffer; | 
 |  | 
 | 		if (!args) | 
 | 			goto done; | 
 | #ifdef DEBUG | 
 |  		printk("%s: DRIVE_CMD ", drive->name); | 
 |  		printk("cmd=0x%02x ", args[0]); | 
 |  		printk("sc=0x%02x ", args[1]); | 
 |  		printk("fr=0x%02x ", args[2]); | 
 |  		printk("xx=0x%02x\n", args[3]); | 
 | #endif | 
 |  		if (args[0] == WIN_SMART) { | 
 |  			hwif->OUTB(0x4f, IDE_LCYL_REG); | 
 |  			hwif->OUTB(0xc2, IDE_HCYL_REG); | 
 |  			hwif->OUTB(args[2],IDE_FEATURE_REG); | 
 |  			hwif->OUTB(args[1],IDE_SECTOR_REG); | 
 |  			ide_cmd(drive, args[0], args[3], &drive_cmd_intr); | 
 |  			return ide_started; | 
 |  		} | 
 |  		hwif->OUTB(args[2],IDE_FEATURE_REG); | 
 |  		ide_cmd(drive, args[0], args[1], &drive_cmd_intr); | 
 |  		return ide_started; | 
 |  	} | 
 |  | 
 | done: | 
 |  	/* | 
 |  	 * NULL is actually a valid way of waiting for | 
 |  	 * all current requests to be flushed from the queue. | 
 |  	 */ | 
 | #ifdef DEBUG | 
 |  	printk("%s: DRIVE_CMD (null)\n", drive->name); | 
 | #endif | 
 |  	ide_end_drive_cmd(drive, | 
 | 			hwif->INB(IDE_STATUS_REG), | 
 | 			hwif->INB(IDE_ERROR_REG)); | 
 |  	return ide_stopped; | 
 | } | 
 |  | 
 | static void ide_check_pm_state(ide_drive_t *drive, struct request *rq) | 
 | { | 
 | 	struct request_pm_state *pm = rq->data; | 
 |  | 
 | 	if (blk_pm_suspend_request(rq) && | 
 | 	    pm->pm_step == ide_pm_state_start_suspend) | 
 | 		/* Mark drive blocked when starting the suspend sequence. */ | 
 | 		drive->blocked = 1; | 
 | 	else if (blk_pm_resume_request(rq) && | 
 | 		 pm->pm_step == ide_pm_state_start_resume) { | 
 | 		/*  | 
 | 		 * The first thing we do on wakeup is to wait for BSY bit to | 
 | 		 * go away (with a looong timeout) as a drive on this hwif may | 
 | 		 * just be POSTing itself. | 
 | 		 * We do that before even selecting as the "other" device on | 
 | 		 * the bus may be broken enough to walk on our toes at this | 
 | 		 * point. | 
 | 		 */ | 
 | 		int rc; | 
 | #ifdef DEBUG_PM | 
 | 		printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); | 
 | #endif | 
 | 		rc = ide_wait_not_busy(HWIF(drive), 35000); | 
 | 		if (rc) | 
 | 			printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); | 
 | 		SELECT_DRIVE(drive); | 
 | 		HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]); | 
 | 		rc = ide_wait_not_busy(HWIF(drive), 100000); | 
 | 		if (rc) | 
 | 			printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	start_request	-	start of I/O and command issuing for IDE | 
 |  * | 
 |  *	start_request() initiates handling of a new I/O request. It | 
 |  *	accepts commands and I/O (read/write) requests. It also does | 
 |  *	the final remapping for weird stuff like EZDrive. Once  | 
 |  *	device mapper can work sector level the EZDrive stuff can go away | 
 |  * | 
 |  *	FIXME: this function needs a rename | 
 |  */ | 
 |   | 
 | static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) | 
 | { | 
 | 	ide_startstop_t startstop; | 
 | 	sector_t block; | 
 |  | 
 | 	BUG_ON(!blk_rq_started(rq)); | 
 |  | 
 | #ifdef DEBUG | 
 | 	printk("%s: start_request: current=0x%08lx\n", | 
 | 		HWIF(drive)->name, (unsigned long) rq); | 
 | #endif | 
 |  | 
 | 	/* bail early if we've exceeded max_failures */ | 
 | 	if (drive->max_failures && (drive->failures > drive->max_failures)) { | 
 | 		goto kill_rq; | 
 | 	} | 
 |  | 
 | 	block    = rq->sector; | 
 | 	if (blk_fs_request(rq) && | 
 | 	    (drive->media == ide_disk || drive->media == ide_floppy)) { | 
 | 		block += drive->sect0; | 
 | 	} | 
 | 	/* Yecch - this will shift the entire interval, | 
 | 	   possibly killing some innocent following sector */ | 
 | 	if (block == 0 && drive->remap_0_to_1 == 1) | 
 | 		block = 1;  /* redirect MBR access to EZ-Drive partn table */ | 
 |  | 
 | 	if (blk_pm_request(rq)) | 
 | 		ide_check_pm_state(drive, rq); | 
 |  | 
 | 	SELECT_DRIVE(drive); | 
 | 	if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { | 
 | 		printk(KERN_ERR "%s: drive not ready for command\n", drive->name); | 
 | 		return startstop; | 
 | 	} | 
 | 	if (!drive->special.all) { | 
 | 		ide_driver_t *drv; | 
 |  | 
 | 		/* | 
 | 		 * We reset the drive so we need to issue a SETFEATURES. | 
 | 		 * Do it _after_ do_special() restored device parameters. | 
 | 		 */ | 
 | 		if (drive->current_speed == 0xff) | 
 | 			ide_config_drive_speed(drive, drive->desired_speed); | 
 |  | 
 | 		if (rq->cmd_type == REQ_TYPE_ATA_CMD || | 
 | 		    rq->cmd_type == REQ_TYPE_ATA_TASK || | 
 | 		    rq->cmd_type == REQ_TYPE_ATA_TASKFILE) | 
 | 			return execute_drive_cmd(drive, rq); | 
 | 		else if (blk_pm_request(rq)) { | 
 | 			struct request_pm_state *pm = rq->data; | 
 | #ifdef DEBUG_PM | 
 | 			printk("%s: start_power_step(step: %d)\n", | 
 | 				drive->name, rq->pm->pm_step); | 
 | #endif | 
 | 			startstop = ide_start_power_step(drive, rq); | 
 | 			if (startstop == ide_stopped && | 
 | 			    pm->pm_step == ide_pm_state_completed) | 
 | 				ide_complete_pm_request(drive, rq); | 
 | 			return startstop; | 
 | 		} | 
 |  | 
 | 		drv = *(ide_driver_t **)rq->rq_disk->private_data; | 
 | 		return drv->do_request(drive, rq, block); | 
 | 	} | 
 | 	return do_special(drive); | 
 | kill_rq: | 
 | 	ide_kill_rq(drive, rq); | 
 | 	return ide_stopped; | 
 | } | 
 |  | 
 | /** | 
 |  *	ide_stall_queue		-	pause an IDE device | 
 |  *	@drive: drive to stall | 
 |  *	@timeout: time to stall for (jiffies) | 
 |  * | 
 |  *	ide_stall_queue() can be used by a drive to give excess bandwidth back | 
 |  *	to the hwgroup by sleeping for timeout jiffies. | 
 |  */ | 
 |   | 
 | void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) | 
 | { | 
 | 	if (timeout > WAIT_WORSTCASE) | 
 | 		timeout = WAIT_WORSTCASE; | 
 | 	drive->sleep = timeout + jiffies; | 
 | 	drive->sleeping = 1; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ide_stall_queue); | 
 |  | 
 | #define WAKEUP(drive)	((drive)->service_start + 2 * (drive)->service_time) | 
 |  | 
 | /** | 
 |  *	choose_drive		-	select a drive to service | 
 |  *	@hwgroup: hardware group to select on | 
 |  * | 
 |  *	choose_drive() selects the next drive which will be serviced. | 
 |  *	This is necessary because the IDE layer can't issue commands | 
 |  *	to both drives on the same cable, unlike SCSI. | 
 |  */ | 
 |   | 
 | static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) | 
 | { | 
 | 	ide_drive_t *drive, *best; | 
 |  | 
 | repeat:	 | 
 | 	best = NULL; | 
 | 	drive = hwgroup->drive; | 
 |  | 
 | 	/* | 
 | 	 * drive is doing pre-flush, ordered write, post-flush sequence. even | 
 | 	 * though that is 3 requests, it must be seen as a single transaction. | 
 | 	 * we must not preempt this drive until that is complete | 
 | 	 */ | 
 | 	if (blk_queue_flushing(drive->queue)) { | 
 | 		/* | 
 | 		 * small race where queue could get replugged during | 
 | 		 * the 3-request flush cycle, just yank the plug since | 
 | 		 * we want it to finish asap | 
 | 		 */ | 
 | 		blk_remove_plug(drive->queue); | 
 | 		return drive; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) | 
 | 		    && !elv_queue_empty(drive->queue)) { | 
 | 			if (!best | 
 | 			 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) | 
 | 			 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) | 
 | 			{ | 
 | 				if (!blk_queue_plugged(drive->queue)) | 
 | 					best = drive; | 
 | 			} | 
 | 		} | 
 | 	} while ((drive = drive->next) != hwgroup->drive); | 
 | 	if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { | 
 | 		long t = (signed long)(WAKEUP(best) - jiffies); | 
 | 		if (t >= WAIT_MIN_SLEEP) { | 
 | 		/* | 
 | 		 * We *may* have some time to spare, but first let's see if | 
 | 		 * someone can potentially benefit from our nice mood today.. | 
 | 		 */ | 
 | 			drive = best->next; | 
 | 			do { | 
 | 				if (!drive->sleeping | 
 | 				 && time_before(jiffies - best->service_time, WAKEUP(drive)) | 
 | 				 && time_before(WAKEUP(drive), jiffies + t)) | 
 | 				{ | 
 | 					ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); | 
 | 					goto repeat; | 
 | 				} | 
 | 			} while ((drive = drive->next) != best); | 
 | 		} | 
 | 	} | 
 | 	return best; | 
 | } | 
 |  | 
 | /* | 
 |  * Issue a new request to a drive from hwgroup | 
 |  * Caller must have already done spin_lock_irqsave(&ide_lock, ..); | 
 |  * | 
 |  * A hwgroup is a serialized group of IDE interfaces.  Usually there is | 
 |  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) | 
 |  * may have both interfaces in a single hwgroup to "serialize" access. | 
 |  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped | 
 |  * together into one hwgroup for serialized access. | 
 |  * | 
 |  * Note also that several hwgroups can end up sharing a single IRQ, | 
 |  * possibly along with many other devices.  This is especially common in | 
 |  * PCI-based systems with off-board IDE controller cards. | 
 |  * | 
 |  * The IDE driver uses the single global ide_lock spinlock to protect | 
 |  * access to the request queues, and to protect the hwgroup->busy flag. | 
 |  * | 
 |  * The first thread into the driver for a particular hwgroup sets the | 
 |  * hwgroup->busy flag to indicate that this hwgroup is now active, | 
 |  * and then initiates processing of the top request from the request queue. | 
 |  * | 
 |  * Other threads attempting entry notice the busy setting, and will simply | 
 |  * queue their new requests and exit immediately.  Note that hwgroup->busy | 
 |  * remains set even when the driver is merely awaiting the next interrupt. | 
 |  * Thus, the meaning is "this hwgroup is busy processing a request". | 
 |  * | 
 |  * When processing of a request completes, the completing thread or IRQ-handler | 
 |  * will start the next request from the queue.  If no more work remains, | 
 |  * the driver will clear the hwgroup->busy flag and exit. | 
 |  * | 
 |  * The ide_lock (spinlock) is used to protect all access to the | 
 |  * hwgroup->busy flag, but is otherwise not needed for most processing in | 
 |  * the driver.  This makes the driver much more friendlier to shared IRQs | 
 |  * than previous designs, while remaining 100% (?) SMP safe and capable. | 
 |  */ | 
 | static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) | 
 | { | 
 | 	ide_drive_t	*drive; | 
 | 	ide_hwif_t	*hwif; | 
 | 	struct request	*rq; | 
 | 	ide_startstop_t	startstop; | 
 | 	int             loops = 0; | 
 |  | 
 | 	/* for atari only: POSSIBLY BROKEN HERE(?) */ | 
 | 	ide_get_lock(ide_intr, hwgroup); | 
 |  | 
 | 	/* caller must own ide_lock */ | 
 | 	BUG_ON(!irqs_disabled()); | 
 |  | 
 | 	while (!hwgroup->busy) { | 
 | 		hwgroup->busy = 1; | 
 | 		drive = choose_drive(hwgroup); | 
 | 		if (drive == NULL) { | 
 | 			int sleeping = 0; | 
 | 			unsigned long sleep = 0; /* shut up, gcc */ | 
 | 			hwgroup->rq = NULL; | 
 | 			drive = hwgroup->drive; | 
 | 			do { | 
 | 				if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { | 
 | 					sleeping = 1; | 
 | 					sleep = drive->sleep; | 
 | 				} | 
 | 			} while ((drive = drive->next) != hwgroup->drive); | 
 | 			if (sleeping) { | 
 | 		/* | 
 | 		 * Take a short snooze, and then wake up this hwgroup again. | 
 | 		 * This gives other hwgroups on the same a chance to | 
 | 		 * play fairly with us, just in case there are big differences | 
 | 		 * in relative throughputs.. don't want to hog the cpu too much. | 
 | 		 */ | 
 | 				if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) | 
 | 					sleep = jiffies + WAIT_MIN_SLEEP; | 
 | #if 1 | 
 | 				if (timer_pending(&hwgroup->timer)) | 
 | 					printk(KERN_CRIT "ide_set_handler: timer already active\n"); | 
 | #endif | 
 | 				/* so that ide_timer_expiry knows what to do */ | 
 | 				hwgroup->sleeping = 1; | 
 | 				hwgroup->req_gen_timer = hwgroup->req_gen; | 
 | 				mod_timer(&hwgroup->timer, sleep); | 
 | 				/* we purposely leave hwgroup->busy==1 | 
 | 				 * while sleeping */ | 
 | 			} else { | 
 | 				/* Ugly, but how can we sleep for the lock | 
 | 				 * otherwise? perhaps from tq_disk? | 
 | 				 */ | 
 |  | 
 | 				/* for atari only */ | 
 | 				ide_release_lock(); | 
 | 				hwgroup->busy = 0; | 
 | 			} | 
 |  | 
 | 			/* no more work for this hwgroup (for now) */ | 
 | 			return; | 
 | 		} | 
 | 	again: | 
 | 		hwif = HWIF(drive); | 
 | 		if (hwgroup->hwif->sharing_irq && | 
 | 		    hwif != hwgroup->hwif && | 
 | 		    hwif->io_ports[IDE_CONTROL_OFFSET]) { | 
 | 			/* set nIEN for previous hwif */ | 
 | 			SELECT_INTERRUPT(drive); | 
 | 		} | 
 | 		hwgroup->hwif = hwif; | 
 | 		hwgroup->drive = drive; | 
 | 		drive->sleeping = 0; | 
 | 		drive->service_start = jiffies; | 
 |  | 
 | 		if (blk_queue_plugged(drive->queue)) { | 
 | 			printk(KERN_ERR "ide: huh? queue was plugged!\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * we know that the queue isn't empty, but this can happen | 
 | 		 * if the q->prep_rq_fn() decides to kill a request | 
 | 		 */ | 
 | 		rq = elv_next_request(drive->queue); | 
 | 		if (!rq) { | 
 | 			hwgroup->busy = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Sanity: don't accept a request that isn't a PM request | 
 | 		 * if we are currently power managed. This is very important as | 
 | 		 * blk_stop_queue() doesn't prevent the elv_next_request() | 
 | 		 * above to return us whatever is in the queue. Since we call | 
 | 		 * ide_do_request() ourselves, we end up taking requests while | 
 | 		 * the queue is blocked... | 
 | 		 *  | 
 | 		 * We let requests forced at head of queue with ide-preempt | 
 | 		 * though. I hope that doesn't happen too much, hopefully not | 
 | 		 * unless the subdriver triggers such a thing in its own PM | 
 | 		 * state machine. | 
 | 		 * | 
 | 		 * We count how many times we loop here to make sure we service | 
 | 		 * all drives in the hwgroup without looping for ever | 
 | 		 */ | 
 | 		if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) { | 
 | 			drive = drive->next ? drive->next : hwgroup->drive; | 
 | 			if (loops++ < 4 && !blk_queue_plugged(drive->queue)) | 
 | 				goto again; | 
 | 			/* We clear busy, there should be no pending ATA command at this point. */ | 
 | 			hwgroup->busy = 0; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		hwgroup->rq = rq; | 
 |  | 
 | 		/* | 
 | 		 * Some systems have trouble with IDE IRQs arriving while | 
 | 		 * the driver is still setting things up.  So, here we disable | 
 | 		 * the IRQ used by this interface while the request is being started. | 
 | 		 * This may look bad at first, but pretty much the same thing | 
 | 		 * happens anyway when any interrupt comes in, IDE or otherwise | 
 | 		 *  -- the kernel masks the IRQ while it is being handled. | 
 | 		 */ | 
 | 		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) | 
 | 			disable_irq_nosync(hwif->irq); | 
 | 		spin_unlock(&ide_lock); | 
 | 		local_irq_enable_in_hardirq(); | 
 | 			/* allow other IRQs while we start this request */ | 
 | 		startstop = start_request(drive, rq); | 
 | 		spin_lock_irq(&ide_lock); | 
 | 		if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) | 
 | 			enable_irq(hwif->irq); | 
 | 		if (startstop == ide_stopped) | 
 | 			hwgroup->busy = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Passes the stuff to ide_do_request | 
 |  */ | 
 | void do_ide_request(request_queue_t *q) | 
 | { | 
 | 	ide_drive_t *drive = q->queuedata; | 
 |  | 
 | 	ide_do_request(HWGROUP(drive), IDE_NO_IRQ); | 
 | } | 
 |  | 
 | /* | 
 |  * un-busy the hwgroup etc, and clear any pending DMA status. we want to | 
 |  * retry the current request in pio mode instead of risking tossing it | 
 |  * all away | 
 |  */ | 
 | static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) | 
 | { | 
 | 	ide_hwif_t *hwif = HWIF(drive); | 
 | 	struct request *rq; | 
 | 	ide_startstop_t ret = ide_stopped; | 
 |  | 
 | 	/* | 
 | 	 * end current dma transaction | 
 | 	 */ | 
 |  | 
 | 	if (error < 0) { | 
 | 		printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); | 
 | 		(void)HWIF(drive)->ide_dma_end(drive); | 
 | 		ret = ide_error(drive, "dma timeout error", | 
 | 						hwif->INB(IDE_STATUS_REG)); | 
 | 	} else { | 
 | 		printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); | 
 | 		(void) hwif->ide_dma_timeout(drive); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * disable dma for now, but remember that we did so because of | 
 | 	 * a timeout -- we'll reenable after we finish this next request | 
 | 	 * (or rather the first chunk of it) in pio. | 
 | 	 */ | 
 | 	drive->retry_pio++; | 
 | 	drive->state = DMA_PIO_RETRY; | 
 | 	hwif->dma_off_quietly(drive); | 
 |  | 
 | 	/* | 
 | 	 * un-busy drive etc (hwgroup->busy is cleared on return) and | 
 | 	 * make sure request is sane | 
 | 	 */ | 
 | 	rq = HWGROUP(drive)->rq; | 
 |  | 
 | 	if (!rq) | 
 | 		goto out; | 
 |  | 
 | 	HWGROUP(drive)->rq = NULL; | 
 |  | 
 | 	rq->errors = 0; | 
 |  | 
 | 	if (!rq->bio) | 
 | 		goto out; | 
 |  | 
 | 	rq->sector = rq->bio->bi_sector; | 
 | 	rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; | 
 | 	rq->hard_cur_sectors = rq->current_nr_sectors; | 
 | 	rq->buffer = bio_data(rq->bio); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	ide_timer_expiry	-	handle lack of an IDE interrupt | 
 |  *	@data: timer callback magic (hwgroup) | 
 |  * | 
 |  *	An IDE command has timed out before the expected drive return | 
 |  *	occurred. At this point we attempt to clean up the current | 
 |  *	mess. If the current handler includes an expiry handler then | 
 |  *	we invoke the expiry handler, and providing it is happy the | 
 |  *	work is done. If that fails we apply generic recovery rules | 
 |  *	invoking the handler and checking the drive DMA status. We | 
 |  *	have an excessively incestuous relationship with the DMA | 
 |  *	logic that wants cleaning up. | 
 |  */ | 
 |   | 
 | void ide_timer_expiry (unsigned long data) | 
 | { | 
 | 	ide_hwgroup_t	*hwgroup = (ide_hwgroup_t *) data; | 
 | 	ide_handler_t	*handler; | 
 | 	ide_expiry_t	*expiry; | 
 | 	unsigned long	flags; | 
 | 	unsigned long	wait = -1; | 
 |  | 
 | 	spin_lock_irqsave(&ide_lock, flags); | 
 |  | 
 | 	if (((handler = hwgroup->handler) == NULL) || | 
 | 	    (hwgroup->req_gen != hwgroup->req_gen_timer)) { | 
 | 		/* | 
 | 		 * Either a marginal timeout occurred | 
 | 		 * (got the interrupt just as timer expired), | 
 | 		 * or we were "sleeping" to give other devices a chance. | 
 | 		 * Either way, we don't really want to complain about anything. | 
 | 		 */ | 
 | 		if (hwgroup->sleeping) { | 
 | 			hwgroup->sleeping = 0; | 
 | 			hwgroup->busy = 0; | 
 | 		} | 
 | 	} else { | 
 | 		ide_drive_t *drive = hwgroup->drive; | 
 | 		if (!drive) { | 
 | 			printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); | 
 | 			hwgroup->handler = NULL; | 
 | 		} else { | 
 | 			ide_hwif_t *hwif; | 
 | 			ide_startstop_t startstop = ide_stopped; | 
 | 			if (!hwgroup->busy) { | 
 | 				hwgroup->busy = 1;	/* paranoia */ | 
 | 				printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); | 
 | 			} | 
 | 			if ((expiry = hwgroup->expiry) != NULL) { | 
 | 				/* continue */ | 
 | 				if ((wait = expiry(drive)) > 0) { | 
 | 					/* reset timer */ | 
 | 					hwgroup->timer.expires  = jiffies + wait; | 
 | 					hwgroup->req_gen_timer = hwgroup->req_gen; | 
 | 					add_timer(&hwgroup->timer); | 
 | 					spin_unlock_irqrestore(&ide_lock, flags); | 
 | 					return; | 
 | 				} | 
 | 			} | 
 | 			hwgroup->handler = NULL; | 
 | 			/* | 
 | 			 * We need to simulate a real interrupt when invoking | 
 | 			 * the handler() function, which means we need to | 
 | 			 * globally mask the specific IRQ: | 
 | 			 */ | 
 | 			spin_unlock(&ide_lock); | 
 | 			hwif  = HWIF(drive); | 
 | #if DISABLE_IRQ_NOSYNC | 
 | 			disable_irq_nosync(hwif->irq); | 
 | #else | 
 | 			/* disable_irq_nosync ?? */ | 
 | 			disable_irq(hwif->irq); | 
 | #endif /* DISABLE_IRQ_NOSYNC */ | 
 | 			/* local CPU only, | 
 | 			 * as if we were handling an interrupt */ | 
 | 			local_irq_disable(); | 
 | 			if (hwgroup->polling) { | 
 | 				startstop = handler(drive); | 
 | 			} else if (drive_is_ready(drive)) { | 
 | 				if (drive->waiting_for_dma) | 
 | 					(void) hwgroup->hwif->ide_dma_lostirq(drive); | 
 | 				(void)ide_ack_intr(hwif); | 
 | 				printk(KERN_WARNING "%s: lost interrupt\n", drive->name); | 
 | 				startstop = handler(drive); | 
 | 			} else { | 
 | 				if (drive->waiting_for_dma) { | 
 | 					startstop = ide_dma_timeout_retry(drive, wait); | 
 | 				} else | 
 | 					startstop = | 
 | 					ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); | 
 | 			} | 
 | 			drive->service_time = jiffies - drive->service_start; | 
 | 			spin_lock_irq(&ide_lock); | 
 | 			enable_irq(hwif->irq); | 
 | 			if (startstop == ide_stopped) | 
 | 				hwgroup->busy = 0; | 
 | 		} | 
 | 	} | 
 | 	ide_do_request(hwgroup, IDE_NO_IRQ); | 
 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  *	unexpected_intr		-	handle an unexpected IDE interrupt | 
 |  *	@irq: interrupt line | 
 |  *	@hwgroup: hwgroup being processed | 
 |  * | 
 |  *	There's nothing really useful we can do with an unexpected interrupt, | 
 |  *	other than reading the status register (to clear it), and logging it. | 
 |  *	There should be no way that an irq can happen before we're ready for it, | 
 |  *	so we needn't worry much about losing an "important" interrupt here. | 
 |  * | 
 |  *	On laptops (and "green" PCs), an unexpected interrupt occurs whenever | 
 |  *	the drive enters "idle", "standby", or "sleep" mode, so if the status | 
 |  *	looks "good", we just ignore the interrupt completely. | 
 |  * | 
 |  *	This routine assumes __cli() is in effect when called. | 
 |  * | 
 |  *	If an unexpected interrupt happens on irq15 while we are handling irq14 | 
 |  *	and if the two interfaces are "serialized" (CMD640), then it looks like | 
 |  *	we could screw up by interfering with a new request being set up for  | 
 |  *	irq15. | 
 |  * | 
 |  *	In reality, this is a non-issue.  The new command is not sent unless  | 
 |  *	the drive is ready to accept one, in which case we know the drive is | 
 |  *	not trying to interrupt us.  And ide_set_handler() is always invoked | 
 |  *	before completing the issuance of any new drive command, so we will not | 
 |  *	be accidentally invoked as a result of any valid command completion | 
 |  *	interrupt. | 
 |  * | 
 |  *	Note that we must walk the entire hwgroup here. We know which hwif | 
 |  *	is doing the current command, but we don't know which hwif burped | 
 |  *	mysteriously. | 
 |  */ | 
 |   | 
 | static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) | 
 | { | 
 | 	u8 stat; | 
 | 	ide_hwif_t *hwif = hwgroup->hwif; | 
 |  | 
 | 	/* | 
 | 	 * handle the unexpected interrupt | 
 | 	 */ | 
 | 	do { | 
 | 		if (hwif->irq == irq) { | 
 | 			stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | 
 | 			if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { | 
 | 				/* Try to not flood the console with msgs */ | 
 | 				static unsigned long last_msgtime, count; | 
 | 				++count; | 
 | 				if (time_after(jiffies, last_msgtime + HZ)) { | 
 | 					last_msgtime = jiffies; | 
 | 					printk(KERN_ERR "%s%s: unexpected interrupt, " | 
 | 						"status=0x%02x, count=%ld\n", | 
 | 						hwif->name, | 
 | 						(hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} while ((hwif = hwif->next) != hwgroup->hwif); | 
 | } | 
 |  | 
 | /** | 
 |  *	ide_intr	-	default IDE interrupt handler | 
 |  *	@irq: interrupt number | 
 |  *	@dev_id: hwif group | 
 |  *	@regs: unused weirdness from the kernel irq layer | 
 |  * | 
 |  *	This is the default IRQ handler for the IDE layer. You should | 
 |  *	not need to override it. If you do be aware it is subtle in | 
 |  *	places | 
 |  * | 
 |  *	hwgroup->hwif is the interface in the group currently performing | 
 |  *	a command. hwgroup->drive is the drive and hwgroup->handler is | 
 |  *	the IRQ handler to call. As we issue a command the handlers | 
 |  *	step through multiple states, reassigning the handler to the | 
 |  *	next step in the process. Unlike a smart SCSI controller IDE | 
 |  *	expects the main processor to sequence the various transfer | 
 |  *	stages. We also manage a poll timer to catch up with most | 
 |  *	timeout situations. There are still a few where the handlers | 
 |  *	don't ever decide to give up. | 
 |  * | 
 |  *	The handler eventually returns ide_stopped to indicate the | 
 |  *	request completed. At this point we issue the next request | 
 |  *	on the hwgroup and the process begins again. | 
 |  */ | 
 |   | 
 | irqreturn_t ide_intr (int irq, void *dev_id) | 
 | { | 
 | 	unsigned long flags; | 
 | 	ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; | 
 | 	ide_hwif_t *hwif; | 
 | 	ide_drive_t *drive; | 
 | 	ide_handler_t *handler; | 
 | 	ide_startstop_t startstop; | 
 |  | 
 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 	hwif = hwgroup->hwif; | 
 |  | 
 | 	if (!ide_ack_intr(hwif)) { | 
 | 		spin_unlock_irqrestore(&ide_lock, flags); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 |  | 
 | 	if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { | 
 | 		/* | 
 | 		 * Not expecting an interrupt from this drive. | 
 | 		 * That means this could be: | 
 | 		 *	(1) an interrupt from another PCI device | 
 | 		 *	sharing the same PCI INT# as us. | 
 | 		 * or	(2) a drive just entered sleep or standby mode, | 
 | 		 *	and is interrupting to let us know. | 
 | 		 * or	(3) a spurious interrupt of unknown origin. | 
 | 		 * | 
 | 		 * For PCI, we cannot tell the difference, | 
 | 		 * so in that case we just ignore it and hope it goes away. | 
 | 		 * | 
 | 		 * FIXME: unexpected_intr should be hwif-> then we can | 
 | 		 * remove all the ifdef PCI crap | 
 | 		 */ | 
 | #ifdef CONFIG_BLK_DEV_IDEPCI | 
 | 		if (hwif->pci_dev && !hwif->pci_dev->vendor) | 
 | #endif	/* CONFIG_BLK_DEV_IDEPCI */ | 
 | 		{ | 
 | 			/* | 
 | 			 * Probably not a shared PCI interrupt, | 
 | 			 * so we can safely try to do something about it: | 
 | 			 */ | 
 | 			unexpected_intr(irq, hwgroup); | 
 | #ifdef CONFIG_BLK_DEV_IDEPCI | 
 | 		} else { | 
 | 			/* | 
 | 			 * Whack the status register, just in case | 
 | 			 * we have a leftover pending IRQ. | 
 | 			 */ | 
 | 			(void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | 
 | #endif /* CONFIG_BLK_DEV_IDEPCI */ | 
 | 		} | 
 | 		spin_unlock_irqrestore(&ide_lock, flags); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 | 	drive = hwgroup->drive; | 
 | 	if (!drive) { | 
 | 		/* | 
 | 		 * This should NEVER happen, and there isn't much | 
 | 		 * we could do about it here. | 
 | 		 * | 
 | 		 * [Note - this can occur if the drive is hot unplugged] | 
 | 		 */ | 
 | 		spin_unlock_irqrestore(&ide_lock, flags); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 | 	if (!drive_is_ready(drive)) { | 
 | 		/* | 
 | 		 * This happens regularly when we share a PCI IRQ with | 
 | 		 * another device.  Unfortunately, it can also happen | 
 | 		 * with some buggy drives that trigger the IRQ before | 
 | 		 * their status register is up to date.  Hopefully we have | 
 | 		 * enough advance overhead that the latter isn't a problem. | 
 | 		 */ | 
 | 		spin_unlock_irqrestore(&ide_lock, flags); | 
 | 		return IRQ_NONE; | 
 | 	} | 
 | 	if (!hwgroup->busy) { | 
 | 		hwgroup->busy = 1;	/* paranoia */ | 
 | 		printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); | 
 | 	} | 
 | 	hwgroup->handler = NULL; | 
 | 	hwgroup->req_gen++; | 
 | 	del_timer(&hwgroup->timer); | 
 | 	spin_unlock(&ide_lock); | 
 |  | 
 | 	/* Some controllers might set DMA INTR no matter DMA or PIO; | 
 | 	 * bmdma status might need to be cleared even for | 
 | 	 * PIO interrupts to prevent spurious/lost irq. | 
 | 	 */ | 
 | 	if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma)) | 
 | 		/* ide_dma_end() needs bmdma status for error checking. | 
 | 		 * So, skip clearing bmdma status here and leave it | 
 | 		 * to ide_dma_end() if this is dma interrupt. | 
 | 		 */ | 
 | 		hwif->ide_dma_clear_irq(drive); | 
 |  | 
 | 	if (drive->unmask) | 
 | 		local_irq_enable_in_hardirq(); | 
 | 	/* service this interrupt, may set handler for next interrupt */ | 
 | 	startstop = handler(drive); | 
 | 	spin_lock_irq(&ide_lock); | 
 |  | 
 | 	/* | 
 | 	 * Note that handler() may have set things up for another | 
 | 	 * interrupt to occur soon, but it cannot happen until | 
 | 	 * we exit from this routine, because it will be the | 
 | 	 * same irq as is currently being serviced here, and Linux | 
 | 	 * won't allow another of the same (on any CPU) until we return. | 
 | 	 */ | 
 | 	drive->service_time = jiffies - drive->service_start; | 
 | 	if (startstop == ide_stopped) { | 
 | 		if (hwgroup->handler == NULL) {	/* paranoia */ | 
 | 			hwgroup->busy = 0; | 
 | 			ide_do_request(hwgroup, hwif->irq); | 
 | 		} else { | 
 | 			printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " | 
 | 				"on exit\n", drive->name); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  *	ide_init_drive_cmd	-	initialize a drive command request | 
 |  *	@rq: request object | 
 |  * | 
 |  *	Initialize a request before we fill it in and send it down to | 
 |  *	ide_do_drive_cmd. Commands must be set up by this function. Right | 
 |  *	now it doesn't do a lot, but if that changes abusers will have a | 
 |  *	nasty surprise. | 
 |  */ | 
 |  | 
 | void ide_init_drive_cmd (struct request *rq) | 
 | { | 
 | 	memset(rq, 0, sizeof(*rq)); | 
 | 	rq->cmd_type = REQ_TYPE_ATA_CMD; | 
 | 	rq->ref_count = 1; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ide_init_drive_cmd); | 
 |  | 
 | /** | 
 |  *	ide_do_drive_cmd	-	issue IDE special command | 
 |  *	@drive: device to issue command | 
 |  *	@rq: request to issue | 
 |  *	@action: action for processing | 
 |  * | 
 |  *	This function issues a special IDE device request | 
 |  *	onto the request queue. | 
 |  * | 
 |  *	If action is ide_wait, then the rq is queued at the end of the | 
 |  *	request queue, and the function sleeps until it has been processed. | 
 |  *	This is for use when invoked from an ioctl handler. | 
 |  * | 
 |  *	If action is ide_preempt, then the rq is queued at the head of | 
 |  *	the request queue, displacing the currently-being-processed | 
 |  *	request and this function returns immediately without waiting | 
 |  *	for the new rq to be completed.  This is VERY DANGEROUS, and is | 
 |  *	intended for careful use by the ATAPI tape/cdrom driver code. | 
 |  * | 
 |  *	If action is ide_end, then the rq is queued at the end of the | 
 |  *	request queue, and the function returns immediately without waiting | 
 |  *	for the new rq to be completed. This is again intended for careful | 
 |  *	use by the ATAPI tape/cdrom driver code. | 
 |  */ | 
 |   | 
 | int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) | 
 | { | 
 | 	unsigned long flags; | 
 | 	ide_hwgroup_t *hwgroup = HWGROUP(drive); | 
 | 	DECLARE_COMPLETION_ONSTACK(wait); | 
 | 	int where = ELEVATOR_INSERT_BACK, err; | 
 | 	int must_wait = (action == ide_wait || action == ide_head_wait); | 
 |  | 
 | 	rq->errors = 0; | 
 |  | 
 | 	/* | 
 | 	 * we need to hold an extra reference to request for safe inspection | 
 | 	 * after completion | 
 | 	 */ | 
 | 	if (must_wait) { | 
 | 		rq->ref_count++; | 
 | 		rq->end_io_data = &wait; | 
 | 		rq->end_io = blk_end_sync_rq; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&ide_lock, flags); | 
 | 	if (action == ide_preempt) | 
 | 		hwgroup->rq = NULL; | 
 | 	if (action == ide_preempt || action == ide_head_wait) { | 
 | 		where = ELEVATOR_INSERT_FRONT; | 
 | 		rq->cmd_flags |= REQ_PREEMPT; | 
 | 	} | 
 | 	__elv_add_request(drive->queue, rq, where, 0); | 
 | 	ide_do_request(hwgroup, IDE_NO_IRQ); | 
 | 	spin_unlock_irqrestore(&ide_lock, flags); | 
 |  | 
 | 	err = 0; | 
 | 	if (must_wait) { | 
 | 		wait_for_completion(&wait); | 
 | 		if (rq->errors) | 
 | 			err = -EIO; | 
 |  | 
 | 		blk_put_request(rq); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ide_do_drive_cmd); |