|  | /* | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation; either version | 
|  | *   2 of the License, or (at your option) any later version. | 
|  | * | 
|  | *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet | 
|  | *     & Swedish University of Agricultural Sciences. | 
|  | * | 
|  | *   Jens Laas <jens.laas@data.slu.se> Swedish University of | 
|  | *     Agricultural Sciences. | 
|  | * | 
|  | *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet | 
|  | * | 
|  | * This work is based on the LPC-trie which is originally descibed in: | 
|  | * | 
|  | * An experimental study of compression methods for dynamic tries | 
|  | * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002. | 
|  | * http://www.csc.kth.se/~snilsson/software/dyntrie2/ | 
|  | * | 
|  | * | 
|  | * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson | 
|  | * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999 | 
|  | * | 
|  | * | 
|  | * Code from fib_hash has been reused which includes the following header: | 
|  | * | 
|  | * | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		IPv4 FIB: lookup engine and maintenance routines. | 
|  | * | 
|  | * | 
|  | * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> | 
|  | * | 
|  | *		This program is free software; you can redistribute it and/or | 
|  | *		modify it under the terms of the GNU General Public License | 
|  | *		as published by the Free Software Foundation; either version | 
|  | *		2 of the License, or (at your option) any later version. | 
|  | * | 
|  | * Substantial contributions to this work comes from: | 
|  | * | 
|  | *		David S. Miller, <davem@davemloft.net> | 
|  | *		Stephen Hemminger <shemminger@osdl.org> | 
|  | *		Paul E. McKenney <paulmck@us.ibm.com> | 
|  | *		Patrick McHardy <kaber@trash.net> | 
|  | */ | 
|  |  | 
|  | #define VERSION "0.409" | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/system.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/sockios.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/in.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/inetdevice.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/if_arp.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/netlink.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/slab.h> | 
|  | #include <net/net_namespace.h> | 
|  | #include <net/ip.h> | 
|  | #include <net/protocol.h> | 
|  | #include <net/route.h> | 
|  | #include <net/tcp.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/ip_fib.h> | 
|  | #include "fib_lookup.h" | 
|  |  | 
|  | #define MAX_STAT_DEPTH 32 | 
|  |  | 
|  | #define KEYLENGTH (8*sizeof(t_key)) | 
|  |  | 
|  | typedef unsigned int t_key; | 
|  |  | 
|  | #define T_TNODE 0 | 
|  | #define T_LEAF  1 | 
|  | #define NODE_TYPE_MASK	0x1UL | 
|  | #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK) | 
|  |  | 
|  | #define IS_TNODE(n) (!(n->parent & T_LEAF)) | 
|  | #define IS_LEAF(n) (n->parent & T_LEAF) | 
|  |  | 
|  | struct node { | 
|  | unsigned long parent; | 
|  | t_key key; | 
|  | }; | 
|  |  | 
|  | struct leaf { | 
|  | unsigned long parent; | 
|  | t_key key; | 
|  | struct hlist_head list; | 
|  | struct rcu_head rcu; | 
|  | }; | 
|  |  | 
|  | struct leaf_info { | 
|  | struct hlist_node hlist; | 
|  | struct rcu_head rcu; | 
|  | int plen; | 
|  | struct list_head falh; | 
|  | }; | 
|  |  | 
|  | struct tnode { | 
|  | unsigned long parent; | 
|  | t_key key; | 
|  | unsigned char pos;		/* 2log(KEYLENGTH) bits needed */ | 
|  | unsigned char bits;		/* 2log(KEYLENGTH) bits needed */ | 
|  | unsigned int full_children;	/* KEYLENGTH bits needed */ | 
|  | unsigned int empty_children;	/* KEYLENGTH bits needed */ | 
|  | union { | 
|  | struct rcu_head rcu; | 
|  | struct work_struct work; | 
|  | struct tnode *tnode_free; | 
|  | }; | 
|  | struct node *child[0]; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | struct trie_use_stats { | 
|  | unsigned int gets; | 
|  | unsigned int backtrack; | 
|  | unsigned int semantic_match_passed; | 
|  | unsigned int semantic_match_miss; | 
|  | unsigned int null_node_hit; | 
|  | unsigned int resize_node_skipped; | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | struct trie_stat { | 
|  | unsigned int totdepth; | 
|  | unsigned int maxdepth; | 
|  | unsigned int tnodes; | 
|  | unsigned int leaves; | 
|  | unsigned int nullpointers; | 
|  | unsigned int prefixes; | 
|  | unsigned int nodesizes[MAX_STAT_DEPTH]; | 
|  | }; | 
|  |  | 
|  | struct trie { | 
|  | struct node *trie; | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | struct trie_use_stats stats; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n); | 
|  | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, | 
|  | int wasfull); | 
|  | static struct node *resize(struct trie *t, struct tnode *tn); | 
|  | static struct tnode *inflate(struct trie *t, struct tnode *tn); | 
|  | static struct tnode *halve(struct trie *t, struct tnode *tn); | 
|  | /* tnodes to free after resize(); protected by RTNL */ | 
|  | static struct tnode *tnode_free_head; | 
|  | static size_t tnode_free_size; | 
|  |  | 
|  | /* | 
|  | * synchronize_rcu after call_rcu for that many pages; it should be especially | 
|  | * useful before resizing the root node with PREEMPT_NONE configs; the value was | 
|  | * obtained experimentally, aiming to avoid visible slowdown. | 
|  | */ | 
|  | static const int sync_pages = 128; | 
|  |  | 
|  | static struct kmem_cache *fn_alias_kmem __read_mostly; | 
|  | static struct kmem_cache *trie_leaf_kmem __read_mostly; | 
|  |  | 
|  | static inline struct tnode *node_parent(struct node *node) | 
|  | { | 
|  | return (struct tnode *)(node->parent & ~NODE_TYPE_MASK); | 
|  | } | 
|  |  | 
|  | static inline struct tnode *node_parent_rcu(struct node *node) | 
|  | { | 
|  | struct tnode *ret = node_parent(node); | 
|  |  | 
|  | return rcu_dereference_rtnl(ret); | 
|  | } | 
|  |  | 
|  | /* Same as rcu_assign_pointer | 
|  | * but that macro() assumes that value is a pointer. | 
|  | */ | 
|  | static inline void node_set_parent(struct node *node, struct tnode *ptr) | 
|  | { | 
|  | smp_wmb(); | 
|  | node->parent = (unsigned long)ptr | NODE_TYPE(node); | 
|  | } | 
|  |  | 
|  | static inline struct node *tnode_get_child(struct tnode *tn, unsigned int i) | 
|  | { | 
|  | BUG_ON(i >= 1U << tn->bits); | 
|  |  | 
|  | return tn->child[i]; | 
|  | } | 
|  |  | 
|  | static inline struct node *tnode_get_child_rcu(struct tnode *tn, unsigned int i) | 
|  | { | 
|  | struct node *ret = tnode_get_child(tn, i); | 
|  |  | 
|  | return rcu_dereference_rtnl(ret); | 
|  | } | 
|  |  | 
|  | static inline int tnode_child_length(const struct tnode *tn) | 
|  | { | 
|  | return 1 << tn->bits; | 
|  | } | 
|  |  | 
|  | static inline t_key mask_pfx(t_key k, unsigned short l) | 
|  | { | 
|  | return (l == 0) ? 0 : k >> (KEYLENGTH-l) << (KEYLENGTH-l); | 
|  | } | 
|  |  | 
|  | static inline t_key tkey_extract_bits(t_key a, int offset, int bits) | 
|  | { | 
|  | if (offset < KEYLENGTH) | 
|  | return ((t_key)(a << offset)) >> (KEYLENGTH - bits); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int tkey_equals(t_key a, t_key b) | 
|  | { | 
|  | return a == b; | 
|  | } | 
|  |  | 
|  | static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b) | 
|  | { | 
|  | if (bits == 0 || offset >= KEYLENGTH) | 
|  | return 1; | 
|  | bits = bits > KEYLENGTH ? KEYLENGTH : bits; | 
|  | return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0; | 
|  | } | 
|  |  | 
|  | static inline int tkey_mismatch(t_key a, int offset, t_key b) | 
|  | { | 
|  | t_key diff = a ^ b; | 
|  | int i = offset; | 
|  |  | 
|  | if (!diff) | 
|  | return 0; | 
|  | while ((diff << i) >> (KEYLENGTH-1) == 0) | 
|  | i++; | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | To understand this stuff, an understanding of keys and all their bits is | 
|  | necessary. Every node in the trie has a key associated with it, but not | 
|  | all of the bits in that key are significant. | 
|  |  | 
|  | Consider a node 'n' and its parent 'tp'. | 
|  |  | 
|  | If n is a leaf, every bit in its key is significant. Its presence is | 
|  | necessitated by path compression, since during a tree traversal (when | 
|  | searching for a leaf - unless we are doing an insertion) we will completely | 
|  | ignore all skipped bits we encounter. Thus we need to verify, at the end of | 
|  | a potentially successful search, that we have indeed been walking the | 
|  | correct key path. | 
|  |  | 
|  | Note that we can never "miss" the correct key in the tree if present by | 
|  | following the wrong path. Path compression ensures that segments of the key | 
|  | that are the same for all keys with a given prefix are skipped, but the | 
|  | skipped part *is* identical for each node in the subtrie below the skipped | 
|  | bit! trie_insert() in this implementation takes care of that - note the | 
|  | call to tkey_sub_equals() in trie_insert(). | 
|  |  | 
|  | if n is an internal node - a 'tnode' here, the various parts of its key | 
|  | have many different meanings. | 
|  |  | 
|  | Example: | 
|  | _________________________________________________________________ | 
|  | | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C | | 
|  | ----------------------------------------------------------------- | 
|  | 0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15 | 
|  |  | 
|  | _________________________________________________________________ | 
|  | | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u | | 
|  | ----------------------------------------------------------------- | 
|  | 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31 | 
|  |  | 
|  | tp->pos = 7 | 
|  | tp->bits = 3 | 
|  | n->pos = 15 | 
|  | n->bits = 4 | 
|  |  | 
|  | First, let's just ignore the bits that come before the parent tp, that is | 
|  | the bits from 0 to (tp->pos-1). They are *known* but at this point we do | 
|  | not use them for anything. | 
|  |  | 
|  | The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the | 
|  | index into the parent's child array. That is, they will be used to find | 
|  | 'n' among tp's children. | 
|  |  | 
|  | The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits | 
|  | for the node n. | 
|  |  | 
|  | All the bits we have seen so far are significant to the node n. The rest | 
|  | of the bits are really not needed or indeed known in n->key. | 
|  |  | 
|  | The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into | 
|  | n's child array, and will of course be different for each child. | 
|  |  | 
|  |  | 
|  | The rest of the bits, from (n->pos + n->bits) onward, are completely unknown | 
|  | at this point. | 
|  |  | 
|  | */ | 
|  |  | 
|  | static inline void check_tnode(const struct tnode *tn) | 
|  | { | 
|  | WARN_ON(tn && tn->pos+tn->bits > 32); | 
|  | } | 
|  |  | 
|  | static const int halve_threshold = 25; | 
|  | static const int inflate_threshold = 50; | 
|  | static const int halve_threshold_root = 15; | 
|  | static const int inflate_threshold_root = 30; | 
|  |  | 
|  | static void __alias_free_mem(struct rcu_head *head) | 
|  | { | 
|  | struct fib_alias *fa = container_of(head, struct fib_alias, rcu); | 
|  | kmem_cache_free(fn_alias_kmem, fa); | 
|  | } | 
|  |  | 
|  | static inline void alias_free_mem_rcu(struct fib_alias *fa) | 
|  | { | 
|  | call_rcu(&fa->rcu, __alias_free_mem); | 
|  | } | 
|  |  | 
|  | static void __leaf_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct leaf *l = container_of(head, struct leaf, rcu); | 
|  | kmem_cache_free(trie_leaf_kmem, l); | 
|  | } | 
|  |  | 
|  | static inline void free_leaf(struct leaf *l) | 
|  | { | 
|  | call_rcu_bh(&l->rcu, __leaf_free_rcu); | 
|  | } | 
|  |  | 
|  | static void __leaf_info_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | kfree(container_of(head, struct leaf_info, rcu)); | 
|  | } | 
|  |  | 
|  | static inline void free_leaf_info(struct leaf_info *leaf) | 
|  | { | 
|  | call_rcu(&leaf->rcu, __leaf_info_free_rcu); | 
|  | } | 
|  |  | 
|  | static struct tnode *tnode_alloc(size_t size) | 
|  | { | 
|  | if (size <= PAGE_SIZE) | 
|  | return kzalloc(size, GFP_KERNEL); | 
|  | else | 
|  | return vzalloc(size); | 
|  | } | 
|  |  | 
|  | static void __tnode_vfree(struct work_struct *arg) | 
|  | { | 
|  | struct tnode *tn = container_of(arg, struct tnode, work); | 
|  | vfree(tn); | 
|  | } | 
|  |  | 
|  | static void __tnode_free_rcu(struct rcu_head *head) | 
|  | { | 
|  | struct tnode *tn = container_of(head, struct tnode, rcu); | 
|  | size_t size = sizeof(struct tnode) + | 
|  | (sizeof(struct node *) << tn->bits); | 
|  |  | 
|  | if (size <= PAGE_SIZE) | 
|  | kfree(tn); | 
|  | else { | 
|  | INIT_WORK(&tn->work, __tnode_vfree); | 
|  | schedule_work(&tn->work); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void tnode_free(struct tnode *tn) | 
|  | { | 
|  | if (IS_LEAF(tn)) | 
|  | free_leaf((struct leaf *) tn); | 
|  | else | 
|  | call_rcu(&tn->rcu, __tnode_free_rcu); | 
|  | } | 
|  |  | 
|  | static void tnode_free_safe(struct tnode *tn) | 
|  | { | 
|  | BUG_ON(IS_LEAF(tn)); | 
|  | tn->tnode_free = tnode_free_head; | 
|  | tnode_free_head = tn; | 
|  | tnode_free_size += sizeof(struct tnode) + | 
|  | (sizeof(struct node *) << tn->bits); | 
|  | } | 
|  |  | 
|  | static void tnode_free_flush(void) | 
|  | { | 
|  | struct tnode *tn; | 
|  |  | 
|  | while ((tn = tnode_free_head)) { | 
|  | tnode_free_head = tn->tnode_free; | 
|  | tn->tnode_free = NULL; | 
|  | tnode_free(tn); | 
|  | } | 
|  |  | 
|  | if (tnode_free_size >= PAGE_SIZE * sync_pages) { | 
|  | tnode_free_size = 0; | 
|  | synchronize_rcu(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct leaf *leaf_new(void) | 
|  | { | 
|  | struct leaf *l = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL); | 
|  | if (l) { | 
|  | l->parent = T_LEAF; | 
|  | INIT_HLIST_HEAD(&l->list); | 
|  | } | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static struct leaf_info *leaf_info_new(int plen) | 
|  | { | 
|  | struct leaf_info *li = kmalloc(sizeof(struct leaf_info),  GFP_KERNEL); | 
|  | if (li) { | 
|  | li->plen = plen; | 
|  | INIT_LIST_HEAD(&li->falh); | 
|  | } | 
|  | return li; | 
|  | } | 
|  |  | 
|  | static struct tnode *tnode_new(t_key key, int pos, int bits) | 
|  | { | 
|  | size_t sz = sizeof(struct tnode) + (sizeof(struct node *) << bits); | 
|  | struct tnode *tn = tnode_alloc(sz); | 
|  |  | 
|  | if (tn) { | 
|  | tn->parent = T_TNODE; | 
|  | tn->pos = pos; | 
|  | tn->bits = bits; | 
|  | tn->key = key; | 
|  | tn->full_children = 0; | 
|  | tn->empty_children = 1<<bits; | 
|  | } | 
|  |  | 
|  | pr_debug("AT %p s=%zu %zu\n", tn, sizeof(struct tnode), | 
|  | sizeof(struct node) << bits); | 
|  | return tn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check whether a tnode 'n' is "full", i.e. it is an internal node | 
|  | * and no bits are skipped. See discussion in dyntree paper p. 6 | 
|  | */ | 
|  |  | 
|  | static inline int tnode_full(const struct tnode *tn, const struct node *n) | 
|  | { | 
|  | if (n == NULL || IS_LEAF(n)) | 
|  | return 0; | 
|  |  | 
|  | return ((struct tnode *) n)->pos == tn->pos + tn->bits; | 
|  | } | 
|  |  | 
|  | static inline void put_child(struct trie *t, struct tnode *tn, int i, | 
|  | struct node *n) | 
|  | { | 
|  | tnode_put_child_reorg(tn, i, n, -1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a child at position i overwriting the old value. | 
|  | * Update the value of full_children and empty_children. | 
|  | */ | 
|  |  | 
|  | static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, | 
|  | int wasfull) | 
|  | { | 
|  | struct node *chi = tn->child[i]; | 
|  | int isfull; | 
|  |  | 
|  | BUG_ON(i >= 1<<tn->bits); | 
|  |  | 
|  | /* update emptyChildren */ | 
|  | if (n == NULL && chi != NULL) | 
|  | tn->empty_children++; | 
|  | else if (n != NULL && chi == NULL) | 
|  | tn->empty_children--; | 
|  |  | 
|  | /* update fullChildren */ | 
|  | if (wasfull == -1) | 
|  | wasfull = tnode_full(tn, chi); | 
|  |  | 
|  | isfull = tnode_full(tn, n); | 
|  | if (wasfull && !isfull) | 
|  | tn->full_children--; | 
|  | else if (!wasfull && isfull) | 
|  | tn->full_children++; | 
|  |  | 
|  | if (n) | 
|  | node_set_parent(n, tn); | 
|  |  | 
|  | rcu_assign_pointer(tn->child[i], n); | 
|  | } | 
|  |  | 
|  | #define MAX_WORK 10 | 
|  | static struct node *resize(struct trie *t, struct tnode *tn) | 
|  | { | 
|  | int i; | 
|  | struct tnode *old_tn; | 
|  | int inflate_threshold_use; | 
|  | int halve_threshold_use; | 
|  | int max_work; | 
|  |  | 
|  | if (!tn) | 
|  | return NULL; | 
|  |  | 
|  | pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n", | 
|  | tn, inflate_threshold, halve_threshold); | 
|  |  | 
|  | /* No children */ | 
|  | if (tn->empty_children == tnode_child_length(tn)) { | 
|  | tnode_free_safe(tn); | 
|  | return NULL; | 
|  | } | 
|  | /* One child */ | 
|  | if (tn->empty_children == tnode_child_length(tn) - 1) | 
|  | goto one_child; | 
|  | /* | 
|  | * Double as long as the resulting node has a number of | 
|  | * nonempty nodes that are above the threshold. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * From "Implementing a dynamic compressed trie" by Stefan Nilsson of | 
|  | * the Helsinki University of Technology and Matti Tikkanen of Nokia | 
|  | * Telecommunications, page 6: | 
|  | * "A node is doubled if the ratio of non-empty children to all | 
|  | * children in the *doubled* node is at least 'high'." | 
|  | * | 
|  | * 'high' in this instance is the variable 'inflate_threshold'. It | 
|  | * is expressed as a percentage, so we multiply it with | 
|  | * tnode_child_length() and instead of multiplying by 2 (since the | 
|  | * child array will be doubled by inflate()) and multiplying | 
|  | * the left-hand side by 100 (to handle the percentage thing) we | 
|  | * multiply the left-hand side by 50. | 
|  | * | 
|  | * The left-hand side may look a bit weird: tnode_child_length(tn) | 
|  | * - tn->empty_children is of course the number of non-null children | 
|  | * in the current node. tn->full_children is the number of "full" | 
|  | * children, that is non-null tnodes with a skip value of 0. | 
|  | * All of those will be doubled in the resulting inflated tnode, so | 
|  | * we just count them one extra time here. | 
|  | * | 
|  | * A clearer way to write this would be: | 
|  | * | 
|  | * to_be_doubled = tn->full_children; | 
|  | * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children - | 
|  | *     tn->full_children; | 
|  | * | 
|  | * new_child_length = tnode_child_length(tn) * 2; | 
|  | * | 
|  | * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) / | 
|  | *      new_child_length; | 
|  | * if (new_fill_factor >= inflate_threshold) | 
|  | * | 
|  | * ...and so on, tho it would mess up the while () loop. | 
|  | * | 
|  | * anyway, | 
|  | * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >= | 
|  | *      inflate_threshold | 
|  | * | 
|  | * avoid a division: | 
|  | * 100 * (not_to_be_doubled + 2*to_be_doubled) >= | 
|  | *      inflate_threshold * new_child_length | 
|  | * | 
|  | * expand not_to_be_doubled and to_be_doubled, and shorten: | 
|  | * 100 * (tnode_child_length(tn) - tn->empty_children + | 
|  | *    tn->full_children) >= inflate_threshold * new_child_length | 
|  | * | 
|  | * expand new_child_length: | 
|  | * 100 * (tnode_child_length(tn) - tn->empty_children + | 
|  | *    tn->full_children) >= | 
|  | *      inflate_threshold * tnode_child_length(tn) * 2 | 
|  | * | 
|  | * shorten again: | 
|  | * 50 * (tn->full_children + tnode_child_length(tn) - | 
|  | *    tn->empty_children) >= inflate_threshold * | 
|  | *    tnode_child_length(tn) | 
|  | * | 
|  | */ | 
|  |  | 
|  | check_tnode(tn); | 
|  |  | 
|  | /* Keep root node larger  */ | 
|  |  | 
|  | if (!node_parent((struct node *)tn)) { | 
|  | inflate_threshold_use = inflate_threshold_root; | 
|  | halve_threshold_use = halve_threshold_root; | 
|  | } else { | 
|  | inflate_threshold_use = inflate_threshold; | 
|  | halve_threshold_use = halve_threshold; | 
|  | } | 
|  |  | 
|  | max_work = MAX_WORK; | 
|  | while ((tn->full_children > 0 &&  max_work-- && | 
|  | 50 * (tn->full_children + tnode_child_length(tn) | 
|  | - tn->empty_children) | 
|  | >= inflate_threshold_use * tnode_child_length(tn))) { | 
|  |  | 
|  | old_tn = tn; | 
|  | tn = inflate(t, tn); | 
|  |  | 
|  | if (IS_ERR(tn)) { | 
|  | tn = old_tn; | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | t->stats.resize_node_skipped++; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | check_tnode(tn); | 
|  |  | 
|  | /* Return if at least one inflate is run */ | 
|  | if (max_work != MAX_WORK) | 
|  | return (struct node *) tn; | 
|  |  | 
|  | /* | 
|  | * Halve as long as the number of empty children in this | 
|  | * node is above threshold. | 
|  | */ | 
|  |  | 
|  | max_work = MAX_WORK; | 
|  | while (tn->bits > 1 &&  max_work-- && | 
|  | 100 * (tnode_child_length(tn) - tn->empty_children) < | 
|  | halve_threshold_use * tnode_child_length(tn)) { | 
|  |  | 
|  | old_tn = tn; | 
|  | tn = halve(t, tn); | 
|  | if (IS_ERR(tn)) { | 
|  | tn = old_tn; | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | t->stats.resize_node_skipped++; | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Only one child remains */ | 
|  | if (tn->empty_children == tnode_child_length(tn) - 1) { | 
|  | one_child: | 
|  | for (i = 0; i < tnode_child_length(tn); i++) { | 
|  | struct node *n; | 
|  |  | 
|  | n = tn->child[i]; | 
|  | if (!n) | 
|  | continue; | 
|  |  | 
|  | /* compress one level */ | 
|  |  | 
|  | node_set_parent(n, NULL); | 
|  | tnode_free_safe(tn); | 
|  | return n; | 
|  | } | 
|  | } | 
|  | return (struct node *) tn; | 
|  | } | 
|  |  | 
|  | static struct tnode *inflate(struct trie *t, struct tnode *tn) | 
|  | { | 
|  | struct tnode *oldtnode = tn; | 
|  | int olen = tnode_child_length(tn); | 
|  | int i; | 
|  |  | 
|  | pr_debug("In inflate\n"); | 
|  |  | 
|  | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1); | 
|  |  | 
|  | if (!tn) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Preallocate and store tnodes before the actual work so we | 
|  | * don't get into an inconsistent state if memory allocation | 
|  | * fails. In case of failure we return the oldnode and  inflate | 
|  | * of tnode is ignored. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < olen; i++) { | 
|  | struct tnode *inode; | 
|  |  | 
|  | inode = (struct tnode *) tnode_get_child(oldtnode, i); | 
|  | if (inode && | 
|  | IS_TNODE(inode) && | 
|  | inode->pos == oldtnode->pos + oldtnode->bits && | 
|  | inode->bits > 1) { | 
|  | struct tnode *left, *right; | 
|  | t_key m = ~0U << (KEYLENGTH - 1) >> inode->pos; | 
|  |  | 
|  | left = tnode_new(inode->key&(~m), inode->pos + 1, | 
|  | inode->bits - 1); | 
|  | if (!left) | 
|  | goto nomem; | 
|  |  | 
|  | right = tnode_new(inode->key|m, inode->pos + 1, | 
|  | inode->bits - 1); | 
|  |  | 
|  | if (!right) { | 
|  | tnode_free(left); | 
|  | goto nomem; | 
|  | } | 
|  |  | 
|  | put_child(t, tn, 2*i, (struct node *) left); | 
|  | put_child(t, tn, 2*i+1, (struct node *) right); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < olen; i++) { | 
|  | struct tnode *inode; | 
|  | struct node *node = tnode_get_child(oldtnode, i); | 
|  | struct tnode *left, *right; | 
|  | int size, j; | 
|  |  | 
|  | /* An empty child */ | 
|  | if (node == NULL) | 
|  | continue; | 
|  |  | 
|  | /* A leaf or an internal node with skipped bits */ | 
|  |  | 
|  | if (IS_LEAF(node) || ((struct tnode *) node)->pos > | 
|  | tn->pos + tn->bits - 1) { | 
|  | if (tkey_extract_bits(node->key, | 
|  | oldtnode->pos + oldtnode->bits, | 
|  | 1) == 0) | 
|  | put_child(t, tn, 2*i, node); | 
|  | else | 
|  | put_child(t, tn, 2*i+1, node); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* An internal node with two children */ | 
|  | inode = (struct tnode *) node; | 
|  |  | 
|  | if (inode->bits == 1) { | 
|  | put_child(t, tn, 2*i, inode->child[0]); | 
|  | put_child(t, tn, 2*i+1, inode->child[1]); | 
|  |  | 
|  | tnode_free_safe(inode); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* An internal node with more than two children */ | 
|  |  | 
|  | /* We will replace this node 'inode' with two new | 
|  | * ones, 'left' and 'right', each with half of the | 
|  | * original children. The two new nodes will have | 
|  | * a position one bit further down the key and this | 
|  | * means that the "significant" part of their keys | 
|  | * (see the discussion near the top of this file) | 
|  | * will differ by one bit, which will be "0" in | 
|  | * left's key and "1" in right's key. Since we are | 
|  | * moving the key position by one step, the bit that | 
|  | * we are moving away from - the bit at position | 
|  | * (inode->pos) - is the one that will differ between | 
|  | * left and right. So... we synthesize that bit in the | 
|  | * two  new keys. | 
|  | * The mask 'm' below will be a single "one" bit at | 
|  | * the position (inode->pos) | 
|  | */ | 
|  |  | 
|  | /* Use the old key, but set the new significant | 
|  | *   bit to zero. | 
|  | */ | 
|  |  | 
|  | left = (struct tnode *) tnode_get_child(tn, 2*i); | 
|  | put_child(t, tn, 2*i, NULL); | 
|  |  | 
|  | BUG_ON(!left); | 
|  |  | 
|  | right = (struct tnode *) tnode_get_child(tn, 2*i+1); | 
|  | put_child(t, tn, 2*i+1, NULL); | 
|  |  | 
|  | BUG_ON(!right); | 
|  |  | 
|  | size = tnode_child_length(left); | 
|  | for (j = 0; j < size; j++) { | 
|  | put_child(t, left, j, inode->child[j]); | 
|  | put_child(t, right, j, inode->child[j + size]); | 
|  | } | 
|  | put_child(t, tn, 2*i, resize(t, left)); | 
|  | put_child(t, tn, 2*i+1, resize(t, right)); | 
|  |  | 
|  | tnode_free_safe(inode); | 
|  | } | 
|  | tnode_free_safe(oldtnode); | 
|  | return tn; | 
|  | nomem: | 
|  | { | 
|  | int size = tnode_child_length(tn); | 
|  | int j; | 
|  |  | 
|  | for (j = 0; j < size; j++) | 
|  | if (tn->child[j]) | 
|  | tnode_free((struct tnode *)tn->child[j]); | 
|  |  | 
|  | tnode_free(tn); | 
|  |  | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct tnode *halve(struct trie *t, struct tnode *tn) | 
|  | { | 
|  | struct tnode *oldtnode = tn; | 
|  | struct node *left, *right; | 
|  | int i; | 
|  | int olen = tnode_child_length(tn); | 
|  |  | 
|  | pr_debug("In halve\n"); | 
|  |  | 
|  | tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1); | 
|  |  | 
|  | if (!tn) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* | 
|  | * Preallocate and store tnodes before the actual work so we | 
|  | * don't get into an inconsistent state if memory allocation | 
|  | * fails. In case of failure we return the oldnode and halve | 
|  | * of tnode is ignored. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < olen; i += 2) { | 
|  | left = tnode_get_child(oldtnode, i); | 
|  | right = tnode_get_child(oldtnode, i+1); | 
|  |  | 
|  | /* Two nonempty children */ | 
|  | if (left && right) { | 
|  | struct tnode *newn; | 
|  |  | 
|  | newn = tnode_new(left->key, tn->pos + tn->bits, 1); | 
|  |  | 
|  | if (!newn) | 
|  | goto nomem; | 
|  |  | 
|  | put_child(t, tn, i/2, (struct node *)newn); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | for (i = 0; i < olen; i += 2) { | 
|  | struct tnode *newBinNode; | 
|  |  | 
|  | left = tnode_get_child(oldtnode, i); | 
|  | right = tnode_get_child(oldtnode, i+1); | 
|  |  | 
|  | /* At least one of the children is empty */ | 
|  | if (left == NULL) { | 
|  | if (right == NULL)    /* Both are empty */ | 
|  | continue; | 
|  | put_child(t, tn, i/2, right); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (right == NULL) { | 
|  | put_child(t, tn, i/2, left); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Two nonempty children */ | 
|  | newBinNode = (struct tnode *) tnode_get_child(tn, i/2); | 
|  | put_child(t, tn, i/2, NULL); | 
|  | put_child(t, newBinNode, 0, left); | 
|  | put_child(t, newBinNode, 1, right); | 
|  | put_child(t, tn, i/2, resize(t, newBinNode)); | 
|  | } | 
|  | tnode_free_safe(oldtnode); | 
|  | return tn; | 
|  | nomem: | 
|  | { | 
|  | int size = tnode_child_length(tn); | 
|  | int j; | 
|  |  | 
|  | for (j = 0; j < size; j++) | 
|  | if (tn->child[j]) | 
|  | tnode_free((struct tnode *)tn->child[j]); | 
|  |  | 
|  | tnode_free(tn); | 
|  |  | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* readside must use rcu_read_lock currently dump routines | 
|  | via get_fa_head and dump */ | 
|  |  | 
|  | static struct leaf_info *find_leaf_info(struct leaf *l, int plen) | 
|  | { | 
|  | struct hlist_head *head = &l->list; | 
|  | struct hlist_node *node; | 
|  | struct leaf_info *li; | 
|  |  | 
|  | hlist_for_each_entry_rcu(li, node, head, hlist) | 
|  | if (li->plen == plen) | 
|  | return li; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline struct list_head *get_fa_head(struct leaf *l, int plen) | 
|  | { | 
|  | struct leaf_info *li = find_leaf_info(l, plen); | 
|  |  | 
|  | if (!li) | 
|  | return NULL; | 
|  |  | 
|  | return &li->falh; | 
|  | } | 
|  |  | 
|  | static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new) | 
|  | { | 
|  | struct leaf_info *li = NULL, *last = NULL; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | if (hlist_empty(head)) { | 
|  | hlist_add_head_rcu(&new->hlist, head); | 
|  | } else { | 
|  | hlist_for_each_entry(li, node, head, hlist) { | 
|  | if (new->plen > li->plen) | 
|  | break; | 
|  |  | 
|  | last = li; | 
|  | } | 
|  | if (last) | 
|  | hlist_add_after_rcu(&last->hlist, &new->hlist); | 
|  | else | 
|  | hlist_add_before_rcu(&new->hlist, &li->hlist); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* rcu_read_lock needs to be hold by caller from readside */ | 
|  |  | 
|  | static struct leaf * | 
|  | fib_find_node(struct trie *t, u32 key) | 
|  | { | 
|  | int pos; | 
|  | struct tnode *tn; | 
|  | struct node *n; | 
|  |  | 
|  | pos = 0; | 
|  | n = rcu_dereference_rtnl(t->trie); | 
|  |  | 
|  | while (n != NULL &&  NODE_TYPE(n) == T_TNODE) { | 
|  | tn = (struct tnode *) n; | 
|  |  | 
|  | check_tnode(tn); | 
|  |  | 
|  | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { | 
|  | pos = tn->pos + tn->bits; | 
|  | n = tnode_get_child_rcu(tn, | 
|  | tkey_extract_bits(key, | 
|  | tn->pos, | 
|  | tn->bits)); | 
|  | } else | 
|  | break; | 
|  | } | 
|  | /* Case we have found a leaf. Compare prefixes */ | 
|  |  | 
|  | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) | 
|  | return (struct leaf *)n; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void trie_rebalance(struct trie *t, struct tnode *tn) | 
|  | { | 
|  | int wasfull; | 
|  | t_key cindex, key; | 
|  | struct tnode *tp; | 
|  |  | 
|  | key = tn->key; | 
|  |  | 
|  | while (tn != NULL && (tp = node_parent((struct node *)tn)) != NULL) { | 
|  | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | 
|  | wasfull = tnode_full(tp, tnode_get_child(tp, cindex)); | 
|  | tn = (struct tnode *) resize(t, (struct tnode *)tn); | 
|  |  | 
|  | tnode_put_child_reorg((struct tnode *)tp, cindex, | 
|  | (struct node *)tn, wasfull); | 
|  |  | 
|  | tp = node_parent((struct node *) tn); | 
|  | if (!tp) | 
|  | rcu_assign_pointer(t->trie, (struct node *)tn); | 
|  |  | 
|  | tnode_free_flush(); | 
|  | if (!tp) | 
|  | break; | 
|  | tn = tp; | 
|  | } | 
|  |  | 
|  | /* Handle last (top) tnode */ | 
|  | if (IS_TNODE(tn)) | 
|  | tn = (struct tnode *)resize(t, (struct tnode *)tn); | 
|  |  | 
|  | rcu_assign_pointer(t->trie, (struct node *)tn); | 
|  | tnode_free_flush(); | 
|  | } | 
|  |  | 
|  | /* only used from updater-side */ | 
|  |  | 
|  | static struct list_head *fib_insert_node(struct trie *t, u32 key, int plen) | 
|  | { | 
|  | int pos, newpos; | 
|  | struct tnode *tp = NULL, *tn = NULL; | 
|  | struct node *n; | 
|  | struct leaf *l; | 
|  | int missbit; | 
|  | struct list_head *fa_head = NULL; | 
|  | struct leaf_info *li; | 
|  | t_key cindex; | 
|  |  | 
|  | pos = 0; | 
|  | n = t->trie; | 
|  |  | 
|  | /* If we point to NULL, stop. Either the tree is empty and we should | 
|  | * just put a new leaf in if, or we have reached an empty child slot, | 
|  | * and we should just put our new leaf in that. | 
|  | * If we point to a T_TNODE, check if it matches our key. Note that | 
|  | * a T_TNODE might be skipping any number of bits - its 'pos' need | 
|  | * not be the parent's 'pos'+'bits'! | 
|  | * | 
|  | * If it does match the current key, get pos/bits from it, extract | 
|  | * the index from our key, push the T_TNODE and walk the tree. | 
|  | * | 
|  | * If it doesn't, we have to replace it with a new T_TNODE. | 
|  | * | 
|  | * If we point to a T_LEAF, it might or might not have the same key | 
|  | * as we do. If it does, just change the value, update the T_LEAF's | 
|  | * value, and return it. | 
|  | * If it doesn't, we need to replace it with a T_TNODE. | 
|  | */ | 
|  |  | 
|  | while (n != NULL &&  NODE_TYPE(n) == T_TNODE) { | 
|  | tn = (struct tnode *) n; | 
|  |  | 
|  | check_tnode(tn); | 
|  |  | 
|  | if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) { | 
|  | tp = tn; | 
|  | pos = tn->pos + tn->bits; | 
|  | n = tnode_get_child(tn, | 
|  | tkey_extract_bits(key, | 
|  | tn->pos, | 
|  | tn->bits)); | 
|  |  | 
|  | BUG_ON(n && node_parent(n) != tn); | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * n  ----> NULL, LEAF or TNODE | 
|  | * | 
|  | * tp is n's (parent) ----> NULL or TNODE | 
|  | */ | 
|  |  | 
|  | BUG_ON(tp && IS_LEAF(tp)); | 
|  |  | 
|  | /* Case 1: n is a leaf. Compare prefixes */ | 
|  |  | 
|  | if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) { | 
|  | l = (struct leaf *) n; | 
|  | li = leaf_info_new(plen); | 
|  |  | 
|  | if (!li) | 
|  | return NULL; | 
|  |  | 
|  | fa_head = &li->falh; | 
|  | insert_leaf_info(&l->list, li); | 
|  | goto done; | 
|  | } | 
|  | l = leaf_new(); | 
|  |  | 
|  | if (!l) | 
|  | return NULL; | 
|  |  | 
|  | l->key = key; | 
|  | li = leaf_info_new(plen); | 
|  |  | 
|  | if (!li) { | 
|  | free_leaf(l); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | fa_head = &li->falh; | 
|  | insert_leaf_info(&l->list, li); | 
|  |  | 
|  | if (t->trie && n == NULL) { | 
|  | /* Case 2: n is NULL, and will just insert a new leaf */ | 
|  |  | 
|  | node_set_parent((struct node *)l, tp); | 
|  |  | 
|  | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | 
|  | put_child(t, (struct tnode *)tp, cindex, (struct node *)l); | 
|  | } else { | 
|  | /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */ | 
|  | /* | 
|  | *  Add a new tnode here | 
|  | *  first tnode need some special handling | 
|  | */ | 
|  |  | 
|  | if (tp) | 
|  | pos = tp->pos+tp->bits; | 
|  | else | 
|  | pos = 0; | 
|  |  | 
|  | if (n) { | 
|  | newpos = tkey_mismatch(key, pos, n->key); | 
|  | tn = tnode_new(n->key, newpos, 1); | 
|  | } else { | 
|  | newpos = 0; | 
|  | tn = tnode_new(key, newpos, 1); /* First tnode */ | 
|  | } | 
|  |  | 
|  | if (!tn) { | 
|  | free_leaf_info(li); | 
|  | free_leaf(l); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | node_set_parent((struct node *)tn, tp); | 
|  |  | 
|  | missbit = tkey_extract_bits(key, newpos, 1); | 
|  | put_child(t, tn, missbit, (struct node *)l); | 
|  | put_child(t, tn, 1-missbit, n); | 
|  |  | 
|  | if (tp) { | 
|  | cindex = tkey_extract_bits(key, tp->pos, tp->bits); | 
|  | put_child(t, (struct tnode *)tp, cindex, | 
|  | (struct node *)tn); | 
|  | } else { | 
|  | rcu_assign_pointer(t->trie, (struct node *)tn); | 
|  | tp = tn; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tp && tp->pos + tp->bits > 32) | 
|  | pr_warning("fib_trie" | 
|  | " tp=%p pos=%d, bits=%d, key=%0x plen=%d\n", | 
|  | tp, tp->pos, tp->bits, key, plen); | 
|  |  | 
|  | /* Rebalance the trie */ | 
|  |  | 
|  | trie_rebalance(t, tp); | 
|  | done: | 
|  | return fa_head; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller must hold RTNL. | 
|  | */ | 
|  | int fib_table_insert(struct fib_table *tb, struct fib_config *cfg) | 
|  | { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | struct fib_alias *fa, *new_fa; | 
|  | struct list_head *fa_head = NULL; | 
|  | struct fib_info *fi; | 
|  | int plen = cfg->fc_dst_len; | 
|  | u8 tos = cfg->fc_tos; | 
|  | u32 key, mask; | 
|  | int err; | 
|  | struct leaf *l; | 
|  |  | 
|  | if (plen > 32) | 
|  | return -EINVAL; | 
|  |  | 
|  | key = ntohl(cfg->fc_dst); | 
|  |  | 
|  | pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen); | 
|  |  | 
|  | mask = ntohl(inet_make_mask(plen)); | 
|  |  | 
|  | if (key & ~mask) | 
|  | return -EINVAL; | 
|  |  | 
|  | key = key & mask; | 
|  |  | 
|  | fi = fib_create_info(cfg); | 
|  | if (IS_ERR(fi)) { | 
|  | err = PTR_ERR(fi); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | l = fib_find_node(t, key); | 
|  | fa = NULL; | 
|  |  | 
|  | if (l) { | 
|  | fa_head = get_fa_head(l, plen); | 
|  | fa = fib_find_alias(fa_head, tos, fi->fib_priority); | 
|  | } | 
|  |  | 
|  | /* Now fa, if non-NULL, points to the first fib alias | 
|  | * with the same keys [prefix,tos,priority], if such key already | 
|  | * exists or to the node before which we will insert new one. | 
|  | * | 
|  | * If fa is NULL, we will need to allocate a new one and | 
|  | * insert to the head of f. | 
|  | * | 
|  | * If f is NULL, no fib node matched the destination key | 
|  | * and we need to allocate a new one of those as well. | 
|  | */ | 
|  |  | 
|  | if (fa && fa->fa_tos == tos && | 
|  | fa->fa_info->fib_priority == fi->fib_priority) { | 
|  | struct fib_alias *fa_first, *fa_match; | 
|  |  | 
|  | err = -EEXIST; | 
|  | if (cfg->fc_nlflags & NLM_F_EXCL) | 
|  | goto out; | 
|  |  | 
|  | /* We have 2 goals: | 
|  | * 1. Find exact match for type, scope, fib_info to avoid | 
|  | * duplicate routes | 
|  | * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it | 
|  | */ | 
|  | fa_match = NULL; | 
|  | fa_first = fa; | 
|  | fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); | 
|  | list_for_each_entry_continue(fa, fa_head, fa_list) { | 
|  | if (fa->fa_tos != tos) | 
|  | break; | 
|  | if (fa->fa_info->fib_priority != fi->fib_priority) | 
|  | break; | 
|  | if (fa->fa_type == cfg->fc_type && | 
|  | fa->fa_scope == cfg->fc_scope && | 
|  | fa->fa_info == fi) { | 
|  | fa_match = fa; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cfg->fc_nlflags & NLM_F_REPLACE) { | 
|  | struct fib_info *fi_drop; | 
|  | u8 state; | 
|  |  | 
|  | fa = fa_first; | 
|  | if (fa_match) { | 
|  | if (fa == fa_match) | 
|  | err = 0; | 
|  | goto out; | 
|  | } | 
|  | err = -ENOBUFS; | 
|  | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); | 
|  | if (new_fa == NULL) | 
|  | goto out; | 
|  |  | 
|  | fi_drop = fa->fa_info; | 
|  | new_fa->fa_tos = fa->fa_tos; | 
|  | new_fa->fa_info = fi; | 
|  | new_fa->fa_type = cfg->fc_type; | 
|  | new_fa->fa_scope = cfg->fc_scope; | 
|  | state = fa->fa_state; | 
|  | new_fa->fa_state = state & ~FA_S_ACCESSED; | 
|  |  | 
|  | list_replace_rcu(&fa->fa_list, &new_fa->fa_list); | 
|  | alias_free_mem_rcu(fa); | 
|  |  | 
|  | fib_release_info(fi_drop); | 
|  | if (state & FA_S_ACCESSED) | 
|  | rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); | 
|  | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, | 
|  | tb->tb_id, &cfg->fc_nlinfo, NLM_F_REPLACE); | 
|  |  | 
|  | goto succeeded; | 
|  | } | 
|  | /* Error if we find a perfect match which | 
|  | * uses the same scope, type, and nexthop | 
|  | * information. | 
|  | */ | 
|  | if (fa_match) | 
|  | goto out; | 
|  |  | 
|  | if (!(cfg->fc_nlflags & NLM_F_APPEND)) | 
|  | fa = fa_first; | 
|  | } | 
|  | err = -ENOENT; | 
|  | if (!(cfg->fc_nlflags & NLM_F_CREATE)) | 
|  | goto out; | 
|  |  | 
|  | err = -ENOBUFS; | 
|  | new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL); | 
|  | if (new_fa == NULL) | 
|  | goto out; | 
|  |  | 
|  | new_fa->fa_info = fi; | 
|  | new_fa->fa_tos = tos; | 
|  | new_fa->fa_type = cfg->fc_type; | 
|  | new_fa->fa_scope = cfg->fc_scope; | 
|  | new_fa->fa_state = 0; | 
|  | /* | 
|  | * Insert new entry to the list. | 
|  | */ | 
|  |  | 
|  | if (!fa_head) { | 
|  | fa_head = fib_insert_node(t, key, plen); | 
|  | if (unlikely(!fa_head)) { | 
|  | err = -ENOMEM; | 
|  | goto out_free_new_fa; | 
|  | } | 
|  | } | 
|  |  | 
|  | list_add_tail_rcu(&new_fa->fa_list, | 
|  | (fa ? &fa->fa_list : fa_head)); | 
|  |  | 
|  | rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); | 
|  | rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id, | 
|  | &cfg->fc_nlinfo, 0); | 
|  | succeeded: | 
|  | return 0; | 
|  |  | 
|  | out_free_new_fa: | 
|  | kmem_cache_free(fn_alias_kmem, new_fa); | 
|  | out: | 
|  | fib_release_info(fi); | 
|  | err: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* should be called with rcu_read_lock */ | 
|  | static int check_leaf(struct trie *t, struct leaf *l, | 
|  | t_key key,  const struct flowi *flp, | 
|  | struct fib_result *res, int fib_flags) | 
|  | { | 
|  | struct leaf_info *li; | 
|  | struct hlist_head *hhead = &l->list; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | hlist_for_each_entry_rcu(li, node, hhead, hlist) { | 
|  | int err; | 
|  | int plen = li->plen; | 
|  | __be32 mask = inet_make_mask(plen); | 
|  |  | 
|  | if (l->key != (key & ntohl(mask))) | 
|  | continue; | 
|  |  | 
|  | err = fib_semantic_match(&li->falh, flp, res, plen, fib_flags); | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | if (err <= 0) | 
|  | t->stats.semantic_match_passed++; | 
|  | else | 
|  | t->stats.semantic_match_miss++; | 
|  | #endif | 
|  | if (err <= 0) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int fib_table_lookup(struct fib_table *tb, const struct flowi *flp, | 
|  | struct fib_result *res, int fib_flags) | 
|  | { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | int ret; | 
|  | struct node *n; | 
|  | struct tnode *pn; | 
|  | int pos, bits; | 
|  | t_key key = ntohl(flp->fl4_dst); | 
|  | int chopped_off; | 
|  | t_key cindex = 0; | 
|  | int current_prefix_length = KEYLENGTH; | 
|  | struct tnode *cn; | 
|  | t_key pref_mismatch; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | n = rcu_dereference(t->trie); | 
|  | if (!n) | 
|  | goto failed; | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | t->stats.gets++; | 
|  | #endif | 
|  |  | 
|  | /* Just a leaf? */ | 
|  | if (IS_LEAF(n)) { | 
|  | ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags); | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | pn = (struct tnode *) n; | 
|  | chopped_off = 0; | 
|  |  | 
|  | while (pn) { | 
|  | pos = pn->pos; | 
|  | bits = pn->bits; | 
|  |  | 
|  | if (!chopped_off) | 
|  | cindex = tkey_extract_bits(mask_pfx(key, current_prefix_length), | 
|  | pos, bits); | 
|  |  | 
|  | n = tnode_get_child_rcu(pn, cindex); | 
|  |  | 
|  | if (n == NULL) { | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | t->stats.null_node_hit++; | 
|  | #endif | 
|  | goto backtrace; | 
|  | } | 
|  |  | 
|  | if (IS_LEAF(n)) { | 
|  | ret = check_leaf(t, (struct leaf *)n, key, flp, res, fib_flags); | 
|  | if (ret > 0) | 
|  | goto backtrace; | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | cn = (struct tnode *)n; | 
|  |  | 
|  | /* | 
|  | * It's a tnode, and we can do some extra checks here if we | 
|  | * like, to avoid descending into a dead-end branch. | 
|  | * This tnode is in the parent's child array at index | 
|  | * key[p_pos..p_pos+p_bits] but potentially with some bits | 
|  | * chopped off, so in reality the index may be just a | 
|  | * subprefix, padded with zero at the end. | 
|  | * We can also take a look at any skipped bits in this | 
|  | * tnode - everything up to p_pos is supposed to be ok, | 
|  | * and the non-chopped bits of the index (se previous | 
|  | * paragraph) are also guaranteed ok, but the rest is | 
|  | * considered unknown. | 
|  | * | 
|  | * The skipped bits are key[pos+bits..cn->pos]. | 
|  | */ | 
|  |  | 
|  | /* If current_prefix_length < pos+bits, we are already doing | 
|  | * actual prefix  matching, which means everything from | 
|  | * pos+(bits-chopped_off) onward must be zero along some | 
|  | * branch of this subtree - otherwise there is *no* valid | 
|  | * prefix present. Here we can only check the skipped | 
|  | * bits. Remember, since we have already indexed into the | 
|  | * parent's child array, we know that the bits we chopped of | 
|  | * *are* zero. | 
|  | */ | 
|  |  | 
|  | /* NOTA BENE: Checking only skipped bits | 
|  | for the new node here */ | 
|  |  | 
|  | if (current_prefix_length < pos+bits) { | 
|  | if (tkey_extract_bits(cn->key, current_prefix_length, | 
|  | cn->pos - current_prefix_length) | 
|  | || !(cn->child[0])) | 
|  | goto backtrace; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If chopped_off=0, the index is fully validated and we | 
|  | * only need to look at the skipped bits for this, the new, | 
|  | * tnode. What we actually want to do is to find out if | 
|  | * these skipped bits match our key perfectly, or if we will | 
|  | * have to count on finding a matching prefix further down, | 
|  | * because if we do, we would like to have some way of | 
|  | * verifying the existence of such a prefix at this point. | 
|  | */ | 
|  |  | 
|  | /* The only thing we can do at this point is to verify that | 
|  | * any such matching prefix can indeed be a prefix to our | 
|  | * key, and if the bits in the node we are inspecting that | 
|  | * do not match our key are not ZERO, this cannot be true. | 
|  | * Thus, find out where there is a mismatch (before cn->pos) | 
|  | * and verify that all the mismatching bits are zero in the | 
|  | * new tnode's key. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Note: We aren't very concerned about the piece of | 
|  | * the key that precede pn->pos+pn->bits, since these | 
|  | * have already been checked. The bits after cn->pos | 
|  | * aren't checked since these are by definition | 
|  | * "unknown" at this point. Thus, what we want to see | 
|  | * is if we are about to enter the "prefix matching" | 
|  | * state, and in that case verify that the skipped | 
|  | * bits that will prevail throughout this subtree are | 
|  | * zero, as they have to be if we are to find a | 
|  | * matching prefix. | 
|  | */ | 
|  |  | 
|  | pref_mismatch = mask_pfx(cn->key ^ key, cn->pos); | 
|  |  | 
|  | /* | 
|  | * In short: If skipped bits in this node do not match | 
|  | * the search key, enter the "prefix matching" | 
|  | * state.directly. | 
|  | */ | 
|  | if (pref_mismatch) { | 
|  | int mp = KEYLENGTH - fls(pref_mismatch); | 
|  |  | 
|  | if (tkey_extract_bits(cn->key, mp, cn->pos - mp) != 0) | 
|  | goto backtrace; | 
|  |  | 
|  | if (current_prefix_length >= cn->pos) | 
|  | current_prefix_length = mp; | 
|  | } | 
|  |  | 
|  | pn = (struct tnode *)n; /* Descend */ | 
|  | chopped_off = 0; | 
|  | continue; | 
|  |  | 
|  | backtrace: | 
|  | chopped_off++; | 
|  |  | 
|  | /* As zero don't change the child key (cindex) */ | 
|  | while ((chopped_off <= pn->bits) | 
|  | && !(cindex & (1<<(chopped_off-1)))) | 
|  | chopped_off++; | 
|  |  | 
|  | /* Decrease current_... with bits chopped off */ | 
|  | if (current_prefix_length > pn->pos + pn->bits - chopped_off) | 
|  | current_prefix_length = pn->pos + pn->bits | 
|  | - chopped_off; | 
|  |  | 
|  | /* | 
|  | * Either we do the actual chop off according or if we have | 
|  | * chopped off all bits in this tnode walk up to our parent. | 
|  | */ | 
|  |  | 
|  | if (chopped_off <= pn->bits) { | 
|  | cindex &= ~(1 << (chopped_off-1)); | 
|  | } else { | 
|  | struct tnode *parent = node_parent_rcu((struct node *) pn); | 
|  | if (!parent) | 
|  | goto failed; | 
|  |  | 
|  | /* Get Child's index */ | 
|  | cindex = tkey_extract_bits(pn->key, parent->pos, parent->bits); | 
|  | pn = parent; | 
|  | chopped_off = 0; | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | t->stats.backtrack++; | 
|  | #endif | 
|  | goto backtrace; | 
|  | } | 
|  | } | 
|  | failed: | 
|  | ret = 1; | 
|  | found: | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove the leaf and return parent. | 
|  | */ | 
|  | static void trie_leaf_remove(struct trie *t, struct leaf *l) | 
|  | { | 
|  | struct tnode *tp = node_parent((struct node *) l); | 
|  |  | 
|  | pr_debug("entering trie_leaf_remove(%p)\n", l); | 
|  |  | 
|  | if (tp) { | 
|  | t_key cindex = tkey_extract_bits(l->key, tp->pos, tp->bits); | 
|  | put_child(t, (struct tnode *)tp, cindex, NULL); | 
|  | trie_rebalance(t, tp); | 
|  | } else | 
|  | rcu_assign_pointer(t->trie, NULL); | 
|  |  | 
|  | free_leaf(l); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Caller must hold RTNL. | 
|  | */ | 
|  | int fib_table_delete(struct fib_table *tb, struct fib_config *cfg) | 
|  | { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | u32 key, mask; | 
|  | int plen = cfg->fc_dst_len; | 
|  | u8 tos = cfg->fc_tos; | 
|  | struct fib_alias *fa, *fa_to_delete; | 
|  | struct list_head *fa_head; | 
|  | struct leaf *l; | 
|  | struct leaf_info *li; | 
|  |  | 
|  | if (plen > 32) | 
|  | return -EINVAL; | 
|  |  | 
|  | key = ntohl(cfg->fc_dst); | 
|  | mask = ntohl(inet_make_mask(plen)); | 
|  |  | 
|  | if (key & ~mask) | 
|  | return -EINVAL; | 
|  |  | 
|  | key = key & mask; | 
|  | l = fib_find_node(t, key); | 
|  |  | 
|  | if (!l) | 
|  | return -ESRCH; | 
|  |  | 
|  | fa_head = get_fa_head(l, plen); | 
|  | fa = fib_find_alias(fa_head, tos, 0); | 
|  |  | 
|  | if (!fa) | 
|  | return -ESRCH; | 
|  |  | 
|  | pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t); | 
|  |  | 
|  | fa_to_delete = NULL; | 
|  | fa = list_entry(fa->fa_list.prev, struct fib_alias, fa_list); | 
|  | list_for_each_entry_continue(fa, fa_head, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  |  | 
|  | if (fa->fa_tos != tos) | 
|  | break; | 
|  |  | 
|  | if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) && | 
|  | (cfg->fc_scope == RT_SCOPE_NOWHERE || | 
|  | fa->fa_scope == cfg->fc_scope) && | 
|  | (!cfg->fc_protocol || | 
|  | fi->fib_protocol == cfg->fc_protocol) && | 
|  | fib_nh_match(cfg, fi) == 0) { | 
|  | fa_to_delete = fa; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!fa_to_delete) | 
|  | return -ESRCH; | 
|  |  | 
|  | fa = fa_to_delete; | 
|  | rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id, | 
|  | &cfg->fc_nlinfo, 0); | 
|  |  | 
|  | l = fib_find_node(t, key); | 
|  | li = find_leaf_info(l, plen); | 
|  |  | 
|  | list_del_rcu(&fa->fa_list); | 
|  |  | 
|  | if (list_empty(fa_head)) { | 
|  | hlist_del_rcu(&li->hlist); | 
|  | free_leaf_info(li); | 
|  | } | 
|  |  | 
|  | if (hlist_empty(&l->list)) | 
|  | trie_leaf_remove(t, l); | 
|  |  | 
|  | if (fa->fa_state & FA_S_ACCESSED) | 
|  | rt_cache_flush(cfg->fc_nlinfo.nl_net, -1); | 
|  |  | 
|  | fib_release_info(fa->fa_info); | 
|  | alias_free_mem_rcu(fa); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int trie_flush_list(struct list_head *head) | 
|  | { | 
|  | struct fib_alias *fa, *fa_node; | 
|  | int found = 0; | 
|  |  | 
|  | list_for_each_entry_safe(fa, fa_node, head, fa_list) { | 
|  | struct fib_info *fi = fa->fa_info; | 
|  |  | 
|  | if (fi && (fi->fib_flags & RTNH_F_DEAD)) { | 
|  | list_del_rcu(&fa->fa_list); | 
|  | fib_release_info(fa->fa_info); | 
|  | alias_free_mem_rcu(fa); | 
|  | found++; | 
|  | } | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | static int trie_flush_leaf(struct leaf *l) | 
|  | { | 
|  | int found = 0; | 
|  | struct hlist_head *lih = &l->list; | 
|  | struct hlist_node *node, *tmp; | 
|  | struct leaf_info *li = NULL; | 
|  |  | 
|  | hlist_for_each_entry_safe(li, node, tmp, lih, hlist) { | 
|  | found += trie_flush_list(&li->falh); | 
|  |  | 
|  | if (list_empty(&li->falh)) { | 
|  | hlist_del_rcu(&li->hlist); | 
|  | free_leaf_info(li); | 
|  | } | 
|  | } | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan for the next right leaf starting at node p->child[idx] | 
|  | * Since we have back pointer, no recursion necessary. | 
|  | */ | 
|  | static struct leaf *leaf_walk_rcu(struct tnode *p, struct node *c) | 
|  | { | 
|  | do { | 
|  | t_key idx; | 
|  |  | 
|  | if (c) | 
|  | idx = tkey_extract_bits(c->key, p->pos, p->bits) + 1; | 
|  | else | 
|  | idx = 0; | 
|  |  | 
|  | while (idx < 1u << p->bits) { | 
|  | c = tnode_get_child_rcu(p, idx++); | 
|  | if (!c) | 
|  | continue; | 
|  |  | 
|  | if (IS_LEAF(c)) { | 
|  | prefetch(p->child[idx]); | 
|  | return (struct leaf *) c; | 
|  | } | 
|  |  | 
|  | /* Rescan start scanning in new node */ | 
|  | p = (struct tnode *) c; | 
|  | idx = 0; | 
|  | } | 
|  |  | 
|  | /* Node empty, walk back up to parent */ | 
|  | c = (struct node *) p; | 
|  | } while ((p = node_parent_rcu(c)) != NULL); | 
|  |  | 
|  | return NULL; /* Root of trie */ | 
|  | } | 
|  |  | 
|  | static struct leaf *trie_firstleaf(struct trie *t) | 
|  | { | 
|  | struct tnode *n = (struct tnode *)rcu_dereference_rtnl(t->trie); | 
|  |  | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | if (IS_LEAF(n))          /* trie is just a leaf */ | 
|  | return (struct leaf *) n; | 
|  |  | 
|  | return leaf_walk_rcu(n, NULL); | 
|  | } | 
|  |  | 
|  | static struct leaf *trie_nextleaf(struct leaf *l) | 
|  | { | 
|  | struct node *c = (struct node *) l; | 
|  | struct tnode *p = node_parent_rcu(c); | 
|  |  | 
|  | if (!p) | 
|  | return NULL;	/* trie with just one leaf */ | 
|  |  | 
|  | return leaf_walk_rcu(p, c); | 
|  | } | 
|  |  | 
|  | static struct leaf *trie_leafindex(struct trie *t, int index) | 
|  | { | 
|  | struct leaf *l = trie_firstleaf(t); | 
|  |  | 
|  | while (l && index-- > 0) | 
|  | l = trie_nextleaf(l); | 
|  |  | 
|  | return l; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Caller must hold RTNL. | 
|  | */ | 
|  | int fib_table_flush(struct fib_table *tb) | 
|  | { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | struct leaf *l, *ll = NULL; | 
|  | int found = 0; | 
|  |  | 
|  | for (l = trie_firstleaf(t); l; l = trie_nextleaf(l)) { | 
|  | found += trie_flush_leaf(l); | 
|  |  | 
|  | if (ll && hlist_empty(&ll->list)) | 
|  | trie_leaf_remove(t, ll); | 
|  | ll = l; | 
|  | } | 
|  |  | 
|  | if (ll && hlist_empty(&ll->list)) | 
|  | trie_leaf_remove(t, ll); | 
|  |  | 
|  | pr_debug("trie_flush found=%d\n", found); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | void fib_free_table(struct fib_table *tb) | 
|  | { | 
|  | kfree(tb); | 
|  | } | 
|  |  | 
|  | void fib_table_select_default(struct fib_table *tb, | 
|  | const struct flowi *flp, | 
|  | struct fib_result *res) | 
|  | { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | int order, last_idx; | 
|  | struct fib_info *fi = NULL; | 
|  | struct fib_info *last_resort; | 
|  | struct fib_alias *fa = NULL; | 
|  | struct list_head *fa_head; | 
|  | struct leaf *l; | 
|  |  | 
|  | last_idx = -1; | 
|  | last_resort = NULL; | 
|  | order = -1; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | l = fib_find_node(t, 0); | 
|  | if (!l) | 
|  | goto out; | 
|  |  | 
|  | fa_head = get_fa_head(l, 0); | 
|  | if (!fa_head) | 
|  | goto out; | 
|  |  | 
|  | if (list_empty(fa_head)) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry_rcu(fa, fa_head, fa_list) { | 
|  | struct fib_info *next_fi = fa->fa_info; | 
|  |  | 
|  | if (fa->fa_scope != res->scope || | 
|  | fa->fa_type != RTN_UNICAST) | 
|  | continue; | 
|  |  | 
|  | if (next_fi->fib_priority > res->fi->fib_priority) | 
|  | break; | 
|  | if (!next_fi->fib_nh[0].nh_gw || | 
|  | next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK) | 
|  | continue; | 
|  |  | 
|  | fib_alias_accessed(fa); | 
|  |  | 
|  | if (fi == NULL) { | 
|  | if (next_fi != res->fi) | 
|  | break; | 
|  | } else if (!fib_detect_death(fi, order, &last_resort, | 
|  | &last_idx, tb->tb_default)) { | 
|  | fib_result_assign(res, fi); | 
|  | tb->tb_default = order; | 
|  | goto out; | 
|  | } | 
|  | fi = next_fi; | 
|  | order++; | 
|  | } | 
|  | if (order <= 0 || fi == NULL) { | 
|  | tb->tb_default = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!fib_detect_death(fi, order, &last_resort, &last_idx, | 
|  | tb->tb_default)) { | 
|  | fib_result_assign(res, fi); | 
|  | tb->tb_default = order; | 
|  | goto out; | 
|  | } | 
|  | if (last_idx >= 0) | 
|  | fib_result_assign(res, last_resort); | 
|  | tb->tb_default = last_idx; | 
|  | out: | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, | 
|  | struct fib_table *tb, | 
|  | struct sk_buff *skb, struct netlink_callback *cb) | 
|  | { | 
|  | int i, s_i; | 
|  | struct fib_alias *fa; | 
|  | __be32 xkey = htonl(key); | 
|  |  | 
|  | s_i = cb->args[5]; | 
|  | i = 0; | 
|  |  | 
|  | /* rcu_read_lock is hold by caller */ | 
|  |  | 
|  | list_for_each_entry_rcu(fa, fah, fa_list) { | 
|  | if (i < s_i) { | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid, | 
|  | cb->nlh->nlmsg_seq, | 
|  | RTM_NEWROUTE, | 
|  | tb->tb_id, | 
|  | fa->fa_type, | 
|  | fa->fa_scope, | 
|  | xkey, | 
|  | plen, | 
|  | fa->fa_tos, | 
|  | fa->fa_info, NLM_F_MULTI) < 0) { | 
|  | cb->args[5] = i; | 
|  | return -1; | 
|  | } | 
|  | i++; | 
|  | } | 
|  | cb->args[5] = i; | 
|  | return skb->len; | 
|  | } | 
|  |  | 
|  | static int fn_trie_dump_leaf(struct leaf *l, struct fib_table *tb, | 
|  | struct sk_buff *skb, struct netlink_callback *cb) | 
|  | { | 
|  | struct leaf_info *li; | 
|  | struct hlist_node *node; | 
|  | int i, s_i; | 
|  |  | 
|  | s_i = cb->args[4]; | 
|  | i = 0; | 
|  |  | 
|  | /* rcu_read_lock is hold by caller */ | 
|  | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { | 
|  | if (i < s_i) { | 
|  | i++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (i > s_i) | 
|  | cb->args[5] = 0; | 
|  |  | 
|  | if (list_empty(&li->falh)) | 
|  | continue; | 
|  |  | 
|  | if (fn_trie_dump_fa(l->key, li->plen, &li->falh, tb, skb, cb) < 0) { | 
|  | cb->args[4] = i; | 
|  | return -1; | 
|  | } | 
|  | i++; | 
|  | } | 
|  |  | 
|  | cb->args[4] = i; | 
|  | return skb->len; | 
|  | } | 
|  |  | 
|  | int fib_table_dump(struct fib_table *tb, struct sk_buff *skb, | 
|  | struct netlink_callback *cb) | 
|  | { | 
|  | struct leaf *l; | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | t_key key = cb->args[2]; | 
|  | int count = cb->args[3]; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | /* Dump starting at last key. | 
|  | * Note: 0.0.0.0/0 (ie default) is first key. | 
|  | */ | 
|  | if (count == 0) | 
|  | l = trie_firstleaf(t); | 
|  | else { | 
|  | /* Normally, continue from last key, but if that is missing | 
|  | * fallback to using slow rescan | 
|  | */ | 
|  | l = fib_find_node(t, key); | 
|  | if (!l) | 
|  | l = trie_leafindex(t, count); | 
|  | } | 
|  |  | 
|  | while (l) { | 
|  | cb->args[2] = l->key; | 
|  | if (fn_trie_dump_leaf(l, tb, skb, cb) < 0) { | 
|  | cb->args[3] = count; | 
|  | rcu_read_unlock(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ++count; | 
|  | l = trie_nextleaf(l); | 
|  | memset(&cb->args[4], 0, | 
|  | sizeof(cb->args) - 4*sizeof(cb->args[0])); | 
|  | } | 
|  | cb->args[3] = count; | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return skb->len; | 
|  | } | 
|  |  | 
|  | void __init fib_hash_init(void) | 
|  | { | 
|  | fn_alias_kmem = kmem_cache_create("ip_fib_alias", | 
|  | sizeof(struct fib_alias), | 
|  | 0, SLAB_PANIC, NULL); | 
|  |  | 
|  | trie_leaf_kmem = kmem_cache_create("ip_fib_trie", | 
|  | max(sizeof(struct leaf), | 
|  | sizeof(struct leaf_info)), | 
|  | 0, SLAB_PANIC, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Fix more generic FIB names for init later */ | 
|  | struct fib_table *fib_hash_table(u32 id) | 
|  | { | 
|  | struct fib_table *tb; | 
|  | struct trie *t; | 
|  |  | 
|  | tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie), | 
|  | GFP_KERNEL); | 
|  | if (tb == NULL) | 
|  | return NULL; | 
|  |  | 
|  | tb->tb_id = id; | 
|  | tb->tb_default = -1; | 
|  |  | 
|  | t = (struct trie *) tb->tb_data; | 
|  | memset(t, 0, sizeof(*t)); | 
|  |  | 
|  | if (id == RT_TABLE_LOCAL) | 
|  | pr_info("IPv4 FIB: Using LC-trie version %s\n", VERSION); | 
|  |  | 
|  | return tb; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | /* Depth first Trie walk iterator */ | 
|  | struct fib_trie_iter { | 
|  | struct seq_net_private p; | 
|  | struct fib_table *tb; | 
|  | struct tnode *tnode; | 
|  | unsigned int index; | 
|  | unsigned int depth; | 
|  | }; | 
|  |  | 
|  | static struct node *fib_trie_get_next(struct fib_trie_iter *iter) | 
|  | { | 
|  | struct tnode *tn = iter->tnode; | 
|  | unsigned int cindex = iter->index; | 
|  | struct tnode *p; | 
|  |  | 
|  | /* A single entry routing table */ | 
|  | if (!tn) | 
|  | return NULL; | 
|  |  | 
|  | pr_debug("get_next iter={node=%p index=%d depth=%d}\n", | 
|  | iter->tnode, iter->index, iter->depth); | 
|  | rescan: | 
|  | while (cindex < (1<<tn->bits)) { | 
|  | struct node *n = tnode_get_child_rcu(tn, cindex); | 
|  |  | 
|  | if (n) { | 
|  | if (IS_LEAF(n)) { | 
|  | iter->tnode = tn; | 
|  | iter->index = cindex + 1; | 
|  | } else { | 
|  | /* push down one level */ | 
|  | iter->tnode = (struct tnode *) n; | 
|  | iter->index = 0; | 
|  | ++iter->depth; | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | ++cindex; | 
|  | } | 
|  |  | 
|  | /* Current node exhausted, pop back up */ | 
|  | p = node_parent_rcu((struct node *)tn); | 
|  | if (p) { | 
|  | cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1; | 
|  | tn = p; | 
|  | --iter->depth; | 
|  | goto rescan; | 
|  | } | 
|  |  | 
|  | /* got root? */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static struct node *fib_trie_get_first(struct fib_trie_iter *iter, | 
|  | struct trie *t) | 
|  | { | 
|  | struct node *n; | 
|  |  | 
|  | if (!t) | 
|  | return NULL; | 
|  |  | 
|  | n = rcu_dereference(t->trie); | 
|  | if (!n) | 
|  | return NULL; | 
|  |  | 
|  | if (IS_TNODE(n)) { | 
|  | iter->tnode = (struct tnode *) n; | 
|  | iter->index = 0; | 
|  | iter->depth = 1; | 
|  | } else { | 
|  | iter->tnode = NULL; | 
|  | iter->index = 0; | 
|  | iter->depth = 0; | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static void trie_collect_stats(struct trie *t, struct trie_stat *s) | 
|  | { | 
|  | struct node *n; | 
|  | struct fib_trie_iter iter; | 
|  |  | 
|  | memset(s, 0, sizeof(*s)); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) { | 
|  | if (IS_LEAF(n)) { | 
|  | struct leaf *l = (struct leaf *)n; | 
|  | struct leaf_info *li; | 
|  | struct hlist_node *tmp; | 
|  |  | 
|  | s->leaves++; | 
|  | s->totdepth += iter.depth; | 
|  | if (iter.depth > s->maxdepth) | 
|  | s->maxdepth = iter.depth; | 
|  |  | 
|  | hlist_for_each_entry_rcu(li, tmp, &l->list, hlist) | 
|  | ++s->prefixes; | 
|  | } else { | 
|  | const struct tnode *tn = (const struct tnode *) n; | 
|  | int i; | 
|  |  | 
|  | s->tnodes++; | 
|  | if (tn->bits < MAX_STAT_DEPTH) | 
|  | s->nodesizes[tn->bits]++; | 
|  |  | 
|  | for (i = 0; i < (1<<tn->bits); i++) | 
|  | if (!tn->child[i]) | 
|  | s->nullpointers++; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	This outputs /proc/net/fib_triestats | 
|  | */ | 
|  | static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat) | 
|  | { | 
|  | unsigned int i, max, pointers, bytes, avdepth; | 
|  |  | 
|  | if (stat->leaves) | 
|  | avdepth = stat->totdepth*100 / stat->leaves; | 
|  | else | 
|  | avdepth = 0; | 
|  |  | 
|  | seq_printf(seq, "\tAver depth:     %u.%02d\n", | 
|  | avdepth / 100, avdepth % 100); | 
|  | seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth); | 
|  |  | 
|  | seq_printf(seq, "\tLeaves:         %u\n", stat->leaves); | 
|  | bytes = sizeof(struct leaf) * stat->leaves; | 
|  |  | 
|  | seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes); | 
|  | bytes += sizeof(struct leaf_info) * stat->prefixes; | 
|  |  | 
|  | seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes); | 
|  | bytes += sizeof(struct tnode) * stat->tnodes; | 
|  |  | 
|  | max = MAX_STAT_DEPTH; | 
|  | while (max > 0 && stat->nodesizes[max-1] == 0) | 
|  | max--; | 
|  |  | 
|  | pointers = 0; | 
|  | for (i = 1; i <= max; i++) | 
|  | if (stat->nodesizes[i] != 0) { | 
|  | seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]); | 
|  | pointers += (1<<i) * stat->nodesizes[i]; | 
|  | } | 
|  | seq_putc(seq, '\n'); | 
|  | seq_printf(seq, "\tPointers: %u\n", pointers); | 
|  |  | 
|  | bytes += sizeof(struct node *) * pointers; | 
|  | seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers); | 
|  | seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | static void trie_show_usage(struct seq_file *seq, | 
|  | const struct trie_use_stats *stats) | 
|  | { | 
|  | seq_printf(seq, "\nCounters:\n---------\n"); | 
|  | seq_printf(seq, "gets = %u\n", stats->gets); | 
|  | seq_printf(seq, "backtracks = %u\n", stats->backtrack); | 
|  | seq_printf(seq, "semantic match passed = %u\n", | 
|  | stats->semantic_match_passed); | 
|  | seq_printf(seq, "semantic match miss = %u\n", | 
|  | stats->semantic_match_miss); | 
|  | seq_printf(seq, "null node hit= %u\n", stats->null_node_hit); | 
|  | seq_printf(seq, "skipped node resize = %u\n\n", | 
|  | stats->resize_node_skipped); | 
|  | } | 
|  | #endif /*  CONFIG_IP_FIB_TRIE_STATS */ | 
|  |  | 
|  | static void fib_table_print(struct seq_file *seq, struct fib_table *tb) | 
|  | { | 
|  | if (tb->tb_id == RT_TABLE_LOCAL) | 
|  | seq_puts(seq, "Local:\n"); | 
|  | else if (tb->tb_id == RT_TABLE_MAIN) | 
|  | seq_puts(seq, "Main:\n"); | 
|  | else | 
|  | seq_printf(seq, "Id %d:\n", tb->tb_id); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int fib_triestat_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct net *net = (struct net *)seq->private; | 
|  | unsigned int h; | 
|  |  | 
|  | seq_printf(seq, | 
|  | "Basic info: size of leaf:" | 
|  | " %Zd bytes, size of tnode: %Zd bytes.\n", | 
|  | sizeof(struct leaf), sizeof(struct tnode)); | 
|  |  | 
|  | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { | 
|  | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | 
|  | struct hlist_node *node; | 
|  | struct fib_table *tb; | 
|  |  | 
|  | hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { | 
|  | struct trie *t = (struct trie *) tb->tb_data; | 
|  | struct trie_stat stat; | 
|  |  | 
|  | if (!t) | 
|  | continue; | 
|  |  | 
|  | fib_table_print(seq, tb); | 
|  |  | 
|  | trie_collect_stats(t, &stat); | 
|  | trie_show_stats(seq, &stat); | 
|  | #ifdef CONFIG_IP_FIB_TRIE_STATS | 
|  | trie_show_usage(seq, &t->stats); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fib_triestat_seq_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open_net(inode, file, fib_triestat_seq_show); | 
|  | } | 
|  |  | 
|  | static const struct file_operations fib_triestat_fops = { | 
|  | .owner	= THIS_MODULE, | 
|  | .open	= fib_triestat_seq_open, | 
|  | .read	= seq_read, | 
|  | .llseek	= seq_lseek, | 
|  | .release = single_release_net, | 
|  | }; | 
|  |  | 
|  | static struct node *fib_trie_get_idx(struct seq_file *seq, loff_t pos) | 
|  | { | 
|  | struct fib_trie_iter *iter = seq->private; | 
|  | struct net *net = seq_file_net(seq); | 
|  | loff_t idx = 0; | 
|  | unsigned int h; | 
|  |  | 
|  | for (h = 0; h < FIB_TABLE_HASHSZ; h++) { | 
|  | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | 
|  | struct hlist_node *node; | 
|  | struct fib_table *tb; | 
|  |  | 
|  | hlist_for_each_entry_rcu(tb, node, head, tb_hlist) { | 
|  | struct node *n; | 
|  |  | 
|  | for (n = fib_trie_get_first(iter, | 
|  | (struct trie *) tb->tb_data); | 
|  | n; n = fib_trie_get_next(iter)) | 
|  | if (pos == idx++) { | 
|  | iter->tb = tb; | 
|  | return n; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | __acquires(RCU) | 
|  | { | 
|  | rcu_read_lock(); | 
|  | return fib_trie_get_idx(seq, *pos); | 
|  | } | 
|  |  | 
|  | static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct fib_trie_iter *iter = seq->private; | 
|  | struct net *net = seq_file_net(seq); | 
|  | struct fib_table *tb = iter->tb; | 
|  | struct hlist_node *tb_node; | 
|  | unsigned int h; | 
|  | struct node *n; | 
|  |  | 
|  | ++*pos; | 
|  | /* next node in same table */ | 
|  | n = fib_trie_get_next(iter); | 
|  | if (n) | 
|  | return n; | 
|  |  | 
|  | /* walk rest of this hash chain */ | 
|  | h = tb->tb_id & (FIB_TABLE_HASHSZ - 1); | 
|  | while ( (tb_node = rcu_dereference(tb->tb_hlist.next)) ) { | 
|  | tb = hlist_entry(tb_node, struct fib_table, tb_hlist); | 
|  | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | 
|  | if (n) | 
|  | goto found; | 
|  | } | 
|  |  | 
|  | /* new hash chain */ | 
|  | while (++h < FIB_TABLE_HASHSZ) { | 
|  | struct hlist_head *head = &net->ipv4.fib_table_hash[h]; | 
|  | hlist_for_each_entry_rcu(tb, tb_node, head, tb_hlist) { | 
|  | n = fib_trie_get_first(iter, (struct trie *) tb->tb_data); | 
|  | if (n) | 
|  | goto found; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  |  | 
|  | found: | 
|  | iter->tb = tb; | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static void fib_trie_seq_stop(struct seq_file *seq, void *v) | 
|  | __releases(RCU) | 
|  | { | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static void seq_indent(struct seq_file *seq, int n) | 
|  | { | 
|  | while (n-- > 0) | 
|  | seq_puts(seq, "   "); | 
|  | } | 
|  |  | 
|  | static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s) | 
|  | { | 
|  | switch (s) { | 
|  | case RT_SCOPE_UNIVERSE: return "universe"; | 
|  | case RT_SCOPE_SITE:	return "site"; | 
|  | case RT_SCOPE_LINK:	return "link"; | 
|  | case RT_SCOPE_HOST:	return "host"; | 
|  | case RT_SCOPE_NOWHERE:	return "nowhere"; | 
|  | default: | 
|  | snprintf(buf, len, "scope=%d", s); | 
|  | return buf; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char *const rtn_type_names[__RTN_MAX] = { | 
|  | [RTN_UNSPEC] = "UNSPEC", | 
|  | [RTN_UNICAST] = "UNICAST", | 
|  | [RTN_LOCAL] = "LOCAL", | 
|  | [RTN_BROADCAST] = "BROADCAST", | 
|  | [RTN_ANYCAST] = "ANYCAST", | 
|  | [RTN_MULTICAST] = "MULTICAST", | 
|  | [RTN_BLACKHOLE] = "BLACKHOLE", | 
|  | [RTN_UNREACHABLE] = "UNREACHABLE", | 
|  | [RTN_PROHIBIT] = "PROHIBIT", | 
|  | [RTN_THROW] = "THROW", | 
|  | [RTN_NAT] = "NAT", | 
|  | [RTN_XRESOLVE] = "XRESOLVE", | 
|  | }; | 
|  |  | 
|  | static inline const char *rtn_type(char *buf, size_t len, unsigned int t) | 
|  | { | 
|  | if (t < __RTN_MAX && rtn_type_names[t]) | 
|  | return rtn_type_names[t]; | 
|  | snprintf(buf, len, "type %u", t); | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* Pretty print the trie */ | 
|  | static int fib_trie_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | const struct fib_trie_iter *iter = seq->private; | 
|  | struct node *n = v; | 
|  |  | 
|  | if (!node_parent_rcu(n)) | 
|  | fib_table_print(seq, iter->tb); | 
|  |  | 
|  | if (IS_TNODE(n)) { | 
|  | struct tnode *tn = (struct tnode *) n; | 
|  | __be32 prf = htonl(mask_pfx(tn->key, tn->pos)); | 
|  |  | 
|  | seq_indent(seq, iter->depth-1); | 
|  | seq_printf(seq, "  +-- %pI4/%d %d %d %d\n", | 
|  | &prf, tn->pos, tn->bits, tn->full_children, | 
|  | tn->empty_children); | 
|  |  | 
|  | } else { | 
|  | struct leaf *l = (struct leaf *) n; | 
|  | struct leaf_info *li; | 
|  | struct hlist_node *node; | 
|  | __be32 val = htonl(l->key); | 
|  |  | 
|  | seq_indent(seq, iter->depth); | 
|  | seq_printf(seq, "  |-- %pI4\n", &val); | 
|  |  | 
|  | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { | 
|  | struct fib_alias *fa; | 
|  |  | 
|  | list_for_each_entry_rcu(fa, &li->falh, fa_list) { | 
|  | char buf1[32], buf2[32]; | 
|  |  | 
|  | seq_indent(seq, iter->depth+1); | 
|  | seq_printf(seq, "  /%d %s %s", li->plen, | 
|  | rtn_scope(buf1, sizeof(buf1), | 
|  | fa->fa_scope), | 
|  | rtn_type(buf2, sizeof(buf2), | 
|  | fa->fa_type)); | 
|  | if (fa->fa_tos) | 
|  | seq_printf(seq, " tos=%d", fa->fa_tos); | 
|  | seq_putc(seq, '\n'); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations fib_trie_seq_ops = { | 
|  | .start  = fib_trie_seq_start, | 
|  | .next   = fib_trie_seq_next, | 
|  | .stop   = fib_trie_seq_stop, | 
|  | .show   = fib_trie_seq_show, | 
|  | }; | 
|  |  | 
|  | static int fib_trie_seq_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open_net(inode, file, &fib_trie_seq_ops, | 
|  | sizeof(struct fib_trie_iter)); | 
|  | } | 
|  |  | 
|  | static const struct file_operations fib_trie_fops = { | 
|  | .owner  = THIS_MODULE, | 
|  | .open   = fib_trie_seq_open, | 
|  | .read   = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .release = seq_release_net, | 
|  | }; | 
|  |  | 
|  | struct fib_route_iter { | 
|  | struct seq_net_private p; | 
|  | struct trie *main_trie; | 
|  | loff_t	pos; | 
|  | t_key	key; | 
|  | }; | 
|  |  | 
|  | static struct leaf *fib_route_get_idx(struct fib_route_iter *iter, loff_t pos) | 
|  | { | 
|  | struct leaf *l = NULL; | 
|  | struct trie *t = iter->main_trie; | 
|  |  | 
|  | /* use cache location of last found key */ | 
|  | if (iter->pos > 0 && pos >= iter->pos && (l = fib_find_node(t, iter->key))) | 
|  | pos -= iter->pos; | 
|  | else { | 
|  | iter->pos = 0; | 
|  | l = trie_firstleaf(t); | 
|  | } | 
|  |  | 
|  | while (l && pos-- > 0) { | 
|  | iter->pos++; | 
|  | l = trie_nextleaf(l); | 
|  | } | 
|  |  | 
|  | if (l) | 
|  | iter->key = pos;	/* remember it */ | 
|  | else | 
|  | iter->pos = 0;		/* forget it */ | 
|  |  | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos) | 
|  | __acquires(RCU) | 
|  | { | 
|  | struct fib_route_iter *iter = seq->private; | 
|  | struct fib_table *tb; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN); | 
|  | if (!tb) | 
|  | return NULL; | 
|  |  | 
|  | iter->main_trie = (struct trie *) tb->tb_data; | 
|  | if (*pos == 0) | 
|  | return SEQ_START_TOKEN; | 
|  | else | 
|  | return fib_route_get_idx(iter, *pos - 1); | 
|  | } | 
|  |  | 
|  | static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos) | 
|  | { | 
|  | struct fib_route_iter *iter = seq->private; | 
|  | struct leaf *l = v; | 
|  |  | 
|  | ++*pos; | 
|  | if (v == SEQ_START_TOKEN) { | 
|  | iter->pos = 0; | 
|  | l = trie_firstleaf(iter->main_trie); | 
|  | } else { | 
|  | iter->pos++; | 
|  | l = trie_nextleaf(l); | 
|  | } | 
|  |  | 
|  | if (l) | 
|  | iter->key = l->key; | 
|  | else | 
|  | iter->pos = 0; | 
|  | return l; | 
|  | } | 
|  |  | 
|  | static void fib_route_seq_stop(struct seq_file *seq, void *v) | 
|  | __releases(RCU) | 
|  | { | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static unsigned int fib_flag_trans(int type, __be32 mask, const struct fib_info *fi) | 
|  | { | 
|  | unsigned int flags = 0; | 
|  |  | 
|  | if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT) | 
|  | flags = RTF_REJECT; | 
|  | if (fi && fi->fib_nh->nh_gw) | 
|  | flags |= RTF_GATEWAY; | 
|  | if (mask == htonl(0xFFFFFFFF)) | 
|  | flags |= RTF_HOST; | 
|  | flags |= RTF_UP; | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	This outputs /proc/net/route. | 
|  | *	The format of the file is not supposed to be changed | 
|  | *	and needs to be same as fib_hash output to avoid breaking | 
|  | *	legacy utilities | 
|  | */ | 
|  | static int fib_route_seq_show(struct seq_file *seq, void *v) | 
|  | { | 
|  | struct leaf *l = v; | 
|  | struct leaf_info *li; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | if (v == SEQ_START_TOKEN) { | 
|  | seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway " | 
|  | "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU" | 
|  | "\tWindow\tIRTT"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | hlist_for_each_entry_rcu(li, node, &l->list, hlist) { | 
|  | struct fib_alias *fa; | 
|  | __be32 mask, prefix; | 
|  |  | 
|  | mask = inet_make_mask(li->plen); | 
|  | prefix = htonl(l->key); | 
|  |  | 
|  | list_for_each_entry_rcu(fa, &li->falh, fa_list) { | 
|  | const struct fib_info *fi = fa->fa_info; | 
|  | unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi); | 
|  | int len; | 
|  |  | 
|  | if (fa->fa_type == RTN_BROADCAST | 
|  | || fa->fa_type == RTN_MULTICAST) | 
|  | continue; | 
|  |  | 
|  | if (fi) | 
|  | seq_printf(seq, | 
|  | "%s\t%08X\t%08X\t%04X\t%d\t%u\t" | 
|  | "%d\t%08X\t%d\t%u\t%u%n", | 
|  | fi->fib_dev ? fi->fib_dev->name : "*", | 
|  | prefix, | 
|  | fi->fib_nh->nh_gw, flags, 0, 0, | 
|  | fi->fib_priority, | 
|  | mask, | 
|  | (fi->fib_advmss ? | 
|  | fi->fib_advmss + 40 : 0), | 
|  | fi->fib_window, | 
|  | fi->fib_rtt >> 3, &len); | 
|  | else | 
|  | seq_printf(seq, | 
|  | "*\t%08X\t%08X\t%04X\t%d\t%u\t" | 
|  | "%d\t%08X\t%d\t%u\t%u%n", | 
|  | prefix, 0, flags, 0, 0, 0, | 
|  | mask, 0, 0, 0, &len); | 
|  |  | 
|  | seq_printf(seq, "%*s\n", 127 - len, ""); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct seq_operations fib_route_seq_ops = { | 
|  | .start  = fib_route_seq_start, | 
|  | .next   = fib_route_seq_next, | 
|  | .stop   = fib_route_seq_stop, | 
|  | .show   = fib_route_seq_show, | 
|  | }; | 
|  |  | 
|  | static int fib_route_seq_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open_net(inode, file, &fib_route_seq_ops, | 
|  | sizeof(struct fib_route_iter)); | 
|  | } | 
|  |  | 
|  | static const struct file_operations fib_route_fops = { | 
|  | .owner  = THIS_MODULE, | 
|  | .open   = fib_route_seq_open, | 
|  | .read   = seq_read, | 
|  | .llseek = seq_lseek, | 
|  | .release = seq_release_net, | 
|  | }; | 
|  |  | 
|  | int __net_init fib_proc_init(struct net *net) | 
|  | { | 
|  | if (!proc_net_fops_create(net, "fib_trie", S_IRUGO, &fib_trie_fops)) | 
|  | goto out1; | 
|  |  | 
|  | if (!proc_net_fops_create(net, "fib_triestat", S_IRUGO, | 
|  | &fib_triestat_fops)) | 
|  | goto out2; | 
|  |  | 
|  | if (!proc_net_fops_create(net, "route", S_IRUGO, &fib_route_fops)) | 
|  | goto out3; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out3: | 
|  | proc_net_remove(net, "fib_triestat"); | 
|  | out2: | 
|  | proc_net_remove(net, "fib_trie"); | 
|  | out1: | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void __net_exit fib_proc_exit(struct net *net) | 
|  | { | 
|  | proc_net_remove(net, "fib_trie"); | 
|  | proc_net_remove(net, "fib_triestat"); | 
|  | proc_net_remove(net, "route"); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PROC_FS */ |