| /*  $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $ | 
 |  *  arch/sparc64/mm/init.c | 
 |  * | 
 |  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu) | 
 |  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz) | 
 |  */ | 
 |   | 
 | #include <linux/config.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/hugetlb.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/kprobes.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/sort.h> | 
 |  | 
 | #include <asm/head.h> | 
 | #include <asm/system.h> | 
 | #include <asm/page.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/oplib.h> | 
 | #include <asm/iommu.h> | 
 | #include <asm/io.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/starfire.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/spitfire.h> | 
 | #include <asm/sections.h> | 
 |  | 
 | extern void device_scan(void); | 
 |  | 
 | #define MAX_BANKS	32 | 
 |  | 
 | static struct linux_prom64_registers pavail[MAX_BANKS] __initdata; | 
 | static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata; | 
 | static int pavail_ents __initdata; | 
 | static int pavail_rescan_ents __initdata; | 
 |  | 
 | static int cmp_p64(const void *a, const void *b) | 
 | { | 
 | 	const struct linux_prom64_registers *x = a, *y = b; | 
 |  | 
 | 	if (x->phys_addr > y->phys_addr) | 
 | 		return 1; | 
 | 	if (x->phys_addr < y->phys_addr) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init read_obp_memory(const char *property, | 
 | 				   struct linux_prom64_registers *regs, | 
 | 				   int *num_ents) | 
 | { | 
 | 	int node = prom_finddevice("/memory"); | 
 | 	int prop_size = prom_getproplen(node, property); | 
 | 	int ents, ret, i; | 
 |  | 
 | 	ents = prop_size / sizeof(struct linux_prom64_registers); | 
 | 	if (ents > MAX_BANKS) { | 
 | 		prom_printf("The machine has more %s property entries than " | 
 | 			    "this kernel can support (%d).\n", | 
 | 			    property, MAX_BANKS); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	ret = prom_getproperty(node, property, (char *) regs, prop_size); | 
 | 	if (ret == -1) { | 
 | 		prom_printf("Couldn't get %s property from /memory.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	*num_ents = ents; | 
 |  | 
 | 	/* Sanitize what we got from the firmware, by page aligning | 
 | 	 * everything. | 
 | 	 */ | 
 | 	for (i = 0; i < ents; i++) { | 
 | 		unsigned long base, size; | 
 |  | 
 | 		base = regs[i].phys_addr; | 
 | 		size = regs[i].reg_size; | 
 |  | 
 | 		size &= PAGE_MASK; | 
 | 		if (base & ~PAGE_MASK) { | 
 | 			unsigned long new_base = PAGE_ALIGN(base); | 
 |  | 
 | 			size -= new_base - base; | 
 | 			if ((long) size < 0L) | 
 | 				size = 0UL; | 
 | 			base = new_base; | 
 | 		} | 
 | 		regs[i].phys_addr = base; | 
 | 		regs[i].reg_size = size; | 
 | 	} | 
 | 	sort(regs, ents, sizeof(struct linux_prom64_registers), | 
 | 	     cmp_p64, NULL); | 
 | } | 
 |  | 
 | unsigned long *sparc64_valid_addr_bitmap __read_mostly; | 
 |  | 
 | /* Ugly, but necessary... -DaveM */ | 
 | unsigned long phys_base __read_mostly; | 
 | unsigned long kern_base __read_mostly; | 
 | unsigned long kern_size __read_mostly; | 
 | unsigned long pfn_base __read_mostly; | 
 |  | 
 | /* get_new_mmu_context() uses "cache + 1".  */ | 
 | DEFINE_SPINLOCK(ctx_alloc_lock); | 
 | unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1; | 
 | #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6)) | 
 | unsigned long mmu_context_bmap[CTX_BMAP_SLOTS]; | 
 |  | 
 | /* References to special section boundaries */ | 
 | extern char  _start[], _end[]; | 
 |  | 
 | /* Initial ramdisk setup */ | 
 | extern unsigned long sparc_ramdisk_image64; | 
 | extern unsigned int sparc_ramdisk_image; | 
 | extern unsigned int sparc_ramdisk_size; | 
 |  | 
 | struct page *mem_map_zero __read_mostly; | 
 |  | 
 | unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly; | 
 |  | 
 | unsigned long sparc64_kern_pri_context __read_mostly; | 
 | unsigned long sparc64_kern_pri_nuc_bits __read_mostly; | 
 | unsigned long sparc64_kern_sec_context __read_mostly; | 
 |  | 
 | int bigkernel = 0; | 
 |  | 
 | /* XXX Tune this... */ | 
 | #define PGT_CACHE_LOW	25 | 
 | #define PGT_CACHE_HIGH	50 | 
 |  | 
 | void check_pgt_cache(void) | 
 | { | 
 | 	preempt_disable(); | 
 | 	if (pgtable_cache_size > PGT_CACHE_HIGH) { | 
 | 		do { | 
 | 			if (pgd_quicklist) | 
 | 				free_pgd_slow(get_pgd_fast()); | 
 | 			if (pte_quicklist[0]) | 
 | 				free_pte_slow(pte_alloc_one_fast(NULL, 0)); | 
 | 			if (pte_quicklist[1]) | 
 | 				free_pte_slow(pte_alloc_one_fast(NULL, 1 << (PAGE_SHIFT + 10))); | 
 | 		} while (pgtable_cache_size > PGT_CACHE_LOW); | 
 | 	} | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | atomic_t dcpage_flushes = ATOMIC_INIT(0); | 
 | #ifdef CONFIG_SMP | 
 | atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0); | 
 | #endif | 
 | #endif | 
 |  | 
 | __inline__ void flush_dcache_page_impl(struct page *page) | 
 | { | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 	atomic_inc(&dcpage_flushes); | 
 | #endif | 
 |  | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | 	__flush_dcache_page(page_address(page), | 
 | 			    ((tlb_type == spitfire) && | 
 | 			     page_mapping(page) != NULL)); | 
 | #else | 
 | 	if (page_mapping(page) != NULL && | 
 | 	    tlb_type == spitfire) | 
 | 		__flush_icache_page(__pa(page_address(page))); | 
 | #endif | 
 | } | 
 |  | 
 | #define PG_dcache_dirty		PG_arch_1 | 
 | #define PG_dcache_cpu_shift	24 | 
 | #define PG_dcache_cpu_mask	(256 - 1) | 
 |  | 
 | #if NR_CPUS > 256 | 
 | #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus | 
 | #endif | 
 |  | 
 | #define dcache_dirty_cpu(page) \ | 
 | 	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask) | 
 |  | 
 | static __inline__ void set_dcache_dirty(struct page *page, int this_cpu) | 
 | { | 
 | 	unsigned long mask = this_cpu; | 
 | 	unsigned long non_cpu_bits; | 
 |  | 
 | 	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift); | 
 | 	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty); | 
 |  | 
 | 	__asm__ __volatile__("1:\n\t" | 
 | 			     "ldx	[%2], %%g7\n\t" | 
 | 			     "and	%%g7, %1, %%g1\n\t" | 
 | 			     "or	%%g1, %0, %%g1\n\t" | 
 | 			     "casx	[%2], %%g7, %%g1\n\t" | 
 | 			     "cmp	%%g7, %%g1\n\t" | 
 | 			     "membar	#StoreLoad | #StoreStore\n\t" | 
 | 			     "bne,pn	%%xcc, 1b\n\t" | 
 | 			     " nop" | 
 | 			     : /* no outputs */ | 
 | 			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags) | 
 | 			     : "g1", "g7"); | 
 | } | 
 |  | 
 | static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu) | 
 | { | 
 | 	unsigned long mask = (1UL << PG_dcache_dirty); | 
 |  | 
 | 	__asm__ __volatile__("! test_and_clear_dcache_dirty\n" | 
 | 			     "1:\n\t" | 
 | 			     "ldx	[%2], %%g7\n\t" | 
 | 			     "srlx	%%g7, %4, %%g1\n\t" | 
 | 			     "and	%%g1, %3, %%g1\n\t" | 
 | 			     "cmp	%%g1, %0\n\t" | 
 | 			     "bne,pn	%%icc, 2f\n\t" | 
 | 			     " andn	%%g7, %1, %%g1\n\t" | 
 | 			     "casx	[%2], %%g7, %%g1\n\t" | 
 | 			     "cmp	%%g7, %%g1\n\t" | 
 | 			     "membar	#StoreLoad | #StoreStore\n\t" | 
 | 			     "bne,pn	%%xcc, 1b\n\t" | 
 | 			     " nop\n" | 
 | 			     "2:" | 
 | 			     : /* no outputs */ | 
 | 			     : "r" (cpu), "r" (mask), "r" (&page->flags), | 
 | 			       "i" (PG_dcache_cpu_mask), | 
 | 			       "i" (PG_dcache_cpu_shift) | 
 | 			     : "g1", "g7"); | 
 | } | 
 |  | 
 | void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long pfn; | 
 | 	unsigned long pg_flags; | 
 |  | 
 | 	pfn = pte_pfn(pte); | 
 | 	if (pfn_valid(pfn) && | 
 | 	    (page = pfn_to_page(pfn), page_mapping(page)) && | 
 | 	    ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) { | 
 | 		int cpu = ((pg_flags >> PG_dcache_cpu_shift) & | 
 | 			   PG_dcache_cpu_mask); | 
 | 		int this_cpu = get_cpu(); | 
 |  | 
 | 		/* This is just to optimize away some function calls | 
 | 		 * in the SMP case. | 
 | 		 */ | 
 | 		if (cpu == this_cpu) | 
 | 			flush_dcache_page_impl(page); | 
 | 		else | 
 | 			smp_flush_dcache_page_impl(page, cpu); | 
 |  | 
 | 		clear_dcache_dirty_cpu(page, cpu); | 
 |  | 
 | 		put_cpu(); | 
 | 	} | 
 | } | 
 |  | 
 | void flush_dcache_page(struct page *page) | 
 | { | 
 | 	struct address_space *mapping; | 
 | 	int this_cpu; | 
 |  | 
 | 	/* Do not bother with the expensive D-cache flush if it | 
 | 	 * is merely the zero page.  The 'bigcore' testcase in GDB | 
 | 	 * causes this case to run millions of times. | 
 | 	 */ | 
 | 	if (page == ZERO_PAGE(0)) | 
 | 		return; | 
 |  | 
 | 	this_cpu = get_cpu(); | 
 |  | 
 | 	mapping = page_mapping(page); | 
 | 	if (mapping && !mapping_mapped(mapping)) { | 
 | 		int dirty = test_bit(PG_dcache_dirty, &page->flags); | 
 | 		if (dirty) { | 
 | 			int dirty_cpu = dcache_dirty_cpu(page); | 
 |  | 
 | 			if (dirty_cpu == this_cpu) | 
 | 				goto out; | 
 | 			smp_flush_dcache_page_impl(page, dirty_cpu); | 
 | 		} | 
 | 		set_dcache_dirty(page, this_cpu); | 
 | 	} else { | 
 | 		/* We could delay the flush for the !page_mapping | 
 | 		 * case too.  But that case is for exec env/arg | 
 | 		 * pages and those are %99 certainly going to get | 
 | 		 * faulted into the tlb (and thus flushed) anyways. | 
 | 		 */ | 
 | 		flush_dcache_page_impl(page); | 
 | 	} | 
 |  | 
 | out: | 
 | 	put_cpu(); | 
 | } | 
 |  | 
 | void __kprobes flush_icache_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	/* Cheetah has coherent I-cache. */ | 
 | 	if (tlb_type == spitfire) { | 
 | 		unsigned long kaddr; | 
 |  | 
 | 		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) | 
 | 			__flush_icache_page(__get_phys(kaddr)); | 
 | 	} | 
 | } | 
 |  | 
 | unsigned long page_to_pfn(struct page *page) | 
 | { | 
 | 	return (unsigned long) ((page - mem_map) + pfn_base); | 
 | } | 
 |  | 
 | struct page *pfn_to_page(unsigned long pfn) | 
 | { | 
 | 	return (mem_map + (pfn - pfn_base)); | 
 | } | 
 |  | 
 | void show_mem(void) | 
 | { | 
 | 	printk("Mem-info:\n"); | 
 | 	show_free_areas(); | 
 | 	printk("Free swap:       %6ldkB\n", | 
 | 	       nr_swap_pages << (PAGE_SHIFT-10)); | 
 | 	printk("%ld pages of RAM\n", num_physpages); | 
 | 	printk("%d free pages\n", nr_free_pages()); | 
 | 	printk("%d pages in page table cache\n",pgtable_cache_size); | 
 | } | 
 |  | 
 | void mmu_info(struct seq_file *m) | 
 | { | 
 | 	if (tlb_type == cheetah) | 
 | 		seq_printf(m, "MMU Type\t: Cheetah\n"); | 
 | 	else if (tlb_type == cheetah_plus) | 
 | 		seq_printf(m, "MMU Type\t: Cheetah+\n"); | 
 | 	else if (tlb_type == spitfire) | 
 | 		seq_printf(m, "MMU Type\t: Spitfire\n"); | 
 | 	else | 
 | 		seq_printf(m, "MMU Type\t: ???\n"); | 
 |  | 
 | #ifdef CONFIG_DEBUG_DCFLUSH | 
 | 	seq_printf(m, "DCPageFlushes\t: %d\n", | 
 | 		   atomic_read(&dcpage_flushes)); | 
 | #ifdef CONFIG_SMP | 
 | 	seq_printf(m, "DCPageFlushesXC\t: %d\n", | 
 | 		   atomic_read(&dcpage_flushes_xcall)); | 
 | #endif /* CONFIG_SMP */ | 
 | #endif /* CONFIG_DEBUG_DCFLUSH */ | 
 | } | 
 |  | 
 | struct linux_prom_translation { | 
 | 	unsigned long virt; | 
 | 	unsigned long size; | 
 | 	unsigned long data; | 
 | }; | 
 |  | 
 | /* Exported for kernel TLB miss handling in ktlb.S */ | 
 | struct linux_prom_translation prom_trans[512] __read_mostly; | 
 | unsigned int prom_trans_ents __read_mostly; | 
 | unsigned int swapper_pgd_zero __read_mostly; | 
 |  | 
 | extern unsigned long prom_boot_page; | 
 | extern void prom_remap(unsigned long physpage, unsigned long virtpage, int mmu_ihandle); | 
 | extern int prom_get_mmu_ihandle(void); | 
 | extern void register_prom_callbacks(void); | 
 |  | 
 | /* Exported for SMP bootup purposes. */ | 
 | unsigned long kern_locked_tte_data; | 
 |  | 
 | /* | 
 |  * Translate PROM's mapping we capture at boot time into physical address. | 
 |  * The second parameter is only set from prom_callback() invocations. | 
 |  */ | 
 | unsigned long prom_virt_to_phys(unsigned long promva, int *error) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < prom_trans_ents; i++) { | 
 | 		struct linux_prom_translation *p = &prom_trans[i]; | 
 |  | 
 | 		if (promva >= p->virt && | 
 | 		    promva < (p->virt + p->size)) { | 
 | 			unsigned long base = p->data & _PAGE_PADDR; | 
 |  | 
 | 			if (error) | 
 | 				*error = 0; | 
 | 			return base + (promva & (8192 - 1)); | 
 | 		} | 
 | 	} | 
 | 	if (error) | 
 | 		*error = 1; | 
 | 	return 0UL; | 
 | } | 
 |  | 
 | /* The obp translations are saved based on 8k pagesize, since obp can | 
 |  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS -> | 
 |  * HI_OBP_ADDRESS range are handled in ktlb.S and do not use the vpte | 
 |  * scheme (also, see rant in inherit_locked_prom_mappings()). | 
 |  */ | 
 | static inline int in_obp_range(unsigned long vaddr) | 
 | { | 
 | 	return (vaddr >= LOW_OBP_ADDRESS && | 
 | 		vaddr < HI_OBP_ADDRESS); | 
 | } | 
 |  | 
 | static int cmp_ptrans(const void *a, const void *b) | 
 | { | 
 | 	const struct linux_prom_translation *x = a, *y = b; | 
 |  | 
 | 	if (x->virt > y->virt) | 
 | 		return 1; | 
 | 	if (x->virt < y->virt) | 
 | 		return -1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Read OBP translations property into 'prom_trans[]'.  */ | 
 | static void __init read_obp_translations(void) | 
 | { | 
 | 	int n, node, ents, first, last, i; | 
 |  | 
 | 	node = prom_finddevice("/virtual-memory"); | 
 | 	n = prom_getproplen(node, "translations"); | 
 | 	if (unlikely(n == 0 || n == -1)) { | 
 | 		prom_printf("prom_mappings: Couldn't get size.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	if (unlikely(n > sizeof(prom_trans))) { | 
 | 		prom_printf("prom_mappings: Size %Zd is too big.\n", n); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	if ((n = prom_getproperty(node, "translations", | 
 | 				  (char *)&prom_trans[0], | 
 | 				  sizeof(prom_trans))) == -1) { | 
 | 		prom_printf("prom_mappings: Couldn't get property.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	n = n / sizeof(struct linux_prom_translation); | 
 |  | 
 | 	ents = n; | 
 |  | 
 | 	sort(prom_trans, ents, sizeof(struct linux_prom_translation), | 
 | 	     cmp_ptrans, NULL); | 
 |  | 
 | 	/* Now kick out all the non-OBP entries.  */ | 
 | 	for (i = 0; i < ents; i++) { | 
 | 		if (in_obp_range(prom_trans[i].virt)) | 
 | 			break; | 
 | 	} | 
 | 	first = i; | 
 | 	for (; i < ents; i++) { | 
 | 		if (!in_obp_range(prom_trans[i].virt)) | 
 | 			break; | 
 | 	} | 
 | 	last = i; | 
 |  | 
 | 	for (i = 0; i < (last - first); i++) { | 
 | 		struct linux_prom_translation *src = &prom_trans[i + first]; | 
 | 		struct linux_prom_translation *dest = &prom_trans[i]; | 
 |  | 
 | 		*dest = *src; | 
 | 	} | 
 | 	for (; i < ents; i++) { | 
 | 		struct linux_prom_translation *dest = &prom_trans[i]; | 
 | 		dest->virt = dest->size = dest->data = 0x0UL; | 
 | 	} | 
 |  | 
 | 	prom_trans_ents = last - first; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		/* Clear diag TTE bits. */ | 
 | 		for (i = 0; i < prom_trans_ents; i++) | 
 | 			prom_trans[i].data &= ~0x0003fe0000000000UL; | 
 | 	} | 
 | } | 
 |  | 
 | static void __init remap_kernel(void) | 
 | { | 
 | 	unsigned long phys_page, tte_vaddr, tte_data; | 
 | 	int tlb_ent = sparc64_highest_locked_tlbent(); | 
 |  | 
 | 	tte_vaddr = (unsigned long) KERNBASE; | 
 | 	phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL; | 
 | 	tte_data = (phys_page | (_PAGE_VALID | _PAGE_SZ4MB | | 
 | 				 _PAGE_CP | _PAGE_CV | _PAGE_P | | 
 | 				 _PAGE_L | _PAGE_W)); | 
 |  | 
 | 	kern_locked_tte_data = tte_data; | 
 |  | 
 | 	/* Now lock us into the TLBs via OBP. */ | 
 | 	prom_dtlb_load(tlb_ent, tte_data, tte_vaddr); | 
 | 	prom_itlb_load(tlb_ent, tte_data, tte_vaddr); | 
 | 	if (bigkernel) { | 
 | 		tlb_ent -= 1; | 
 | 		prom_dtlb_load(tlb_ent, | 
 | 			       tte_data + 0x400000,  | 
 | 			       tte_vaddr + 0x400000); | 
 | 		prom_itlb_load(tlb_ent, | 
 | 			       tte_data + 0x400000,  | 
 | 			       tte_vaddr + 0x400000); | 
 | 	} | 
 | 	sparc64_highest_unlocked_tlb_ent = tlb_ent - 1; | 
 | 	if (tlb_type == cheetah_plus) { | 
 | 		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 | | 
 | 					    CTX_CHEETAH_PLUS_NUC); | 
 | 		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC; | 
 | 		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static void __init inherit_prom_mappings(void) | 
 | { | 
 | 	read_obp_translations(); | 
 |  | 
 | 	/* Now fixup OBP's idea about where we really are mapped. */ | 
 | 	prom_printf("Remapping the kernel... "); | 
 | 	remap_kernel(); | 
 | 	prom_printf("done.\n"); | 
 |  | 
 | 	prom_printf("Registering callbacks... "); | 
 | 	register_prom_callbacks(); | 
 | 	prom_printf("done.\n"); | 
 | } | 
 |  | 
 | /* The OBP specifications for sun4u mark 0xfffffffc00000000 and | 
 |  * upwards as reserved for use by the firmware (I wonder if this | 
 |  * will be the same on Cheetah...).  We use this virtual address | 
 |  * range for the VPTE table mappings of the nucleus so we need | 
 |  * to zap them when we enter the PROM.  -DaveM | 
 |  */ | 
 | static void __flush_nucleus_vptes(void) | 
 | { | 
 | 	unsigned long prom_reserved_base = 0xfffffffc00000000UL; | 
 | 	int i; | 
 |  | 
 | 	/* Only DTLB must be checked for VPTE entries. */ | 
 | 	if (tlb_type == spitfire) { | 
 | 		for (i = 0; i < 63; i++) { | 
 | 			unsigned long tag; | 
 |  | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no cheetah+ | 
 | 			 *       page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			tag = spitfire_get_dtlb_tag(i); | 
 | 			if (((tag & ~(PAGE_MASK)) == 0) && | 
 | 			    ((tag &  (PAGE_MASK)) >= prom_reserved_base)) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				spitfire_put_dtlb_data(i, 0x0UL); | 
 | 			} | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		for (i = 0; i < 512; i++) { | 
 | 			unsigned long tag = cheetah_get_dtlb_tag(i, 2); | 
 |  | 
 | 			if ((tag & ~PAGE_MASK) == 0 && | 
 | 			    (tag & PAGE_MASK) >= prom_reserved_base) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				cheetah_put_dtlb_data(i, 0x0UL, 2); | 
 | 			} | 
 |  | 
 | 			if (tlb_type != cheetah_plus) | 
 | 				continue; | 
 |  | 
 | 			tag = cheetah_get_dtlb_tag(i, 3); | 
 |  | 
 | 			if ((tag & ~PAGE_MASK) == 0 && | 
 | 			    (tag & PAGE_MASK) >= prom_reserved_base) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				cheetah_put_dtlb_data(i, 0x0UL, 3); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* Implement me :-) */ | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static int prom_ditlb_set; | 
 | struct prom_tlb_entry { | 
 | 	int		tlb_ent; | 
 | 	unsigned long	tlb_tag; | 
 | 	unsigned long	tlb_data; | 
 | }; | 
 | struct prom_tlb_entry prom_itlb[16], prom_dtlb[16]; | 
 |  | 
 | void prom_world(int enter) | 
 | { | 
 | 	unsigned long pstate; | 
 | 	int i; | 
 |  | 
 | 	if (!enter) | 
 | 		set_fs((mm_segment_t) { get_thread_current_ds() }); | 
 |  | 
 | 	if (!prom_ditlb_set) | 
 | 		return; | 
 |  | 
 | 	/* Make sure the following runs atomically. */ | 
 | 	__asm__ __volatile__("flushw\n\t" | 
 | 			     "rdpr	%%pstate, %0\n\t" | 
 | 			     "wrpr	%0, %1, %%pstate" | 
 | 			     : "=r" (pstate) | 
 | 			     : "i" (PSTATE_IE)); | 
 |  | 
 | 	if (enter) { | 
 | 		/* Kick out nucleus VPTEs. */ | 
 | 		__flush_nucleus_vptes(); | 
 |  | 
 | 		/* Install PROM world. */ | 
 | 		for (i = 0; i < 16; i++) { | 
 | 			if (prom_dtlb[i].tlb_ent != -1) { | 
 | 				__asm__ __volatile__("stxa %0, [%1] %2\n\t" | 
 | 						     "membar #Sync" | 
 | 					: : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS), | 
 | 					"i" (ASI_DMMU)); | 
 | 				if (tlb_type == spitfire) | 
 | 					spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, | 
 | 							       prom_dtlb[i].tlb_data); | 
 | 				else if (tlb_type == cheetah || tlb_type == cheetah_plus) | 
 | 					cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, | 
 | 							       prom_dtlb[i].tlb_data); | 
 | 			} | 
 | 			if (prom_itlb[i].tlb_ent != -1) { | 
 | 				__asm__ __volatile__("stxa %0, [%1] %2\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : : "r" (prom_itlb[i].tlb_tag), | 
 | 						     "r" (TLB_TAG_ACCESS), | 
 | 						     "i" (ASI_IMMU)); | 
 | 				if (tlb_type == spitfire) | 
 | 					spitfire_put_itlb_data(prom_itlb[i].tlb_ent, | 
 | 							       prom_itlb[i].tlb_data); | 
 | 				else if (tlb_type == cheetah || tlb_type == cheetah_plus) | 
 | 					cheetah_put_litlb_data(prom_itlb[i].tlb_ent, | 
 | 							       prom_itlb[i].tlb_data); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < 16; i++) { | 
 | 			if (prom_dtlb[i].tlb_ent != -1) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 					: : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				if (tlb_type == spitfire) | 
 | 					spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, 0x0UL); | 
 | 				else | 
 | 					cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, 0x0UL); | 
 | 			} | 
 | 			if (prom_itlb[i].tlb_ent != -1) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : : "r" (TLB_TAG_ACCESS), | 
 | 						     "i" (ASI_IMMU)); | 
 | 				if (tlb_type == spitfire) | 
 | 					spitfire_put_itlb_data(prom_itlb[i].tlb_ent, 0x0UL); | 
 | 				else | 
 | 					cheetah_put_litlb_data(prom_itlb[i].tlb_ent, 0x0UL); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	__asm__ __volatile__("wrpr	%0, 0, %%pstate" | 
 | 			     : : "r" (pstate)); | 
 | } | 
 |  | 
 | void inherit_locked_prom_mappings(int save_p) | 
 | { | 
 | 	int i; | 
 | 	int dtlb_seen = 0; | 
 | 	int itlb_seen = 0; | 
 |  | 
 | 	/* Fucking losing PROM has more mappings in the TLB, but | 
 | 	 * it (conveniently) fails to mention any of these in the | 
 | 	 * translations property.  The only ones that matter are | 
 | 	 * the locked PROM tlb entries, so we impose the following | 
 | 	 * irrecovable rule on the PROM, it is allowed 8 locked | 
 | 	 * entries in the ITLB and 8 in the DTLB. | 
 | 	 * | 
 | 	 * Supposedly the upper 16GB of the address space is | 
 | 	 * reserved for OBP, BUT I WISH THIS WAS DOCUMENTED | 
 | 	 * SOMEWHERE!!!!!!!!!!!!!!!!!  Furthermore the entire interface | 
 | 	 * used between the client program and the firmware on sun5 | 
 | 	 * systems to coordinate mmu mappings is also COMPLETELY | 
 | 	 * UNDOCUMENTED!!!!!! Thanks S(t)un! | 
 | 	 */ | 
 | 	if (save_p) { | 
 | 		for (i = 0; i < 16; i++) { | 
 | 			prom_itlb[i].tlb_ent = -1; | 
 | 			prom_dtlb[i].tlb_ent = -1; | 
 | 		} | 
 | 	} | 
 | 	if (tlb_type == spitfire) { | 
 | 		int high = sparc64_highest_unlocked_tlb_ent; | 
 | 		for (i = 0; i <= high; i++) { | 
 | 			unsigned long data; | 
 |  | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no cheetah+ | 
 | 			 *       page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			data = spitfire_get_dtlb_data(i); | 
 | 			if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) { | 
 | 				unsigned long tag; | 
 |  | 
 | 				/* Spitfire Errata #32 workaround */ | 
 | 				/* NOTE: Always runs on spitfire, so no | 
 | 				 *       cheetah+ page size encodings. | 
 | 				 */ | 
 | 				__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 						     "flush	%%g6" | 
 | 						     : /* No outputs */ | 
 | 						     : "r" (0), | 
 | 						     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 				tag = spitfire_get_dtlb_tag(i); | 
 | 				if (save_p) { | 
 | 					prom_dtlb[dtlb_seen].tlb_ent = i; | 
 | 					prom_dtlb[dtlb_seen].tlb_tag = tag; | 
 | 					prom_dtlb[dtlb_seen].tlb_data = data; | 
 | 				} | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				spitfire_put_dtlb_data(i, 0x0UL); | 
 |  | 
 | 				dtlb_seen++; | 
 | 				if (dtlb_seen > 15) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < high; i++) { | 
 | 			unsigned long data; | 
 |  | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no | 
 | 			 *       cheetah+ page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			data = spitfire_get_itlb_data(i); | 
 | 			if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) { | 
 | 				unsigned long tag; | 
 |  | 
 | 				/* Spitfire Errata #32 workaround */ | 
 | 				/* NOTE: Always runs on spitfire, so no | 
 | 				 *       cheetah+ page size encodings. | 
 | 				 */ | 
 | 				__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 						     "flush	%%g6" | 
 | 						     : /* No outputs */ | 
 | 						     : "r" (0), | 
 | 						     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 				tag = spitfire_get_itlb_tag(i); | 
 | 				if (save_p) { | 
 | 					prom_itlb[itlb_seen].tlb_ent = i; | 
 | 					prom_itlb[itlb_seen].tlb_tag = tag; | 
 | 					prom_itlb[itlb_seen].tlb_data = data; | 
 | 				} | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); | 
 | 				spitfire_put_itlb_data(i, 0x0UL); | 
 |  | 
 | 				itlb_seen++; | 
 | 				if (itlb_seen > 15) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		int high = sparc64_highest_unlocked_tlb_ent; | 
 |  | 
 | 		for (i = 0; i <= high; i++) { | 
 | 			unsigned long data; | 
 |  | 
 | 			data = cheetah_get_ldtlb_data(i); | 
 | 			if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) { | 
 | 				unsigned long tag; | 
 |  | 
 | 				tag = cheetah_get_ldtlb_tag(i); | 
 | 				if (save_p) { | 
 | 					prom_dtlb[dtlb_seen].tlb_ent = i; | 
 | 					prom_dtlb[dtlb_seen].tlb_tag = tag; | 
 | 					prom_dtlb[dtlb_seen].tlb_data = data; | 
 | 				} | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				cheetah_put_ldtlb_data(i, 0x0UL); | 
 |  | 
 | 				dtlb_seen++; | 
 | 				if (dtlb_seen > 15) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < high; i++) { | 
 | 			unsigned long data; | 
 |  | 
 | 			data = cheetah_get_litlb_data(i); | 
 | 			if ((data & (_PAGE_L|_PAGE_VALID)) == (_PAGE_L|_PAGE_VALID)) { | 
 | 				unsigned long tag; | 
 |  | 
 | 				tag = cheetah_get_litlb_tag(i); | 
 | 				if (save_p) { | 
 | 					prom_itlb[itlb_seen].tlb_ent = i; | 
 | 					prom_itlb[itlb_seen].tlb_tag = tag; | 
 | 					prom_itlb[itlb_seen].tlb_data = data; | 
 | 				} | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); | 
 | 				cheetah_put_litlb_data(i, 0x0UL); | 
 |  | 
 | 				itlb_seen++; | 
 | 				if (itlb_seen > 15) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		/* Implement me :-) */ | 
 | 		BUG(); | 
 | 	} | 
 | 	if (save_p) | 
 | 		prom_ditlb_set = 1; | 
 | } | 
 |  | 
 | /* Give PROM back his world, done during reboots... */ | 
 | void prom_reload_locked(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < 16; i++) { | 
 | 		if (prom_dtlb[i].tlb_ent != -1) { | 
 | 			__asm__ __volatile__("stxa %0, [%1] %2\n\t" | 
 | 					     "membar #Sync" | 
 | 				: : "r" (prom_dtlb[i].tlb_tag), "r" (TLB_TAG_ACCESS), | 
 | 				"i" (ASI_DMMU)); | 
 | 			if (tlb_type == spitfire) | 
 | 				spitfire_put_dtlb_data(prom_dtlb[i].tlb_ent, | 
 | 						       prom_dtlb[i].tlb_data); | 
 | 			else if (tlb_type == cheetah || tlb_type == cheetah_plus) | 
 | 				cheetah_put_ldtlb_data(prom_dtlb[i].tlb_ent, | 
 | 						      prom_dtlb[i].tlb_data); | 
 | 		} | 
 |  | 
 | 		if (prom_itlb[i].tlb_ent != -1) { | 
 | 			__asm__ __volatile__("stxa %0, [%1] %2\n\t" | 
 | 					     "membar #Sync" | 
 | 					     : : "r" (prom_itlb[i].tlb_tag), | 
 | 					     "r" (TLB_TAG_ACCESS), | 
 | 					     "i" (ASI_IMMU)); | 
 | 			if (tlb_type == spitfire) | 
 | 				spitfire_put_itlb_data(prom_itlb[i].tlb_ent, | 
 | 						       prom_itlb[i].tlb_data); | 
 | 			else | 
 | 				cheetah_put_litlb_data(prom_itlb[i].tlb_ent, | 
 | 						       prom_itlb[i].tlb_data); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | void __flush_dcache_range(unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long va; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		int n = 0; | 
 |  | 
 | 		for (va = start; va < end; va += 32) { | 
 | 			spitfire_put_dcache_tag(va & 0x3fe0, 0x0); | 
 | 			if (++n >= 512) | 
 | 				break; | 
 | 		} | 
 | 	} else { | 
 | 		start = __pa(start); | 
 | 		end = __pa(end); | 
 | 		for (va = start; va < end; va += 32) | 
 | 			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 					     "membar #Sync" | 
 | 					     : /* no outputs */ | 
 | 					     : "r" (va), | 
 | 					       "i" (ASI_DCACHE_INVALIDATE)); | 
 | 	} | 
 | } | 
 | #endif /* DCACHE_ALIASING_POSSIBLE */ | 
 |  | 
 | /* If not locked, zap it. */ | 
 | void __flush_tlb_all(void) | 
 | { | 
 | 	unsigned long pstate; | 
 | 	int i; | 
 |  | 
 | 	__asm__ __volatile__("flushw\n\t" | 
 | 			     "rdpr	%%pstate, %0\n\t" | 
 | 			     "wrpr	%0, %1, %%pstate" | 
 | 			     : "=r" (pstate) | 
 | 			     : "i" (PSTATE_IE)); | 
 | 	if (tlb_type == spitfire) { | 
 | 		for (i = 0; i < 64; i++) { | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no | 
 | 			 *       cheetah+ page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			if (!(spitfire_get_dtlb_data(i) & _PAGE_L)) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU)); | 
 | 				spitfire_put_dtlb_data(i, 0x0UL); | 
 | 			} | 
 |  | 
 | 			/* Spitfire Errata #32 workaround */ | 
 | 			/* NOTE: Always runs on spitfire, so no | 
 | 			 *       cheetah+ page size encodings. | 
 | 			 */ | 
 | 			__asm__ __volatile__("stxa	%0, [%1] %2\n\t" | 
 | 					     "flush	%%g6" | 
 | 					     : /* No outputs */ | 
 | 					     : "r" (0), | 
 | 					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU)); | 
 |  | 
 | 			if (!(spitfire_get_itlb_data(i) & _PAGE_L)) { | 
 | 				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t" | 
 | 						     "membar #Sync" | 
 | 						     : /* no outputs */ | 
 | 						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU)); | 
 | 				spitfire_put_itlb_data(i, 0x0UL); | 
 | 			} | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		cheetah_flush_dtlb_all(); | 
 | 		cheetah_flush_itlb_all(); | 
 | 	} | 
 | 	__asm__ __volatile__("wrpr	%0, 0, %%pstate" | 
 | 			     : : "r" (pstate)); | 
 | } | 
 |  | 
 | /* Caller does TLB context flushing on local CPU if necessary. | 
 |  * The caller also ensures that CTX_VALID(mm->context) is false. | 
 |  * | 
 |  * We must be careful about boundary cases so that we never | 
 |  * let the user have CTX 0 (nucleus) or we ever use a CTX | 
 |  * version of zero (and thus NO_CONTEXT would not be caught | 
 |  * by version mis-match tests in mmu_context.h). | 
 |  */ | 
 | void get_new_mmu_context(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long ctx, new_ctx; | 
 | 	unsigned long orig_pgsz_bits; | 
 | 	 | 
 |  | 
 | 	spin_lock(&ctx_alloc_lock); | 
 | 	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); | 
 | 	ctx = (tlb_context_cache + 1) & CTX_NR_MASK; | 
 | 	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); | 
 | 	if (new_ctx >= (1 << CTX_NR_BITS)) { | 
 | 		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); | 
 | 		if (new_ctx >= ctx) { | 
 | 			int i; | 
 | 			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) + | 
 | 				CTX_FIRST_VERSION; | 
 | 			if (new_ctx == 1) | 
 | 				new_ctx = CTX_FIRST_VERSION; | 
 |  | 
 | 			/* Don't call memset, for 16 entries that's just | 
 | 			 * plain silly... | 
 | 			 */ | 
 | 			mmu_context_bmap[0] = 3; | 
 | 			mmu_context_bmap[1] = 0; | 
 | 			mmu_context_bmap[2] = 0; | 
 | 			mmu_context_bmap[3] = 0; | 
 | 			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) { | 
 | 				mmu_context_bmap[i + 0] = 0; | 
 | 				mmu_context_bmap[i + 1] = 0; | 
 | 				mmu_context_bmap[i + 2] = 0; | 
 | 				mmu_context_bmap[i + 3] = 0; | 
 | 			} | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63)); | 
 | 	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK); | 
 | out: | 
 | 	tlb_context_cache = new_ctx; | 
 | 	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; | 
 | 	spin_unlock(&ctx_alloc_lock); | 
 | } | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | struct pgtable_cache_struct pgt_quicklists; | 
 | #endif | 
 |  | 
 | /* OK, we have to color these pages. The page tables are accessed | 
 |  * by non-Dcache enabled mapping in the VPTE area by the dtlb_backend.S | 
 |  * code, as well as by PAGE_OFFSET range direct-mapped addresses by  | 
 |  * other parts of the kernel. By coloring, we make sure that the tlbmiss  | 
 |  * fast handlers do not get data from old/garbage dcache lines that  | 
 |  * correspond to an old/stale virtual address (user/kernel) that  | 
 |  * previously mapped the pagetable page while accessing vpte range  | 
 |  * addresses. The idea is that if the vpte color and PAGE_OFFSET range  | 
 |  * color is the same, then when the kernel initializes the pagetable  | 
 |  * using the later address range, accesses with the first address | 
 |  * range will see the newly initialized data rather than the garbage. | 
 |  */ | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | #define DC_ALIAS_SHIFT	1 | 
 | #else | 
 | #define DC_ALIAS_SHIFT	0 | 
 | #endif | 
 | pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address) | 
 | { | 
 | 	struct page *page; | 
 | 	unsigned long color; | 
 |  | 
 | 	{ | 
 | 		pte_t *ptep = pte_alloc_one_fast(mm, address); | 
 |  | 
 | 		if (ptep) | 
 | 			return ptep; | 
 | 	} | 
 |  | 
 | 	color = VPTE_COLOR(address); | 
 | 	page = alloc_pages(GFP_KERNEL|__GFP_REPEAT, DC_ALIAS_SHIFT); | 
 | 	if (page) { | 
 | 		unsigned long *to_free; | 
 | 		unsigned long paddr; | 
 | 		pte_t *pte; | 
 |  | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | 		set_page_count(page, 1); | 
 | 		ClearPageCompound(page); | 
 |  | 
 | 		set_page_count((page + 1), 1); | 
 | 		ClearPageCompound(page + 1); | 
 | #endif | 
 | 		paddr = (unsigned long) page_address(page); | 
 | 		memset((char *)paddr, 0, (PAGE_SIZE << DC_ALIAS_SHIFT)); | 
 |  | 
 | 		if (!color) { | 
 | 			pte = (pte_t *) paddr; | 
 | 			to_free = (unsigned long *) (paddr + PAGE_SIZE); | 
 | 		} else { | 
 | 			pte = (pte_t *) (paddr + PAGE_SIZE); | 
 | 			to_free = (unsigned long *) paddr; | 
 | 		} | 
 |  | 
 | #ifdef DCACHE_ALIASING_POSSIBLE | 
 | 		/* Now free the other one up, adjust cache size. */ | 
 | 		preempt_disable(); | 
 | 		*to_free = (unsigned long) pte_quicklist[color ^ 0x1]; | 
 | 		pte_quicklist[color ^ 0x1] = to_free; | 
 | 		pgtable_cache_size++; | 
 | 		preempt_enable(); | 
 | #endif | 
 |  | 
 | 		return pte; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | void sparc_ultra_dump_itlb(void) | 
 | { | 
 |         int slot; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		printk ("Contents of itlb: "); | 
 | 		for (slot = 0; slot < 14; slot++) printk ("    "); | 
 | 		printk ("%2x:%016lx,%016lx\n", | 
 | 			0, | 
 | 			spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0)); | 
 | 		for (slot = 1; slot < 64; slot+=3) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",  | 
 | 				slot, | 
 | 				spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot), | 
 | 				slot+1, | 
 | 				spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1), | 
 | 				slot+2, | 
 | 				spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2)); | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		printk ("Contents of itlb0:\n"); | 
 | 		for (slot = 0; slot < 16; slot+=2) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 				slot, | 
 | 				cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot), | 
 | 				slot+1, | 
 | 				cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1)); | 
 | 		} | 
 | 		printk ("Contents of itlb2:\n"); | 
 | 		for (slot = 0; slot < 128; slot+=2) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 				slot, | 
 | 				cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot), | 
 | 				slot+1, | 
 | 				cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1)); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void sparc_ultra_dump_dtlb(void) | 
 | { | 
 |         int slot; | 
 |  | 
 | 	if (tlb_type == spitfire) { | 
 | 		printk ("Contents of dtlb: "); | 
 | 		for (slot = 0; slot < 14; slot++) printk ("    "); | 
 | 		printk ("%2x:%016lx,%016lx\n", 0, | 
 | 			spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0)); | 
 | 		for (slot = 1; slot < 64; slot+=3) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",  | 
 | 				slot, | 
 | 				spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot), | 
 | 				slot+1, | 
 | 				spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1), | 
 | 				slot+2, | 
 | 				spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2)); | 
 | 		} | 
 | 	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { | 
 | 		printk ("Contents of dtlb0:\n"); | 
 | 		for (slot = 0; slot < 16; slot+=2) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 				slot, | 
 | 				cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot), | 
 | 				slot+1, | 
 | 				cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1)); | 
 | 		} | 
 | 		printk ("Contents of dtlb2:\n"); | 
 | 		for (slot = 0; slot < 512; slot+=2) { | 
 | 			printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 				slot, | 
 | 				cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2), | 
 | 				slot+1, | 
 | 				cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2)); | 
 | 		} | 
 | 		if (tlb_type == cheetah_plus) { | 
 | 			printk ("Contents of dtlb3:\n"); | 
 | 			for (slot = 0; slot < 512; slot+=2) { | 
 | 				printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n", | 
 | 					slot, | 
 | 					cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3), | 
 | 					slot+1, | 
 | 					cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | extern unsigned long cmdline_memory_size; | 
 |  | 
 | unsigned long __init bootmem_init(unsigned long *pages_avail) | 
 | { | 
 | 	unsigned long bootmap_size, start_pfn, end_pfn; | 
 | 	unsigned long end_of_phys_memory = 0UL; | 
 | 	unsigned long bootmap_pfn, bytes_avail, size; | 
 | 	int i; | 
 |  | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("bootmem_init: Scan pavail, "); | 
 | #endif | 
 |  | 
 | 	bytes_avail = 0UL; | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		end_of_phys_memory = pavail[i].phys_addr + | 
 | 			pavail[i].reg_size; | 
 | 		bytes_avail += pavail[i].reg_size; | 
 | 		if (cmdline_memory_size) { | 
 | 			if (bytes_avail > cmdline_memory_size) { | 
 | 				unsigned long slack = bytes_avail - cmdline_memory_size; | 
 |  | 
 | 				bytes_avail -= slack; | 
 | 				end_of_phys_memory -= slack; | 
 |  | 
 | 				pavail[i].reg_size -= slack; | 
 | 				if ((long)pavail[i].reg_size <= 0L) { | 
 | 					pavail[i].phys_addr = 0xdeadbeefUL; | 
 | 					pavail[i].reg_size = 0UL; | 
 | 					pavail_ents = i; | 
 | 				} else { | 
 | 					pavail[i+1].reg_size = 0Ul; | 
 | 					pavail[i+1].phys_addr = 0xdeadbeefUL; | 
 | 					pavail_ents = i + 1; | 
 | 				} | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*pages_avail = bytes_avail >> PAGE_SHIFT; | 
 |  | 
 | 	/* Start with page aligned address of last symbol in kernel | 
 | 	 * image.  The kernel is hard mapped below PAGE_OFFSET in a | 
 | 	 * 4MB locked TLB translation. | 
 | 	 */ | 
 | 	start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT; | 
 |  | 
 | 	bootmap_pfn = start_pfn; | 
 |  | 
 | 	end_pfn = end_of_phys_memory >> PAGE_SHIFT; | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	/* Now have to check initial ramdisk, so that bootmap does not overwrite it */ | 
 | 	if (sparc_ramdisk_image || sparc_ramdisk_image64) { | 
 | 		unsigned long ramdisk_image = sparc_ramdisk_image ? | 
 | 			sparc_ramdisk_image : sparc_ramdisk_image64; | 
 | 		if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE) | 
 | 			ramdisk_image -= KERNBASE; | 
 | 		initrd_start = ramdisk_image + phys_base; | 
 | 		initrd_end = initrd_start + sparc_ramdisk_size; | 
 | 		if (initrd_end > end_of_phys_memory) { | 
 | 			printk(KERN_CRIT "initrd extends beyond end of memory " | 
 | 		                 	 "(0x%016lx > 0x%016lx)\ndisabling initrd\n", | 
 | 			       initrd_end, end_of_phys_memory); | 
 | 			initrd_start = 0; | 
 | 		} | 
 | 		if (initrd_start) { | 
 | 			if (initrd_start >= (start_pfn << PAGE_SHIFT) && | 
 | 			    initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE) | 
 | 				bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT; | 
 | 		} | 
 | 	} | 
 | #endif	 | 
 | 	/* Initialize the boot-time allocator. */ | 
 | 	max_pfn = max_low_pfn = end_pfn; | 
 | 	min_low_pfn = pfn_base; | 
 |  | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n", | 
 | 		    min_low_pfn, bootmap_pfn, max_low_pfn); | 
 | #endif | 
 | 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn); | 
 |  | 
 | 	/* Now register the available physical memory with the | 
 | 	 * allocator. | 
 | 	 */ | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 		prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n", | 
 | 			    i, pavail[i].phys_addr, pavail[i].reg_size); | 
 | #endif | 
 | 		free_bootmem(pavail[i].phys_addr, pavail[i].reg_size); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	if (initrd_start) { | 
 | 		size = initrd_end - initrd_start; | 
 |  | 
 | 		/* Resert the initrd image area. */ | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 		prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n", | 
 | 			initrd_start, initrd_end); | 
 | #endif | 
 | 		reserve_bootmem(initrd_start, size); | 
 | 		*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 |  | 
 | 		initrd_start += PAGE_OFFSET; | 
 | 		initrd_end += PAGE_OFFSET; | 
 | 	} | 
 | #endif | 
 | 	/* Reserve the kernel text/data/bss. */ | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size); | 
 | #endif | 
 | 	reserve_bootmem(kern_base, kern_size); | 
 | 	*pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT; | 
 |  | 
 | 	/* Reserve the bootmem map.   We do not account for it | 
 | 	 * in pages_avail because we will release that memory | 
 | 	 * in free_all_bootmem. | 
 | 	 */ | 
 | 	size = bootmap_size; | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n", | 
 | 		    (bootmap_pfn << PAGE_SHIFT), size); | 
 | #endif | 
 | 	reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size); | 
 | 	*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT; | 
 |  | 
 | 	return end_pfn; | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot) | 
 | { | 
 | 	unsigned long vstart = PAGE_OFFSET + pstart; | 
 | 	unsigned long vend = PAGE_OFFSET + pend; | 
 | 	unsigned long alloc_bytes = 0UL; | 
 |  | 
 | 	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) { | 
 | 		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n", | 
 | 			    vstart, vend); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	while (vstart < vend) { | 
 | 		unsigned long this_end, paddr = __pa(vstart); | 
 | 		pgd_t *pgd = pgd_offset_k(vstart); | 
 | 		pud_t *pud; | 
 | 		pmd_t *pmd; | 
 | 		pte_t *pte; | 
 |  | 
 | 		pud = pud_offset(pgd, vstart); | 
 | 		if (pud_none(*pud)) { | 
 | 			pmd_t *new; | 
 |  | 
 | 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 			alloc_bytes += PAGE_SIZE; | 
 | 			pud_populate(&init_mm, pud, new); | 
 | 		} | 
 |  | 
 | 		pmd = pmd_offset(pud, vstart); | 
 | 		if (!pmd_present(*pmd)) { | 
 | 			pte_t *new; | 
 |  | 
 | 			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); | 
 | 			alloc_bytes += PAGE_SIZE; | 
 | 			pmd_populate_kernel(&init_mm, pmd, new); | 
 | 		} | 
 |  | 
 | 		pte = pte_offset_kernel(pmd, vstart); | 
 | 		this_end = (vstart + PMD_SIZE) & PMD_MASK; | 
 | 		if (this_end > vend) | 
 | 			this_end = vend; | 
 |  | 
 | 		while (vstart < this_end) { | 
 | 			pte_val(*pte) = (paddr | pgprot_val(prot)); | 
 |  | 
 | 			vstart += PAGE_SIZE; | 
 | 			paddr += PAGE_SIZE; | 
 | 			pte++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return alloc_bytes; | 
 | } | 
 |  | 
 | static struct linux_prom64_registers pall[MAX_BANKS] __initdata; | 
 | static int pall_ents __initdata; | 
 |  | 
 | extern unsigned int kvmap_linear_patch[1]; | 
 |  | 
 | static void __init kernel_physical_mapping_init(void) | 
 | { | 
 | 	unsigned long i, mem_alloced = 0UL; | 
 |  | 
 | 	read_obp_memory("reg", &pall[0], &pall_ents); | 
 |  | 
 | 	for (i = 0; i < pall_ents; i++) { | 
 | 		unsigned long phys_start, phys_end; | 
 |  | 
 | 		phys_start = pall[i].phys_addr; | 
 | 		phys_end = phys_start + pall[i].reg_size; | 
 | 		mem_alloced += kernel_map_range(phys_start, phys_end, | 
 | 						PAGE_KERNEL); | 
 | 	} | 
 |  | 
 | 	printk("Allocated %ld bytes for kernel page tables.\n", | 
 | 	       mem_alloced); | 
 |  | 
 | 	kvmap_linear_patch[0] = 0x01000000; /* nop */ | 
 | 	flushi(&kvmap_linear_patch[0]); | 
 |  | 
 | 	__flush_tlb_all(); | 
 | } | 
 |  | 
 | void kernel_map_pages(struct page *page, int numpages, int enable) | 
 | { | 
 | 	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT; | 
 | 	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE); | 
 |  | 
 | 	kernel_map_range(phys_start, phys_end, | 
 | 			 (enable ? PAGE_KERNEL : __pgprot(0))); | 
 |  | 
 | 	/* we should perform an IPI and flush all tlbs, | 
 | 	 * but that can deadlock->flush only current cpu. | 
 | 	 */ | 
 | 	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start, | 
 | 				 PAGE_OFFSET + phys_end); | 
 | } | 
 | #endif | 
 |  | 
 | unsigned long __init find_ecache_flush_span(unsigned long size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		if (pavail[i].reg_size >= size) | 
 | 			return pavail[i].phys_addr; | 
 | 	} | 
 |  | 
 | 	return ~0UL; | 
 | } | 
 |  | 
 | /* paging_init() sets up the page tables */ | 
 |  | 
 | extern void cheetah_ecache_flush_init(void); | 
 |  | 
 | static unsigned long last_valid_pfn; | 
 | pgd_t swapper_pg_dir[2048]; | 
 |  | 
 | void __init paging_init(void) | 
 | { | 
 | 	unsigned long end_pfn, pages_avail, shift; | 
 | 	unsigned long real_end, i; | 
 |  | 
 | 	/* Find available physical memory... */ | 
 | 	read_obp_memory("available", &pavail[0], &pavail_ents); | 
 |  | 
 | 	phys_base = 0xffffffffffffffffUL; | 
 | 	for (i = 0; i < pavail_ents; i++) | 
 | 		phys_base = min(phys_base, pavail[i].phys_addr); | 
 |  | 
 | 	pfn_base = phys_base >> PAGE_SHIFT; | 
 |  | 
 | 	kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL; | 
 | 	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE; | 
 |  | 
 | 	set_bit(0, mmu_context_bmap); | 
 |  | 
 | 	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE); | 
 |  | 
 | 	real_end = (unsigned long)_end; | 
 | 	if ((real_end > ((unsigned long)KERNBASE + 0x400000))) | 
 | 		bigkernel = 1; | 
 | 	if ((real_end > ((unsigned long)KERNBASE + 0x800000))) { | 
 | 		prom_printf("paging_init: Kernel > 8MB, too large.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 |  | 
 | 	/* Set kernel pgd to upper alias so physical page computations | 
 | 	 * work. | 
 | 	 */ | 
 | 	init_mm.pgd += ((shift) / (sizeof(pgd_t))); | 
 | 	 | 
 | 	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir)); | 
 |  | 
 | 	/* Now can init the kernel/bad page tables. */ | 
 | 	pud_set(pud_offset(&swapper_pg_dir[0], 0), | 
 | 		swapper_low_pmd_dir + (shift / sizeof(pgd_t))); | 
 | 	 | 
 | 	swapper_pgd_zero = pgd_val(swapper_pg_dir[0]); | 
 | 	 | 
 | 	inherit_prom_mappings(); | 
 | 	 | 
 | 	/* Ok, we can use our TLB miss and window trap handlers safely. | 
 | 	 * We need to do a quick peek here to see if we are on StarFire | 
 | 	 * or not, so setup_tba can setup the IRQ globals correctly (it | 
 | 	 * needs to get the hard smp processor id correctly). | 
 | 	 */ | 
 | 	{ | 
 | 		extern void setup_tba(int); | 
 | 		setup_tba(this_is_starfire); | 
 | 	} | 
 |  | 
 | 	inherit_locked_prom_mappings(1); | 
 |  | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	/* Setup bootmem... */ | 
 | 	pages_avail = 0; | 
 | 	last_valid_pfn = end_pfn = bootmem_init(&pages_avail); | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | 	kernel_physical_mapping_init(); | 
 | #endif | 
 |  | 
 | 	{ | 
 | 		unsigned long zones_size[MAX_NR_ZONES]; | 
 | 		unsigned long zholes_size[MAX_NR_ZONES]; | 
 | 		unsigned long npages; | 
 | 		int znum; | 
 |  | 
 | 		for (znum = 0; znum < MAX_NR_ZONES; znum++) | 
 | 			zones_size[znum] = zholes_size[znum] = 0; | 
 |  | 
 | 		npages = end_pfn - pfn_base; | 
 | 		zones_size[ZONE_DMA] = npages; | 
 | 		zholes_size[ZONE_DMA] = npages - pages_avail; | 
 |  | 
 | 		free_area_init_node(0, &contig_page_data, zones_size, | 
 | 				    phys_base >> PAGE_SHIFT, zholes_size); | 
 | 	} | 
 |  | 
 | 	device_scan(); | 
 | } | 
 |  | 
 | static void __init taint_real_pages(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents); | 
 |  | 
 | 	/* Find changes discovered in the physmem available rescan and | 
 | 	 * reserve the lost portions in the bootmem maps. | 
 | 	 */ | 
 | 	for (i = 0; i < pavail_ents; i++) { | 
 | 		unsigned long old_start, old_end; | 
 |  | 
 | 		old_start = pavail[i].phys_addr; | 
 | 		old_end = old_start + | 
 | 			pavail[i].reg_size; | 
 | 		while (old_start < old_end) { | 
 | 			int n; | 
 |  | 
 | 			for (n = 0; pavail_rescan_ents; n++) { | 
 | 				unsigned long new_start, new_end; | 
 |  | 
 | 				new_start = pavail_rescan[n].phys_addr; | 
 | 				new_end = new_start + | 
 | 					pavail_rescan[n].reg_size; | 
 |  | 
 | 				if (new_start <= old_start && | 
 | 				    new_end >= (old_start + PAGE_SIZE)) { | 
 | 					set_bit(old_start >> 22, | 
 | 						sparc64_valid_addr_bitmap); | 
 | 					goto do_next_page; | 
 | 				} | 
 | 			} | 
 | 			reserve_bootmem(old_start, PAGE_SIZE); | 
 |  | 
 | 		do_next_page: | 
 | 			old_start += PAGE_SIZE; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __init mem_init(void) | 
 | { | 
 | 	unsigned long codepages, datapages, initpages; | 
 | 	unsigned long addr, last; | 
 | 	int i; | 
 |  | 
 | 	i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6); | 
 | 	i += 1; | 
 | 	sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3); | 
 | 	if (sparc64_valid_addr_bitmap == NULL) { | 
 | 		prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	memset(sparc64_valid_addr_bitmap, 0, i << 3); | 
 |  | 
 | 	addr = PAGE_OFFSET + kern_base; | 
 | 	last = PAGE_ALIGN(kern_size) + addr; | 
 | 	while (addr < last) { | 
 | 		set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap); | 
 | 		addr += PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	taint_real_pages(); | 
 |  | 
 | 	max_mapnr = last_valid_pfn - pfn_base; | 
 | 	high_memory = __va(last_valid_pfn << PAGE_SHIFT); | 
 |  | 
 | #ifdef CONFIG_DEBUG_BOOTMEM | 
 | 	prom_printf("mem_init: Calling free_all_bootmem().\n"); | 
 | #endif | 
 | 	totalram_pages = num_physpages = free_all_bootmem() - 1; | 
 |  | 
 | 	/* | 
 | 	 * Set up the zero page, mark it reserved, so that page count | 
 | 	 * is not manipulated when freeing the page from user ptes. | 
 | 	 */ | 
 | 	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0); | 
 | 	if (mem_map_zero == NULL) { | 
 | 		prom_printf("paging_init: Cannot alloc zero page.\n"); | 
 | 		prom_halt(); | 
 | 	} | 
 | 	SetPageReserved(mem_map_zero); | 
 |  | 
 | 	codepages = (((unsigned long) _etext) - ((unsigned long) _start)); | 
 | 	codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT; | 
 | 	datapages = (((unsigned long) _edata) - ((unsigned long) _etext)); | 
 | 	datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT; | 
 | 	initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin)); | 
 | 	initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT; | 
 |  | 
 | 	printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n", | 
 | 	       nr_free_pages() << (PAGE_SHIFT-10), | 
 | 	       codepages << (PAGE_SHIFT-10), | 
 | 	       datapages << (PAGE_SHIFT-10),  | 
 | 	       initpages << (PAGE_SHIFT-10),  | 
 | 	       PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT)); | 
 |  | 
 | 	if (tlb_type == cheetah || tlb_type == cheetah_plus) | 
 | 		cheetah_ecache_flush_init(); | 
 | } | 
 |  | 
 | void free_initmem(void) | 
 | { | 
 | 	unsigned long addr, initend; | 
 |  | 
 | 	/* | 
 | 	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes. | 
 | 	 */ | 
 | 	addr = PAGE_ALIGN((unsigned long)(__init_begin)); | 
 | 	initend = (unsigned long)(__init_end) & PAGE_MASK; | 
 | 	for (; addr < initend; addr += PAGE_SIZE) { | 
 | 		unsigned long page; | 
 | 		struct page *p; | 
 |  | 
 | 		page = (addr + | 
 | 			((unsigned long) __va(kern_base)) - | 
 | 			((unsigned long) KERNBASE)); | 
 | 		memset((void *)addr, 0xcc, PAGE_SIZE); | 
 | 		p = virt_to_page(page); | 
 |  | 
 | 		ClearPageReserved(p); | 
 | 		set_page_count(p, 1); | 
 | 		__free_page(p); | 
 | 		num_physpages++; | 
 | 		totalram_pages++; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | void free_initrd_mem(unsigned long start, unsigned long end) | 
 | { | 
 | 	if (start < end) | 
 | 		printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); | 
 | 	for (; start < end; start += PAGE_SIZE) { | 
 | 		struct page *p = virt_to_page(start); | 
 |  | 
 | 		ClearPageReserved(p); | 
 | 		set_page_count(p, 1); | 
 | 		__free_page(p); | 
 | 		num_physpages++; | 
 | 		totalram_pages++; | 
 | 	} | 
 | } | 
 | #endif |