|  | /* | 
|  | * Copyright (C) 2000, 2001 Jeff Dike (jdike@karaya.com) | 
|  | * Licensed under the GPL | 
|  | */ | 
|  |  | 
|  | #include <unistd.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  | #include <signal.h> | 
|  | #include <errno.h> | 
|  | #include <sys/resource.h> | 
|  | #include <sys/mman.h> | 
|  | #include <sys/user.h> | 
|  | #include <asm/page.h> | 
|  | #include "user_util.h" | 
|  | #include "kern_util.h" | 
|  | #include "mem_user.h" | 
|  | #include "time_user.h" | 
|  | #include "irq_user.h" | 
|  | #include "user.h" | 
|  | #include "init.h" | 
|  | #include "mode.h" | 
|  | #include "choose-mode.h" | 
|  | #include "uml-config.h" | 
|  | #include "os.h" | 
|  |  | 
|  | /* Set in set_stklim, which is called from main and __wrap_malloc. | 
|  | * __wrap_malloc only calls it if main hasn't started. | 
|  | */ | 
|  | unsigned long stacksizelim; | 
|  |  | 
|  | /* Set in main */ | 
|  | char *linux_prog; | 
|  |  | 
|  | #define PGD_BOUND (4 * 1024 * 1024) | 
|  | #define STACKSIZE (8 * 1024 * 1024) | 
|  | #define THREAD_NAME_LEN (256) | 
|  |  | 
|  | static void set_stklim(void) | 
|  | { | 
|  | struct rlimit lim; | 
|  |  | 
|  | if(getrlimit(RLIMIT_STACK, &lim) < 0){ | 
|  | perror("getrlimit"); | 
|  | exit(1); | 
|  | } | 
|  | if((lim.rlim_cur == RLIM_INFINITY) || (lim.rlim_cur > STACKSIZE)){ | 
|  | lim.rlim_cur = STACKSIZE; | 
|  | if(setrlimit(RLIMIT_STACK, &lim) < 0){ | 
|  | perror("setrlimit"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | stacksizelim = (lim.rlim_cur + PGD_BOUND - 1) & ~(PGD_BOUND - 1); | 
|  | } | 
|  |  | 
|  | static __init void do_uml_initcalls(void) | 
|  | { | 
|  | initcall_t *call; | 
|  |  | 
|  | call = &__uml_initcall_start; | 
|  | while (call < &__uml_initcall_end){; | 
|  | (*call)(); | 
|  | call++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void last_ditch_exit(int sig) | 
|  | { | 
|  | signal(SIGINT, SIG_DFL); | 
|  | signal(SIGTERM, SIG_DFL); | 
|  | signal(SIGHUP, SIG_DFL); | 
|  | uml_cleanup(); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | extern int uml_exitcode; | 
|  |  | 
|  | extern void scan_elf_aux( char **envp); | 
|  |  | 
|  | int main(int argc, char **argv, char **envp) | 
|  | { | 
|  | char **new_argv; | 
|  | sigset_t mask; | 
|  | int ret, i, err; | 
|  |  | 
|  | /* Enable all signals except SIGIO - in some environments, we can | 
|  | * enter with some signals blocked | 
|  | */ | 
|  |  | 
|  | sigemptyset(&mask); | 
|  | sigaddset(&mask, SIGIO); | 
|  | if(sigprocmask(SIG_SETMASK, &mask, NULL) < 0){ | 
|  | perror("sigprocmask"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | #ifdef UML_CONFIG_CMDLINE_ON_HOST | 
|  | /* Allocate memory for thread command lines */ | 
|  | if(argc < 2 || strlen(argv[1]) < THREAD_NAME_LEN - 1){ | 
|  |  | 
|  | char padding[THREAD_NAME_LEN] = { | 
|  | [ 0 ...  THREAD_NAME_LEN - 2] = ' ', '\0' | 
|  | }; | 
|  |  | 
|  | new_argv = malloc((argc + 2) * sizeof(char*)); | 
|  | if(!new_argv) { | 
|  | perror("Allocating extended argv"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | new_argv[0] = argv[0]; | 
|  | new_argv[1] = padding; | 
|  |  | 
|  | for(i = 2; i <= argc; i++) | 
|  | new_argv[i] = argv[i - 1]; | 
|  | new_argv[argc + 1] = NULL; | 
|  |  | 
|  | execvp(new_argv[0], new_argv); | 
|  | perror("execing with extended args"); | 
|  | exit(1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | linux_prog = argv[0]; | 
|  |  | 
|  | set_stklim(); | 
|  |  | 
|  | new_argv = malloc((argc + 1) * sizeof(char *)); | 
|  | if(new_argv == NULL){ | 
|  | perror("Mallocing argv"); | 
|  | exit(1); | 
|  | } | 
|  | for(i=0;i<argc;i++){ | 
|  | new_argv[i] = strdup(argv[i]); | 
|  | if(new_argv[i] == NULL){ | 
|  | perror("Mallocing an arg"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | new_argv[argc] = NULL; | 
|  |  | 
|  | set_handler(SIGINT, last_ditch_exit, SA_ONESHOT | SA_NODEFER, -1); | 
|  | set_handler(SIGTERM, last_ditch_exit, SA_ONESHOT | SA_NODEFER, -1); | 
|  | set_handler(SIGHUP, last_ditch_exit, SA_ONESHOT | SA_NODEFER, -1); | 
|  |  | 
|  | scan_elf_aux( envp); | 
|  |  | 
|  | do_uml_initcalls(); | 
|  | ret = linux_main(argc, argv); | 
|  |  | 
|  | /* Disable SIGPROF - I have no idea why libc doesn't do this or turn | 
|  | * off the profiling time, but UML dies with a SIGPROF just before | 
|  | * exiting when profiling is active. | 
|  | */ | 
|  | change_sig(SIGPROF, 0); | 
|  |  | 
|  | /* This signal stuff used to be in the reboot case.  However, | 
|  | * sometimes a SIGVTALRM can come in when we're halting (reproducably | 
|  | * when writing out gcov information, presumably because that takes | 
|  | * some time) and cause a segfault. | 
|  | */ | 
|  |  | 
|  | /* stop timers and set SIG*ALRM to be ignored */ | 
|  | disable_timer(); | 
|  |  | 
|  | /* disable SIGIO for the fds and set SIGIO to be ignored */ | 
|  | err = deactivate_all_fds(); | 
|  | if(err) | 
|  | printf("deactivate_all_fds failed, errno = %d\n", -err); | 
|  |  | 
|  | /* Let any pending signals fire now.  This ensures | 
|  | * that they won't be delivered after the exec, when | 
|  | * they are definitely not expected. | 
|  | */ | 
|  | unblock_signals(); | 
|  |  | 
|  | /* Reboot */ | 
|  | if(ret){ | 
|  | printf("\n"); | 
|  | execvp(new_argv[0], new_argv); | 
|  | perror("Failed to exec kernel"); | 
|  | ret = 1; | 
|  | } | 
|  | printf("\n"); | 
|  | return(uml_exitcode); | 
|  | } | 
|  |  | 
|  | #define CAN_KMALLOC() \ | 
|  | (kmalloc_ok && CHOOSE_MODE((os_getpid() != tracing_pid), 1)) | 
|  |  | 
|  | extern void *__real_malloc(int); | 
|  |  | 
|  | void *__wrap_malloc(int size) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | if(!CAN_KMALLOC()) | 
|  | return(__real_malloc(size)); | 
|  | else if(size <= PAGE_SIZE) /* finding contiguos pages can be hard*/ | 
|  | ret = um_kmalloc(size); | 
|  | else ret = um_vmalloc(size); | 
|  |  | 
|  | /* glibc people insist that if malloc fails, errno should be | 
|  | * set by malloc as well. So we do. | 
|  | */ | 
|  | if(ret == NULL) | 
|  | errno = ENOMEM; | 
|  |  | 
|  | return(ret); | 
|  | } | 
|  |  | 
|  | void *__wrap_calloc(int n, int size) | 
|  | { | 
|  | void *ptr = __wrap_malloc(n * size); | 
|  |  | 
|  | if(ptr == NULL) return(NULL); | 
|  | memset(ptr, 0, n * size); | 
|  | return(ptr); | 
|  | } | 
|  |  | 
|  | extern void __real_free(void *); | 
|  |  | 
|  | extern unsigned long high_physmem; | 
|  |  | 
|  | void __wrap_free(void *ptr) | 
|  | { | 
|  | unsigned long addr = (unsigned long) ptr; | 
|  |  | 
|  | /* We need to know how the allocation happened, so it can be correctly | 
|  | * freed.  This is done by seeing what region of memory the pointer is | 
|  | * in - | 
|  | * 	physical memory - kmalloc/kfree | 
|  | *	kernel virtual memory - vmalloc/vfree | 
|  | * 	anywhere else - malloc/free | 
|  | * If kmalloc is not yet possible, then either high_physmem and/or | 
|  | * end_vm are still 0 (as at startup), in which case we call free, or | 
|  | * we have set them, but anyway addr has not been allocated from those | 
|  | * areas. So, in both cases __real_free is called. | 
|  | * | 
|  | * CAN_KMALLOC is checked because it would be bad to free a buffer | 
|  | * with kmalloc/vmalloc after they have been turned off during | 
|  | * shutdown. | 
|  | * XXX: However, we sometimes shutdown CAN_KMALLOC temporarily, so | 
|  | * there is a possibility for memory leaks. | 
|  | */ | 
|  |  | 
|  | if((addr >= uml_physmem) && (addr < high_physmem)){ | 
|  | if(CAN_KMALLOC()) | 
|  | kfree(ptr); | 
|  | } | 
|  | else if((addr >= start_vm) && (addr < end_vm)){ | 
|  | if(CAN_KMALLOC()) | 
|  | vfree(ptr); | 
|  | } | 
|  | else __real_free(ptr); | 
|  | } |