|  | /****************************************************************************** | 
|  | * | 
|  | *	(C)Copyright 1998,1999 SysKonnect, | 
|  | *	a business unit of Schneider & Koch & Co. Datensysteme GmbH. | 
|  | * | 
|  | *	See the file "skfddi.c" for further information. | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or modify | 
|  | *	it under the terms of the GNU General Public License as published by | 
|  | *	the Free Software Foundation; either version 2 of the License, or | 
|  | *	(at your option) any later version. | 
|  | * | 
|  | *	The information in this file is provided "AS IS" without warranty. | 
|  | * | 
|  | ******************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * FBI board dependent Driver for SMT and LLC | 
|  | */ | 
|  |  | 
|  | #include "h/types.h" | 
|  | #include "h/fddi.h" | 
|  | #include "h/smc.h" | 
|  | #include "h/supern_2.h" | 
|  | #include "h/skfbiinc.h" | 
|  |  | 
|  | #ifndef	lint | 
|  | static const char ID_sccs[] = "@(#)drvfbi.c	1.63 99/02/11 (C) SK " ; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * PCM active state | 
|  | */ | 
|  | #define PC8_ACTIVE	8 | 
|  |  | 
|  | #define	LED_Y_ON	0x11	/* Used for ring up/down indication */ | 
|  | #define	LED_Y_OFF	0x10 | 
|  |  | 
|  |  | 
|  | #define MS2BCLK(x)	((x)*12500L) | 
|  |  | 
|  | /* | 
|  | * valid configuration values are: | 
|  | */ | 
|  | #ifdef	ISA | 
|  | const int opt_ints[] = {8,	3, 4, 5, 9, 10, 11, 12, 15} ; | 
|  | const int opt_iops[] = {8, | 
|  | 0x100, 0x120, 0x180, 0x1a0, 0x220, 0x240, 0x320, 0x340}; | 
|  | const int opt_dmas[] = {4,	3, 5, 6, 7} ; | 
|  | const int opt_eproms[] = {15,	0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, | 
|  | 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ; | 
|  | #endif | 
|  | #ifdef	EISA | 
|  | const int opt_ints[] = {5, 9, 10, 11} ; | 
|  | const int opt_dmas[] = {0, 5, 6, 7} ; | 
|  | const int opt_eproms[] = {0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, | 
|  | 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc} ; | 
|  | #endif | 
|  |  | 
|  | #ifdef	MCA | 
|  | int	opt_ints[] = {3, 11, 10, 9} ;			/* FM1 */ | 
|  | int	opt_eproms[] = {0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc} ; | 
|  | #endif	/* MCA */ | 
|  |  | 
|  | /* | 
|  | *	xPOS_ID:xxxx | 
|  | *	|	\  / | 
|  | *	|	 \/ | 
|  | *	|	  --------------------- the patched POS_ID of the Adapter | 
|  | *	|				xxxx = (Vendor ID low byte, | 
|  | *	|					Vendor ID high byte, | 
|  | *	|					Device ID low byte, | 
|  | *	|					Device ID high byte) | 
|  | *	+------------------------------ the patched oem_id must be | 
|  | *					'S' for SK or 'I' for IBM | 
|  | *					this is a short id for the driver. | 
|  | */ | 
|  | #ifndef MULT_OEM | 
|  | #ifndef	OEM_CONCEPT | 
|  | #ifndef MCA | 
|  | const u_char oem_id[] = "xPOS_ID:xxxx" ; | 
|  | #else | 
|  | const u_char oem_id[] = "xPOSID1:xxxx" ;	/* FM1 card id. */ | 
|  | #endif | 
|  | #else	/* OEM_CONCEPT */ | 
|  | #ifndef MCA | 
|  | const u_char oem_id[] = OEM_ID ; | 
|  | #else | 
|  | const u_char oem_id[] = OEM_ID1 ;	/* FM1 card id. */ | 
|  | #endif	/* MCA */ | 
|  | #endif	/* OEM_CONCEPT */ | 
|  | #define	ID_BYTE0	8 | 
|  | #define	OEMID(smc,i)	oem_id[ID_BYTE0 + i] | 
|  | #else	/* MULT_OEM */ | 
|  | const struct s_oem_ids oem_ids[] = { | 
|  | #include "oemids.h" | 
|  | {0} | 
|  | }; | 
|  | #define	OEMID(smc,i)	smc->hw.oem_id->oi_id[i] | 
|  | #endif	/* MULT_OEM */ | 
|  |  | 
|  | /* Prototypes of external functions */ | 
|  | #ifdef AIX | 
|  | extern int AIX_vpdReadByte() ; | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* Prototype of a local function. */ | 
|  | static void smt_stop_watchdog(struct s_smc *smc); | 
|  |  | 
|  | #ifdef MCA | 
|  | static int read_card_id() ; | 
|  | static void DisableSlotAccess() ; | 
|  | static void EnableSlotAccess() ; | 
|  | #ifdef AIX | 
|  | extern int attach_POS_addr() ; | 
|  | extern int detach_POS_addr() ; | 
|  | extern u_char read_POS() ; | 
|  | extern void write_POS() ; | 
|  | extern int AIX_vpdReadByte() ; | 
|  | #else | 
|  | #define	read_POS(smc,a1,a2)	((u_char) inp(a1)) | 
|  | #define	write_POS(smc,a1,a2,a3)	outp((a1),(a3)) | 
|  | #endif | 
|  | #endif	/* MCA */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * FDDI card reset | 
|  | */ | 
|  | static void card_start(struct s_smc *smc) | 
|  | { | 
|  | int i ; | 
|  | #ifdef	PCI | 
|  | u_char	rev_id ; | 
|  | u_short word; | 
|  | #endif | 
|  |  | 
|  | smt_stop_watchdog(smc) ; | 
|  |  | 
|  | #ifdef	ISA | 
|  | outpw(CSR_A,0) ;			/* reset for all chips */ | 
|  | for (i = 10 ; i ; i--)			/* delay for PLC's */ | 
|  | (void)inpw(ISR_A) ; | 
|  | OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(2)) ; | 
|  | /* counter 2, mode 2 */ | 
|  | OUT_82c54_TIMER(2,97) ;		/* LSB */ | 
|  | OUT_82c54_TIMER(2,0) ;		/* MSB ( 15.6 us ) */ | 
|  | outpw(CSR_A,CS_CRESET) ; | 
|  | #endif | 
|  | #ifdef	EISA | 
|  | outpw(CSR_A,0) ;			/* reset for all chips */ | 
|  | for (i = 10 ; i ; i--)			/* delay for PLC's */ | 
|  | (void)inpw(ISR_A) ; | 
|  | outpw(CSR_A,CS_CRESET) ; | 
|  | smc->hw.led = (2<<6) ; | 
|  | outpw(CSR_A,CS_CRESET | smc->hw.led) ; | 
|  | #endif | 
|  | #ifdef	MCA | 
|  | outp(ADDR(CARD_DIS),0) ;		/* reset for all chips */ | 
|  | for (i = 10 ; i ; i--)			/* delay for PLC's */ | 
|  | (void)inpw(ISR_A) ; | 
|  | outp(ADDR(CARD_EN),0) ; | 
|  | /* first I/O after reset must not be a access to FORMAC or PLC */ | 
|  |  | 
|  | /* | 
|  | * bus timeout (MCA) | 
|  | */ | 
|  | OUT_82c54_TIMER(3,COUNT(2) | RW_OP(3) | TMODE(3)) ; | 
|  | /* counter 2, mode 3 */ | 
|  | OUT_82c54_TIMER(2,(2*24)) ;	/* 3.9 us * 2 square wave */ | 
|  | OUT_82c54_TIMER(2,0) ;		/* MSB */ | 
|  |  | 
|  | /* POS 102 indicated an activ Check Line or Buss Error monitoring */ | 
|  | if (inpw(CSA_A) & (POS_EN_CHKINT | POS_EN_BUS_ERR)) { | 
|  | outp(ADDR(IRQ_CHCK_EN),0) ; | 
|  | } | 
|  |  | 
|  | if (!((i = inpw(CSR_A)) & CS_SAS)) { | 
|  | if (!(i & CS_BYSTAT)) { | 
|  | outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */ | 
|  | } | 
|  | } | 
|  | outpw(LEDR_A,LED_1) ;	/* yellow */ | 
|  | #endif	/* MCA */ | 
|  | #ifdef	PCI | 
|  | /* | 
|  | * make sure no transfer activity is pending | 
|  | */ | 
|  | outpw(FM_A(FM_MDREG1),FM_MINIT) ; | 
|  | outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; | 
|  | hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ; | 
|  | /* | 
|  | * now reset everything | 
|  | */ | 
|  | outp(ADDR(B0_CTRL),CTRL_RST_SET) ;	/* reset for all chips */ | 
|  | i = (int) inp(ADDR(B0_CTRL)) ;		/* do dummy read */ | 
|  | SK_UNUSED(i) ;				/* Make LINT happy. */ | 
|  | outp(ADDR(B0_CTRL), CTRL_RST_CLR) ; | 
|  |  | 
|  | /* | 
|  | * Reset all bits in the PCI STATUS register | 
|  | */ | 
|  | outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_ON) ;	/* enable for writes */ | 
|  | word = inpw(PCI_C(PCI_STATUS)) ; | 
|  | outpw(PCI_C(PCI_STATUS), word | PCI_ERRBITS) ; | 
|  | outp(ADDR(B0_TST_CTRL), TST_CFG_WRITE_OFF) ;	/* disable writes */ | 
|  |  | 
|  | /* | 
|  | * Release the reset of all the State machines | 
|  | * Release Master_Reset | 
|  | * Release HPI_SM_Reset | 
|  | */ | 
|  | outp(ADDR(B0_CTRL), CTRL_MRST_CLR|CTRL_HPI_CLR) ; | 
|  |  | 
|  | /* | 
|  | * determine the adapter type | 
|  | * Note: Do it here, because some drivers may call card_start() once | 
|  | *	 at very first before any other initialization functions is | 
|  | *	 executed. | 
|  | */ | 
|  | rev_id = inp(PCI_C(PCI_REV_ID)) ; | 
|  | if ((rev_id & 0xf0) == SK_ML_ID_1 || (rev_id & 0xf0) == SK_ML_ID_2) { | 
|  | smc->hw.hw_is_64bit = TRUE ; | 
|  | } else { | 
|  | smc->hw.hw_is_64bit = FALSE ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Watermark initialization | 
|  | */ | 
|  | if (!smc->hw.hw_is_64bit) { | 
|  | outpd(ADDR(B4_R1_F), RX_WATERMARK) ; | 
|  | outpd(ADDR(B5_XA_F), TX_WATERMARK) ; | 
|  | outpd(ADDR(B5_XS_F), TX_WATERMARK) ; | 
|  | } | 
|  |  | 
|  | outp(ADDR(B0_CTRL),CTRL_RST_CLR) ;	/* clear the reset chips */ | 
|  | outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_ON|LED_GB_OFF) ; /* ye LED on */ | 
|  |  | 
|  | /* init the timer value for the watch dog 2,5 minutes */ | 
|  | outpd(ADDR(B2_WDOG_INI),0x6FC23AC0) ; | 
|  |  | 
|  | /* initialize the ISR mask */ | 
|  | smc->hw.is_imask = ISR_MASK ; | 
|  | smc->hw.hw_state = STOPPED ; | 
|  | #endif | 
|  | GET_PAGE(0) ;		/* necessary for BOOT */ | 
|  | } | 
|  |  | 
|  | void card_stop(struct s_smc *smc) | 
|  | { | 
|  | smt_stop_watchdog(smc) ; | 
|  | smc->hw.mac_ring_is_up = 0 ;		/* ring down */ | 
|  | #ifdef	ISA | 
|  | outpw(CSR_A,0) ;			/* reset for all chips */ | 
|  | #endif | 
|  | #ifdef	EISA | 
|  | outpw(CSR_A,0) ;			/* reset for all chips */ | 
|  | #endif | 
|  | #ifdef	MCA | 
|  | outp(ADDR(CARD_DIS),0) ;		/* reset for all chips */ | 
|  | #endif | 
|  | #ifdef	PCI | 
|  | /* | 
|  | * make sure no transfer activity is pending | 
|  | */ | 
|  | outpw(FM_A(FM_MDREG1),FM_MINIT) ; | 
|  | outp(ADDR(B0_CTRL), CTRL_HPI_SET) ; | 
|  | hwt_wait_time(smc,hwt_quick_read(smc),MS2BCLK(10)) ; | 
|  | /* | 
|  | * now reset everything | 
|  | */ | 
|  | outp(ADDR(B0_CTRL),CTRL_RST_SET) ;	/* reset for all chips */ | 
|  | outp(ADDR(B0_CTRL),CTRL_RST_CLR) ;	/* reset for all chips */ | 
|  | outp(ADDR(B0_LED),LED_GA_OFF|LED_MY_OFF|LED_GB_OFF) ; /* all LEDs off */ | 
|  | smc->hw.hw_state = STOPPED ; | 
|  | #endif | 
|  | } | 
|  | /*--------------------------- ISR handling ----------------------------------*/ | 
|  |  | 
|  | void mac1_irq(struct s_smc *smc, u_short stu, u_short stl) | 
|  | { | 
|  | int	restart_tx = 0 ; | 
|  | again: | 
|  | #ifndef PCI | 
|  | #ifndef ISA | 
|  | /* | 
|  | * FORMAC+ bug modified the queue pointer if many read/write accesses happens!? | 
|  | */ | 
|  | if (stl & (FM_SPCEPDS  |	/* parit/coding err. syn.q.*/ | 
|  | FM_SPCEPDA0 |	/* parit/coding err. a.q.0 */ | 
|  | FM_SPCEPDA1 |	/* parit/coding err. a.q.1 */ | 
|  | FM_SPCEPDA2)) {	/* parit/coding err. a.q.2 */ | 
|  | SMT_PANIC(smc,SMT_E0132, SMT_E0132_MSG) ; | 
|  | } | 
|  | if (stl & (FM_STBURS  |	/* tx buffer underrun syn.q.*/ | 
|  | FM_STBURA0 |	/* tx buffer underrun a.q.0 */ | 
|  | FM_STBURA1 |	/* tx buffer underrun a.q.1 */ | 
|  | FM_STBURA2)) {	/* tx buffer underrun a.q.2 */ | 
|  | SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ; | 
|  | } | 
|  | #endif | 
|  | if ( (stu & (FM_SXMTABT |		/* transmit abort */ | 
|  | #ifdef	SYNC | 
|  | FM_STXABRS |	/* syn. tx abort */ | 
|  | #endif	/* SYNC */ | 
|  | FM_STXABRA0)) ||	/* asyn. tx abort */ | 
|  | (stl & (FM_SQLCKS |		/* lock for syn. q. */ | 
|  | FM_SQLCKA0)) ) {	/* lock for asyn. q. */ | 
|  | formac_tx_restart(smc) ;		/* init tx */ | 
|  | restart_tx = 1 ; | 
|  | stu = inpw(FM_A(FM_ST1U)) ; | 
|  | stl = inpw(FM_A(FM_ST1L)) ; | 
|  | stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ; | 
|  | if (stu || stl) | 
|  | goto again ; | 
|  | } | 
|  |  | 
|  | #ifndef	SYNC | 
|  | if (stu & (FM_STECFRMA0 | /* end of chain asyn tx */ | 
|  | FM_STEFRMA0)) { /* end of frame asyn tx */ | 
|  | /* free tx_queue */ | 
|  | smc->hw.n_a_send = 0 ; | 
|  | if (++smc->hw.fp.tx_free < smc->hw.fp.tx_max) { | 
|  | start_next_send(smc); | 
|  | } | 
|  | restart_tx = 1 ; | 
|  | } | 
|  | #else	/* SYNC */ | 
|  | if (stu & (FM_STEFRMA0 |	/* end of asyn tx */ | 
|  | FM_STEFRMS)) {	/* end of sync tx */ | 
|  | restart_tx = 1 ; | 
|  | } | 
|  | #endif	/* SYNC */ | 
|  | if (restart_tx) | 
|  | llc_restart_tx(smc) ; | 
|  | } | 
|  | #else	/* PCI */ | 
|  |  | 
|  | /* | 
|  | * parity error: note encoding error is not possible in tag mode | 
|  | */ | 
|  | if (stl & (FM_SPCEPDS  |	/* parity err. syn.q.*/ | 
|  | FM_SPCEPDA0 |	/* parity err. a.q.0 */ | 
|  | FM_SPCEPDA1)) {	/* parity err. a.q.1 */ | 
|  | SMT_PANIC(smc,SMT_E0134, SMT_E0134_MSG) ; | 
|  | } | 
|  | /* | 
|  | * buffer underrun: can only occur if a tx threshold is specified | 
|  | */ | 
|  | if (stl & (FM_STBURS  |		/* tx buffer underrun syn.q.*/ | 
|  | FM_STBURA0 |		/* tx buffer underrun a.q.0 */ | 
|  | FM_STBURA1)) {	/* tx buffer underrun a.q.2 */ | 
|  | SMT_PANIC(smc,SMT_E0133, SMT_E0133_MSG) ; | 
|  | } | 
|  |  | 
|  | if ( (stu & (FM_SXMTABT |		/* transmit abort */ | 
|  | FM_STXABRS |		/* syn. tx abort */ | 
|  | FM_STXABRA0)) ||		/* asyn. tx abort */ | 
|  | (stl & (FM_SQLCKS |		/* lock for syn. q. */ | 
|  | FM_SQLCKA0)) ) {		/* lock for asyn. q. */ | 
|  | formac_tx_restart(smc) ;	/* init tx */ | 
|  | restart_tx = 1 ; | 
|  | stu = inpw(FM_A(FM_ST1U)) ; | 
|  | stl = inpw(FM_A(FM_ST1L)) ; | 
|  | stu &= ~ (FM_STECFRMA0 | FM_STEFRMA0 | FM_STEFRMS) ; | 
|  | if (stu || stl) | 
|  | goto again ; | 
|  | } | 
|  |  | 
|  | if (stu & (FM_STEFRMA0 |	/* end of asyn tx */ | 
|  | FM_STEFRMS)) {	/* end of sync tx */ | 
|  | restart_tx = 1 ; | 
|  | } | 
|  |  | 
|  | if (restart_tx) | 
|  | llc_restart_tx(smc) ; | 
|  | } | 
|  | #endif	/* PCI */ | 
|  | /* | 
|  | * interrupt source= plc1 | 
|  | * this function is called in nwfbisr.asm | 
|  | */ | 
|  | void plc1_irq(struct s_smc *smc) | 
|  | { | 
|  | u_short	st = inpw(PLC(PB,PL_INTR_EVENT)) ; | 
|  |  | 
|  | #if	(defined(ISA) || defined(EISA)) | 
|  | /* reset PLC Int. bits */ | 
|  | outpw(PLC1_I,inpw(PLC1_I)) ; | 
|  | #endif | 
|  | plc_irq(smc,PB,st) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * interrupt source= plc2 | 
|  | * this function is called in nwfbisr.asm | 
|  | */ | 
|  | void plc2_irq(struct s_smc *smc) | 
|  | { | 
|  | u_short	st = inpw(PLC(PA,PL_INTR_EVENT)) ; | 
|  |  | 
|  | #if	(defined(ISA) || defined(EISA)) | 
|  | /* reset PLC Int. bits */ | 
|  | outpw(PLC2_I,inpw(PLC2_I)) ; | 
|  | #endif | 
|  | plc_irq(smc,PA,st) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * interrupt source= timer | 
|  | */ | 
|  | void timer_irq(struct s_smc *smc) | 
|  | { | 
|  | hwt_restart(smc); | 
|  | smc->hw.t_stop = smc->hw.t_start; | 
|  | smt_timer_done(smc) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return S-port (PA or PB) | 
|  | */ | 
|  | int pcm_get_s_port(struct s_smc *smc) | 
|  | { | 
|  | SK_UNUSED(smc) ; | 
|  | return(PS) ; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Station Label = "FDDI-XYZ" where | 
|  | * | 
|  | *	X = connector type | 
|  | *	Y = PMD type | 
|  | *	Z = port type | 
|  | */ | 
|  | #define STATION_LABEL_CONNECTOR_OFFSET	5 | 
|  | #define STATION_LABEL_PMD_OFFSET	6 | 
|  | #define STATION_LABEL_PORT_OFFSET	7 | 
|  |  | 
|  | void read_address(struct s_smc *smc, u_char *mac_addr) | 
|  | { | 
|  | char ConnectorType ; | 
|  | char PmdType ; | 
|  | int	i ; | 
|  |  | 
|  | extern const u_char canonical[256] ; | 
|  |  | 
|  | #if	(defined(ISA) || defined(MCA)) | 
|  | for (i = 0; i < 4 ;i++) {	/* read mac address from board */ | 
|  | smc->hw.fddi_phys_addr.a[i] = | 
|  | canonical[(inpw(PR_A(i+SA_MAC))&0xff)] ; | 
|  | } | 
|  | for (i = 4; i < 6; i++) { | 
|  | smc->hw.fddi_phys_addr.a[i] = | 
|  | canonical[(inpw(PR_A(i+SA_MAC+PRA_OFF))&0xff)] ; | 
|  | } | 
|  | #endif | 
|  | #ifdef	EISA | 
|  | /* | 
|  | * Note: We get trouble on an Alpha machine if we make a inpw() | 
|  | * instead of inp() | 
|  | */ | 
|  | for (i = 0; i < 4 ;i++) {	/* read mac address from board */ | 
|  | smc->hw.fddi_phys_addr.a[i] = | 
|  | canonical[inp(PR_A(i+SA_MAC))] ; | 
|  | } | 
|  | for (i = 4; i < 6; i++) { | 
|  | smc->hw.fddi_phys_addr.a[i] = | 
|  | canonical[inp(PR_A(i+SA_MAC+PRA_OFF))] ; | 
|  | } | 
|  | #endif | 
|  | #ifdef	PCI | 
|  | for (i = 0; i < 6; i++) {	/* read mac address from board */ | 
|  | smc->hw.fddi_phys_addr.a[i] = | 
|  | canonical[inp(ADDR(B2_MAC_0+i))] ; | 
|  | } | 
|  | #endif | 
|  | #ifndef	PCI | 
|  | ConnectorType = inpw(PR_A(SA_PMD_TYPE)) & 0xff ; | 
|  | PmdType = inpw(PR_A(SA_PMD_TYPE+1)) & 0xff ; | 
|  | #else | 
|  | ConnectorType = inp(ADDR(B2_CONN_TYP)) ; | 
|  | PmdType = inp(ADDR(B2_PMD_TYP)) ; | 
|  | #endif | 
|  |  | 
|  | smc->y[PA].pmd_type[PMD_SK_CONN] = | 
|  | smc->y[PB].pmd_type[PMD_SK_CONN] = ConnectorType ; | 
|  | smc->y[PA].pmd_type[PMD_SK_PMD ] = | 
|  | smc->y[PB].pmd_type[PMD_SK_PMD ] = PmdType ; | 
|  |  | 
|  | if (mac_addr) { | 
|  | for (i = 0; i < 6 ;i++) { | 
|  | smc->hw.fddi_canon_addr.a[i] = mac_addr[i] ; | 
|  | smc->hw.fddi_home_addr.a[i] = canonical[mac_addr[i]] ; | 
|  | } | 
|  | return ; | 
|  | } | 
|  | smc->hw.fddi_home_addr = smc->hw.fddi_phys_addr ; | 
|  |  | 
|  | for (i = 0; i < 6 ;i++) { | 
|  | smc->hw.fddi_canon_addr.a[i] = | 
|  | canonical[smc->hw.fddi_phys_addr.a[i]] ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FDDI card soft reset | 
|  | */ | 
|  | void init_board(struct s_smc *smc, u_char *mac_addr) | 
|  | { | 
|  | card_start(smc) ; | 
|  | read_address(smc,mac_addr) ; | 
|  |  | 
|  | #ifndef	PCI | 
|  | if (inpw(CSR_A) & CS_SAS) | 
|  | #else | 
|  | if (!(inp(ADDR(B0_DAS)) & DAS_AVAIL)) | 
|  | #endif | 
|  | smc->s.sas = SMT_SAS ;	/* Single att. station */ | 
|  | else | 
|  | smc->s.sas = SMT_DAS ;	/* Dual att. station */ | 
|  |  | 
|  | #ifndef	PCI | 
|  | if (inpw(CSR_A) & CS_BYSTAT) | 
|  | #else | 
|  | if (!(inp(ADDR(B0_DAS)) & DAS_BYP_ST)) | 
|  | #endif | 
|  | smc->mib.fddiSMTBypassPresent = 0 ; | 
|  | /* without opt. bypass */ | 
|  | else | 
|  | smc->mib.fddiSMTBypassPresent = 1 ; | 
|  | /* with opt. bypass */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * insert or deinsert optical bypass (called by ECM) | 
|  | */ | 
|  | void sm_pm_bypass_req(struct s_smc *smc, int mode) | 
|  | { | 
|  | #if	(defined(ISA) || defined(EISA)) | 
|  | int csra_v ; | 
|  | #endif | 
|  |  | 
|  | DB_ECMN(1,"ECM : sm_pm_bypass_req(%s)\n",(mode == BP_INSERT) ? | 
|  | "BP_INSERT" : "BP_DEINSERT",0) ; | 
|  |  | 
|  | if (smc->s.sas != SMT_DAS) | 
|  | return ; | 
|  |  | 
|  | #if	(defined(ISA) || defined(EISA)) | 
|  |  | 
|  | csra_v = inpw(CSR_A) & ~CS_BYPASS ; | 
|  | #ifdef	EISA | 
|  | csra_v |= smc->hw.led ; | 
|  | #endif | 
|  |  | 
|  | switch(mode) { | 
|  | case BP_INSERT : | 
|  | outpw(CSR_A,csra_v | CS_BYPASS) ; | 
|  | break ; | 
|  | case BP_DEINSERT : | 
|  | outpw(CSR_A,csra_v) ; | 
|  | break ; | 
|  | } | 
|  | #endif	/* ISA / EISA */ | 
|  | #ifdef	MCA | 
|  | switch(mode) { | 
|  | case BP_INSERT : | 
|  | outp(ADDR(BYPASS(STAT_INS)),0) ;/* insert station */ | 
|  | break ; | 
|  | case BP_DEINSERT : | 
|  | outp(ADDR(BYPASS(STAT_BYP)),0) ;	/* bypass station */ | 
|  | break ; | 
|  | } | 
|  | #endif | 
|  | #ifdef	PCI | 
|  | switch(mode) { | 
|  | case BP_INSERT : | 
|  | outp(ADDR(B0_DAS),DAS_BYP_INS) ;	/* insert station */ | 
|  | break ; | 
|  | case BP_DEINSERT : | 
|  | outp(ADDR(B0_DAS),DAS_BYP_RMV) ;	/* bypass station */ | 
|  | break ; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check if bypass connected | 
|  | */ | 
|  | int sm_pm_bypass_present(struct s_smc *smc) | 
|  | { | 
|  | #ifndef	PCI | 
|  | return(	(inpw(CSR_A) & CS_BYSTAT) ? FALSE : TRUE ) ; | 
|  | #else | 
|  | return(	(inp(ADDR(B0_DAS)) & DAS_BYP_ST) ? TRUE: FALSE) ; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void plc_clear_irq(struct s_smc *smc, int p) | 
|  | { | 
|  | SK_UNUSED(p) ; | 
|  |  | 
|  | #if	(defined(ISA) || defined(EISA)) | 
|  | switch (p) { | 
|  | case PA : | 
|  | /* reset PLC Int. bits */ | 
|  | outpw(PLC2_I,inpw(PLC2_I)) ; | 
|  | break ; | 
|  | case PB : | 
|  | /* reset PLC Int. bits */ | 
|  | outpw(PLC1_I,inpw(PLC1_I)) ; | 
|  | break ; | 
|  | } | 
|  | #else | 
|  | SK_UNUSED(smc) ; | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * led_indication called by rmt_indication() and | 
|  | * pcm_state_change() | 
|  | * | 
|  | * Input: | 
|  | *	smc:	SMT context | 
|  | *	led_event: | 
|  | *	0	Only switch green LEDs according to their respective PCM state | 
|  | *	LED_Y_OFF	just switch yellow LED off | 
|  | *	LED_Y_ON	just switch yello LED on | 
|  | */ | 
|  | static void led_indication(struct s_smc *smc, int led_event) | 
|  | { | 
|  | /* use smc->hw.mac_ring_is_up == TRUE | 
|  | * as indication for Ring Operational | 
|  | */ | 
|  | u_short			led_state ; | 
|  | struct s_phy		*phy ; | 
|  | struct fddi_mib_p	*mib_a ; | 
|  | struct fddi_mib_p	*mib_b ; | 
|  |  | 
|  | phy = &smc->y[PA] ; | 
|  | mib_a = phy->mib ; | 
|  | phy = &smc->y[PB] ; | 
|  | mib_b = phy->mib ; | 
|  |  | 
|  | #ifdef	EISA | 
|  | /* Ring up = yellow led OFF*/ | 
|  | if (led_event == LED_Y_ON) { | 
|  | smc->hw.led |= CS_LED_1 ; | 
|  | } | 
|  | else if (led_event == LED_Y_OFF) { | 
|  | smc->hw.led &= ~CS_LED_1 ; | 
|  | } | 
|  | else { | 
|  | /* Link at Port A or B = green led ON */ | 
|  | if (mib_a->fddiPORTPCMState == PC8_ACTIVE || | 
|  | mib_b->fddiPORTPCMState == PC8_ACTIVE) { | 
|  | smc->hw.led |= CS_LED_0 ; | 
|  | } | 
|  | else { | 
|  | smc->hw.led &= ~CS_LED_0 ; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | #ifdef	MCA | 
|  | led_state = inpw(LEDR_A) ; | 
|  |  | 
|  | /* Ring up = yellow led OFF*/ | 
|  | if (led_event == LED_Y_ON) { | 
|  | led_state |= LED_1 ; | 
|  | } | 
|  | else if (led_event == LED_Y_OFF) { | 
|  | led_state &= ~LED_1 ; | 
|  | } | 
|  | else { | 
|  | led_state &= ~(LED_2|LED_0) ; | 
|  |  | 
|  | /* Link at Port A = green led A ON */ | 
|  | if (mib_a->fddiPORTPCMState == PC8_ACTIVE) { | 
|  | led_state |= LED_2 ; | 
|  | } | 
|  |  | 
|  | /* Link at Port B/S = green led B ON */ | 
|  | if (mib_b->fddiPORTPCMState == PC8_ACTIVE) { | 
|  | led_state |= LED_0 ; | 
|  | } | 
|  | } | 
|  |  | 
|  | outpw(LEDR_A, led_state) ; | 
|  | #endif	/* MCA */ | 
|  | #ifdef	PCI | 
|  | led_state = 0 ; | 
|  |  | 
|  | /* Ring up = yellow led OFF*/ | 
|  | if (led_event == LED_Y_ON) { | 
|  | led_state |= LED_MY_ON ; | 
|  | } | 
|  | else if (led_event == LED_Y_OFF) { | 
|  | led_state |= LED_MY_OFF ; | 
|  | } | 
|  | else {	/* PCM state changed */ | 
|  | /* Link at Port A/S = green led A ON */ | 
|  | if (mib_a->fddiPORTPCMState == PC8_ACTIVE) { | 
|  | led_state |= LED_GA_ON ; | 
|  | } | 
|  | else { | 
|  | led_state |= LED_GA_OFF ; | 
|  | } | 
|  |  | 
|  | /* Link at Port B = green led B ON */ | 
|  | if (mib_b->fddiPORTPCMState == PC8_ACTIVE) { | 
|  | led_state |= LED_GB_ON ; | 
|  | } | 
|  | else { | 
|  | led_state |= LED_GB_OFF ; | 
|  | } | 
|  | } | 
|  |  | 
|  | outp(ADDR(B0_LED), led_state) ; | 
|  | #endif	/* PCI */ | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | void pcm_state_change(struct s_smc *smc, int plc, int p_state) | 
|  | { | 
|  | /* | 
|  | * the current implementation of pcm_state_change() in the driver | 
|  | * parts must be renamed to drv_pcm_state_change() which will be called | 
|  | * now after led_indication. | 
|  | */ | 
|  | DRV_PCM_STATE_CHANGE(smc,plc,p_state) ; | 
|  |  | 
|  | led_indication(smc,0) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | void rmt_indication(struct s_smc *smc, int i) | 
|  | { | 
|  | /* Call a driver special function if defined */ | 
|  | DRV_RMT_INDICATION(smc,i) ; | 
|  |  | 
|  | led_indication(smc, i ? LED_Y_OFF : LED_Y_ON) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * llc_recover_tx called by init_tx (fplus.c) | 
|  | */ | 
|  | void llc_recover_tx(struct s_smc *smc) | 
|  | { | 
|  | #ifdef	LOAD_GEN | 
|  | extern	int load_gen_flag ; | 
|  |  | 
|  | load_gen_flag = 0 ; | 
|  | #endif | 
|  | #ifndef	SYNC | 
|  | smc->hw.n_a_send= 0 ; | 
|  | #else | 
|  | SK_UNUSED(smc) ; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef MULT_OEM | 
|  | static int is_equal_num(char comp1[], char comp2[], int num) | 
|  | { | 
|  | int i ; | 
|  |  | 
|  | for (i = 0 ; i < num ; i++) { | 
|  | if (comp1[i] != comp2[i]) | 
|  | return (0) ; | 
|  | } | 
|  | return (1) ; | 
|  | }	/* is_equal_num */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * set the OEM ID defaults, and test the contents of the OEM data base | 
|  | * The default OEM is the first ACTIVE entry in the OEM data base | 
|  | * | 
|  | * returns:	0	success | 
|  | *		1	error in data base | 
|  | *		2	data base empty | 
|  | *		3	no active entry | 
|  | */ | 
|  | int set_oi_id_def(struct s_smc *smc) | 
|  | { | 
|  | int sel_id ; | 
|  | int i ; | 
|  | int act_entries ; | 
|  |  | 
|  | i = 0 ; | 
|  | sel_id = -1 ; | 
|  | act_entries = FALSE ; | 
|  | smc->hw.oem_id = 0 ; | 
|  | smc->hw.oem_min_status = OI_STAT_ACTIVE ; | 
|  |  | 
|  | /* check OEM data base */ | 
|  | while (oem_ids[i].oi_status) { | 
|  | switch (oem_ids[i].oi_status) { | 
|  | case OI_STAT_ACTIVE: | 
|  | act_entries = TRUE ;	/* we have active IDs */ | 
|  | if (sel_id == -1) | 
|  | sel_id = i ;	/* save the first active ID */ | 
|  | case OI_STAT_VALID: | 
|  | case OI_STAT_PRESENT: | 
|  | i++ ; | 
|  | break ;			/* entry ok */ | 
|  | default: | 
|  | return (1) ;		/* invalid oi_status */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (i == 0) | 
|  | return (2) ; | 
|  | if (!act_entries) | 
|  | return (3) ; | 
|  |  | 
|  | /* ok, we have a valid OEM data base with an active entry */ | 
|  | smc->hw.oem_id = (struct s_oem_ids *)  &oem_ids[sel_id] ; | 
|  | return (0) ; | 
|  | } | 
|  | #endif	/* MULT_OEM */ | 
|  |  | 
|  |  | 
|  | #ifdef	MCA | 
|  | /************************ | 
|  | * | 
|  | * BEGIN_MANUAL_ENTRY() | 
|  | * | 
|  | *	exist_board | 
|  | * | 
|  | *	Check if an MCA board is present in the specified slot. | 
|  | * | 
|  | *	int exist_board( | 
|  | *		struct s_smc *smc, | 
|  | *		int slot) ; | 
|  | * In | 
|  | *	smc - A pointer to the SMT Context struct. | 
|  | * | 
|  | *	slot - The number of the slot to inspect. | 
|  | * Out | 
|  | *	0 = No adapter present. | 
|  | *	1 = Found FM1 adapter. | 
|  | * | 
|  | * Pseudo | 
|  | *      Read MCA ID | 
|  | *	for all valid OEM_IDs | 
|  | *		compare with ID read | 
|  | *		if equal, return 1 | 
|  | *	return(0 | 
|  | * | 
|  | * Note | 
|  | *	The smc pointer must be valid now. | 
|  | * | 
|  | * END_MANUAL_ENTRY() | 
|  | * | 
|  | ************************/ | 
|  | #define LONG_CARD_ID(lo, hi)	((((hi) & 0xff) << 8) | ((lo) & 0xff)) | 
|  | int exist_board(struct s_smc *smc, int slot) | 
|  | { | 
|  | #ifdef MULT_OEM | 
|  | SK_LOC_DECL(u_char,id[2]) ; | 
|  | int idi ; | 
|  | #endif	/* MULT_OEM */ | 
|  |  | 
|  | /* No longer valid. */ | 
|  | if (smc == NULL) | 
|  | return(0) ; | 
|  |  | 
|  | #ifndef MULT_OEM | 
|  | if (read_card_id(smc, slot) | 
|  | == LONG_CARD_ID(OEMID(smc,0), OEMID(smc,1))) | 
|  | return (1) ;	/* Found FM adapter. */ | 
|  |  | 
|  | #else	/* MULT_OEM */ | 
|  | idi = read_card_id(smc, slot) ; | 
|  | id[0] = idi & 0xff ; | 
|  | id[1] = idi >> 8 ; | 
|  |  | 
|  | smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; | 
|  | for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { | 
|  | if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) | 
|  | continue ; | 
|  |  | 
|  | if (is_equal_num(&id[0],&OEMID(smc,0),2)) | 
|  | return (1) ; | 
|  | } | 
|  | #endif	/* MULT_OEM */ | 
|  | return (0) ;	/* No adapter found. */ | 
|  | } | 
|  |  | 
|  | /************************ | 
|  | * | 
|  | *	read_card_id | 
|  | * | 
|  | *	Read the MCA card id from the specified slot. | 
|  | * In | 
|  | *	smc - A pointer to the SMT Context struct. | 
|  | *	CAVEAT: This pointer may be NULL and *must not* be used within this | 
|  | *	function. It's only purpose is for drivers that need some information | 
|  | *	for the inp() and outp() macros. | 
|  | * | 
|  | *	slot - The number of the slot for which the card id is returned. | 
|  | * Out | 
|  | *	Returns the card id read from the specified slot. If an illegal slot | 
|  | *	number is specified, the function returns zero. | 
|  | * | 
|  | ************************/ | 
|  | static int read_card_id(struct s_smc *smc, int slot) | 
|  | /* struct s_smc *smc ;	Do not use. */ | 
|  | { | 
|  | int card_id ; | 
|  |  | 
|  | SK_UNUSED(smc) ;	/* Make LINT happy. */ | 
|  | if ((slot < 1) || (slot > 15))	/* max 16 slots, 0 = motherboard */ | 
|  | return (0) ;	/* Illegal slot number specified. */ | 
|  |  | 
|  | EnableSlotAccess(smc, slot) ; | 
|  |  | 
|  | card_id = ((read_POS(smc,POS_ID_HIGH,slot - 1) & 0xff) << 8) | | 
|  | (read_POS(smc,POS_ID_LOW,slot - 1) & 0xff) ; | 
|  |  | 
|  | DisableSlotAccess(smc) ; | 
|  |  | 
|  | return (card_id) ; | 
|  | } | 
|  |  | 
|  | /************************ | 
|  | * | 
|  | * BEGIN_MANUAL_ENTRY() | 
|  | * | 
|  | *	get_board_para | 
|  | * | 
|  | *	Get adapter configuration information. Fill all board specific | 
|  | *	parameters within the 'smc' structure. | 
|  | * | 
|  | *	int get_board_para( | 
|  | *		struct s_smc *smc, | 
|  | *		int slot) ; | 
|  | * In | 
|  | *	smc - A pointer to the SMT Context struct, to which this function will | 
|  | *	write some adapter configuration data. | 
|  | * | 
|  | *	slot - The number of the slot, in which the adapter is installed. | 
|  | * Out | 
|  | *	0 = No adapter present. | 
|  | *	1 = Ok. | 
|  | *	2 = Adapter present, but card enable bit not set. | 
|  | * | 
|  | * END_MANUAL_ENTRY() | 
|  | * | 
|  | ************************/ | 
|  | int get_board_para(struct s_smc *smc, int slot) | 
|  | { | 
|  | int val ; | 
|  | int i ; | 
|  |  | 
|  | /* Check if adapter present & get type of adapter. */ | 
|  | switch (exist_board(smc, slot)) { | 
|  | case 0:	/* Adapter not present. */ | 
|  | return (0) ; | 
|  | case 1:	/* FM Rev. 1 */ | 
|  | smc->hw.rev = FM1_REV ; | 
|  | smc->hw.VFullRead = 0x0a ; | 
|  | smc->hw.VFullWrite = 0x05 ; | 
|  | smc->hw.DmaWriteExtraBytes = 8 ;	/* 2 extra words. */ | 
|  | break ; | 
|  | } | 
|  | smc->hw.slot = slot ; | 
|  |  | 
|  | EnableSlotAccess(smc, slot) ; | 
|  |  | 
|  | if (!(read_POS(smc,POS_102, slot - 1) & POS_CARD_EN)) { | 
|  | DisableSlotAccess(smc) ; | 
|  | return (2) ;	/* Card enable bit not set. */ | 
|  | } | 
|  |  | 
|  | val = read_POS(smc,POS_104, slot - 1) ;	/* I/O, IRQ */ | 
|  |  | 
|  | #ifndef MEM_MAPPED_IO	/* is defined by the operating system */ | 
|  | i = val & POS_IOSEL ;	/* I/O base addr. (0x0200 .. 0xfe00) */ | 
|  | smc->hw.iop = (i + 1) * 0x0400 - 0x200 ; | 
|  | #endif | 
|  | i = ((val & POS_IRQSEL) >> 6) & 0x03 ;	/* IRQ <0, 1> */ | 
|  | smc->hw.irq = opt_ints[i] ; | 
|  |  | 
|  | /* FPROM base addr. */ | 
|  | i = ((read_POS(smc,POS_103, slot - 1) & POS_MSEL) >> 4) & 0x07 ; | 
|  | smc->hw.eprom = opt_eproms[i] ; | 
|  |  | 
|  | DisableSlotAccess(smc) ; | 
|  |  | 
|  | /* before this, the smc->hw.iop must be set !!! */ | 
|  | smc->hw.slot_32 = inpw(CSF_A) & SLOT_32 ; | 
|  |  | 
|  | return (1) ; | 
|  | } | 
|  |  | 
|  | /* Enable access to specified MCA slot. */ | 
|  | static void EnableSlotAccess(struct s_smc *smc, int slot) | 
|  | { | 
|  | SK_UNUSED(slot) ; | 
|  |  | 
|  | #ifndef AIX | 
|  | SK_UNUSED(smc) ; | 
|  |  | 
|  | /* System mode. */ | 
|  | outp(POS_SYS_SETUP, POS_SYSTEM) ; | 
|  |  | 
|  | /* Select slot. */ | 
|  | outp(POS_CHANNEL_POS, POS_CHANNEL_BIT | (slot-1)) ; | 
|  | #else | 
|  | attach_POS_addr (smc) ; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Disable access to MCA slot formerly enabled via EnableSlotAccess(). */ | 
|  | static void DisableSlotAccess(struct s_smc *smc) | 
|  | { | 
|  | #ifndef AIX | 
|  | SK_UNUSED(smc) ; | 
|  |  | 
|  | outp(POS_CHANNEL_POS, 0) ; | 
|  | #else | 
|  | detach_POS_addr (smc) ; | 
|  | #endif | 
|  | } | 
|  | #endif	/* MCA */ | 
|  |  | 
|  | #ifdef	EISA | 
|  | #ifndef	MEM_MAPPED_IO | 
|  | #define	SADDR(slot)	(((slot)<<12)&0xf000) | 
|  | #else	/* MEM_MAPPED_IO */ | 
|  | #define	SADDR(slot)	(smc->hw.iop) | 
|  | #endif	/* MEM_MAPPED_IO */ | 
|  |  | 
|  | /************************ | 
|  | * | 
|  | * BEGIN_MANUAL_ENTRY() | 
|  | * | 
|  | *	exist_board | 
|  | * | 
|  | *	Check if an EISA board is present in the specified slot. | 
|  | * | 
|  | *	int exist_board( | 
|  | *		struct s_smc *smc, | 
|  | *		int slot) ; | 
|  | * In | 
|  | *	smc - A pointer to the SMT Context struct. | 
|  | * | 
|  | *	slot - The number of the slot to inspect. | 
|  | * Out | 
|  | *	0 = No adapter present. | 
|  | *	1 = Found adapter. | 
|  | * | 
|  | * Pseudo | 
|  | *      Read EISA ID | 
|  | *	for all valid OEM_IDs | 
|  | *		compare with ID read | 
|  | *		if equal, return 1 | 
|  | *	return(0 | 
|  | * | 
|  | * Note | 
|  | *	The smc pointer must be valid now. | 
|  | * | 
|  | ************************/ | 
|  | int exist_board(struct s_smc *smc, int slot) | 
|  | { | 
|  | int i ; | 
|  | #ifdef MULT_OEM | 
|  | SK_LOC_DECL(u_char,id[4]) ; | 
|  | #endif	/* MULT_OEM */ | 
|  |  | 
|  | /* No longer valid. */ | 
|  | if (smc == NULL) | 
|  | return(0); | 
|  |  | 
|  | SK_UNUSED(slot) ; | 
|  |  | 
|  | #ifndef MULT_OEM | 
|  | for (i = 0 ; i < 4 ; i++) { | 
|  | if (inp(SADDR(slot)+PRA(i)) != OEMID(smc,i)) | 
|  | return(0) ; | 
|  | } | 
|  | return(1) ; | 
|  | #else	/* MULT_OEM */ | 
|  | for (i = 0 ; i < 4 ; i++) | 
|  | id[i] = inp(SADDR(slot)+PRA(i)) ; | 
|  |  | 
|  | smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; | 
|  |  | 
|  | for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { | 
|  | if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) | 
|  | continue ; | 
|  |  | 
|  | if (is_equal_num(&id[0],&OEMID(smc,0),4)) | 
|  | return (1) ; | 
|  | } | 
|  | return (0) ;	/* No adapter found. */ | 
|  | #endif	/* MULT_OEM */ | 
|  | } | 
|  |  | 
|  |  | 
|  | int get_board_para(struct s_smc *smc, int slot) | 
|  | { | 
|  | int	i ; | 
|  |  | 
|  | if (!exist_board(smc,slot)) | 
|  | return(0) ; | 
|  |  | 
|  | smc->hw.slot = slot ; | 
|  | #ifndef	MEM_MAPPED_IO		/* if defined by the operating system */ | 
|  | smc->hw.iop = SADDR(slot) ; | 
|  | #endif | 
|  |  | 
|  | if (!(inp(C0_A(0))&CFG_CARD_EN)) { | 
|  | return(2) ;			/* CFG_CARD_EN bit not set! */ | 
|  | } | 
|  |  | 
|  | smc->hw.irq = opt_ints[(inp(C1_A(0)) & CFG_IRQ_SEL)] ; | 
|  | smc->hw.dma = opt_dmas[((inp(C1_A(0)) & CFG_DRQ_SEL)>>3)] ; | 
|  |  | 
|  | if ((i = inp(C2_A(0)) & CFG_EPROM_SEL) != 0x0f) | 
|  | smc->hw.eprom = opt_eproms[i] ; | 
|  | else | 
|  | smc->hw.eprom = 0 ; | 
|  |  | 
|  | smc->hw.DmaWriteExtraBytes = 8 ; | 
|  |  | 
|  | return(1) ; | 
|  | } | 
|  | #endif	/* EISA */ | 
|  |  | 
|  | #ifdef	ISA | 
|  | #ifndef MULT_OEM | 
|  | const u_char sklogo[6] = SKLOGO_STR ; | 
|  | #define	SIZE_SKLOGO(smc)	sizeof(sklogo) | 
|  | #define	SKLOGO(smc,i)		sklogo[i] | 
|  | #else	/* MULT_OEM */ | 
|  | #define	SIZE_SKLOGO(smc)	smc->hw.oem_id->oi_logo_len | 
|  | #define	SKLOGO(smc,i)		smc->hw.oem_id->oi_logo[i] | 
|  | #endif	/* MULT_OEM */ | 
|  |  | 
|  |  | 
|  | int exist_board(struct s_smc *smc, HW_PTR port) | 
|  | { | 
|  | int	i ; | 
|  | #ifdef MULT_OEM | 
|  | int	bytes_read ; | 
|  | u_char	board_logo[15] ; | 
|  | SK_LOC_DECL(u_char,id[4]) ; | 
|  | #endif	/* MULT_OEM */ | 
|  |  | 
|  | /* No longer valid. */ | 
|  | if (smc == NULL) | 
|  | return(0); | 
|  |  | 
|  | SK_UNUSED(smc) ; | 
|  | #ifndef MULT_OEM | 
|  | for (i = SADDRL ; i < (signed) (SADDRL+SIZE_SKLOGO(smc)) ; i++) { | 
|  | if ((u_char)inpw((PRA(i)+port)) != SKLOGO(smc,i-SADDRL)) { | 
|  | return(0) ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* check MAC address (S&K or other) */ | 
|  | for (i = 0 ; i < 3 ; i++) { | 
|  | if ((u_char)inpw((PRA(i)+port)) != OEMID(smc,i)) | 
|  | return(0) ; | 
|  | } | 
|  | return(1) ; | 
|  | #else	/* MULT_OEM */ | 
|  | smc->hw.oem_id = (struct s_oem_ids *)  &oem_ids[0] ; | 
|  | board_logo[0] = (u_char)inpw((PRA(SADDRL)+port)) ; | 
|  | bytes_read = 1 ; | 
|  |  | 
|  | for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { | 
|  | if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) | 
|  | continue ; | 
|  |  | 
|  | /* Test all read bytes with current OEM_entry */ | 
|  | /* for (i=0; (i<bytes_read) && (i < SIZE_SKLOGO(smc)); i++) { */ | 
|  | for (i = 0; i < bytes_read; i++) { | 
|  | if (board_logo[i] != SKLOGO(smc,i)) | 
|  | break ; | 
|  | } | 
|  |  | 
|  | /* If mismatch, switch to next OEM entry */ | 
|  | if ((board_logo[i] != SKLOGO(smc,i)) && (i < bytes_read)) | 
|  | continue ; | 
|  |  | 
|  | --i ; | 
|  | while (bytes_read < SIZE_SKLOGO(smc)) { | 
|  | //   inpw next byte SK_Logo | 
|  | i++ ; | 
|  | board_logo[i] = (u_char)inpw((PRA(SADDRL+i)+port)) ; | 
|  | bytes_read++ ; | 
|  | if (board_logo[i] != SKLOGO(smc,i)) | 
|  | break ; | 
|  | } | 
|  |  | 
|  | for (i = 0 ; i < 3 ; i++) | 
|  | id[i] = (u_char)inpw((PRA(i)+port)) ; | 
|  |  | 
|  | if ((board_logo[i] == SKLOGO(smc,i)) | 
|  | && (bytes_read == SIZE_SKLOGO(smc))) { | 
|  |  | 
|  | if (is_equal_num(&id[0],&OEMID(smc,0),3)) | 
|  | return(1); | 
|  | } | 
|  | }	/* for */ | 
|  | return(0) ; | 
|  | #endif	/* MULT_OEM */ | 
|  | } | 
|  |  | 
|  | int get_board_para(struct s_smc *smc, int slot) | 
|  | { | 
|  | SK_UNUSED(smc) ; | 
|  | SK_UNUSED(slot) ; | 
|  | return(0) ;	/* for ISA not supported */ | 
|  | } | 
|  | #endif	/* ISA */ | 
|  |  | 
|  | #ifdef PCI | 
|  | #ifdef USE_BIOS_FUN | 
|  | int exist_board(struct s_smc *smc, int slot) | 
|  | { | 
|  | u_short dev_id ; | 
|  | u_short ven_id ; | 
|  | int found ; | 
|  | int i ; | 
|  |  | 
|  | found = FALSE ;		/* make sure we returned with adatper not found*/ | 
|  | /* if an empty oemids.h was included */ | 
|  |  | 
|  | #ifdef MULT_OEM | 
|  | smc->hw.oem_id = (struct s_oem_ids *) &oem_ids[0] ; | 
|  | for (; smc->hw.oem_id->oi_status != OI_STAT_LAST; smc->hw.oem_id++) { | 
|  | if (smc->hw.oem_id->oi_status < smc->hw.oem_min_status) | 
|  | continue ; | 
|  | #endif | 
|  | ven_id = OEMID(smc,0) + (OEMID(smc,1) << 8) ; | 
|  | dev_id = OEMID(smc,2) + (OEMID(smc,3) << 8) ; | 
|  | for (i = 0; i < slot; i++) { | 
|  | if (pci_find_device(i,&smc->hw.pci_handle, | 
|  | dev_id,ven_id) != 0) { | 
|  |  | 
|  | found = FALSE ; | 
|  | } else { | 
|  | found = TRUE ; | 
|  | } | 
|  | } | 
|  | if (found) { | 
|  | return(1) ;	/* adapter was found */ | 
|  | } | 
|  | #ifdef MULT_OEM | 
|  | } | 
|  | #endif | 
|  | return(0) ;	/* adapter was not found */ | 
|  | } | 
|  | #endif	/* PCI */ | 
|  | #endif	/* USE_BIOS_FUNC */ | 
|  |  | 
|  | void driver_get_bia(struct s_smc *smc, struct fddi_addr *bia_addr) | 
|  | { | 
|  | int i ; | 
|  |  | 
|  | extern const u_char canonical[256] ; | 
|  |  | 
|  | for (i = 0 ; i < 6 ; i++) { | 
|  | bia_addr->a[i] = canonical[smc->hw.fddi_phys_addr.a[i]] ; | 
|  | } | 
|  | } | 
|  |  | 
|  | void smt_start_watchdog(struct s_smc *smc) | 
|  | { | 
|  | SK_UNUSED(smc) ;	/* Make LINT happy. */ | 
|  |  | 
|  | #ifndef	DEBUG | 
|  |  | 
|  | #ifdef	PCI | 
|  | if (smc->hw.wdog_used) { | 
|  | outpw(ADDR(B2_WDOG_CRTL),TIM_START) ;	/* Start timer. */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif	/* DEBUG */ | 
|  | } | 
|  |  | 
|  | static void smt_stop_watchdog(struct s_smc *smc) | 
|  | { | 
|  | SK_UNUSED(smc) ;	/* Make LINT happy. */ | 
|  | #ifndef	DEBUG | 
|  |  | 
|  | #ifdef	PCI | 
|  | if (smc->hw.wdog_used) { | 
|  | outpw(ADDR(B2_WDOG_CRTL),TIM_STOP) ;	/* Stop timer. */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #endif	/* DEBUG */ | 
|  | } | 
|  |  | 
|  | #ifdef	PCI | 
|  |  | 
|  | void mac_do_pci_fix(struct s_smc *smc) | 
|  | { | 
|  | SK_UNUSED(smc) ; | 
|  | } | 
|  | #endif	/* PCI */ | 
|  |  |