|  | /* | 
|  | * lib/bitmap.c | 
|  | * Helper functions for bitmap.h. | 
|  | * | 
|  | * This source code is licensed under the GNU General Public License, | 
|  | * Version 2.  See the file COPYING for more details. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | /* | 
|  | * bitmaps provide an array of bits, implemented using an an | 
|  | * array of unsigned longs.  The number of valid bits in a | 
|  | * given bitmap does _not_ need to be an exact multiple of | 
|  | * BITS_PER_LONG. | 
|  | * | 
|  | * The possible unused bits in the last, partially used word | 
|  | * of a bitmap are 'don't care'.  The implementation makes | 
|  | * no particular effort to keep them zero.  It ensures that | 
|  | * their value will not affect the results of any operation. | 
|  | * The bitmap operations that return Boolean (bitmap_empty, | 
|  | * for example) or scalar (bitmap_weight, for example) results | 
|  | * carefully filter out these unused bits from impacting their | 
|  | * results. | 
|  | * | 
|  | * These operations actually hold to a slightly stronger rule: | 
|  | * if you don't input any bitmaps to these ops that have some | 
|  | * unused bits set, then they won't output any set unused bits | 
|  | * in output bitmaps. | 
|  | * | 
|  | * The byte ordering of bitmaps is more natural on little | 
|  | * endian architectures.  See the big-endian headers | 
|  | * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h | 
|  | * for the best explanations of this ordering. | 
|  | */ | 
|  |  | 
|  | int __bitmap_empty(const unsigned long *bitmap, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  | for (k = 0; k < lim; ++k) | 
|  | if (bitmap[k]) | 
|  | return 0; | 
|  |  | 
|  | if (bits % BITS_PER_LONG) | 
|  | if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_empty); | 
|  |  | 
|  | int __bitmap_full(const unsigned long *bitmap, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  | for (k = 0; k < lim; ++k) | 
|  | if (~bitmap[k]) | 
|  | return 0; | 
|  |  | 
|  | if (bits % BITS_PER_LONG) | 
|  | if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_full); | 
|  |  | 
|  | int __bitmap_equal(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  | for (k = 0; k < lim; ++k) | 
|  | if (bitmap1[k] != bitmap2[k]) | 
|  | return 0; | 
|  |  | 
|  | if (bits % BITS_PER_LONG) | 
|  | if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_equal); | 
|  |  | 
|  | void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  | for (k = 0; k < lim; ++k) | 
|  | dst[k] = ~src[k]; | 
|  |  | 
|  | if (bits % BITS_PER_LONG) | 
|  | dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_complement); | 
|  |  | 
|  | /* | 
|  | * __bitmap_shift_right - logical right shift of the bits in a bitmap | 
|  | *   @dst - destination bitmap | 
|  | *   @src - source bitmap | 
|  | *   @nbits - shift by this many bits | 
|  | *   @bits - bitmap size, in bits | 
|  | * | 
|  | * Shifting right (dividing) means moving bits in the MS -> LS bit | 
|  | * direction.  Zeros are fed into the vacated MS positions and the | 
|  | * LS bits shifted off the bottom are lost. | 
|  | */ | 
|  | void __bitmap_shift_right(unsigned long *dst, | 
|  | const unsigned long *src, int shift, int bits) | 
|  | { | 
|  | int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; | 
|  | int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; | 
|  | unsigned long mask = (1UL << left) - 1; | 
|  | for (k = 0; off + k < lim; ++k) { | 
|  | unsigned long upper, lower; | 
|  |  | 
|  | /* | 
|  | * If shift is not word aligned, take lower rem bits of | 
|  | * word above and make them the top rem bits of result. | 
|  | */ | 
|  | if (!rem || off + k + 1 >= lim) | 
|  | upper = 0; | 
|  | else { | 
|  | upper = src[off + k + 1]; | 
|  | if (off + k + 1 == lim - 1 && left) | 
|  | upper &= mask; | 
|  | } | 
|  | lower = src[off + k]; | 
|  | if (left && off + k == lim - 1) | 
|  | lower &= mask; | 
|  | dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; | 
|  | if (left && k == lim - 1) | 
|  | dst[k] &= mask; | 
|  | } | 
|  | if (off) | 
|  | memset(&dst[lim - off], 0, off*sizeof(unsigned long)); | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_shift_right); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * __bitmap_shift_left - logical left shift of the bits in a bitmap | 
|  | *   @dst - destination bitmap | 
|  | *   @src - source bitmap | 
|  | *   @nbits - shift by this many bits | 
|  | *   @bits - bitmap size, in bits | 
|  | * | 
|  | * Shifting left (multiplying) means moving bits in the LS -> MS | 
|  | * direction.  Zeros are fed into the vacated LS bit positions | 
|  | * and those MS bits shifted off the top are lost. | 
|  | */ | 
|  |  | 
|  | void __bitmap_shift_left(unsigned long *dst, | 
|  | const unsigned long *src, int shift, int bits) | 
|  | { | 
|  | int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; | 
|  | int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; | 
|  | for (k = lim - off - 1; k >= 0; --k) { | 
|  | unsigned long upper, lower; | 
|  |  | 
|  | /* | 
|  | * If shift is not word aligned, take upper rem bits of | 
|  | * word below and make them the bottom rem bits of result. | 
|  | */ | 
|  | if (rem && k > 0) | 
|  | lower = src[k - 1]; | 
|  | else | 
|  | lower = 0; | 
|  | upper = src[k]; | 
|  | if (left && k == lim - 1) | 
|  | upper &= (1UL << left) - 1; | 
|  | dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem; | 
|  | if (left && k + off == lim - 1) | 
|  | dst[k + off] &= (1UL << left) - 1; | 
|  | } | 
|  | if (off) | 
|  | memset(dst, 0, off*sizeof(unsigned long)); | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_shift_left); | 
|  |  | 
|  | void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k; | 
|  | int nr = BITS_TO_LONGS(bits); | 
|  |  | 
|  | for (k = 0; k < nr; k++) | 
|  | dst[k] = bitmap1[k] & bitmap2[k]; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_and); | 
|  |  | 
|  | void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k; | 
|  | int nr = BITS_TO_LONGS(bits); | 
|  |  | 
|  | for (k = 0; k < nr; k++) | 
|  | dst[k] = bitmap1[k] | bitmap2[k]; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_or); | 
|  |  | 
|  | void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k; | 
|  | int nr = BITS_TO_LONGS(bits); | 
|  |  | 
|  | for (k = 0; k < nr; k++) | 
|  | dst[k] = bitmap1[k] ^ bitmap2[k]; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_xor); | 
|  |  | 
|  | void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k; | 
|  | int nr = BITS_TO_LONGS(bits); | 
|  |  | 
|  | for (k = 0; k < nr; k++) | 
|  | dst[k] = bitmap1[k] & ~bitmap2[k]; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_andnot); | 
|  |  | 
|  | int __bitmap_intersects(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  | for (k = 0; k < lim; ++k) | 
|  | if (bitmap1[k] & bitmap2[k]) | 
|  | return 1; | 
|  |  | 
|  | if (bits % BITS_PER_LONG) | 
|  | if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_intersects); | 
|  |  | 
|  | int __bitmap_subset(const unsigned long *bitmap1, | 
|  | const unsigned long *bitmap2, int bits) | 
|  | { | 
|  | int k, lim = bits/BITS_PER_LONG; | 
|  | for (k = 0; k < lim; ++k) | 
|  | if (bitmap1[k] & ~bitmap2[k]) | 
|  | return 0; | 
|  |  | 
|  | if (bits % BITS_PER_LONG) | 
|  | if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  | EXPORT_SYMBOL(__bitmap_subset); | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | int __bitmap_weight(const unsigned long *bitmap, int bits) | 
|  | { | 
|  | int k, w = 0, lim = bits/BITS_PER_LONG; | 
|  |  | 
|  | for (k = 0; k < lim; k++) | 
|  | w += hweight32(bitmap[k]); | 
|  |  | 
|  | if (bits % BITS_PER_LONG) | 
|  | w += hweight32(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); | 
|  |  | 
|  | return w; | 
|  | } | 
|  | #else | 
|  | int __bitmap_weight(const unsigned long *bitmap, int bits) | 
|  | { | 
|  | int k, w = 0, lim = bits/BITS_PER_LONG; | 
|  |  | 
|  | for (k = 0; k < lim; k++) | 
|  | w += hweight64(bitmap[k]); | 
|  |  | 
|  | if (bits % BITS_PER_LONG) | 
|  | w += hweight64(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); | 
|  |  | 
|  | return w; | 
|  | } | 
|  | #endif | 
|  | EXPORT_SYMBOL(__bitmap_weight); | 
|  |  | 
|  | /* | 
|  | * Bitmap printing & parsing functions: first version by Bill Irwin, | 
|  | * second version by Paul Jackson, third by Joe Korty. | 
|  | */ | 
|  |  | 
|  | #define CHUNKSZ				32 | 
|  | #define nbits_to_hold_value(val)	fls(val) | 
|  | #define unhex(c)			(isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10)) | 
|  | #define BASEDEC 10		/* fancier cpuset lists input in decimal */ | 
|  |  | 
|  | /** | 
|  | * bitmap_scnprintf - convert bitmap to an ASCII hex string. | 
|  | * @buf: byte buffer into which string is placed | 
|  | * @buflen: reserved size of @buf, in bytes | 
|  | * @maskp: pointer to bitmap to convert | 
|  | * @nmaskbits: size of bitmap, in bits | 
|  | * | 
|  | * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into | 
|  | * comma-separated sets of eight digits per set. | 
|  | */ | 
|  | int bitmap_scnprintf(char *buf, unsigned int buflen, | 
|  | const unsigned long *maskp, int nmaskbits) | 
|  | { | 
|  | int i, word, bit, len = 0; | 
|  | unsigned long val; | 
|  | const char *sep = ""; | 
|  | int chunksz; | 
|  | u32 chunkmask; | 
|  |  | 
|  | chunksz = nmaskbits & (CHUNKSZ - 1); | 
|  | if (chunksz == 0) | 
|  | chunksz = CHUNKSZ; | 
|  |  | 
|  | i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; | 
|  | for (; i >= 0; i -= CHUNKSZ) { | 
|  | chunkmask = ((1ULL << chunksz) - 1); | 
|  | word = i / BITS_PER_LONG; | 
|  | bit = i % BITS_PER_LONG; | 
|  | val = (maskp[word] >> bit) & chunkmask; | 
|  | len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, | 
|  | (chunksz+3)/4, val); | 
|  | chunksz = CHUNKSZ; | 
|  | sep = ","; | 
|  | } | 
|  | return len; | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_scnprintf); | 
|  |  | 
|  | /** | 
|  | * bitmap_parse - convert an ASCII hex string into a bitmap. | 
|  | * @buf: pointer to buffer in user space containing string. | 
|  | * @buflen: buffer size in bytes.  If string is smaller than this | 
|  | *    then it must be terminated with a \0. | 
|  | * @maskp: pointer to bitmap array that will contain result. | 
|  | * @nmaskbits: size of bitmap, in bits. | 
|  | * | 
|  | * Commas group hex digits into chunks.  Each chunk defines exactly 32 | 
|  | * bits of the resultant bitmask.  No chunk may specify a value larger | 
|  | * than 32 bits (-EOVERFLOW), and if a chunk specifies a smaller value | 
|  | * then leading 0-bits are prepended.  -EINVAL is returned for illegal | 
|  | * characters and for grouping errors such as "1,,5", ",44", "," and "". | 
|  | * Leading and trailing whitespace accepted, but not embedded whitespace. | 
|  | */ | 
|  | int bitmap_parse(const char __user *ubuf, unsigned int ubuflen, | 
|  | unsigned long *maskp, int nmaskbits) | 
|  | { | 
|  | int c, old_c, totaldigits, ndigits, nchunks, nbits; | 
|  | u32 chunk; | 
|  |  | 
|  | bitmap_zero(maskp, nmaskbits); | 
|  |  | 
|  | nchunks = nbits = totaldigits = c = 0; | 
|  | do { | 
|  | chunk = ndigits = 0; | 
|  |  | 
|  | /* Get the next chunk of the bitmap */ | 
|  | while (ubuflen) { | 
|  | old_c = c; | 
|  | if (get_user(c, ubuf++)) | 
|  | return -EFAULT; | 
|  | ubuflen--; | 
|  | if (isspace(c)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * If the last character was a space and the current | 
|  | * character isn't '\0', we've got embedded whitespace. | 
|  | * This is a no-no, so throw an error. | 
|  | */ | 
|  | if (totaldigits && c && isspace(old_c)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* A '\0' or a ',' signal the end of the chunk */ | 
|  | if (c == '\0' || c == ',') | 
|  | break; | 
|  |  | 
|  | if (!isxdigit(c)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Make sure there are at least 4 free bits in 'chunk'. | 
|  | * If not, this hexdigit will overflow 'chunk', so | 
|  | * throw an error. | 
|  | */ | 
|  | if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) | 
|  | return -EOVERFLOW; | 
|  |  | 
|  | chunk = (chunk << 4) | unhex(c); | 
|  | ndigits++; totaldigits++; | 
|  | } | 
|  | if (ndigits == 0) | 
|  | return -EINVAL; | 
|  | if (nchunks == 0 && chunk == 0) | 
|  | continue; | 
|  |  | 
|  | __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); | 
|  | *maskp |= chunk; | 
|  | nchunks++; | 
|  | nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; | 
|  | if (nbits > nmaskbits) | 
|  | return -EOVERFLOW; | 
|  | } while (ubuflen && c == ','); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_parse); | 
|  |  | 
|  | /* | 
|  | * bscnl_emit(buf, buflen, rbot, rtop, bp) | 
|  | * | 
|  | * Helper routine for bitmap_scnlistprintf().  Write decimal number | 
|  | * or range to buf, suppressing output past buf+buflen, with optional | 
|  | * comma-prefix.  Return len of what would be written to buf, if it | 
|  | * all fit. | 
|  | */ | 
|  | static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) | 
|  | { | 
|  | if (len > 0) | 
|  | len += scnprintf(buf + len, buflen - len, ","); | 
|  | if (rbot == rtop) | 
|  | len += scnprintf(buf + len, buflen - len, "%d", rbot); | 
|  | else | 
|  | len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bitmap_scnlistprintf - convert bitmap to list format ASCII string | 
|  | * @buf: byte buffer into which string is placed | 
|  | * @buflen: reserved size of @buf, in bytes | 
|  | * @maskp: pointer to bitmap to convert | 
|  | * @nmaskbits: size of bitmap, in bits | 
|  | * | 
|  | * Output format is a comma-separated list of decimal numbers and | 
|  | * ranges.  Consecutively set bits are shown as two hyphen-separated | 
|  | * decimal numbers, the smallest and largest bit numbers set in | 
|  | * the range.  Output format is compatible with the format | 
|  | * accepted as input by bitmap_parselist(). | 
|  | * | 
|  | * The return value is the number of characters which would be | 
|  | * generated for the given input, excluding the trailing '\0', as | 
|  | * per ISO C99. | 
|  | */ | 
|  | int bitmap_scnlistprintf(char *buf, unsigned int buflen, | 
|  | const unsigned long *maskp, int nmaskbits) | 
|  | { | 
|  | int len = 0; | 
|  | /* current bit is 'cur', most recently seen range is [rbot, rtop] */ | 
|  | int cur, rbot, rtop; | 
|  |  | 
|  | rbot = cur = find_first_bit(maskp, nmaskbits); | 
|  | while (cur < nmaskbits) { | 
|  | rtop = cur; | 
|  | cur = find_next_bit(maskp, nmaskbits, cur+1); | 
|  | if (cur >= nmaskbits || cur > rtop + 1) { | 
|  | len = bscnl_emit(buf, buflen, rbot, rtop, len); | 
|  | rbot = cur; | 
|  | } | 
|  | } | 
|  | return len; | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_scnlistprintf); | 
|  |  | 
|  | /** | 
|  | * bitmap_parselist - convert list format ASCII string to bitmap | 
|  | * @buf: read nul-terminated user string from this buffer | 
|  | * @mask: write resulting mask here | 
|  | * @nmaskbits: number of bits in mask to be written | 
|  | * | 
|  | * Input format is a comma-separated list of decimal numbers and | 
|  | * ranges.  Consecutively set bits are shown as two hyphen-separated | 
|  | * decimal numbers, the smallest and largest bit numbers set in | 
|  | * the range. | 
|  | * | 
|  | * Returns 0 on success, -errno on invalid input strings: | 
|  | *    -EINVAL:   second number in range smaller than first | 
|  | *    -EINVAL:   invalid character in string | 
|  | *    -ERANGE:   bit number specified too large for mask | 
|  | */ | 
|  | int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) | 
|  | { | 
|  | unsigned a, b; | 
|  |  | 
|  | bitmap_zero(maskp, nmaskbits); | 
|  | do { | 
|  | if (!isdigit(*bp)) | 
|  | return -EINVAL; | 
|  | b = a = simple_strtoul(bp, (char **)&bp, BASEDEC); | 
|  | if (*bp == '-') { | 
|  | bp++; | 
|  | if (!isdigit(*bp)) | 
|  | return -EINVAL; | 
|  | b = simple_strtoul(bp, (char **)&bp, BASEDEC); | 
|  | } | 
|  | if (!(a <= b)) | 
|  | return -EINVAL; | 
|  | if (b >= nmaskbits) | 
|  | return -ERANGE; | 
|  | while (a <= b) { | 
|  | set_bit(a, maskp); | 
|  | a++; | 
|  | } | 
|  | if (*bp == ',') | 
|  | bp++; | 
|  | } while (*bp != '\0' && *bp != '\n'); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_parselist); | 
|  |  | 
|  | /* | 
|  | * bitmap_pos_to_ord(buf, pos, bits) | 
|  | *	@buf: pointer to a bitmap | 
|  | *	@pos: a bit position in @buf (0 <= @pos < @bits) | 
|  | *	@bits: number of valid bit positions in @buf | 
|  | * | 
|  | * Map the bit at position @pos in @buf (of length @bits) to the | 
|  | * ordinal of which set bit it is.  If it is not set or if @pos | 
|  | * is not a valid bit position, map to -1. | 
|  | * | 
|  | * If for example, just bits 4 through 7 are set in @buf, then @pos | 
|  | * values 4 through 7 will get mapped to 0 through 3, respectively, | 
|  | * and other @pos values will get mapped to 0.  When @pos value 7 | 
|  | * gets mapped to (returns) @ord value 3 in this example, that means | 
|  | * that bit 7 is the 3rd (starting with 0th) set bit in @buf. | 
|  | * | 
|  | * The bit positions 0 through @bits are valid positions in @buf. | 
|  | */ | 
|  | static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) | 
|  | { | 
|  | int i, ord; | 
|  |  | 
|  | if (pos < 0 || pos >= bits || !test_bit(pos, buf)) | 
|  | return -1; | 
|  |  | 
|  | i = find_first_bit(buf, bits); | 
|  | ord = 0; | 
|  | while (i < pos) { | 
|  | i = find_next_bit(buf, bits, i + 1); | 
|  | ord++; | 
|  | } | 
|  | BUG_ON(i != pos); | 
|  |  | 
|  | return ord; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bitmap_ord_to_pos(buf, ord, bits) | 
|  | *	@buf: pointer to bitmap | 
|  | *	@ord: ordinal bit position (n-th set bit, n >= 0) | 
|  | *	@bits: number of valid bit positions in @buf | 
|  | * | 
|  | * Map the ordinal offset of bit @ord in @buf to its position in @buf. | 
|  | * Value of @ord should be in range 0 <= @ord < weight(buf), else | 
|  | * results are undefined. | 
|  | * | 
|  | * If for example, just bits 4 through 7 are set in @buf, then @ord | 
|  | * values 0 through 3 will get mapped to 4 through 7, respectively, | 
|  | * and all other @ord values return undefined values.  When @ord value 3 | 
|  | * gets mapped to (returns) @pos value 7 in this example, that means | 
|  | * that the 3rd set bit (starting with 0th) is at position 7 in @buf. | 
|  | * | 
|  | * The bit positions 0 through @bits are valid positions in @buf. | 
|  | */ | 
|  | static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) | 
|  | { | 
|  | int pos = 0; | 
|  |  | 
|  | if (ord >= 0 && ord < bits) { | 
|  | int i; | 
|  |  | 
|  | for (i = find_first_bit(buf, bits); | 
|  | i < bits && ord > 0; | 
|  | i = find_next_bit(buf, bits, i + 1)) | 
|  | ord--; | 
|  | if (i < bits && ord == 0) | 
|  | pos = i; | 
|  | } | 
|  |  | 
|  | return pos; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap | 
|  | *	@dst: remapped result | 
|  | *	@src: subset to be remapped | 
|  | *	@old: defines domain of map | 
|  | *	@new: defines range of map | 
|  | *	@bits: number of bits in each of these bitmaps | 
|  | * | 
|  | * Let @old and @new define a mapping of bit positions, such that | 
|  | * whatever position is held by the n-th set bit in @old is mapped | 
|  | * to the n-th set bit in @new.  In the more general case, allowing | 
|  | * for the possibility that the weight 'w' of @new is less than the | 
|  | * weight of @old, map the position of the n-th set bit in @old to | 
|  | * the position of the m-th set bit in @new, where m == n % w. | 
|  | * | 
|  | * If either of the @old and @new bitmaps are empty, or if @src and | 
|  | * @dst point to the same location, then this routine copies @src | 
|  | * to @dst. | 
|  | * | 
|  | * The positions of unset bits in @old are mapped to themselves | 
|  | * (the identify map). | 
|  | * | 
|  | * Apply the above specified mapping to @src, placing the result in | 
|  | * @dst, clearing any bits previously set in @dst. | 
|  | * | 
|  | * For example, lets say that @old has bits 4 through 7 set, and | 
|  | * @new has bits 12 through 15 set.  This defines the mapping of bit | 
|  | * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other | 
|  | * bit positions unchanged.  So if say @src comes into this routine | 
|  | * with bits 1, 5 and 7 set, then @dst should leave with bits 1, | 
|  | * 13 and 15 set. | 
|  | */ | 
|  | void bitmap_remap(unsigned long *dst, const unsigned long *src, | 
|  | const unsigned long *old, const unsigned long *new, | 
|  | int bits) | 
|  | { | 
|  | int oldbit, w; | 
|  |  | 
|  | if (dst == src)		/* following doesn't handle inplace remaps */ | 
|  | return; | 
|  | bitmap_zero(dst, bits); | 
|  |  | 
|  | w = bitmap_weight(new, bits); | 
|  | for (oldbit = find_first_bit(src, bits); | 
|  | oldbit < bits; | 
|  | oldbit = find_next_bit(src, bits, oldbit + 1)) { | 
|  | int n = bitmap_pos_to_ord(old, oldbit, bits); | 
|  | if (n < 0 || w == 0) | 
|  | set_bit(oldbit, dst);	/* identity map */ | 
|  | else | 
|  | set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_remap); | 
|  |  | 
|  | /** | 
|  | * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit | 
|  | *	@oldbit - bit position to be mapped | 
|  | *      @old: defines domain of map | 
|  | *      @new: defines range of map | 
|  | *      @bits: number of bits in each of these bitmaps | 
|  | * | 
|  | * Let @old and @new define a mapping of bit positions, such that | 
|  | * whatever position is held by the n-th set bit in @old is mapped | 
|  | * to the n-th set bit in @new.  In the more general case, allowing | 
|  | * for the possibility that the weight 'w' of @new is less than the | 
|  | * weight of @old, map the position of the n-th set bit in @old to | 
|  | * the position of the m-th set bit in @new, where m == n % w. | 
|  | * | 
|  | * The positions of unset bits in @old are mapped to themselves | 
|  | * (the identify map). | 
|  | * | 
|  | * Apply the above specified mapping to bit position @oldbit, returning | 
|  | * the new bit position. | 
|  | * | 
|  | * For example, lets say that @old has bits 4 through 7 set, and | 
|  | * @new has bits 12 through 15 set.  This defines the mapping of bit | 
|  | * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other | 
|  | * bit positions unchanged.  So if say @oldbit is 5, then this routine | 
|  | * returns 13. | 
|  | */ | 
|  | int bitmap_bitremap(int oldbit, const unsigned long *old, | 
|  | const unsigned long *new, int bits) | 
|  | { | 
|  | int w = bitmap_weight(new, bits); | 
|  | int n = bitmap_pos_to_ord(old, oldbit, bits); | 
|  | if (n < 0 || w == 0) | 
|  | return oldbit; | 
|  | else | 
|  | return bitmap_ord_to_pos(new, n % w, bits); | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_bitremap); | 
|  |  | 
|  | /** | 
|  | *	bitmap_find_free_region - find a contiguous aligned mem region | 
|  | *	@bitmap: an array of unsigned longs corresponding to the bitmap | 
|  | *	@bits: number of bits in the bitmap | 
|  | *	@order: region size to find (size is actually 1<<order) | 
|  | * | 
|  | * This is used to allocate a memory region from a bitmap.  The idea is | 
|  | * that the region has to be 1<<order sized and 1<<order aligned (this | 
|  | * makes the search algorithm much faster). | 
|  | * | 
|  | * The region is marked as set bits in the bitmap if a free one is | 
|  | * found. | 
|  | * | 
|  | * Returns either beginning of region or negative error | 
|  | */ | 
|  | int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) | 
|  | { | 
|  | unsigned long mask; | 
|  | int pages = 1 << order; | 
|  | int i; | 
|  |  | 
|  | if(pages > BITS_PER_LONG) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* make a mask of the order */ | 
|  | mask = (1ul << (pages - 1)); | 
|  | mask += mask - 1; | 
|  |  | 
|  | /* run up the bitmap pages bits at a time */ | 
|  | for (i = 0; i < bits; i += pages) { | 
|  | int index = i/BITS_PER_LONG; | 
|  | int offset = i - (index * BITS_PER_LONG); | 
|  | if((bitmap[index] & (mask << offset)) == 0) { | 
|  | /* set region in bimap */ | 
|  | bitmap[index] |= (mask << offset); | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return -ENOMEM; | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_find_free_region); | 
|  |  | 
|  | /** | 
|  | *	bitmap_release_region - release allocated bitmap region | 
|  | *	@bitmap: a pointer to the bitmap | 
|  | *	@pos: the beginning of the region | 
|  | *	@order: the order of the bits to release (number is 1<<order) | 
|  | * | 
|  | * This is the complement to __bitmap_find_free_region and releases | 
|  | * the found region (by clearing it in the bitmap). | 
|  | */ | 
|  | void bitmap_release_region(unsigned long *bitmap, int pos, int order) | 
|  | { | 
|  | int pages = 1 << order; | 
|  | unsigned long mask = (1ul << (pages - 1)); | 
|  | int index = pos/BITS_PER_LONG; | 
|  | int offset = pos - (index * BITS_PER_LONG); | 
|  | mask += mask - 1; | 
|  | bitmap[index] &= ~(mask << offset); | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_release_region); | 
|  |  | 
|  | int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) | 
|  | { | 
|  | int pages = 1 << order; | 
|  | unsigned long mask = (1ul << (pages - 1)); | 
|  | int index = pos/BITS_PER_LONG; | 
|  | int offset = pos - (index * BITS_PER_LONG); | 
|  |  | 
|  | /* We don't do regions of pages > BITS_PER_LONG.  The | 
|  | * algorithm would be a simple look for multiple zeros in the | 
|  | * array, but there's no driver today that needs this.  If you | 
|  | * trip this BUG(), you get to code it... */ | 
|  | BUG_ON(pages > BITS_PER_LONG); | 
|  | mask += mask - 1; | 
|  | if (bitmap[index] & (mask << offset)) | 
|  | return -EBUSY; | 
|  | bitmap[index] |= (mask << offset); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(bitmap_allocate_region); |