|  | /* | 
|  | * Dynamic DMA mapping support. | 
|  | * | 
|  | * This implementation is for IA-64 and EM64T platforms that do not support | 
|  | * I/O TLBs (aka DMA address translation hardware). | 
|  | * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com> | 
|  | * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com> | 
|  | * Copyright (C) 2000, 2003 Hewlett-Packard Co | 
|  | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | * | 
|  | * 03/05/07 davidm	Switch from PCI-DMA to generic device DMA API. | 
|  | * 00/12/13 davidm	Rename to swiotlb.c and add mark_clean() to avoid | 
|  | *			unnecessary i-cache flushing. | 
|  | * 04/07/.. ak		Better overflow handling. Assorted fixes. | 
|  | * 05/09/10 linville	Add support for syncing ranges, support syncing for | 
|  | *			DMA_BIDIRECTIONAL mappings, miscellaneous cleanup. | 
|  | */ | 
|  |  | 
|  | #include <linux/cache.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ctype.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/dma.h> | 
|  | #include <asm/scatterlist.h> | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  |  | 
|  | #define OFFSET(val,align) ((unsigned long)	\ | 
|  | ( (val) & ( (align) - 1))) | 
|  |  | 
|  | #define SG_ENT_VIRT_ADDRESS(sg)	(page_address((sg)->page) + (sg)->offset) | 
|  | #define SG_ENT_PHYS_ADDRESS(SG)	virt_to_phys(SG_ENT_VIRT_ADDRESS(SG)) | 
|  |  | 
|  | /* | 
|  | * Maximum allowable number of contiguous slabs to map, | 
|  | * must be a power of 2.  What is the appropriate value ? | 
|  | * The complexity of {map,unmap}_single is linearly dependent on this value. | 
|  | */ | 
|  | #define IO_TLB_SEGSIZE	128 | 
|  |  | 
|  | /* | 
|  | * log of the size of each IO TLB slab.  The number of slabs is command line | 
|  | * controllable. | 
|  | */ | 
|  | #define IO_TLB_SHIFT 11 | 
|  |  | 
|  | #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT)) | 
|  |  | 
|  | /* | 
|  | * Minimum IO TLB size to bother booting with.  Systems with mainly | 
|  | * 64bit capable cards will only lightly use the swiotlb.  If we can't | 
|  | * allocate a contiguous 1MB, we're probably in trouble anyway. | 
|  | */ | 
|  | #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT) | 
|  |  | 
|  | /* | 
|  | * Enumeration for sync targets | 
|  | */ | 
|  | enum dma_sync_target { | 
|  | SYNC_FOR_CPU = 0, | 
|  | SYNC_FOR_DEVICE = 1, | 
|  | }; | 
|  |  | 
|  | int swiotlb_force; | 
|  |  | 
|  | /* | 
|  | * Used to do a quick range check in swiotlb_unmap_single and | 
|  | * swiotlb_sync_single_*, to see if the memory was in fact allocated by this | 
|  | * API. | 
|  | */ | 
|  | static char *io_tlb_start, *io_tlb_end; | 
|  |  | 
|  | /* | 
|  | * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and | 
|  | * io_tlb_end.  This is command line adjustable via setup_io_tlb_npages. | 
|  | */ | 
|  | static unsigned long io_tlb_nslabs; | 
|  |  | 
|  | /* | 
|  | * When the IOMMU overflows we return a fallback buffer. This sets the size. | 
|  | */ | 
|  | static unsigned long io_tlb_overflow = 32*1024; | 
|  |  | 
|  | void *io_tlb_overflow_buffer; | 
|  |  | 
|  | /* | 
|  | * This is a free list describing the number of free entries available from | 
|  | * each index | 
|  | */ | 
|  | static unsigned int *io_tlb_list; | 
|  | static unsigned int io_tlb_index; | 
|  |  | 
|  | /* | 
|  | * We need to save away the original address corresponding to a mapped entry | 
|  | * for the sync operations. | 
|  | */ | 
|  | static unsigned char **io_tlb_orig_addr; | 
|  |  | 
|  | /* | 
|  | * Protect the above data structures in the map and unmap calls | 
|  | */ | 
|  | static DEFINE_SPINLOCK(io_tlb_lock); | 
|  |  | 
|  | static int __init | 
|  | setup_io_tlb_npages(char *str) | 
|  | { | 
|  | if (isdigit(*str)) { | 
|  | io_tlb_nslabs = simple_strtoul(str, &str, 0); | 
|  | /* avoid tail segment of size < IO_TLB_SEGSIZE */ | 
|  | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
|  | } | 
|  | if (*str == ',') | 
|  | ++str; | 
|  | if (!strcmp(str, "force")) | 
|  | swiotlb_force = 1; | 
|  | return 1; | 
|  | } | 
|  | __setup("swiotlb=", setup_io_tlb_npages); | 
|  | /* make io_tlb_overflow tunable too? */ | 
|  |  | 
|  | /* | 
|  | * Statically reserve bounce buffer space and initialize bounce buffer data | 
|  | * structures for the software IO TLB used to implement the DMA API. | 
|  | */ | 
|  | void | 
|  | swiotlb_init_with_default_size (size_t default_size) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | if (!io_tlb_nslabs) { | 
|  | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | 
|  | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get IO TLB memory from the low pages | 
|  | */ | 
|  | io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * (1 << IO_TLB_SHIFT)); | 
|  | if (!io_tlb_start) | 
|  | panic("Cannot allocate SWIOTLB buffer"); | 
|  | io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize the free list array.  This array is used | 
|  | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | 
|  | * between io_tlb_start and io_tlb_end. | 
|  | */ | 
|  | io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int)); | 
|  | for (i = 0; i < io_tlb_nslabs; i++) | 
|  | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | 
|  | io_tlb_index = 0; | 
|  | io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *)); | 
|  |  | 
|  | /* | 
|  | * Get the overflow emergency buffer | 
|  | */ | 
|  | io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow); | 
|  | printk(KERN_INFO "Placing software IO TLB between 0x%lx - 0x%lx\n", | 
|  | virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end)); | 
|  | } | 
|  |  | 
|  | void | 
|  | swiotlb_init (void) | 
|  | { | 
|  | swiotlb_init_with_default_size(64 * (1<<20));	/* default to 64MB */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Systems with larger DMA zones (those that don't support ISA) can | 
|  | * initialize the swiotlb later using the slab allocator if needed. | 
|  | * This should be just like above, but with some error catching. | 
|  | */ | 
|  | int | 
|  | swiotlb_late_init_with_default_size (size_t default_size) | 
|  | { | 
|  | unsigned long i, req_nslabs = io_tlb_nslabs; | 
|  | unsigned int order; | 
|  |  | 
|  | if (!io_tlb_nslabs) { | 
|  | io_tlb_nslabs = (default_size >> IO_TLB_SHIFT); | 
|  | io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get IO TLB memory from the low pages | 
|  | */ | 
|  | order = get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT)); | 
|  | io_tlb_nslabs = SLABS_PER_PAGE << order; | 
|  |  | 
|  | while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) { | 
|  | io_tlb_start = (char *)__get_free_pages(GFP_DMA | __GFP_NOWARN, | 
|  | order); | 
|  | if (io_tlb_start) | 
|  | break; | 
|  | order--; | 
|  | } | 
|  |  | 
|  | if (!io_tlb_start) | 
|  | goto cleanup1; | 
|  |  | 
|  | if (order != get_order(io_tlb_nslabs * (1 << IO_TLB_SHIFT))) { | 
|  | printk(KERN_WARNING "Warning: only able to allocate %ld MB " | 
|  | "for software IO TLB\n", (PAGE_SIZE << order) >> 20); | 
|  | io_tlb_nslabs = SLABS_PER_PAGE << order; | 
|  | } | 
|  | io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); | 
|  | memset(io_tlb_start, 0, io_tlb_nslabs * (1 << IO_TLB_SHIFT)); | 
|  |  | 
|  | /* | 
|  | * Allocate and initialize the free list array.  This array is used | 
|  | * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE | 
|  | * between io_tlb_start and io_tlb_end. | 
|  | */ | 
|  | io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL, | 
|  | get_order(io_tlb_nslabs * sizeof(int))); | 
|  | if (!io_tlb_list) | 
|  | goto cleanup2; | 
|  |  | 
|  | for (i = 0; i < io_tlb_nslabs; i++) | 
|  | io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE); | 
|  | io_tlb_index = 0; | 
|  |  | 
|  | io_tlb_orig_addr = (unsigned char **)__get_free_pages(GFP_KERNEL, | 
|  | get_order(io_tlb_nslabs * sizeof(char *))); | 
|  | if (!io_tlb_orig_addr) | 
|  | goto cleanup3; | 
|  |  | 
|  | memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(char *)); | 
|  |  | 
|  | /* | 
|  | * Get the overflow emergency buffer | 
|  | */ | 
|  | io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA, | 
|  | get_order(io_tlb_overflow)); | 
|  | if (!io_tlb_overflow_buffer) | 
|  | goto cleanup4; | 
|  |  | 
|  | printk(KERN_INFO "Placing %ldMB software IO TLB between 0x%lx - " | 
|  | "0x%lx\n", (io_tlb_nslabs * (1 << IO_TLB_SHIFT)) >> 20, | 
|  | virt_to_phys(io_tlb_start), virt_to_phys(io_tlb_end)); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup4: | 
|  | free_pages((unsigned long)io_tlb_orig_addr, get_order(io_tlb_nslabs * | 
|  | sizeof(char *))); | 
|  | io_tlb_orig_addr = NULL; | 
|  | cleanup3: | 
|  | free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs * | 
|  | sizeof(int))); | 
|  | io_tlb_list = NULL; | 
|  | io_tlb_end = NULL; | 
|  | cleanup2: | 
|  | free_pages((unsigned long)io_tlb_start, order); | 
|  | io_tlb_start = NULL; | 
|  | cleanup1: | 
|  | io_tlb_nslabs = req_nslabs; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | address_needs_mapping(struct device *hwdev, dma_addr_t addr) | 
|  | { | 
|  | dma_addr_t mask = 0xffffffff; | 
|  | /* If the device has a mask, use it, otherwise default to 32 bits */ | 
|  | if (hwdev && hwdev->dma_mask) | 
|  | mask = *hwdev->dma_mask; | 
|  | return (addr & ~mask) != 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocates bounce buffer and returns its kernel virtual address. | 
|  | */ | 
|  | static void * | 
|  | map_single(struct device *hwdev, char *buffer, size_t size, int dir) | 
|  | { | 
|  | unsigned long flags; | 
|  | char *dma_addr; | 
|  | unsigned int nslots, stride, index, wrap; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * For mappings greater than a page, we limit the stride (and | 
|  | * hence alignment) to a page size. | 
|  | */ | 
|  | nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | 
|  | if (size > PAGE_SIZE) | 
|  | stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); | 
|  | else | 
|  | stride = 1; | 
|  |  | 
|  | if (!nslots) | 
|  | BUG(); | 
|  |  | 
|  | /* | 
|  | * Find suitable number of IO TLB entries size that will fit this | 
|  | * request and allocate a buffer from that IO TLB pool. | 
|  | */ | 
|  | spin_lock_irqsave(&io_tlb_lock, flags); | 
|  | { | 
|  | wrap = index = ALIGN(io_tlb_index, stride); | 
|  |  | 
|  | if (index >= io_tlb_nslabs) | 
|  | wrap = index = 0; | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * If we find a slot that indicates we have 'nslots' | 
|  | * number of contiguous buffers, we allocate the | 
|  | * buffers from that slot and mark the entries as '0' | 
|  | * indicating unavailable. | 
|  | */ | 
|  | if (io_tlb_list[index] >= nslots) { | 
|  | int count = 0; | 
|  |  | 
|  | for (i = index; i < (int) (index + nslots); i++) | 
|  | io_tlb_list[i] = 0; | 
|  | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | 
|  | io_tlb_list[i] = ++count; | 
|  | dma_addr = io_tlb_start + (index << IO_TLB_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Update the indices to avoid searching in | 
|  | * the next round. | 
|  | */ | 
|  | io_tlb_index = ((index + nslots) < io_tlb_nslabs | 
|  | ? (index + nslots) : 0); | 
|  |  | 
|  | goto found; | 
|  | } | 
|  | index += stride; | 
|  | if (index >= io_tlb_nslabs) | 
|  | index = 0; | 
|  | } while (index != wrap); | 
|  |  | 
|  | spin_unlock_irqrestore(&io_tlb_lock, flags); | 
|  | return NULL; | 
|  | } | 
|  | found: | 
|  | spin_unlock_irqrestore(&io_tlb_lock, flags); | 
|  |  | 
|  | /* | 
|  | * Save away the mapping from the original address to the DMA address. | 
|  | * This is needed when we sync the memory.  Then we sync the buffer if | 
|  | * needed. | 
|  | */ | 
|  | io_tlb_orig_addr[index] = buffer; | 
|  | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) | 
|  | memcpy(dma_addr, buffer, size); | 
|  |  | 
|  | return dma_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dma_addr is the kernel virtual address of the bounce buffer to unmap. | 
|  | */ | 
|  | static void | 
|  | unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; | 
|  | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | 
|  | char *buffer = io_tlb_orig_addr[index]; | 
|  |  | 
|  | /* | 
|  | * First, sync the memory before unmapping the entry | 
|  | */ | 
|  | if (buffer && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL))) | 
|  | /* | 
|  | * bounce... copy the data back into the original buffer * and | 
|  | * delete the bounce buffer. | 
|  | */ | 
|  | memcpy(buffer, dma_addr, size); | 
|  |  | 
|  | /* | 
|  | * Return the buffer to the free list by setting the corresponding | 
|  | * entries to indicate the number of contigous entries available. | 
|  | * While returning the entries to the free list, we merge the entries | 
|  | * with slots below and above the pool being returned. | 
|  | */ | 
|  | spin_lock_irqsave(&io_tlb_lock, flags); | 
|  | { | 
|  | count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ? | 
|  | io_tlb_list[index + nslots] : 0); | 
|  | /* | 
|  | * Step 1: return the slots to the free list, merging the | 
|  | * slots with superceeding slots | 
|  | */ | 
|  | for (i = index + nslots - 1; i >= index; i--) | 
|  | io_tlb_list[i] = ++count; | 
|  | /* | 
|  | * Step 2: merge the returned slots with the preceding slots, | 
|  | * if available (non zero) | 
|  | */ | 
|  | for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--) | 
|  | io_tlb_list[i] = ++count; | 
|  | } | 
|  | spin_unlock_irqrestore(&io_tlb_lock, flags); | 
|  | } | 
|  |  | 
|  | static void | 
|  | sync_single(struct device *hwdev, char *dma_addr, size_t size, | 
|  | int dir, int target) | 
|  | { | 
|  | int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; | 
|  | char *buffer = io_tlb_orig_addr[index]; | 
|  |  | 
|  | switch (target) { | 
|  | case SYNC_FOR_CPU: | 
|  | if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)) | 
|  | memcpy(buffer, dma_addr, size); | 
|  | else if (dir != DMA_TO_DEVICE) | 
|  | BUG(); | 
|  | break; | 
|  | case SYNC_FOR_DEVICE: | 
|  | if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) | 
|  | memcpy(dma_addr, buffer, size); | 
|  | else if (dir != DMA_FROM_DEVICE) | 
|  | BUG(); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void * | 
|  | swiotlb_alloc_coherent(struct device *hwdev, size_t size, | 
|  | dma_addr_t *dma_handle, gfp_t flags) | 
|  | { | 
|  | unsigned long dev_addr; | 
|  | void *ret; | 
|  | int order = get_order(size); | 
|  |  | 
|  | /* | 
|  | * XXX fix me: the DMA API should pass us an explicit DMA mask | 
|  | * instead, or use ZONE_DMA32 (ia64 overloads ZONE_DMA to be a ~32 | 
|  | * bit range instead of a 16MB one). | 
|  | */ | 
|  | flags |= GFP_DMA; | 
|  |  | 
|  | ret = (void *)__get_free_pages(flags, order); | 
|  | if (ret && address_needs_mapping(hwdev, virt_to_phys(ret))) { | 
|  | /* | 
|  | * The allocated memory isn't reachable by the device. | 
|  | * Fall back on swiotlb_map_single(). | 
|  | */ | 
|  | free_pages((unsigned long) ret, order); | 
|  | ret = NULL; | 
|  | } | 
|  | if (!ret) { | 
|  | /* | 
|  | * We are either out of memory or the device can't DMA | 
|  | * to GFP_DMA memory; fall back on | 
|  | * swiotlb_map_single(), which will grab memory from | 
|  | * the lowest available address range. | 
|  | */ | 
|  | dma_addr_t handle; | 
|  | handle = swiotlb_map_single(NULL, NULL, size, DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(handle)) | 
|  | return NULL; | 
|  |  | 
|  | ret = phys_to_virt(handle); | 
|  | } | 
|  |  | 
|  | memset(ret, 0, size); | 
|  | dev_addr = virt_to_phys(ret); | 
|  |  | 
|  | /* Confirm address can be DMA'd by device */ | 
|  | if (address_needs_mapping(hwdev, dev_addr)) { | 
|  | printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016lx\n", | 
|  | (unsigned long long)*hwdev->dma_mask, dev_addr); | 
|  | panic("swiotlb_alloc_coherent: allocated memory is out of " | 
|  | "range for device"); | 
|  | } | 
|  | *dma_handle = dev_addr; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void | 
|  | swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr, | 
|  | dma_addr_t dma_handle) | 
|  | { | 
|  | if (!(vaddr >= (void *)io_tlb_start | 
|  | && vaddr < (void *)io_tlb_end)) | 
|  | free_pages((unsigned long) vaddr, get_order(size)); | 
|  | else | 
|  | /* DMA_TO_DEVICE to avoid memcpy in unmap_single */ | 
|  | swiotlb_unmap_single (hwdev, dma_handle, size, DMA_TO_DEVICE); | 
|  | } | 
|  |  | 
|  | static void | 
|  | swiotlb_full(struct device *dev, size_t size, int dir, int do_panic) | 
|  | { | 
|  | /* | 
|  | * Ran out of IOMMU space for this operation. This is very bad. | 
|  | * Unfortunately the drivers cannot handle this operation properly. | 
|  | * unless they check for dma_mapping_error (most don't) | 
|  | * When the mapping is small enough return a static buffer to limit | 
|  | * the damage, or panic when the transfer is too big. | 
|  | */ | 
|  | printk(KERN_ERR "DMA: Out of SW-IOMMU space for %lu bytes at " | 
|  | "device %s\n", size, dev ? dev->bus_id : "?"); | 
|  |  | 
|  | if (size > io_tlb_overflow && do_panic) { | 
|  | if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) | 
|  | panic("DMA: Memory would be corrupted\n"); | 
|  | if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL) | 
|  | panic("DMA: Random memory would be DMAed\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map a single buffer of the indicated size for DMA in streaming mode.  The | 
|  | * physical address to use is returned. | 
|  | * | 
|  | * Once the device is given the dma address, the device owns this memory until | 
|  | * either swiotlb_unmap_single or swiotlb_dma_sync_single is performed. | 
|  | */ | 
|  | dma_addr_t | 
|  | swiotlb_map_single(struct device *hwdev, void *ptr, size_t size, int dir) | 
|  | { | 
|  | unsigned long dev_addr = virt_to_phys(ptr); | 
|  | void *map; | 
|  |  | 
|  | if (dir == DMA_NONE) | 
|  | BUG(); | 
|  | /* | 
|  | * If the pointer passed in happens to be in the device's DMA window, | 
|  | * we can safely return the device addr and not worry about bounce | 
|  | * buffering it. | 
|  | */ | 
|  | if (!address_needs_mapping(hwdev, dev_addr) && !swiotlb_force) | 
|  | return dev_addr; | 
|  |  | 
|  | /* | 
|  | * Oh well, have to allocate and map a bounce buffer. | 
|  | */ | 
|  | map = map_single(hwdev, ptr, size, dir); | 
|  | if (!map) { | 
|  | swiotlb_full(hwdev, size, dir, 1); | 
|  | map = io_tlb_overflow_buffer; | 
|  | } | 
|  |  | 
|  | dev_addr = virt_to_phys(map); | 
|  |  | 
|  | /* | 
|  | * Ensure that the address returned is DMA'ble | 
|  | */ | 
|  | if (address_needs_mapping(hwdev, dev_addr)) | 
|  | panic("map_single: bounce buffer is not DMA'ble"); | 
|  |  | 
|  | return dev_addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Since DMA is i-cache coherent, any (complete) pages that were written via | 
|  | * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to | 
|  | * flush them when they get mapped into an executable vm-area. | 
|  | */ | 
|  | static void | 
|  | mark_clean(void *addr, size_t size) | 
|  | { | 
|  | unsigned long pg_addr, end; | 
|  |  | 
|  | pg_addr = PAGE_ALIGN((unsigned long) addr); | 
|  | end = (unsigned long) addr + size; | 
|  | while (pg_addr + PAGE_SIZE <= end) { | 
|  | struct page *page = virt_to_page(pg_addr); | 
|  | set_bit(PG_arch_1, &page->flags); | 
|  | pg_addr += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmap a single streaming mode DMA translation.  The dma_addr and size must | 
|  | * match what was provided for in a previous swiotlb_map_single call.  All | 
|  | * other usages are undefined. | 
|  | * | 
|  | * After this call, reads by the cpu to the buffer are guaranteed to see | 
|  | * whatever the device wrote there. | 
|  | */ | 
|  | void | 
|  | swiotlb_unmap_single(struct device *hwdev, dma_addr_t dev_addr, size_t size, | 
|  | int dir) | 
|  | { | 
|  | char *dma_addr = phys_to_virt(dev_addr); | 
|  |  | 
|  | if (dir == DMA_NONE) | 
|  | BUG(); | 
|  | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | 
|  | unmap_single(hwdev, dma_addr, size, dir); | 
|  | else if (dir == DMA_FROM_DEVICE) | 
|  | mark_clean(dma_addr, size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make physical memory consistent for a single streaming mode DMA translation | 
|  | * after a transfer. | 
|  | * | 
|  | * If you perform a swiotlb_map_single() but wish to interrogate the buffer | 
|  | * using the cpu, yet do not wish to teardown the dma mapping, you must | 
|  | * call this function before doing so.  At the next point you give the dma | 
|  | * address back to the card, you must first perform a | 
|  | * swiotlb_dma_sync_for_device, and then the device again owns the buffer | 
|  | */ | 
|  | static inline void | 
|  | swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr, | 
|  | size_t size, int dir, int target) | 
|  | { | 
|  | char *dma_addr = phys_to_virt(dev_addr); | 
|  |  | 
|  | if (dir == DMA_NONE) | 
|  | BUG(); | 
|  | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | 
|  | sync_single(hwdev, dma_addr, size, dir, target); | 
|  | else if (dir == DMA_FROM_DEVICE) | 
|  | mark_clean(dma_addr, size); | 
|  | } | 
|  |  | 
|  | void | 
|  | swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | 
|  | size_t size, int dir) | 
|  | { | 
|  | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU); | 
|  | } | 
|  |  | 
|  | void | 
|  | swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr, | 
|  | size_t size, int dir) | 
|  | { | 
|  | swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Same as above, but for a sub-range of the mapping. | 
|  | */ | 
|  | static inline void | 
|  | swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr, | 
|  | unsigned long offset, size_t size, | 
|  | int dir, int target) | 
|  | { | 
|  | char *dma_addr = phys_to_virt(dev_addr) + offset; | 
|  |  | 
|  | if (dir == DMA_NONE) | 
|  | BUG(); | 
|  | if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) | 
|  | sync_single(hwdev, dma_addr, size, dir, target); | 
|  | else if (dir == DMA_FROM_DEVICE) | 
|  | mark_clean(dma_addr, size); | 
|  | } | 
|  |  | 
|  | void | 
|  | swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr, | 
|  | unsigned long offset, size_t size, int dir) | 
|  | { | 
|  | swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, | 
|  | SYNC_FOR_CPU); | 
|  | } | 
|  |  | 
|  | void | 
|  | swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr, | 
|  | unsigned long offset, size_t size, int dir) | 
|  | { | 
|  | swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir, | 
|  | SYNC_FOR_DEVICE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Map a set of buffers described by scatterlist in streaming mode for DMA. | 
|  | * This is the scatter-gather version of the above swiotlb_map_single | 
|  | * interface.  Here the scatter gather list elements are each tagged with the | 
|  | * appropriate dma address and length.  They are obtained via | 
|  | * sg_dma_{address,length}(SG). | 
|  | * | 
|  | * NOTE: An implementation may be able to use a smaller number of | 
|  | *       DMA address/length pairs than there are SG table elements. | 
|  | *       (for example via virtual mapping capabilities) | 
|  | *       The routine returns the number of addr/length pairs actually | 
|  | *       used, at most nents. | 
|  | * | 
|  | * Device ownership issues as mentioned above for swiotlb_map_single are the | 
|  | * same here. | 
|  | */ | 
|  | int | 
|  | swiotlb_map_sg(struct device *hwdev, struct scatterlist *sg, int nelems, | 
|  | int dir) | 
|  | { | 
|  | void *addr; | 
|  | unsigned long dev_addr; | 
|  | int i; | 
|  |  | 
|  | if (dir == DMA_NONE) | 
|  | BUG(); | 
|  |  | 
|  | for (i = 0; i < nelems; i++, sg++) { | 
|  | addr = SG_ENT_VIRT_ADDRESS(sg); | 
|  | dev_addr = virt_to_phys(addr); | 
|  | if (swiotlb_force || address_needs_mapping(hwdev, dev_addr)) { | 
|  | void *map = map_single(hwdev, addr, sg->length, dir); | 
|  | sg->dma_address = virt_to_bus(map); | 
|  | if (!map) { | 
|  | /* Don't panic here, we expect map_sg users | 
|  | to do proper error handling. */ | 
|  | swiotlb_full(hwdev, sg->length, dir, 0); | 
|  | swiotlb_unmap_sg(hwdev, sg - i, i, dir); | 
|  | sg[0].dma_length = 0; | 
|  | return 0; | 
|  | } | 
|  | } else | 
|  | sg->dma_address = dev_addr; | 
|  | sg->dma_length = sg->length; | 
|  | } | 
|  | return nelems; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unmap a set of streaming mode DMA translations.  Again, cpu read rules | 
|  | * concerning calls here are the same as for swiotlb_unmap_single() above. | 
|  | */ | 
|  | void | 
|  | swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sg, int nelems, | 
|  | int dir) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (dir == DMA_NONE) | 
|  | BUG(); | 
|  |  | 
|  | for (i = 0; i < nelems; i++, sg++) | 
|  | if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) | 
|  | unmap_single(hwdev, (void *) phys_to_virt(sg->dma_address), sg->dma_length, dir); | 
|  | else if (dir == DMA_FROM_DEVICE) | 
|  | mark_clean(SG_ENT_VIRT_ADDRESS(sg), sg->dma_length); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make physical memory consistent for a set of streaming mode DMA translations | 
|  | * after a transfer. | 
|  | * | 
|  | * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules | 
|  | * and usage. | 
|  | */ | 
|  | static inline void | 
|  | swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sg, | 
|  | int nelems, int dir, int target) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (dir == DMA_NONE) | 
|  | BUG(); | 
|  |  | 
|  | for (i = 0; i < nelems; i++, sg++) | 
|  | if (sg->dma_address != SG_ENT_PHYS_ADDRESS(sg)) | 
|  | sync_single(hwdev, (void *) sg->dma_address, | 
|  | sg->dma_length, dir, target); | 
|  | } | 
|  |  | 
|  | void | 
|  | swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg, | 
|  | int nelems, int dir) | 
|  | { | 
|  | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU); | 
|  | } | 
|  |  | 
|  | void | 
|  | swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg, | 
|  | int nelems, int dir) | 
|  | { | 
|  | swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE); | 
|  | } | 
|  |  | 
|  | int | 
|  | swiotlb_dma_mapping_error(dma_addr_t dma_addr) | 
|  | { | 
|  | return (dma_addr == virt_to_phys(io_tlb_overflow_buffer)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return whether the given device DMA address mask can be supported | 
|  | * properly.  For example, if your device can only drive the low 24-bits | 
|  | * during bus mastering, then you would pass 0x00ffffff as the mask to | 
|  | * this function. | 
|  | */ | 
|  | int | 
|  | swiotlb_dma_supported (struct device *hwdev, u64 mask) | 
|  | { | 
|  | return (virt_to_phys (io_tlb_end) - 1) <= mask; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(swiotlb_init); | 
|  | EXPORT_SYMBOL(swiotlb_map_single); | 
|  | EXPORT_SYMBOL(swiotlb_unmap_single); | 
|  | EXPORT_SYMBOL(swiotlb_map_sg); | 
|  | EXPORT_SYMBOL(swiotlb_unmap_sg); | 
|  | EXPORT_SYMBOL(swiotlb_sync_single_for_cpu); | 
|  | EXPORT_SYMBOL(swiotlb_sync_single_for_device); | 
|  | EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu); | 
|  | EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device); | 
|  | EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu); | 
|  | EXPORT_SYMBOL(swiotlb_sync_sg_for_device); | 
|  | EXPORT_SYMBOL(swiotlb_dma_mapping_error); | 
|  | EXPORT_SYMBOL(swiotlb_alloc_coherent); | 
|  | EXPORT_SYMBOL(swiotlb_free_coherent); | 
|  | EXPORT_SYMBOL(swiotlb_dma_supported); |