|  | /* | 
|  | * Copyright (C) 2003 Christophe Saout <christophe@saout.de> | 
|  | * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> | 
|  | * Copyright (C) 2006-2008 Red Hat, Inc. All rights reserved. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include <linux/completion.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/backing-dev.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/unaligned.h> | 
|  |  | 
|  | #include <linux/device-mapper.h> | 
|  |  | 
|  | #define DM_MSG_PREFIX "crypt" | 
|  | #define MESG_STR(x) x, sizeof(x) | 
|  |  | 
|  | /* | 
|  | * context holding the current state of a multi-part conversion | 
|  | */ | 
|  | struct convert_context { | 
|  | struct completion restart; | 
|  | struct bio *bio_in; | 
|  | struct bio *bio_out; | 
|  | unsigned int offset_in; | 
|  | unsigned int offset_out; | 
|  | unsigned int idx_in; | 
|  | unsigned int idx_out; | 
|  | sector_t sector; | 
|  | atomic_t pending; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * per bio private data | 
|  | */ | 
|  | struct dm_crypt_io { | 
|  | struct dm_target *target; | 
|  | struct bio *base_bio; | 
|  | struct work_struct work; | 
|  |  | 
|  | struct convert_context ctx; | 
|  |  | 
|  | atomic_t pending; | 
|  | int error; | 
|  | sector_t sector; | 
|  | struct dm_crypt_io *base_io; | 
|  | }; | 
|  |  | 
|  | struct dm_crypt_request { | 
|  | struct convert_context *ctx; | 
|  | struct scatterlist sg_in; | 
|  | struct scatterlist sg_out; | 
|  | }; | 
|  |  | 
|  | struct crypt_config; | 
|  |  | 
|  | struct crypt_iv_operations { | 
|  | int (*ctr)(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts); | 
|  | void (*dtr)(struct crypt_config *cc); | 
|  | const char *(*status)(struct crypt_config *cc); | 
|  | int (*generator)(struct crypt_config *cc, u8 *iv, sector_t sector); | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Crypt: maps a linear range of a block device | 
|  | * and encrypts / decrypts at the same time. | 
|  | */ | 
|  | enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID }; | 
|  | struct crypt_config { | 
|  | struct dm_dev *dev; | 
|  | sector_t start; | 
|  |  | 
|  | /* | 
|  | * pool for per bio private data, crypto requests and | 
|  | * encryption requeusts/buffer pages | 
|  | */ | 
|  | mempool_t *io_pool; | 
|  | mempool_t *req_pool; | 
|  | mempool_t *page_pool; | 
|  | struct bio_set *bs; | 
|  |  | 
|  | struct workqueue_struct *io_queue; | 
|  | struct workqueue_struct *crypt_queue; | 
|  |  | 
|  | /* | 
|  | * crypto related data | 
|  | */ | 
|  | struct crypt_iv_operations *iv_gen_ops; | 
|  | char *iv_mode; | 
|  | union { | 
|  | struct crypto_cipher *essiv_tfm; | 
|  | int benbi_shift; | 
|  | } iv_gen_private; | 
|  | sector_t iv_offset; | 
|  | unsigned int iv_size; | 
|  |  | 
|  | /* | 
|  | * Layout of each crypto request: | 
|  | * | 
|  | *   struct ablkcipher_request | 
|  | *      context | 
|  | *      padding | 
|  | *   struct dm_crypt_request | 
|  | *      padding | 
|  | *   IV | 
|  | * | 
|  | * The padding is added so that dm_crypt_request and the IV are | 
|  | * correctly aligned. | 
|  | */ | 
|  | unsigned int dmreq_start; | 
|  | struct ablkcipher_request *req; | 
|  |  | 
|  | char cipher[CRYPTO_MAX_ALG_NAME]; | 
|  | char chainmode[CRYPTO_MAX_ALG_NAME]; | 
|  | struct crypto_ablkcipher *tfm; | 
|  | unsigned long flags; | 
|  | unsigned int key_size; | 
|  | u8 key[0]; | 
|  | }; | 
|  |  | 
|  | #define MIN_IOS        16 | 
|  | #define MIN_POOL_PAGES 32 | 
|  | #define MIN_BIO_PAGES  8 | 
|  |  | 
|  | static struct kmem_cache *_crypt_io_pool; | 
|  |  | 
|  | static void clone_init(struct dm_crypt_io *, struct bio *); | 
|  | static void kcryptd_queue_crypt(struct dm_crypt_io *io); | 
|  |  | 
|  | /* | 
|  | * Different IV generation algorithms: | 
|  | * | 
|  | * plain: the initial vector is the 32-bit little-endian version of the sector | 
|  | *        number, padded with zeros if necessary. | 
|  | * | 
|  | * essiv: "encrypted sector|salt initial vector", the sector number is | 
|  | *        encrypted with the bulk cipher using a salt as key. The salt | 
|  | *        should be derived from the bulk cipher's key via hashing. | 
|  | * | 
|  | * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 | 
|  | *        (needed for LRW-32-AES and possible other narrow block modes) | 
|  | * | 
|  | * null: the initial vector is always zero.  Provides compatibility with | 
|  | *       obsolete loop_fish2 devices.  Do not use for new devices. | 
|  | * | 
|  | * plumb: unimplemented, see: | 
|  | * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454 | 
|  | */ | 
|  |  | 
|  | static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, sector_t sector) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  | *(u32 *)iv = cpu_to_le32(sector & 0xffffffff); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | struct crypto_cipher *essiv_tfm; | 
|  | struct crypto_hash *hash_tfm; | 
|  | struct hash_desc desc; | 
|  | struct scatterlist sg; | 
|  | unsigned int saltsize; | 
|  | u8 *salt; | 
|  | int err; | 
|  |  | 
|  | if (opts == NULL) { | 
|  | ti->error = "Digest algorithm missing for ESSIV mode"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Hash the cipher key with the given hash algorithm */ | 
|  | hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(hash_tfm)) { | 
|  | ti->error = "Error initializing ESSIV hash"; | 
|  | return PTR_ERR(hash_tfm); | 
|  | } | 
|  |  | 
|  | saltsize = crypto_hash_digestsize(hash_tfm); | 
|  | salt = kmalloc(saltsize, GFP_KERNEL); | 
|  | if (salt == NULL) { | 
|  | ti->error = "Error kmallocing salt storage in ESSIV"; | 
|  | crypto_free_hash(hash_tfm); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | sg_init_one(&sg, cc->key, cc->key_size); | 
|  | desc.tfm = hash_tfm; | 
|  | desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP; | 
|  | err = crypto_hash_digest(&desc, &sg, cc->key_size, salt); | 
|  | crypto_free_hash(hash_tfm); | 
|  |  | 
|  | if (err) { | 
|  | ti->error = "Error calculating hash in ESSIV"; | 
|  | kfree(salt); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Setup the essiv_tfm with the given salt */ | 
|  | essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC); | 
|  | if (IS_ERR(essiv_tfm)) { | 
|  | ti->error = "Error allocating crypto tfm for ESSIV"; | 
|  | kfree(salt); | 
|  | return PTR_ERR(essiv_tfm); | 
|  | } | 
|  | if (crypto_cipher_blocksize(essiv_tfm) != | 
|  | crypto_ablkcipher_ivsize(cc->tfm)) { | 
|  | ti->error = "Block size of ESSIV cipher does " | 
|  | "not match IV size of block cipher"; | 
|  | crypto_free_cipher(essiv_tfm); | 
|  | kfree(salt); | 
|  | return -EINVAL; | 
|  | } | 
|  | err = crypto_cipher_setkey(essiv_tfm, salt, saltsize); | 
|  | if (err) { | 
|  | ti->error = "Failed to set key for ESSIV cipher"; | 
|  | crypto_free_cipher(essiv_tfm); | 
|  | kfree(salt); | 
|  | return err; | 
|  | } | 
|  | kfree(salt); | 
|  |  | 
|  | cc->iv_gen_private.essiv_tfm = essiv_tfm; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_essiv_dtr(struct crypt_config *cc) | 
|  | { | 
|  | crypto_free_cipher(cc->iv_gen_private.essiv_tfm); | 
|  | cc->iv_gen_private.essiv_tfm = NULL; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, sector_t sector) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  | *(u64 *)iv = cpu_to_le64(sector); | 
|  | crypto_cipher_encrypt_one(cc->iv_gen_private.essiv_tfm, iv, iv); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, | 
|  | const char *opts) | 
|  | { | 
|  | unsigned bs = crypto_ablkcipher_blocksize(cc->tfm); | 
|  | int log = ilog2(bs); | 
|  |  | 
|  | /* we need to calculate how far we must shift the sector count | 
|  | * to get the cipher block count, we use this shift in _gen */ | 
|  |  | 
|  | if (1 << log != bs) { | 
|  | ti->error = "cypher blocksize is not a power of 2"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (log > 9) { | 
|  | ti->error = "cypher blocksize is > 512"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | cc->iv_gen_private.benbi_shift = 9 - log; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_iv_benbi_dtr(struct crypt_config *cc) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, sector_t sector) | 
|  | { | 
|  | __be64 val; | 
|  |  | 
|  | memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ | 
|  |  | 
|  | val = cpu_to_be64(((u64)sector << cc->iv_gen_private.benbi_shift) + 1); | 
|  | put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, sector_t sector) | 
|  | { | 
|  | memset(iv, 0, cc->iv_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_plain_ops = { | 
|  | .generator = crypt_iv_plain_gen | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_essiv_ops = { | 
|  | .ctr       = crypt_iv_essiv_ctr, | 
|  | .dtr       = crypt_iv_essiv_dtr, | 
|  | .generator = crypt_iv_essiv_gen | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_benbi_ops = { | 
|  | .ctr	   = crypt_iv_benbi_ctr, | 
|  | .dtr	   = crypt_iv_benbi_dtr, | 
|  | .generator = crypt_iv_benbi_gen | 
|  | }; | 
|  |  | 
|  | static struct crypt_iv_operations crypt_iv_null_ops = { | 
|  | .generator = crypt_iv_null_gen | 
|  | }; | 
|  |  | 
|  | static void crypt_convert_init(struct crypt_config *cc, | 
|  | struct convert_context *ctx, | 
|  | struct bio *bio_out, struct bio *bio_in, | 
|  | sector_t sector) | 
|  | { | 
|  | ctx->bio_in = bio_in; | 
|  | ctx->bio_out = bio_out; | 
|  | ctx->offset_in = 0; | 
|  | ctx->offset_out = 0; | 
|  | ctx->idx_in = bio_in ? bio_in->bi_idx : 0; | 
|  | ctx->idx_out = bio_out ? bio_out->bi_idx : 0; | 
|  | ctx->sector = sector + cc->iv_offset; | 
|  | init_completion(&ctx->restart); | 
|  | } | 
|  |  | 
|  | static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, | 
|  | struct ablkcipher_request *req) | 
|  | { | 
|  | return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); | 
|  | } | 
|  |  | 
|  | static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc, | 
|  | struct dm_crypt_request *dmreq) | 
|  | { | 
|  | return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start); | 
|  | } | 
|  |  | 
|  | static int crypt_convert_block(struct crypt_config *cc, | 
|  | struct convert_context *ctx, | 
|  | struct ablkcipher_request *req) | 
|  | { | 
|  | struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in); | 
|  | struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out); | 
|  | struct dm_crypt_request *dmreq; | 
|  | u8 *iv; | 
|  | int r = 0; | 
|  |  | 
|  | dmreq = dmreq_of_req(cc, req); | 
|  | iv = (u8 *)ALIGN((unsigned long)(dmreq + 1), | 
|  | crypto_ablkcipher_alignmask(cc->tfm) + 1); | 
|  |  | 
|  | dmreq->ctx = ctx; | 
|  | sg_init_table(&dmreq->sg_in, 1); | 
|  | sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT, | 
|  | bv_in->bv_offset + ctx->offset_in); | 
|  |  | 
|  | sg_init_table(&dmreq->sg_out, 1); | 
|  | sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT, | 
|  | bv_out->bv_offset + ctx->offset_out); | 
|  |  | 
|  | ctx->offset_in += 1 << SECTOR_SHIFT; | 
|  | if (ctx->offset_in >= bv_in->bv_len) { | 
|  | ctx->offset_in = 0; | 
|  | ctx->idx_in++; | 
|  | } | 
|  |  | 
|  | ctx->offset_out += 1 << SECTOR_SHIFT; | 
|  | if (ctx->offset_out >= bv_out->bv_len) { | 
|  | ctx->offset_out = 0; | 
|  | ctx->idx_out++; | 
|  | } | 
|  |  | 
|  | if (cc->iv_gen_ops) { | 
|  | r = cc->iv_gen_ops->generator(cc, iv, ctx->sector); | 
|  | if (r < 0) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out, | 
|  | 1 << SECTOR_SHIFT, iv); | 
|  |  | 
|  | if (bio_data_dir(ctx->bio_in) == WRITE) | 
|  | r = crypto_ablkcipher_encrypt(req); | 
|  | else | 
|  | r = crypto_ablkcipher_decrypt(req); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kcryptd_async_done(struct crypto_async_request *async_req, | 
|  | int error); | 
|  | static void crypt_alloc_req(struct crypt_config *cc, | 
|  | struct convert_context *ctx) | 
|  | { | 
|  | if (!cc->req) | 
|  | cc->req = mempool_alloc(cc->req_pool, GFP_NOIO); | 
|  | ablkcipher_request_set_tfm(cc->req, cc->tfm); | 
|  | ablkcipher_request_set_callback(cc->req, CRYPTO_TFM_REQ_MAY_BACKLOG | | 
|  | CRYPTO_TFM_REQ_MAY_SLEEP, | 
|  | kcryptd_async_done, | 
|  | dmreq_of_req(cc, cc->req)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encrypt / decrypt data from one bio to another one (can be the same one) | 
|  | */ | 
|  | static int crypt_convert(struct crypt_config *cc, | 
|  | struct convert_context *ctx) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | atomic_set(&ctx->pending, 1); | 
|  |  | 
|  | while(ctx->idx_in < ctx->bio_in->bi_vcnt && | 
|  | ctx->idx_out < ctx->bio_out->bi_vcnt) { | 
|  |  | 
|  | crypt_alloc_req(cc, ctx); | 
|  |  | 
|  | atomic_inc(&ctx->pending); | 
|  |  | 
|  | r = crypt_convert_block(cc, ctx, cc->req); | 
|  |  | 
|  | switch (r) { | 
|  | /* async */ | 
|  | case -EBUSY: | 
|  | wait_for_completion(&ctx->restart); | 
|  | INIT_COMPLETION(ctx->restart); | 
|  | /* fall through*/ | 
|  | case -EINPROGRESS: | 
|  | cc->req = NULL; | 
|  | ctx->sector++; | 
|  | continue; | 
|  |  | 
|  | /* sync */ | 
|  | case 0: | 
|  | atomic_dec(&ctx->pending); | 
|  | ctx->sector++; | 
|  | cond_resched(); | 
|  | continue; | 
|  |  | 
|  | /* error */ | 
|  | default: | 
|  | atomic_dec(&ctx->pending); | 
|  | return r; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void dm_crypt_bio_destructor(struct bio *bio) | 
|  | { | 
|  | struct dm_crypt_io *io = bio->bi_private; | 
|  | struct crypt_config *cc = io->target->private; | 
|  |  | 
|  | bio_free(bio, cc->bs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate a new unfragmented bio with the given size | 
|  | * This should never violate the device limitations | 
|  | * May return a smaller bio when running out of pages, indicated by | 
|  | * *out_of_pages set to 1. | 
|  | */ | 
|  | static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size, | 
|  | unsigned *out_of_pages) | 
|  | { | 
|  | struct crypt_config *cc = io->target->private; | 
|  | struct bio *clone; | 
|  | unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM; | 
|  | unsigned i, len; | 
|  | struct page *page; | 
|  |  | 
|  | clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs); | 
|  | if (!clone) | 
|  | return NULL; | 
|  |  | 
|  | clone_init(io, clone); | 
|  | *out_of_pages = 0; | 
|  |  | 
|  | for (i = 0; i < nr_iovecs; i++) { | 
|  | page = mempool_alloc(cc->page_pool, gfp_mask); | 
|  | if (!page) { | 
|  | *out_of_pages = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if additional pages cannot be allocated without waiting, | 
|  | * return a partially allocated bio, the caller will then try | 
|  | * to allocate additional bios while submitting this partial bio | 
|  | */ | 
|  | if (i == (MIN_BIO_PAGES - 1)) | 
|  | gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT; | 
|  |  | 
|  | len = (size > PAGE_SIZE) ? PAGE_SIZE : size; | 
|  |  | 
|  | if (!bio_add_page(clone, page, len, 0)) { | 
|  | mempool_free(page, cc->page_pool); | 
|  | break; | 
|  | } | 
|  |  | 
|  | size -= len; | 
|  | } | 
|  |  | 
|  | if (!clone->bi_size) { | 
|  | bio_put(clone); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return clone; | 
|  | } | 
|  |  | 
|  | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) | 
|  | { | 
|  | unsigned int i; | 
|  | struct bio_vec *bv; | 
|  |  | 
|  | for (i = 0; i < clone->bi_vcnt; i++) { | 
|  | bv = bio_iovec_idx(clone, i); | 
|  | BUG_ON(!bv->bv_page); | 
|  | mempool_free(bv->bv_page, cc->page_pool); | 
|  | bv->bv_page = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti, | 
|  | struct bio *bio, sector_t sector) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | struct dm_crypt_io *io; | 
|  |  | 
|  | io = mempool_alloc(cc->io_pool, GFP_NOIO); | 
|  | io->target = ti; | 
|  | io->base_bio = bio; | 
|  | io->sector = sector; | 
|  | io->error = 0; | 
|  | io->base_io = NULL; | 
|  | atomic_set(&io->pending, 0); | 
|  |  | 
|  | return io; | 
|  | } | 
|  |  | 
|  | static void crypt_inc_pending(struct dm_crypt_io *io) | 
|  | { | 
|  | atomic_inc(&io->pending); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * One of the bios was finished. Check for completion of | 
|  | * the whole request and correctly clean up the buffer. | 
|  | * If base_io is set, wait for the last fragment to complete. | 
|  | */ | 
|  | static void crypt_dec_pending(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->target->private; | 
|  | struct bio *base_bio = io->base_bio; | 
|  | struct dm_crypt_io *base_io = io->base_io; | 
|  | int error = io->error; | 
|  |  | 
|  | if (!atomic_dec_and_test(&io->pending)) | 
|  | return; | 
|  |  | 
|  | mempool_free(io, cc->io_pool); | 
|  |  | 
|  | if (likely(!base_io)) | 
|  | bio_endio(base_bio, error); | 
|  | else { | 
|  | if (error && !base_io->error) | 
|  | base_io->error = error; | 
|  | crypt_dec_pending(base_io); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * kcryptd/kcryptd_io: | 
|  | * | 
|  | * Needed because it would be very unwise to do decryption in an | 
|  | * interrupt context. | 
|  | * | 
|  | * kcryptd performs the actual encryption or decryption. | 
|  | * | 
|  | * kcryptd_io performs the IO submission. | 
|  | * | 
|  | * They must be separated as otherwise the final stages could be | 
|  | * starved by new requests which can block in the first stages due | 
|  | * to memory allocation. | 
|  | */ | 
|  | static void crypt_endio(struct bio *clone, int error) | 
|  | { | 
|  | struct dm_crypt_io *io = clone->bi_private; | 
|  | struct crypt_config *cc = io->target->private; | 
|  | unsigned rw = bio_data_dir(clone); | 
|  |  | 
|  | if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error)) | 
|  | error = -EIO; | 
|  |  | 
|  | /* | 
|  | * free the processed pages | 
|  | */ | 
|  | if (rw == WRITE) | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  |  | 
|  | bio_put(clone); | 
|  |  | 
|  | if (rw == READ && !error) { | 
|  | kcryptd_queue_crypt(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(error)) | 
|  | io->error = error; | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void clone_init(struct dm_crypt_io *io, struct bio *clone) | 
|  | { | 
|  | struct crypt_config *cc = io->target->private; | 
|  |  | 
|  | clone->bi_private = io; | 
|  | clone->bi_end_io  = crypt_endio; | 
|  | clone->bi_bdev    = cc->dev->bdev; | 
|  | clone->bi_rw      = io->base_bio->bi_rw; | 
|  | clone->bi_destructor = dm_crypt_bio_destructor; | 
|  | } | 
|  |  | 
|  | static void kcryptd_io_read(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->target->private; | 
|  | struct bio *base_bio = io->base_bio; | 
|  | struct bio *clone; | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  |  | 
|  | /* | 
|  | * The block layer might modify the bvec array, so always | 
|  | * copy the required bvecs because we need the original | 
|  | * one in order to decrypt the whole bio data *afterwards*. | 
|  | */ | 
|  | clone = bio_alloc_bioset(GFP_NOIO, bio_segments(base_bio), cc->bs); | 
|  | if (unlikely(!clone)) { | 
|  | io->error = -ENOMEM; | 
|  | crypt_dec_pending(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | clone_init(io, clone); | 
|  | clone->bi_idx = 0; | 
|  | clone->bi_vcnt = bio_segments(base_bio); | 
|  | clone->bi_size = base_bio->bi_size; | 
|  | clone->bi_sector = cc->start + io->sector; | 
|  | memcpy(clone->bi_io_vec, bio_iovec(base_bio), | 
|  | sizeof(struct bio_vec) * clone->bi_vcnt); | 
|  |  | 
|  | generic_make_request(clone); | 
|  | } | 
|  |  | 
|  | static void kcryptd_io_write(struct dm_crypt_io *io) | 
|  | { | 
|  | struct bio *clone = io->ctx.bio_out; | 
|  | generic_make_request(clone); | 
|  | } | 
|  |  | 
|  | static void kcryptd_io(struct work_struct *work) | 
|  | { | 
|  | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) | 
|  | kcryptd_io_read(io); | 
|  | else | 
|  | kcryptd_io_write(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_queue_io(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->target->private; | 
|  |  | 
|  | INIT_WORK(&io->work, kcryptd_io); | 
|  | queue_work(cc->io_queue, &io->work); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, | 
|  | int error, int async) | 
|  | { | 
|  | struct bio *clone = io->ctx.bio_out; | 
|  | struct crypt_config *cc = io->target->private; | 
|  |  | 
|  | if (unlikely(error < 0)) { | 
|  | crypt_free_buffer_pages(cc, clone); | 
|  | bio_put(clone); | 
|  | io->error = -EIO; | 
|  | crypt_dec_pending(io); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* crypt_convert should have filled the clone bio */ | 
|  | BUG_ON(io->ctx.idx_out < clone->bi_vcnt); | 
|  |  | 
|  | clone->bi_sector = cc->start + io->sector; | 
|  |  | 
|  | if (async) | 
|  | kcryptd_queue_io(io); | 
|  | else | 
|  | generic_make_request(clone); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->target->private; | 
|  | struct bio *clone; | 
|  | struct dm_crypt_io *new_io; | 
|  | int crypt_finished; | 
|  | unsigned out_of_pages = 0; | 
|  | unsigned remaining = io->base_bio->bi_size; | 
|  | sector_t sector = io->sector; | 
|  | int r; | 
|  |  | 
|  | /* | 
|  | * Prevent io from disappearing until this function completes. | 
|  | */ | 
|  | crypt_inc_pending(io); | 
|  | crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector); | 
|  |  | 
|  | /* | 
|  | * The allocated buffers can be smaller than the whole bio, | 
|  | * so repeat the whole process until all the data can be handled. | 
|  | */ | 
|  | while (remaining) { | 
|  | clone = crypt_alloc_buffer(io, remaining, &out_of_pages); | 
|  | if (unlikely(!clone)) { | 
|  | io->error = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | io->ctx.bio_out = clone; | 
|  | io->ctx.idx_out = 0; | 
|  |  | 
|  | remaining -= clone->bi_size; | 
|  | sector += bio_sectors(clone); | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  | r = crypt_convert(cc, &io->ctx); | 
|  | crypt_finished = atomic_dec_and_test(&io->ctx.pending); | 
|  |  | 
|  | /* Encryption was already finished, submit io now */ | 
|  | if (crypt_finished) { | 
|  | kcryptd_crypt_write_io_submit(io, r, 0); | 
|  |  | 
|  | /* | 
|  | * If there was an error, do not try next fragments. | 
|  | * For async, error is processed in async handler. | 
|  | */ | 
|  | if (unlikely(r < 0)) | 
|  | break; | 
|  |  | 
|  | io->sector = sector; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Out of memory -> run queues | 
|  | * But don't wait if split was due to the io size restriction | 
|  | */ | 
|  | if (unlikely(out_of_pages)) | 
|  | congestion_wait(WRITE, HZ/100); | 
|  |  | 
|  | /* | 
|  | * With async crypto it is unsafe to share the crypto context | 
|  | * between fragments, so switch to a new dm_crypt_io structure. | 
|  | */ | 
|  | if (unlikely(!crypt_finished && remaining)) { | 
|  | new_io = crypt_io_alloc(io->target, io->base_bio, | 
|  | sector); | 
|  | crypt_inc_pending(new_io); | 
|  | crypt_convert_init(cc, &new_io->ctx, NULL, | 
|  | io->base_bio, sector); | 
|  | new_io->ctx.idx_in = io->ctx.idx_in; | 
|  | new_io->ctx.offset_in = io->ctx.offset_in; | 
|  |  | 
|  | /* | 
|  | * Fragments after the first use the base_io | 
|  | * pending count. | 
|  | */ | 
|  | if (!io->base_io) | 
|  | new_io->base_io = io; | 
|  | else { | 
|  | new_io->base_io = io->base_io; | 
|  | crypt_inc_pending(io->base_io); | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | io = new_io; | 
|  | } | 
|  | } | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_read_done(struct dm_crypt_io *io, int error) | 
|  | { | 
|  | if (unlikely(error < 0)) | 
|  | io->error = -EIO; | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->target->private; | 
|  | int r = 0; | 
|  |  | 
|  | crypt_inc_pending(io); | 
|  |  | 
|  | crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio, | 
|  | io->sector); | 
|  |  | 
|  | r = crypt_convert(cc, &io->ctx); | 
|  |  | 
|  | if (atomic_dec_and_test(&io->ctx.pending)) | 
|  | kcryptd_crypt_read_done(io, r); | 
|  |  | 
|  | crypt_dec_pending(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_async_done(struct crypto_async_request *async_req, | 
|  | int error) | 
|  | { | 
|  | struct dm_crypt_request *dmreq = async_req->data; | 
|  | struct convert_context *ctx = dmreq->ctx; | 
|  | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); | 
|  | struct crypt_config *cc = io->target->private; | 
|  |  | 
|  | if (error == -EINPROGRESS) { | 
|  | complete(&ctx->restart); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool); | 
|  |  | 
|  | if (!atomic_dec_and_test(&ctx->pending)) | 
|  | return; | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) | 
|  | kcryptd_crypt_read_done(io, error); | 
|  | else | 
|  | kcryptd_crypt_write_io_submit(io, error, 1); | 
|  | } | 
|  |  | 
|  | static void kcryptd_crypt(struct work_struct *work) | 
|  | { | 
|  | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) | 
|  | kcryptd_crypt_read_convert(io); | 
|  | else | 
|  | kcryptd_crypt_write_convert(io); | 
|  | } | 
|  |  | 
|  | static void kcryptd_queue_crypt(struct dm_crypt_io *io) | 
|  | { | 
|  | struct crypt_config *cc = io->target->private; | 
|  |  | 
|  | INIT_WORK(&io->work, kcryptd_crypt); | 
|  | queue_work(cc->crypt_queue, &io->work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode key from its hex representation | 
|  | */ | 
|  | static int crypt_decode_key(u8 *key, char *hex, unsigned int size) | 
|  | { | 
|  | char buffer[3]; | 
|  | char *endp; | 
|  | unsigned int i; | 
|  |  | 
|  | buffer[2] = '\0'; | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | buffer[0] = *hex++; | 
|  | buffer[1] = *hex++; | 
|  |  | 
|  | key[i] = (u8)simple_strtoul(buffer, &endp, 16); | 
|  |  | 
|  | if (endp != &buffer[2]) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (*hex != '\0') | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encode key into its hex representation | 
|  | */ | 
|  | static void crypt_encode_key(char *hex, u8 *key, unsigned int size) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < size; i++) { | 
|  | sprintf(hex, "%02x", *key); | 
|  | hex += 2; | 
|  | key++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int crypt_set_key(struct crypt_config *cc, char *key) | 
|  | { | 
|  | unsigned key_size = strlen(key) >> 1; | 
|  |  | 
|  | if (cc->key_size && cc->key_size != key_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | cc->key_size = key_size; /* initial settings */ | 
|  |  | 
|  | if ((!key_size && strcmp(key, "-")) || | 
|  | (key_size && crypt_decode_key(cc->key, key, key_size) < 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | set_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypt_wipe_key(struct crypt_config *cc) | 
|  | { | 
|  | clear_bit(DM_CRYPT_KEY_VALID, &cc->flags); | 
|  | memset(&cc->key, 0, cc->key_size * sizeof(u8)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Construct an encryption mapping: | 
|  | * <cipher> <key> <iv_offset> <dev_path> <start> | 
|  | */ | 
|  | static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) | 
|  | { | 
|  | struct crypt_config *cc; | 
|  | struct crypto_ablkcipher *tfm; | 
|  | char *tmp; | 
|  | char *cipher; | 
|  | char *chainmode; | 
|  | char *ivmode; | 
|  | char *ivopts; | 
|  | unsigned int key_size; | 
|  | unsigned long long tmpll; | 
|  |  | 
|  | if (argc != 5) { | 
|  | ti->error = "Not enough arguments"; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | tmp = argv[0]; | 
|  | cipher = strsep(&tmp, "-"); | 
|  | chainmode = strsep(&tmp, "-"); | 
|  | ivopts = strsep(&tmp, "-"); | 
|  | ivmode = strsep(&ivopts, ":"); | 
|  |  | 
|  | if (tmp) | 
|  | DMWARN("Unexpected additional cipher options"); | 
|  |  | 
|  | key_size = strlen(argv[1]) >> 1; | 
|  |  | 
|  | cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL); | 
|  | if (cc == NULL) { | 
|  | ti->error = | 
|  | "Cannot allocate transparent encryption context"; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (crypt_set_key(cc, argv[1])) { | 
|  | ti->error = "Error decoding key"; | 
|  | goto bad_cipher; | 
|  | } | 
|  |  | 
|  | /* Compatiblity mode for old dm-crypt cipher strings */ | 
|  | if (!chainmode || (strcmp(chainmode, "plain") == 0 && !ivmode)) { | 
|  | chainmode = "cbc"; | 
|  | ivmode = "plain"; | 
|  | } | 
|  |  | 
|  | if (strcmp(chainmode, "ecb") && !ivmode) { | 
|  | ti->error = "This chaining mode requires an IV mechanism"; | 
|  | goto bad_cipher; | 
|  | } | 
|  |  | 
|  | if (snprintf(cc->cipher, CRYPTO_MAX_ALG_NAME, "%s(%s)", | 
|  | chainmode, cipher) >= CRYPTO_MAX_ALG_NAME) { | 
|  | ti->error = "Chain mode + cipher name is too long"; | 
|  | goto bad_cipher; | 
|  | } | 
|  |  | 
|  | tfm = crypto_alloc_ablkcipher(cc->cipher, 0, 0); | 
|  | if (IS_ERR(tfm)) { | 
|  | ti->error = "Error allocating crypto tfm"; | 
|  | goto bad_cipher; | 
|  | } | 
|  |  | 
|  | strcpy(cc->cipher, cipher); | 
|  | strcpy(cc->chainmode, chainmode); | 
|  | cc->tfm = tfm; | 
|  |  | 
|  | /* | 
|  | * Choose ivmode. Valid modes: "plain", "essiv:<esshash>", "benbi". | 
|  | * See comments at iv code | 
|  | */ | 
|  |  | 
|  | if (ivmode == NULL) | 
|  | cc->iv_gen_ops = NULL; | 
|  | else if (strcmp(ivmode, "plain") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_plain_ops; | 
|  | else if (strcmp(ivmode, "essiv") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_essiv_ops; | 
|  | else if (strcmp(ivmode, "benbi") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_benbi_ops; | 
|  | else if (strcmp(ivmode, "null") == 0) | 
|  | cc->iv_gen_ops = &crypt_iv_null_ops; | 
|  | else { | 
|  | ti->error = "Invalid IV mode"; | 
|  | goto bad_ivmode; | 
|  | } | 
|  |  | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->ctr && | 
|  | cc->iv_gen_ops->ctr(cc, ti, ivopts) < 0) | 
|  | goto bad_ivmode; | 
|  |  | 
|  | cc->iv_size = crypto_ablkcipher_ivsize(tfm); | 
|  | if (cc->iv_size) | 
|  | /* at least a 64 bit sector number should fit in our buffer */ | 
|  | cc->iv_size = max(cc->iv_size, | 
|  | (unsigned int)(sizeof(u64) / sizeof(u8))); | 
|  | else { | 
|  | if (cc->iv_gen_ops) { | 
|  | DMWARN("Selected cipher does not support IVs"); | 
|  | if (cc->iv_gen_ops->dtr) | 
|  | cc->iv_gen_ops->dtr(cc); | 
|  | cc->iv_gen_ops = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool); | 
|  | if (!cc->io_pool) { | 
|  | ti->error = "Cannot allocate crypt io mempool"; | 
|  | goto bad_slab_pool; | 
|  | } | 
|  |  | 
|  | cc->dmreq_start = sizeof(struct ablkcipher_request); | 
|  | cc->dmreq_start += crypto_ablkcipher_reqsize(tfm); | 
|  | cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment()); | 
|  | cc->dmreq_start += crypto_ablkcipher_alignmask(tfm) & | 
|  | ~(crypto_tfm_ctx_alignment() - 1); | 
|  |  | 
|  | cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start + | 
|  | sizeof(struct dm_crypt_request) + cc->iv_size); | 
|  | if (!cc->req_pool) { | 
|  | ti->error = "Cannot allocate crypt request mempool"; | 
|  | goto bad_req_pool; | 
|  | } | 
|  | cc->req = NULL; | 
|  |  | 
|  | cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0); | 
|  | if (!cc->page_pool) { | 
|  | ti->error = "Cannot allocate page mempool"; | 
|  | goto bad_page_pool; | 
|  | } | 
|  |  | 
|  | cc->bs = bioset_create(MIN_IOS, 0); | 
|  | if (!cc->bs) { | 
|  | ti->error = "Cannot allocate crypt bioset"; | 
|  | goto bad_bs; | 
|  | } | 
|  |  | 
|  | if (crypto_ablkcipher_setkey(tfm, cc->key, key_size) < 0) { | 
|  | ti->error = "Error setting key"; | 
|  | goto bad_device; | 
|  | } | 
|  |  | 
|  | if (sscanf(argv[2], "%llu", &tmpll) != 1) { | 
|  | ti->error = "Invalid iv_offset sector"; | 
|  | goto bad_device; | 
|  | } | 
|  | cc->iv_offset = tmpll; | 
|  |  | 
|  | if (sscanf(argv[4], "%llu", &tmpll) != 1) { | 
|  | ti->error = "Invalid device sector"; | 
|  | goto bad_device; | 
|  | } | 
|  | cc->start = tmpll; | 
|  |  | 
|  | if (dm_get_device(ti, argv[3], cc->start, ti->len, | 
|  | dm_table_get_mode(ti->table), &cc->dev)) { | 
|  | ti->error = "Device lookup failed"; | 
|  | goto bad_device; | 
|  | } | 
|  |  | 
|  | if (ivmode && cc->iv_gen_ops) { | 
|  | if (ivopts) | 
|  | *(ivopts - 1) = ':'; | 
|  | cc->iv_mode = kmalloc(strlen(ivmode) + 1, GFP_KERNEL); | 
|  | if (!cc->iv_mode) { | 
|  | ti->error = "Error kmallocing iv_mode string"; | 
|  | goto bad_ivmode_string; | 
|  | } | 
|  | strcpy(cc->iv_mode, ivmode); | 
|  | } else | 
|  | cc->iv_mode = NULL; | 
|  |  | 
|  | cc->io_queue = create_singlethread_workqueue("kcryptd_io"); | 
|  | if (!cc->io_queue) { | 
|  | ti->error = "Couldn't create kcryptd io queue"; | 
|  | goto bad_io_queue; | 
|  | } | 
|  |  | 
|  | cc->crypt_queue = create_singlethread_workqueue("kcryptd"); | 
|  | if (!cc->crypt_queue) { | 
|  | ti->error = "Couldn't create kcryptd queue"; | 
|  | goto bad_crypt_queue; | 
|  | } | 
|  |  | 
|  | ti->private = cc; | 
|  | return 0; | 
|  |  | 
|  | bad_crypt_queue: | 
|  | destroy_workqueue(cc->io_queue); | 
|  | bad_io_queue: | 
|  | kfree(cc->iv_mode); | 
|  | bad_ivmode_string: | 
|  | dm_put_device(ti, cc->dev); | 
|  | bad_device: | 
|  | bioset_free(cc->bs); | 
|  | bad_bs: | 
|  | mempool_destroy(cc->page_pool); | 
|  | bad_page_pool: | 
|  | mempool_destroy(cc->req_pool); | 
|  | bad_req_pool: | 
|  | mempool_destroy(cc->io_pool); | 
|  | bad_slab_pool: | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) | 
|  | cc->iv_gen_ops->dtr(cc); | 
|  | bad_ivmode: | 
|  | crypto_free_ablkcipher(tfm); | 
|  | bad_cipher: | 
|  | /* Must zero key material before freeing */ | 
|  | kzfree(cc); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void crypt_dtr(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = (struct crypt_config *) ti->private; | 
|  |  | 
|  | destroy_workqueue(cc->io_queue); | 
|  | destroy_workqueue(cc->crypt_queue); | 
|  |  | 
|  | if (cc->req) | 
|  | mempool_free(cc->req, cc->req_pool); | 
|  |  | 
|  | bioset_free(cc->bs); | 
|  | mempool_destroy(cc->page_pool); | 
|  | mempool_destroy(cc->req_pool); | 
|  | mempool_destroy(cc->io_pool); | 
|  |  | 
|  | kfree(cc->iv_mode); | 
|  | if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) | 
|  | cc->iv_gen_ops->dtr(cc); | 
|  | crypto_free_ablkcipher(cc->tfm); | 
|  | dm_put_device(ti, cc->dev); | 
|  |  | 
|  | /* Must zero key material before freeing */ | 
|  | kzfree(cc); | 
|  | } | 
|  |  | 
|  | static int crypt_map(struct dm_target *ti, struct bio *bio, | 
|  | union map_info *map_context) | 
|  | { | 
|  | struct dm_crypt_io *io; | 
|  |  | 
|  | io = crypt_io_alloc(ti, bio, bio->bi_sector - ti->begin); | 
|  |  | 
|  | if (bio_data_dir(io->base_bio) == READ) | 
|  | kcryptd_queue_io(io); | 
|  | else | 
|  | kcryptd_queue_crypt(io); | 
|  |  | 
|  | return DM_MAPIO_SUBMITTED; | 
|  | } | 
|  |  | 
|  | static int crypt_status(struct dm_target *ti, status_type_t type, | 
|  | char *result, unsigned int maxlen) | 
|  | { | 
|  | struct crypt_config *cc = (struct crypt_config *) ti->private; | 
|  | unsigned int sz = 0; | 
|  |  | 
|  | switch (type) { | 
|  | case STATUSTYPE_INFO: | 
|  | result[0] = '\0'; | 
|  | break; | 
|  |  | 
|  | case STATUSTYPE_TABLE: | 
|  | if (cc->iv_mode) | 
|  | DMEMIT("%s-%s-%s ", cc->cipher, cc->chainmode, | 
|  | cc->iv_mode); | 
|  | else | 
|  | DMEMIT("%s-%s ", cc->cipher, cc->chainmode); | 
|  |  | 
|  | if (cc->key_size > 0) { | 
|  | if ((maxlen - sz) < ((cc->key_size << 1) + 1)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | crypt_encode_key(result + sz, cc->key, cc->key_size); | 
|  | sz += cc->key_size << 1; | 
|  | } else { | 
|  | if (sz >= maxlen) | 
|  | return -ENOMEM; | 
|  | result[sz++] = '-'; | 
|  | } | 
|  |  | 
|  | DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, | 
|  | cc->dev->name, (unsigned long long)cc->start); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_postsuspend(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | set_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
|  | } | 
|  |  | 
|  | static int crypt_preresume(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { | 
|  | DMERR("aborting resume - crypt key is not set."); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypt_resume(struct dm_target *ti) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | clear_bit(DM_CRYPT_SUSPENDED, &cc->flags); | 
|  | } | 
|  |  | 
|  | /* Message interface | 
|  | *	key set <key> | 
|  | *	key wipe | 
|  | */ | 
|  | static int crypt_message(struct dm_target *ti, unsigned argc, char **argv) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  |  | 
|  | if (argc < 2) | 
|  | goto error; | 
|  |  | 
|  | if (!strnicmp(argv[0], MESG_STR("key"))) { | 
|  | if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { | 
|  | DMWARN("not suspended during key manipulation."); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) | 
|  | return crypt_set_key(cc, argv[2]); | 
|  | if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) | 
|  | return crypt_wipe_key(cc); | 
|  | } | 
|  |  | 
|  | error: | 
|  | DMWARN("unrecognised message received."); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm, | 
|  | struct bio_vec *biovec, int max_size) | 
|  | { | 
|  | struct crypt_config *cc = ti->private; | 
|  | struct request_queue *q = bdev_get_queue(cc->dev->bdev); | 
|  |  | 
|  | if (!q->merge_bvec_fn) | 
|  | return max_size; | 
|  |  | 
|  | bvm->bi_bdev = cc->dev->bdev; | 
|  | bvm->bi_sector = cc->start + bvm->bi_sector - ti->begin; | 
|  |  | 
|  | return min(max_size, q->merge_bvec_fn(q, bvm, biovec)); | 
|  | } | 
|  |  | 
|  | static struct target_type crypt_target = { | 
|  | .name   = "crypt", | 
|  | .version= {1, 6, 0}, | 
|  | .module = THIS_MODULE, | 
|  | .ctr    = crypt_ctr, | 
|  | .dtr    = crypt_dtr, | 
|  | .map    = crypt_map, | 
|  | .status = crypt_status, | 
|  | .postsuspend = crypt_postsuspend, | 
|  | .preresume = crypt_preresume, | 
|  | .resume = crypt_resume, | 
|  | .message = crypt_message, | 
|  | .merge  = crypt_merge, | 
|  | }; | 
|  |  | 
|  | static int __init dm_crypt_init(void) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0); | 
|  | if (!_crypt_io_pool) | 
|  | return -ENOMEM; | 
|  |  | 
|  | r = dm_register_target(&crypt_target); | 
|  | if (r < 0) { | 
|  | DMERR("register failed %d", r); | 
|  | kmem_cache_destroy(_crypt_io_pool); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __exit dm_crypt_exit(void) | 
|  | { | 
|  | dm_unregister_target(&crypt_target); | 
|  | kmem_cache_destroy(_crypt_io_pool); | 
|  | } | 
|  |  | 
|  | module_init(dm_crypt_init); | 
|  | module_exit(dm_crypt_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Christophe Saout <christophe@saout.de>"); | 
|  | MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); | 
|  | MODULE_LICENSE("GPL"); |