|  | /* Authors: Karl MacMillan <kmacmillan@tresys.com> | 
|  | *	    Frank Mayer <mayerf@tresys.com> | 
|  | * | 
|  | * Copyright (C) 2003 - 2004 Tresys Technology, LLC | 
|  | *	This program is free software; you can redistribute it and/or modify | 
|  | *	it under the terms of the GNU General Public License as published by | 
|  | *	the Free Software Foundation, version 2. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include "security.h" | 
|  | #include "conditional.h" | 
|  |  | 
|  | /* | 
|  | * cond_evaluate_expr evaluates a conditional expr | 
|  | * in reverse polish notation. It returns true (1), false (0), | 
|  | * or undefined (-1). Undefined occurs when the expression | 
|  | * exceeds the stack depth of COND_EXPR_MAXDEPTH. | 
|  | */ | 
|  | static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr) | 
|  | { | 
|  |  | 
|  | struct cond_expr *cur; | 
|  | int s[COND_EXPR_MAXDEPTH]; | 
|  | int sp = -1; | 
|  |  | 
|  | for (cur = expr; cur; cur = cur->next) { | 
|  | switch (cur->expr_type) { | 
|  | case COND_BOOL: | 
|  | if (sp == (COND_EXPR_MAXDEPTH - 1)) | 
|  | return -1; | 
|  | sp++; | 
|  | s[sp] = p->bool_val_to_struct[cur->bool - 1]->state; | 
|  | break; | 
|  | case COND_NOT: | 
|  | if (sp < 0) | 
|  | return -1; | 
|  | s[sp] = !s[sp]; | 
|  | break; | 
|  | case COND_OR: | 
|  | if (sp < 1) | 
|  | return -1; | 
|  | sp--; | 
|  | s[sp] |= s[sp + 1]; | 
|  | break; | 
|  | case COND_AND: | 
|  | if (sp < 1) | 
|  | return -1; | 
|  | sp--; | 
|  | s[sp] &= s[sp + 1]; | 
|  | break; | 
|  | case COND_XOR: | 
|  | if (sp < 1) | 
|  | return -1; | 
|  | sp--; | 
|  | s[sp] ^= s[sp + 1]; | 
|  | break; | 
|  | case COND_EQ: | 
|  | if (sp < 1) | 
|  | return -1; | 
|  | sp--; | 
|  | s[sp] = (s[sp] == s[sp + 1]); | 
|  | break; | 
|  | case COND_NEQ: | 
|  | if (sp < 1) | 
|  | return -1; | 
|  | sp--; | 
|  | s[sp] = (s[sp] != s[sp + 1]); | 
|  | break; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return s[0]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * evaluate_cond_node evaluates the conditional stored in | 
|  | * a struct cond_node and if the result is different than the | 
|  | * current state of the node it sets the rules in the true/false | 
|  | * list appropriately. If the result of the expression is undefined | 
|  | * all of the rules are disabled for safety. | 
|  | */ | 
|  | int evaluate_cond_node(struct policydb *p, struct cond_node *node) | 
|  | { | 
|  | int new_state; | 
|  | struct cond_av_list *cur; | 
|  |  | 
|  | new_state = cond_evaluate_expr(p, node->expr); | 
|  | if (new_state != node->cur_state) { | 
|  | node->cur_state = new_state; | 
|  | if (new_state == -1) | 
|  | printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n"); | 
|  | /* turn the rules on or off */ | 
|  | for (cur = node->true_list; cur; cur = cur->next) { | 
|  | if (new_state <= 0) | 
|  | cur->node->key.specified &= ~AVTAB_ENABLED; | 
|  | else | 
|  | cur->node->key.specified |= AVTAB_ENABLED; | 
|  | } | 
|  |  | 
|  | for (cur = node->false_list; cur; cur = cur->next) { | 
|  | /* -1 or 1 */ | 
|  | if (new_state) | 
|  | cur->node->key.specified &= ~AVTAB_ENABLED; | 
|  | else | 
|  | cur->node->key.specified |= AVTAB_ENABLED; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cond_policydb_init(struct policydb *p) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | p->bool_val_to_struct = NULL; | 
|  | p->cond_list = NULL; | 
|  |  | 
|  | rc = avtab_init(&p->te_cond_avtab); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cond_av_list_destroy(struct cond_av_list *list) | 
|  | { | 
|  | struct cond_av_list *cur, *next; | 
|  | for (cur = list; cur; cur = next) { | 
|  | next = cur->next; | 
|  | /* the avtab_ptr_t node is destroy by the avtab */ | 
|  | kfree(cur); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void cond_node_destroy(struct cond_node *node) | 
|  | { | 
|  | struct cond_expr *cur_expr, *next_expr; | 
|  |  | 
|  | for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) { | 
|  | next_expr = cur_expr->next; | 
|  | kfree(cur_expr); | 
|  | } | 
|  | cond_av_list_destroy(node->true_list); | 
|  | cond_av_list_destroy(node->false_list); | 
|  | kfree(node); | 
|  | } | 
|  |  | 
|  | static void cond_list_destroy(struct cond_node *list) | 
|  | { | 
|  | struct cond_node *next, *cur; | 
|  |  | 
|  | if (list == NULL) | 
|  | return; | 
|  |  | 
|  | for (cur = list; cur; cur = next) { | 
|  | next = cur->next; | 
|  | cond_node_destroy(cur); | 
|  | } | 
|  | } | 
|  |  | 
|  | void cond_policydb_destroy(struct policydb *p) | 
|  | { | 
|  | kfree(p->bool_val_to_struct); | 
|  | avtab_destroy(&p->te_cond_avtab); | 
|  | cond_list_destroy(p->cond_list); | 
|  | } | 
|  |  | 
|  | int cond_init_bool_indexes(struct policydb *p) | 
|  | { | 
|  | kfree(p->bool_val_to_struct); | 
|  | p->bool_val_to_struct = | 
|  | kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL); | 
|  | if (!p->bool_val_to_struct) | 
|  | return -ENOMEM; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cond_destroy_bool(void *key, void *datum, void *p) | 
|  | { | 
|  | kfree(key); | 
|  | kfree(datum); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cond_index_bool(void *key, void *datum, void *datap) | 
|  | { | 
|  | struct policydb *p; | 
|  | struct cond_bool_datum *booldatum; | 
|  | struct flex_array *fa; | 
|  |  | 
|  | booldatum = datum; | 
|  | p = datap; | 
|  |  | 
|  | if (!booldatum->value || booldatum->value > p->p_bools.nprim) | 
|  | return -EINVAL; | 
|  |  | 
|  | fa = p->sym_val_to_name[SYM_BOOLS]; | 
|  | if (flex_array_put_ptr(fa, booldatum->value - 1, key, | 
|  | GFP_KERNEL | __GFP_ZERO)) | 
|  | BUG(); | 
|  | p->bool_val_to_struct[booldatum->value - 1] = booldatum; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bool_isvalid(struct cond_bool_datum *b) | 
|  | { | 
|  | if (!(b->state == 0 || b->state == 1)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp) | 
|  | { | 
|  | char *key = NULL; | 
|  | struct cond_bool_datum *booldatum; | 
|  | __le32 buf[3]; | 
|  | u32 len; | 
|  | int rc; | 
|  |  | 
|  | booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL); | 
|  | if (!booldatum) | 
|  | return -ENOMEM; | 
|  |  | 
|  | rc = next_entry(buf, fp, sizeof buf); | 
|  | if (rc) | 
|  | goto err; | 
|  |  | 
|  | booldatum->value = le32_to_cpu(buf[0]); | 
|  | booldatum->state = le32_to_cpu(buf[1]); | 
|  |  | 
|  | rc = -EINVAL; | 
|  | if (!bool_isvalid(booldatum)) | 
|  | goto err; | 
|  |  | 
|  | len = le32_to_cpu(buf[2]); | 
|  |  | 
|  | rc = -ENOMEM; | 
|  | key = kmalloc(len + 1, GFP_KERNEL); | 
|  | if (!key) | 
|  | goto err; | 
|  | rc = next_entry(key, fp, len); | 
|  | if (rc) | 
|  | goto err; | 
|  | key[len] = '\0'; | 
|  | rc = hashtab_insert(h, key, booldatum); | 
|  | if (rc) | 
|  | goto err; | 
|  |  | 
|  | return 0; | 
|  | err: | 
|  | cond_destroy_bool(key, booldatum, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | struct cond_insertf_data { | 
|  | struct policydb *p; | 
|  | struct cond_av_list *other; | 
|  | struct cond_av_list *head; | 
|  | struct cond_av_list *tail; | 
|  | }; | 
|  |  | 
|  | static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr) | 
|  | { | 
|  | struct cond_insertf_data *data = ptr; | 
|  | struct policydb *p = data->p; | 
|  | struct cond_av_list *other = data->other, *list, *cur; | 
|  | struct avtab_node *node_ptr; | 
|  | u8 found; | 
|  | int rc = -EINVAL; | 
|  |  | 
|  | /* | 
|  | * For type rules we have to make certain there aren't any | 
|  | * conflicting rules by searching the te_avtab and the | 
|  | * cond_te_avtab. | 
|  | */ | 
|  | if (k->specified & AVTAB_TYPE) { | 
|  | if (avtab_search(&p->te_avtab, k)) { | 
|  | printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n"); | 
|  | goto err; | 
|  | } | 
|  | /* | 
|  | * If we are reading the false list other will be a pointer to | 
|  | * the true list. We can have duplicate entries if there is only | 
|  | * 1 other entry and it is in our true list. | 
|  | * | 
|  | * If we are reading the true list (other == NULL) there shouldn't | 
|  | * be any other entries. | 
|  | */ | 
|  | if (other) { | 
|  | node_ptr = avtab_search_node(&p->te_cond_avtab, k); | 
|  | if (node_ptr) { | 
|  | if (avtab_search_node_next(node_ptr, k->specified)) { | 
|  | printk(KERN_ERR "SELinux: too many conflicting type rules.\n"); | 
|  | goto err; | 
|  | } | 
|  | found = 0; | 
|  | for (cur = other; cur; cur = cur->next) { | 
|  | if (cur->node == node_ptr) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!found) { | 
|  | printk(KERN_ERR "SELinux: conflicting type rules.\n"); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (avtab_search(&p->te_cond_avtab, k)) { | 
|  | printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n"); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d); | 
|  | if (!node_ptr) { | 
|  | printk(KERN_ERR "SELinux: could not insert rule.\n"); | 
|  | rc = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL); | 
|  | if (!list) { | 
|  | rc = -ENOMEM; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | list->node = node_ptr; | 
|  | if (!data->head) | 
|  | data->head = list; | 
|  | else | 
|  | data->tail->next = list; | 
|  | data->tail = list; | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | cond_av_list_destroy(data->head); | 
|  | data->head = NULL; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other) | 
|  | { | 
|  | int i, rc; | 
|  | __le32 buf[1]; | 
|  | u32 len; | 
|  | struct cond_insertf_data data; | 
|  |  | 
|  | *ret_list = NULL; | 
|  |  | 
|  | len = 0; | 
|  | rc = next_entry(buf, fp, sizeof(u32)); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | len = le32_to_cpu(buf[0]); | 
|  | if (len == 0) | 
|  | return 0; | 
|  |  | 
|  | data.p = p; | 
|  | data.other = other; | 
|  | data.head = NULL; | 
|  | data.tail = NULL; | 
|  | for (i = 0; i < len; i++) { | 
|  | rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf, | 
|  | &data); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | *ret_list = data.head; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int expr_isvalid(struct policydb *p, struct cond_expr *expr) | 
|  | { | 
|  | if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) { | 
|  | printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (expr->bool > p->p_bools.nprim) { | 
|  | printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n"); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp) | 
|  | { | 
|  | __le32 buf[2]; | 
|  | u32 len, i; | 
|  | int rc; | 
|  | struct cond_expr *expr = NULL, *last = NULL; | 
|  |  | 
|  | rc = next_entry(buf, fp, sizeof(u32)); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | node->cur_state = le32_to_cpu(buf[0]); | 
|  |  | 
|  | len = 0; | 
|  | rc = next_entry(buf, fp, sizeof(u32)); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* expr */ | 
|  | len = le32_to_cpu(buf[0]); | 
|  |  | 
|  | for (i = 0; i < len; i++) { | 
|  | rc = next_entry(buf, fp, sizeof(u32) * 2); | 
|  | if (rc) | 
|  | goto err; | 
|  |  | 
|  | rc = -ENOMEM; | 
|  | expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL); | 
|  | if (!expr) | 
|  | goto err; | 
|  |  | 
|  | expr->expr_type = le32_to_cpu(buf[0]); | 
|  | expr->bool = le32_to_cpu(buf[1]); | 
|  |  | 
|  | if (!expr_isvalid(p, expr)) { | 
|  | rc = -EINVAL; | 
|  | kfree(expr); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (i == 0) | 
|  | node->expr = expr; | 
|  | else | 
|  | last->next = expr; | 
|  | last = expr; | 
|  | } | 
|  |  | 
|  | rc = cond_read_av_list(p, fp, &node->true_list, NULL); | 
|  | if (rc) | 
|  | goto err; | 
|  | rc = cond_read_av_list(p, fp, &node->false_list, node->true_list); | 
|  | if (rc) | 
|  | goto err; | 
|  | return 0; | 
|  | err: | 
|  | cond_node_destroy(node); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int cond_read_list(struct policydb *p, void *fp) | 
|  | { | 
|  | struct cond_node *node, *last = NULL; | 
|  | __le32 buf[1]; | 
|  | u32 i, len; | 
|  | int rc; | 
|  |  | 
|  | rc = next_entry(buf, fp, sizeof buf); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | len = le32_to_cpu(buf[0]); | 
|  |  | 
|  | rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel); | 
|  | if (rc) | 
|  | goto err; | 
|  |  | 
|  | for (i = 0; i < len; i++) { | 
|  | rc = -ENOMEM; | 
|  | node = kzalloc(sizeof(struct cond_node), GFP_KERNEL); | 
|  | if (!node) | 
|  | goto err; | 
|  |  | 
|  | rc = cond_read_node(p, node, fp); | 
|  | if (rc) | 
|  | goto err; | 
|  |  | 
|  | if (i == 0) | 
|  | p->cond_list = node; | 
|  | else | 
|  | last->next = node; | 
|  | last = node; | 
|  | } | 
|  | return 0; | 
|  | err: | 
|  | cond_list_destroy(p->cond_list); | 
|  | p->cond_list = NULL; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int cond_write_bool(void *vkey, void *datum, void *ptr) | 
|  | { | 
|  | char *key = vkey; | 
|  | struct cond_bool_datum *booldatum = datum; | 
|  | struct policy_data *pd = ptr; | 
|  | void *fp = pd->fp; | 
|  | __le32 buf[3]; | 
|  | u32 len; | 
|  | int rc; | 
|  |  | 
|  | len = strlen(key); | 
|  | buf[0] = cpu_to_le32(booldatum->value); | 
|  | buf[1] = cpu_to_le32(booldatum->state); | 
|  | buf[2] = cpu_to_le32(len); | 
|  | rc = put_entry(buf, sizeof(u32), 3, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  | rc = put_entry(key, 1, len, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cond_write_cond_av_list doesn't write out the av_list nodes. | 
|  | * Instead it writes out the key/value pairs from the avtab. This | 
|  | * is necessary because there is no way to uniquely identifying rules | 
|  | * in the avtab so it is not possible to associate individual rules | 
|  | * in the avtab with a conditional without saving them as part of | 
|  | * the conditional. This means that the avtab with the conditional | 
|  | * rules will not be saved but will be rebuilt on policy load. | 
|  | */ | 
|  | static int cond_write_av_list(struct policydb *p, | 
|  | struct cond_av_list *list, struct policy_file *fp) | 
|  | { | 
|  | __le32 buf[1]; | 
|  | struct cond_av_list *cur_list; | 
|  | u32 len; | 
|  | int rc; | 
|  |  | 
|  | len = 0; | 
|  | for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) | 
|  | len++; | 
|  |  | 
|  | buf[0] = cpu_to_le32(len); | 
|  | rc = put_entry(buf, sizeof(u32), 1, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (len == 0) | 
|  | return 0; | 
|  |  | 
|  | for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) { | 
|  | rc = avtab_write_item(p, cur_list->node, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cond_write_node(struct policydb *p, struct cond_node *node, | 
|  | struct policy_file *fp) | 
|  | { | 
|  | struct cond_expr *cur_expr; | 
|  | __le32 buf[2]; | 
|  | int rc; | 
|  | u32 len = 0; | 
|  |  | 
|  | buf[0] = cpu_to_le32(node->cur_state); | 
|  | rc = put_entry(buf, sizeof(u32), 1, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) | 
|  | len++; | 
|  |  | 
|  | buf[0] = cpu_to_le32(len); | 
|  | rc = put_entry(buf, sizeof(u32), 1, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) { | 
|  | buf[0] = cpu_to_le32(cur_expr->expr_type); | 
|  | buf[1] = cpu_to_le32(cur_expr->bool); | 
|  | rc = put_entry(buf, sizeof(u32), 2, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | rc = cond_write_av_list(p, node->true_list, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  | rc = cond_write_av_list(p, node->false_list, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int cond_write_list(struct policydb *p, struct cond_node *list, void *fp) | 
|  | { | 
|  | struct cond_node *cur; | 
|  | u32 len; | 
|  | __le32 buf[1]; | 
|  | int rc; | 
|  |  | 
|  | len = 0; | 
|  | for (cur = list; cur != NULL; cur = cur->next) | 
|  | len++; | 
|  | buf[0] = cpu_to_le32(len); | 
|  | rc = put_entry(buf, sizeof(u32), 1, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | for (cur = list; cur != NULL; cur = cur->next) { | 
|  | rc = cond_write_node(p, cur, fp); | 
|  | if (rc) | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /* Determine whether additional permissions are granted by the conditional | 
|  | * av table, and if so, add them to the result | 
|  | */ | 
|  | void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd) | 
|  | { | 
|  | struct avtab_node *node; | 
|  |  | 
|  | if (!ctab || !key || !avd) | 
|  | return; | 
|  |  | 
|  | for (node = avtab_search_node(ctab, key); node; | 
|  | node = avtab_search_node_next(node, key->specified)) { | 
|  | if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) == | 
|  | (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED))) | 
|  | avd->allowed |= node->datum.data; | 
|  | if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) == | 
|  | (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED))) | 
|  | /* Since a '0' in an auditdeny mask represents a | 
|  | * permission we do NOT want to audit (dontaudit), we use | 
|  | * the '&' operand to ensure that all '0's in the mask | 
|  | * are retained (much unlike the allow and auditallow cases). | 
|  | */ | 
|  | avd->auditdeny &= node->datum.data; | 
|  | if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) == | 
|  | (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED))) | 
|  | avd->auditallow |= node->datum.data; | 
|  | } | 
|  | return; | 
|  | } |